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The study of neurological disorders often presents with significant challenges due
to the inaccessibility of human neuronal cells for further investigation. Advances in
cellular reprogramming techniques, have however provided a new source of human
cells for laboratory-based research. Patient-derived induced pluripotent stem cells
(iPSCs) can now be robustly differentiated into specific neural subtypes, including
dopaminergic, inhibitory GABAergic, motorneurons and cortical neurons. These neurons
can then be utilized for in vitro studies to elucidate molecular causes underpinning
neurological disease. Although human iPSC-derived neuronal models are increasingly
regarded as a useful tool in cell biology, there are a number of limitations, including
the relatively early, fetal stage of differentiated cells and the mainly two dimensional,
simple nature of the in vitro system. Furthermore, clonal variation is a well-described
phenomenon in iPSC lines. In order to account for this, robust baseline data from
multiple control lines is necessary to determine whether a particular gene defect leads
to a specific cellular phenotype. Over the last few years patient-derived neural cells
have proven very useful in addressing several mechanistic questions related to central
nervous system diseases, including early-onset neurological disorders of childhood.
Many studies report the clinical utility of human-derived neural cells for testing known
drugs with repurposing potential, novel compounds and gene therapies, which then
can be translated to clinical reality. iPSCs derived neural cells, therefore provide
great promise and potential to gain insight into, and treat early-onset neurological
disorders.

Keywords: iPSCs, childhood neurological disorders, in vitro disease modeling, gene therapies, drug screening,
isogenic control

INTRODUCTION

Over the last decade, significant advances such as whole exome and genome sequencing have
facilitated genetic screening of patients, resulting in an ever-increasing number of inherited
human diseases. Despite this genetic revolution, the molecular mechanisms downstream of a
specific gene mutation or genetic variant remain yet to be fully elucidated for the majority of
diseases. Future research priorities must therefore lie in studying such disorders in more depth,
to not only understand the disease, but also to develop novel therapies for clinical translation.
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To date, transgenic animal models and transformed cell
lines, have allowed clarification of pathophysiological pathways
affected by genetic mutations. Despite their benefits, both
methods have a number of limitations, in that they often do
not fully mimic human physiology, only partially recapitulate
progression of disease, and do not accurately recapitulate human
metabolism and homeostasis. It has long been recognized
that patient derived cells are a potentially better in vitro tool
for studying human disease. However, human tissue is often
either unavailable or simply not accessible. This is clearly
exemplified by neurological disorders, where accessing the brain
and neuronal tissue for cell culture and future study is near
impossible. Since the first human embryonic stem cells (ESCs)
were isolated in 1998 (Thomson et al., 1998), the use of
pluripotent stem cells (PSCs) has become a new reality in the
study of human diseases, offering a challenging but incredibly
useful model to move from clinic to bench and potentially
vice versa.

The discovery of cellular reprogramming techniques has been
a major step forward in the in vitro modeling of human disease,
theoretically allowing the study of all genetic disease with specific
patient cells as the starting point. Yamanaka and colleagues
(Takahashi et al., 2007) elegantly reprogrammed adult dermal
fibroblasts to a pluripotent state, by inducing ectopic expression
of four factors: Oct4, Sox2, Klf4, and cMyc (Takahashi et al., 2007;
Takahashi and Yamanaka, 2016). The induced PSCs generated
are highly similar to human ESCs, with the ability to indefinitely
proliferate and differentiate in cells derived from the three
germ layers. Since publication of Yamanaka’s landmark article,
reprogramming techniques have been further refined, and many
new strategies have been developed to effectively reprogram
somatic cells into pluripotency. Integrating retroviruses and
lentiviruses have been superseded by the use of non-integrating
systems, including adenovirus, Sendai virus, mRNA, episomal
vectors, proteins and small molecules (Fusaki et al., 2009; Kim
et al., 2009; Zhou and Freed, 2009; Warren et al., 2010; Okita
et al., 2011; Bar-Nur et al., 2014).

Neural stem cells (NSCs) have been successfully derived
from PSCs and several protocols for PSCs differentiation into
a broad variety of mature neurons and glial cell subtypes have
been published (Srikanth and Young-Pearse, 2014). Patient-
derived neural cells have the specific advantage of retaining
the genetic background of the donor and thus offer a unique
in vitro neuronal disease model. They are an unlimited source
of cells that allows the analysis of the cellular mechanisms
involved in disease. Furthermore, they provide a novel platform
to test new drugs and genetic therapies as well as a source of
cells that could potentially be used for cell replacement therapy
(Figure 1).

When approaching the study of neurological diseases using
human induced pluripotent stem cell (iPSC)-derived neurons
as an in vitro model system, several considerations need to
be taken into account, including the accurate generation
of truly pluripotent cells, the relative efficiency of neuronal
differentiation, and the strengths, utility and limitations
of generated neurons. In this review, we provide a brief
overview of what we consider to be the most important

FIGURE 1 | Use of patient-derived induced pluripotent stem cells
(iPSCs) for modeling genetic neurological diseases. Genetic screening
of patients affected by a neurological disorder may lead to the identification of
specific mutations causing disease. Patient-derived somatic cells (fibroblast
and other cell types) can be then reprogrammed to a pluripotent state. iPSCs
carrying the disease-related mutation (indicated in red) can be then
differentiated into the neural cells type (neurons and glial cells) which are
affected in the disease. This allows for the in vitro study of the molecular
mechanisms downstream the genetic mutation. In order to overcome genetic
background variability and to validate the effect of the genetic mutation on
phenotype observed in vitro, isogenic control iPSCs can be generated via
genomic correction of the mutation. Moreover, in vitro differentiated cells can
be used for high-throughput screening of drugs or the validation of specific
genetic therapies that can then be translated into clinical practice.

advantages and disadvantages of using human iPSCs to
model neurological diseases, and their translational utility
at a clinical level. Our main focus will be to evaluate this
model system for early-onset genetic neurological disorders
(Table 1), although, where relevant and appropriate, we
will use examples from other later-onset neurological
diseases.

NEURAL DIFFERENTIATION OF HUMAN
iPSC: A WIDE VARIETY OF CELL TYPES

Differentiation of iPSCs into neural cells is based on
recapitulating embryonic development and relies on the
use of specific factors that can promote or inhibit specific
signaling pathways. All methods published so far can guarantee
high purity of NSCs, but it is more challenging to obtain
decent percentages of specific subtypes of desired mature
neural cells. To date, it is possible to derive a wide variety of
neuronal cell types from PSCs, including forebrain neuronal
neurons (Espuny-Camacho et al., 2013; Lancaster et al.,
2013); motor neurons (Wada et al., 2009; Nizzardo et al.,
2010); dopaminergic neurons (Kriks et al., 2011; Kirkeby
et al., 2012); GABAergic neurons (Maroof et al., 2013;
Nicholas et al., 2013); medium spiny neurons (Delli Carri
et al., 2013); forebrain cholinergic neurons (Wicklund et al.,
2010; Hu et al., 2016); serotonergic neurons (Erceg et al.,
2008); caudal neurons (Kirkeby et al., 2012); cerebellar neurons
(Erceg et al., 2010); astrocytes (Emdad et al., 2012; Juopperi
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TABLE 1 | Utility of induced pluripotent stem cells (iPSC) in childhood-onset neurodevelopmental and neurological disorders.

Disease Gene(s) Differentiated Molecular Compound Gene/RNA
cell type characterization screening therapy

Neurodevelopmental disorders

Rett syndrome MEPC2
CDKL5

Neural progenitor cells
Neurons (glutamatergic)
Astrocytes

Muotri et al. (2010),
Amenduni et al. (2011),
Ananiev et al. (2011),
Cheung et al. (2011),
Kim et al. (2011),
Farra et al. (2012),
Larimore et al. (2013),
Williams et al. (2014),
Andoh-Noda et al. (2015),
Djuric et al. (2015),
Fernandes et al. (2015),
Livide et al. (2015),
Tang et al. (2016)
and Zhang et al. (2016)

Marchetto et al. (2010)

Fragile X syndrome FMR1 Neural precursor cells
Neurons (forebrain)
Glial cells

Urbach et al. (2010),
Sheridan et al. (2011),
Doers et al. (2014)
and Halevy et al. (2015)

Kaufmann et al. (2015)
and Kumari et al. (2015)

Park et al. (2015)

Microcephaly ERCC6
CDK5RAP2

Neurons
Cerebral organoids

Lancaster et al. (2013)
and Vessoni et al. (2016)

Angelman/Prader-Willi
syndromes

UBE3A Neurons
Astrocytes

Chamberlain et al. (2010)

Timothy syndrome CACNA1C Neural progenitor cells
Neurons

Krey et al. (2013)
and Tian et al. (2014)

Paşca et al. (2011)

Phelan-McDermid
syndrome

Chromosome
22q13 deletion

Neurons (forebrain) Shcheglovitov et al. (2013)

Epilepsy

Dravet syndrome SCN1A Neurons (dopaminergic,
GABAergic)
Forebrain interneurons
Glutamatergic neurons
Glial cells

Higurashi et al. (2013),
Jiao et al. (2013),
Liu et al. (2013, 2016)
and Maeda et al. (2016)

Jiao et al. (2013)

Early infantile epileptic
encephalopathy

STXBP1 Neurons (glutamatergic,
GABAergic)

Yamashita et al. (2016)

Movement disorders

Hereditary spastic
paraplegia

SPG11
ATL1
SPAST

Cortical neural
progenitor cells
Neurons (forebrain
glutamatergic)

Denton et al. (2014),
Havlicek et al. (2014)
and Mishra et al. (2016)

Zhu et al. (2014)

Ataxia telangiectasia ATM Neural progenitor cells
Neurons (GABAergic)

Nayler et al. (2012)
and Carlessi et al. (2014)

Lee et al. (2013)

Friedrich’s ataxia FXN Neural progenitor cells
Neural crest cells
Neurons (peripheral sensory)
Glial cells

Liu et al. (2011),
Eigentler et al. (2013),
Hick et al. (2013)
and Bird et al. (2014)

Shan et al. (2014),
Soragni et al. (2014)
and Igoillo-Esteve et al. (2015)

Li et al. (2015)

Huntington’s disease HTT Striatal neural
precursor cells
Neurons
(GABAergic striatal)
Astrocytes

Camnasio et al. (2012),
Chae et al. (2012),
HD iPSC Consortium (2012),
Jeon et al. (2012),
Juopperi et al. (2012),
Mattis et al. (2015)
and Szlachcic et al. (2015)

Guo et al. (2013),
Hsiao et al. (2014)
and Lu et al. (2014)

An et al. (2012)
and Cheng et al. (2013)

Metabolic disorders

Lesch-Nyhan syndrome HPRT Neurons Mastrangelo et al. (2012)
and Mekhoubad et al. (2012)

(Continued)
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TABLE 1 | (Continued).

Disease Gene(s) Differentiated Molecular Compound Gene/RNA
cell type characterization screening therapy

Niemann-Pick type C
disease

NPC1 Neurons
Astrocytes

Trilck et al. (2013, 2016) Efthymiou et al. (2015)

Neuronal ceroid
lipofuscinosis disease

TPP1
CLN3

Neurons Lojewski et al. (2014)

Gaucher’s disease GBA1 Neurons (dopaminergic) Awad et al. (2015)
and Sun et al. (2015)

Tiscornia et al. (2013)

Metachromatic
leukodystrophy

ARSA Neural stem cells
Astroglial progenitor cells

Doerr et al. (2015)

X-linked
Adrenoleukodystrophy

ABCD1 Neurons
Astrocytes
Oligodendrocytes

Jang et al. (2011)
and Baarine et al. (2015)

Neuromuscular
disorders

Spinal muscular atrophy SMN1 Neurons (motor neurons,
forebrain neurons,
sensory neurons)
Astrocytes

Ebert et al. (2009),
Chang et al. (2011),
McGivern et al. (2013),
Schwab and Ebert (2014),
Boza-Morán et al. (2015),
Demestre et al. (2015),
Liu et al. (2015),
Ng et al. (2015),
Fuller et al. (2016),
Heesen et al. (2016)
and Patitucci and Ebert (2016)

Sareen et al. (2012),
Ohuchi et al. (2016)
and Xu et al. (2016)

Corti et al. (2012),
Nizzardo et al. (2015)
and Yoshida et al. (2015)

et al., 2012); oligodendrocytes (Nistor et al., 2005; Ogawa
et al., 2011). Neuronal populations generated are typically
heterogeneous, presenting both mature and immature cells,
and thus need further technologies to achieve a high level of
purity. Sorting techniques are often useful, but there are few
neuronal subtype-specific surface markers available to select
desired neural subpopulations (Pruszak et al., 2009; Yuan
et al., 2011; Doi et al., 2014). To overcome this issue, sorting
can sometimes be achieved by the expression of a selectable
marker included as a reporter under expression of specific
transcription factors or proteins (DeRosa et al., 2015; Toli et al.,
2015).

IN VITRO DERIVED NEURAL CELLS: WHAT
IS THEIR TRUE DEVELOPMENTAL STAGE?

During reprogramming into iPSCs, somatic cells return to a
developmental stage similar to that of ESCs, independent of their
original age. Indeed, age-related characteristics of the original
cells, (such as nuclear abnormalities, telomere length, and
mitochondrial activity) are lost during this re-set to an embryonic
stage (Marion et al., 2009; Suhr et al., 2010). Differentiation
protocols for the generation of neuronal subtypes from PSCs
require a significant amount of time spanning from weeks to
months (Srikanth and Young-Pearse, 2014) to produce neurons
that show a relatively mature morphological, molecular and
electrophysiological phenotype. Despite this maturation process,
generated neurons are still reminiscent of human fetal neurons
(Mariani et al., 2012; Lancaster et al., 2013; Miller et al., 2013;

Vera and Studer, 2015). It is therefore conceivable that such
in vitro model systems could fail to recapitulate the disease
phenotype especially for late-onset disorders.

Studer and colleagues (Miller et al., 2013) have addressed this
issue, by developing a genetic strategy for introducing aging-
related features in iPSC-derived neurons, specifically studying
Parkinson disease (PD). Specifically, PD patient iPSC-derived
midbrain dopaminergic neurons (mDA) recapitulate some PD
disease features, including α-synuclein (αSYN) accumulation,
oxidative stress, defects in neural outgrowth and mitochondrial
dysfunction (Byers et al., 2011; Jiang et al., 2012; Reinhardt
et al., 2013). However key late disease features of PD, such
as neural degeneration, were only evident in model systems
exposed to external stressors (Byers et al., 2011; Nguyen et al.,
2011). Importantly, the accumulation of Lewy bodies and
appearance of neuromelanin, a distinct feature of adult mDA
neurons, have not been observed in iPSC-derived neurons.
In this case, Studer and colleagues transiently overexpressed
progerin, and showed restoration of aging features in both
fibroblasts and mDA neurons derived from iPSCs. In particular,
in iPSC-derived mDA neurons, they observed features of normal
neural aging, with degeneration of dendrites in vitro and
neuromelanin accumulation after grafting in vivo (Miller et al.,
2013).

The relatively immature characteristics of iPSC-derived
neurons should therefore always be a major consideration when
modeling postnatal-, childhood- and adult-onset neurological
diseases, where pathological features only manifest during
postnatal development or the aging process.
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VARIABLE GENETIC BACKGROUND:
DEFINING GOOD CONTROLS

Using patient derived iPSCs guarantees a unique opportunity
to study the phenotype associated with a specific mutation in
the context of the genetic background in which the mutation
leads to disease. However, genetic background and potential
genetic modulators of disease could conceivably affect the
phenotype of both healthy control and patient lines. This
is a definite limiting factor in the study of both Mendelian
and more complex multigenic/multifactorial disorders. One
solution is to use iPSCs derived from un-affected relatives
for comparison, or to compare several control and several
different patient lines in the same study. However, both these
methods can be costly and time consuming. In more recent
times, gene-editing technologies have become a more robust
method by which the effect of a specific genotype on the
iPSC model system can be unequivocally validated. Indeed,
for monogenic disorders, correction of the single mutation in
an iPSC cell line allows development of a unique ‘‘isogenic’’
control which harbors the same genetic background of the
patient, thereby decreasing any ‘‘background noise’’ that could
mask or affect cell phenotype. Furthermore, the insertion of a
specific mutation into a control line can be utilized to show
that such mutagenesis can induce disease phenotypes into a
control line, akin to those seen in patient lines. Such concepts
have been elegantly illustrated by Reinhardt et al. (2013) in
their study of LRRK2-related PD, where they generated and
compared several control lines, from healthy age- and gender-
matched individuals, vs. isogenic controls using gene editing
tools. No significant difference in αSYN levels was observedwhen
comparing mDA neurons from wild type to LRRK2-mutated
patient derived iPSC lines. However, αSYN levels were markedly
reduced in patient lines when compared to the corresponding
corrected isogenic lines. Gene expression profiles after 30 days
of differentiation revealed significant differences in the age- and
gender-matched iPSC lines when compared to both patient and
isogenic lines. It is therefore clear that genetic background can
have effects on gene expression, and the comparison of patient
lines with isogenic controls can help overcome such genetic
variability.

A number of different techniques can be used to generate
isogenic controls. Reinhardt et al. (2013) used Zinc Finger
Nuclease (ZFNs) technology. Both ZFN and the similar
Transcription Activator-Like Effector Nuclease (TALENs) have
been used successfully for gene editing in iPSCs (Hockemeyer
et al., 2009, 2011). Both methods rely on the generation of
costumed DNA binding domains conjugated to Fok1 nuclease,
which can induce double strand breaks in a non-specific manner.
The landmark discovery of the Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR)-Cas9 system has added
a highly efficient tool to manipulate the iPSCs genome (Ding
et al., 2013) using endonuclease Cas9 and a guide RNA,
targeting a specific region. Due to the efficient, relatively fast
and targeted approach of the CRISPR-Cas9 technique compared
to ZFNs and TALENs, this newer technique appears to be the
preferred genome editing methodology for many researchers.

Furthermore, the different commercial companies now offer
generation of custom isogenic control lines using CRISPR-Cas9
technology (Baker, 2014).

NEURONAL CELLS IN A DISH: THE NEED
FOR A 3D SYSTEM

Although iPSCs represent an advantageous tool to study
molecular phenotypes in neurological disease, their two
dimensional nature means that some of the environmental
factors, regional identities and complex neural circuits are absent
when compared to either an animal disease model or human
patient. Different studies have shown the intrinsic ability of
NSCs to spontaneously self-organize in 3-dimensional (3D)
structures resembling whole organs (Lancaster and Knoblich,
2014). Lancaster et al. (2013) showed how simple cultivation of
control iPSCs in suspension can give rise to organoids which
display several brain regions along the rostro-caudal and dorso-
ventral pathways of mainly the forebrain and mid-hindbrain
areas. The degree of cellular organization was maximal in
the dorsal cortical region of the generated organoid where
they observed a layered organization typical of the developing
human forebrain. The same group then generated organoids
from iPSCs derived from patients with microcephaly. The
patient-derived cortical organoids mimicked a number of the
features seen in disease, including smaller neural tissues with few
progenitors regions, and radial glial maturation and orientation
abnormalities, which were not previously recapitulated in a
murine model. Organoids therefore represent a powerful tool to
study both human fetal neocortical development (Camp et al.,
2015) and developmental disorders. The generation of organoids
representing more caudal fetal regions, (such as the midbrain
and hindbrain) is also no doubt useful for studying neurological
disorders affecting these areas of the central nervous system.
Indeed, midbrain-like organoids (MLOs) have recently been
derived from human ESCs (Jo et al., 2016). Neural cells of such
MLOs not only expressed midbrain markers and displayed
characteristic dopaminergic electrical activity, but also produced
neuromelanin, a characteristic not observed in bi-dimensional
systems.

MOVING iPSCs INTO CLINICAL UTILITY:
DRUGS, CELL AND GENE THERAPY FOR
PHARMACORESISTANT CHILDHOOD
NEUROLOGICAL DISORDERS

The development of new drugs to treat human disorders
is a challenging field. Indeed, many drugs tested in animal
models have failed in human clinical trials due to lack of
efficacy or intolerability (Scannell et al., 2012). Overall, new
drugs for pharmacoresistant disorders are an unmet need, and
constitute a priority area for research. The development of new
drugs is hindered by the lack of appropriate models. Human
iPSCs offer a unique opportunity for high-throughput drug
screening in patient derived cells to assess drug efficacy and
toxicity. Despite being in the early stages, several studies have
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demonstrated the feasibility and usefulness of this approach for
childhood neurological disorders. For example, motor neurons
derived from patients affected by Spinal Muscular Atrophy
(SMA) have been used to test specific drugs (Xu et al.,
2016). SMA is characterized by mutations in SMN1, which
leads to degeneration of spinal motor neurons associated with
mitochondrial dysfunction. Treatment of SMA human iPSCs
derived motor neurons with N-acetylcysteine (NAC) improved
mitochondrial functionality, thereby rescuing motor neuron
degeneration in vitro.

In Rett syndrome (RTT) patient-derived iPSCs have been
utilized to test the effect of IGF1 and gentamicin in vitro
(Marchetto et al., 2010). RTT iPSCs derived glutamatergic
neurons showed a decreased level of glutamatergic synapses
when compared to controls, which was increased by IGF1
treatment. Gentamicin, administrated at high dose acted as
a suppressor of nonsense mutations which cause impaired
function of MeCP2 in RTT. Furthermore, IGF1 has been used
to rescue the phenotype observed in neurons differentiated
from Phelan–McDermid syndrome (PMDS)-derived iPSCs
(Shcheglovitov et al., 2013). PMDS neurons showed impairment
in excitatory synaptic transmission and reduced number
of excitatory synapses, which were restored after treatment
with IGF1.

These and other studies (Table 1), have mainly tested small
number of compounds on iPSC differentiated cells, thereby
demonstrating the feasibility of using iPSCs for drug testing. In
the future, high-throughput technologies allowing the screening
of an extensive library of compounds will be useful. High-
content imaging and analysis are likely to be helpful for such
high-throughput approaches (Sirenko et al., 2014). High-content
high-throughput assays have already been undertaken on iPSC-
derived neural cells in 348-well assays, with analysis focusing
on neurite outgrowth, cell number and viability, mitochondrial
integrity and membrane potential.

Two studies have used high-throughput assays to screen
large numbers of candidate drugs for Fragile X syndrome,
a neurodevelopmental disorder characterized by learning
problems, autism, and anxiety. This syndrome is associated with
CGG repeat expansion in the 5′-untranslated region of FMR1,
which leads to the absence of FMR protein. Both studies used
patient derived iPSCs and differentiated them either in NSCs
or neural precursors. In the first study 5000 compounds (both
novel and approved drugs) were tested (Kumari et al., 2015),
while the second study expanded drug screening to over 50,000
compounds (Kaufmann et al., 2015). In both studies FMR1-
neural cells, treated with compounds as decanehydroxamate,
deserpidine or tibrofan, showed increased mRNA levels, though
not to clinically significant levels. Nevertheless, both studies
show how promising high-throughput techniques can be in
expanding the potential of drug testing using iPSCs derived cells.

In addition to the screening of new drugs, human iPSCs also
offer other therapeutic possibilities that can be translated into
clinical practice, as evident in the Phase I SMA study (Chiriboga
et al., 2016). The antisense oligonucleotide nusinersen was
designed to alter splicing of SMN2mRNA. SMN1motor neurons
compensate with the paralogous gene SMN2. SMN2 shows a

high sequence homology to SMN1, the only difference resides
in the C-to-T base change inside exon 7. This mutation leads
to abnormal SMN2 splicing and to the generation of truncated
highly unstable proteins that trigger neural degeneration of
motor neurons. SMN2 splicing correction with the use of
oligonucleotides resulted in the production of a greater amount
of full-length SMN2. This strategy has been tested on patient-
derived iPSCs differentiated motor neurons (Corti et al., 2012)
and showed the ability to convert SMA-differentiated motor
neurons to a normal phenotype, both in vitro and after grafting
into a mouse model of disease.

iPSC-derived neural cells can also be a patient-derived
platform to test genetic therapies. Juvenile neuronal ceroid
lipofuscinosis (NCL) disorder is caused by loss-of-function
mutations in CLN3. Patient-derived iPSCs neurons showed
abnormal lysosomal storage with abnormalities observed in
mitochondria, Golgi apparatus and endoplasmic reticulum.
After restoring the function of CLN3 via AAVrh.10 virus
bearing wild-type human CLN3, in vitro differentiated neurons
showed a rescued phenotype, without excess accumulation of
storage material (Lojewski et al., 2014). Similarly, a lentiviral
approach was used for a genetic early onset form of PD. iPSC-
derived mDA harboring mutations in PINK1, a gene encoding
a mitochondrial kinase, showed dysfunctional mitochondrial
function. Expression of the non-mutated PINK1 via lentivirus
in patient-derived mDA neurons restored normal recruitment
of PINK1 upon mitochondrial depolarization, and normalized
mitochondrial number and biogenesis (Seibler et al., 2011).

The combination of genetic engineering techniques and the
promise of human PSCs differentiated cells as a donor source
for cell replacement therapies, could in the future lead to
the generation of patient-derived ‘‘corrected’’ cells that could
potentially be used in autologous transplantation to replace
affected disease cells. Such use of patient derived, genetically
corrected neural cells may also potentially overcome immune-
mediated responses that might be triggered by using allogenic
neural cells. Overall, even though such approaches are extremely
promising and although PSCs are already used in clinical
trials (Kimbrel and Lanza, 2015), there remain many issues
regarding the use of PSC as cell replacement therapy, particularly
concerning cell identity, purity, safety and long term risks. For
this reason, even though it remains an extremely promising
approach, clinical translation of such a therapeutic approach is
likely to take some time.

CONCLUSION

Patient derived iPSCs represent a unique and increasingly
utilized tool for the study of human genetic neurological
diseases of childhood. iPSCs are an extraordinary model that
can facilitate new insight into the molecular basis of disease
and aid the development of new therapies, especially for
pharmacoresistant diseases where human tissue is inaccessible
for research purposes. Like all other laboratory models, human
iPSCs have some limitations, namely that the model can be
time consuming and costly to establish, shows clonal variability
and genetic background can influence phenotype. Despite this,
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the ever-growing number of studies using human iPSCs to
both model genetic disease and discover new therapies, render
them an extremely promising tool, capturing the attention of
researchers worldwide.
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