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Abstract. The leading asymptotic large-scale behaviour of the spatially bipartite en-

tanglement entropy (EE) of the free Fermi gas infinitely extended in multidimensional

Euclidean space at zero absolute temperature, T = 0, is by now well understood. Here,

we present and discuss the first rigorous results for the corresponding EE of thermal

equilibrium states at T > 0. The leading large-scale term of this thermal EE turns out

to be twice the first-order finite-size correction to the infinite-volume thermal entropy

(density). Not surprisingly, this correction is just the thermal entropy on the inter-

face of the bipartition. However, it is given by a rather complicated integral derived

from a semiclassical trace formula for a certain operator on the underlying one-particle

Hilbert space. But in the zero-temperature limit T ↓ 0, the leading large-scale term

of the thermal EE considerably simplifies and displays a ln(1/T )-singularity which

one may identify with the known logarithmic enhancement at T = 0 of the so-called

area-law scaling.
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1. Introduction and main results.

In recent years, entanglement entropy has turned out to be a useful and much

studied quantifier of nonclassical correlations between subsystems in composite quantum

systems [1]. In particular, given the (pure) ground state of a spatially large many-

particle system and reducing (or localising) it to a spatial subregion Ω, we denote the

von Neumann entropy of the resulting (mixed) substate by S(0,Ω) and call it the local

ground-state entropy. The spatially bipartite entanglement entropy (EE), defined for a

bounded Ω as the (quantum) mutual information relative to the complement of Ω and

denoted by H(0,Ω), then simply equals 2S(0,Ω) by the purity of the ground state. This

(ground-state) EE quantifies, to some extent, how strongly all particles within Ω are
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correlated with all those outside Ω. It is thus, for example, well suited to detect long-

range correlations near the critical point of a quantum phase transition by enlarging Ω,

see [2, 3, 4, 5].

For a many-particle system without long-range interactions the ground-state EE

H(0, LΩ) = 2S(0, LΩ) , L ≥ 1 (1)

is widely believed [6, 7] to grow to leading order proportional to the area |∂Ω|Ld−1

of the boundary surface ∂(LΩ) of the scaled region LΩ as the (dimensionless) scaling

parameter L tends to infinity, L → ∞. Here, d = 1, 2, 3, . . . is the spatial dimension of

Ω. If the particles are fermions and if there is no spectral gap above their ground-state

energy in the infinite-volume limit, the effective long-range correlations lurking in the

(Pauli–)Fermi–Dirac statistics are expected to slightly enhance the large-scale growth of

H(0, LΩ) by a logarithmic factor ln(L). Indeed, for the free Fermi gas infinitely extended

in d-dimensional Euclidean space Rd such a large-scale growth of the ground-state EE

with a precise and rather explicit prefactor has been proved with full mathematical

rigour [8], thereby confirming a stimulating conjecture by Gioev and Klich [9].

In this note, we present and discuss the first rigorous results on the EE of the free

Fermi gas in Rd in the state of thermal equilibrium at nonzero temperature, T > 0, and

chemical potential µ ∈ R := R1. The latter we mostly suppress for notational simplicity,

but also because we often consider thermal properties for fixed (mean) particle-number

density ρ > 0. In contrast with the ground-state or T = 0 case, the EE at T > 0,

denoted by H(T,Ω), must not be expected to be just twice the local thermal entropy

S(T,Ω) <∞, since thermal states are mixed ones. However, in trying to define H(T,Ω)

as the mutual information

H(T,Ω) = S(T,Ω) + “S(T,Rd \ Ω)− S(T,Rd)” (2)

of the bipartition, we are confronted with the two infinities S(T,Rd\Ω) = S(T,Rd) =∞
due to the additivity of macroscopic thermal entropy. We solve this problem by rewriting

the right-hand side of (2) in a mathematically and physically reasonable way as a sum

of two finite (that is, not infinite) differences, see (19) and (20) below. By construction,

H(T, LΩ) is then well-defined and exhibits a leading term proportional to Ld−1 as

L → ∞. Given that, our general line of arguments is similar to that of Ref. [10]

devoted to noninteracting fermions in the d-dimensional simple cubic lattice Zd with

emphasis on the case d = 1.

Our main results may be summarised as follows. For the (spinless) free Fermi gas

in Rd at any T > 0 we find the following two asymptotic large-scale expansions: the

local thermal entropy satisfies

S(T, LΩ) = s(T )|Ω|Ld + η(T, ∂Ω)Ld−1 + . . . (3)

and the thermal EE satisfies

H(T, LΩ) = 2η(T, ∂Ω)Ld−1 + . . . , (4)
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up to terms growing slower than Ld−1 as L → ∞. Here, the bounded subregion

Ω ⊂ Rd may be rather general except that its boundary surface ∂Ω (if d ≥ 2) should be

sufficiently smooth. For further assumptions see our theorem in Sec. 3 below. There we

also make the definitions of the entropies S(T,Ω) and H(T,Ω) more precise and express

the coefficient η(T, ∂Ω) in terms of a multiple integral. Nevertheless, in this note we

concentrate on the physical aspects and publish the somewhat lengthy mathematical

details in separate papers [11, 12, 13]. In the next section we just identify s(T ) and offer

some explanations and comments.

2. Physical meanings of the asymptotic coefficients and their dependence

on temperature.

Not surprisingly, the leading asymptotic coefficient s(T )|Ω| in (3) is nothing but the

thermal entropy contained in Ω and s(T ) ≥ 0 is the (infinite-volume) thermal entropy

density or mean entropy. The latter is given by the thermodynamic relation

s(T ) =
∂

∂T
p(T ), p(T ) :=

∫
R

dEN (E)fT (E − µ) , (5)

where the integral is the pressure of the free Fermi gas as a function of T (and µ).

The quantity N (E) := (2π~)−d
∫
Rd dpΘ(E − ε(p)) defines the integrated density of

states N : R → [0,∞[ of the energy-momentum dispersion relation ε : Rd → [0,∞[

which characterises the translation-invariant one-particle Hamiltonian of the free Fermi

gas.‡ Here, 2π~ is Planck’s constant and Θ is Heaviside’s unit-step function. The

second factor of the integrand in (5) involves the Fermi function, fT : R → [0, 1],

fT (E) := [1 + exp(E/T )]−1, where from now on we put Boltzmann’s constant kB = 1.

From (5) and Sommerfeld’s asymptotic low-temperature expansion,

fT (E) = Θ(−E)− (π2/6)T 2Θ′′(E) + . . . (6)

(in distributional sense), we get the well-known formula

s(T ) = (π2/3)N ′(µ)T + . . . (7)

up to terms vanishing faster than T as T ↓ 0. Eq. (7) holds, as it stands, at fixed

chemical potential µ ∈ R. If instead of µ the particle density ρ > 0 is kept fixed, one

has to invert the thermodynamic relation ρ = ∂p/∂µ between ρ and µ. By (6), one thus

finds at low temperatures another well-known formula

µ(T, ρ) = εF − (π2/6)
[
N ′′(εF )/N ′(εF )

]
T 2 + . . . , (8)

where εF := limT↓0 µ(T, ρ) > 0 is the Fermi energy which satisfies ρ = N (εF ).

Consequently, Eq. (7) implies that s(T ) = (π2/3)N ′(εF )T + . . . for fixed ρ > 0. For

‡ For convenience, we have assumed ε(p) ≥ 0 for all p ∈ Rd so that N (E) = 0 if E < 0. This is no loss

of generality as long as ε is bounded from below.
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the ideal (non-relativistic, free) Fermi gas [14], corresponding to the prime example

ε(p) = p2/(2m) with m > 0 being the mass of each particle, we recall the explicit

formula

N (E) = Θ(E)
[
mE/(2π~2)

]d/2
/(d/2)! (9)

for its integrated density of states. Quantum effects dominate at low temperatures and

become weaker at higher temperatures. Accordingly, the properties of the ideal Fermi

gas approach those of the ideal Maxwell–Boltzmann gas in the high-temperature limit,

T → ∞. For example, in this limit the thermal entropy density of the ideal Fermi gas

grows, to leading order, proportional to T d/2 at fixed µ and proportional to ln(T ) for

fixed ρ, in symbols,

s(T ) ∼ T d/2 (µ fixed) , (10a)

s(T ) ∼ ln(T/T0) (ρ fixed). (10b)

Here, the constant T0 > 0 is an arbitrary comparison temperature.

Returning to the expansions (3) and (4), we note that the other asymptotic

coefficient, η(T, ∂Ω), is also positive. On the one hand, it represents the thermal entropy

on the boundary surface ∂Ω and determines the first-order finite-size correction to the

infinite-volume entropy (density). On the other hand, η(T, ∂Ω)Ld−1 is half the thermal

EE to leading order in L. Consequently, Eq. (3) shows that the local entropy at T > 0

displays a leading large-scale behaviour in agreement with a “volume law” as it should

be. In contrast, Eqs. (3) and (4) show that the EE at T > 0 obeys a (strict) “area

law”: although the two subregions LΩ and its complement Rd \ LΩ carry (contrary

to the case T = 0) extremely different local entropies (namely S(T, LΩ) < ∞ and

S(T,Rd \ LΩ) = ∞), on their common boundary ∂(LΩ), or interface, the entropies

are equal and proportional to Ld−1 as L → ∞. Roughly phrased, the logarithmic

enhancement ln(L) present [8, 9] in the large-scale behaviour of the ground-state EE,

see (1) and (13) below, disappears when the temperature is raised from T = 0 to

T > 0 because the Fermi surface “grows soft”. Incidentally, we note that η(T, ∂Ω)

does not depend on the choice of a condition imposed on the domain of the (quantum)

Hamiltonian at the boundary ∂Ω, because we work from the outset in the infinitely

extended position space Rd and view all operators to act self-adjointly on the associated

one-particle Hilbert space L2(Rd) of square-integrable functions ψ : Rd → C, q 7→ ψ(q).

The coefficient η(T, ∂Ω) is given by a rather complicated integral (see (22–24)

below), which, fortunately, is well-known in the theory of semiclassical expansions for

traces of certain (truncated) Wiener–Hopf type operators, see Refs. [15, 16, 17, 18].

Interestingly, in the limit T ↓ 0 the coefficient η(T, ∂Ω) simplifies, displays a logarithmic

singularity and takes (at fixed µ > 0 §) the rather explicit form

η(T, ∂Ω) = (1/12) J(∂Γµ, ∂Ω) ln(T0/T ) + . . . (11)

§ If µ < 0, then η(T, ∂Ω) vanishes as T ↓ 0.



Local and entanglement entropy of the free Fermi gas 5

up to terms remaining bounded as T ↓ 0. Here, the level set ∂Γµ := {p ∈ Rd : ε(p) = µ}
in momentum space is the (effective) Fermi surface corresponding to µ. The factor

J(∂Γµ, ∂Ω) is defined as in Ref. [8] and for d ≥ 2 given by the twofold surface integral

J(∂Γµ, ∂Ω) := (2π~)1−d
∫
∂Γµ×∂Ω

dσ(p)dτ(q)
∣∣m(p) · n(q)

∣∣ . (12)

The vectors m(p), n(q) ∈ Rd denote the exterior unit normals at the points p ∈ ∂Γµ and

q ∈ ∂Ω, respectively. The canonical (d − 1)-dimensional area measures on the surfaces

∂Γµ and ∂Ω are denoted by σ and τ , respectively. If we fix the particle density ρ > 0

and use (8) in (11), we arrive at (11) with µ replaced by εF .

By identifying the large ratio T0/T inside the logarithm in (11) with the scaling

parameter L, Eqs. (3) and (7) give

S(0, LΩ) = (1/12) J(∂Γµ, ∂Ω)Ld−1 ln(L) + . . . (13)

in agreement with the result for T = 0 in Refs. [8, 9] (resp. the corresponding expression

with µ replaced by εF ). For an isotropic dispersion relation ε we know from Ref. [8]

that J(∂Γµ, ∂Ω) is proportional to the area |∂Ω|.‖ This is even true for η(T, ∂Ω) itself,

at arbitrary T > 0. However, the emerging prefactor, the thermal entropy surface

density, remains to be given by a multiple integral, see the remarks below the subsequent

Eq. (24).

As for the entropy density s(T ), the leading high-temperature behaviour of the

coefficient η(T, ∂Ω) of the ideal Fermi gas depends on whether µ or ρ is kept fixed.

More precisely, it follows from (24) that

η(T, ∂Ω) ∼ T (d−1)/2 (µ fixed), (14a)

η(T, ∂Ω) ∼ T−1/2 (ρ fixed), (14b)

as T →∞. Eq. (14b) reflects the fact that the particles become effectively uncorrelated

for fixed particle density at sufficiently high temperature.

3. Precise definitions and formulations of results.

In order to define the local thermal entropy and the thermal EE precisely we first recall

that the infinite-volume equilibrium state of the free Fermi gas at temperature T > 0

and chemical potential µ ∈ R is quasi-Gaussian (in other words, quasi-free) and uniquely

determined by its reduced one-particle density operator fT (ε(P )−µ1) on L2(Rd). Here,

P := −i~∂/∂q is the canonical-momentum operator, ε(P ) ≥ 0 the one-particle quantum

Hamiltonian and 1 the identity operator. The local (or truncated) version

D(fT ,Ω) := 1Ω fT (ε(P )− µ1)1Ω (15)

‖ In particular, for the ideal Fermi gas in Rd one simply has J(∂Γµ, ∂Ω) = 2Nd−1(µ)|∂Ω|, where

Nd−1(E) is given by the right-hand side of (9) with d replaced by d− 1.
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of the density operator then characterises the quasi-Gaussian substate obtained from

the equilibrium state by spatial reduction to Ω ⊆ Rd. Here, 1Ω : L2(Rd) → L2(Rd)

denotes the projection operator associated with the indicator function of Ω, that is,

(1Ωψ)(q) := ψ(q) if q ∈ Ω and 0 otherwise for all ψ ∈ L2(Rd). Next we recall the binary

entropy function h : [0, 1]→ [0, ln(2)] defined by

h(0) := h(1) := 0 and h(t) := −t ln (t)− (1− t) ln (1− t) if t ∈ ]0, 1[. (16)

The positivity

h̃(λ, r, t) := h
(
(1− λ)r + λt

)
− (1− λ)h(r)− λh(t) ≥ 0 (17)

for all λ, r, t ∈ [0, 1] is equivalent to the concavity of h. In fact, h is even operator-

concave [19]. The local thermal (von Neumann) entropy is now given as the trace

S(T,Ω) := Tr[1Ω h(D(fT ,Ω))1Ω] = Tr[h(D(fT ,Ω))], (18)

see, for example, [20]. The second equality in (18) follows from h(0) = 0.

The definition of the thermal (von Neumann) EE requires two steps. In the first

step we introduce the “entropic” operator difference

∆(T,Ω) := 1Ωh(D(fT ,Ω))1Ω −D(h ◦ fT ,Ω) . (19)

Here, the operator D(h ◦ fT ,Ω) is obtained from (15) by replacing the Fermi function

fT with the composed function h ◦ fT defined by (h ◦ fT )(E) := h(fT (E)) for all E ∈ R.

From the operator concavity of the function h and from Refs. [19, 21] we get the operator

positivity ∆(T,Ω) ≥ 0. In the second step we define the thermal EE for a bounded

Ω ⊂ Rd as the sum of two positive traces

H(T,Ω) := Tr ∆(T,Ω) + Tr ∆(T,Rd \ Ω) . (20)

This is the precise version of (2). Arguments as in Ref. [22] show that even the

second trace is finite, although the (positive) minuend and the (positive) subtrahend of

∆(T,Rd \ Ω) have both an infinite trace. Therefore, we arrive at the (in)equalities

0 ≤ H(T,Ω) = H(T,Rd \ Ω) <∞ . (21)

Moreover, in the limit T ↓ 0 we get back to Eq. (1) by observing that h ◦ f0 = 0, confer

(6).

To explain the coefficient η(T, ∂Ω) of the subleading asymptotic behaviour of

S(T, LΩ) and of the leading behaviour of H(T, LΩ) as L→∞, we need some auxiliary

definitions. In contrast to the well-known leading “volume term” in (3) the subleading

“area term” is new and rather complicated. It cannot be obtained from simple heuristic

considerations, not even for d = 1. But it can be derived from the semiclassical “area

coefficient” in Refs. [15, 16, 17, 18] by observing that the traces in (18) and (20),

with Ω replaced by LΩ, depend on Planck’s constant 2π~ and the scaling parameter
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L only via the ratio ~/L which can be seen by a (unitary) dilatation. In order to

recall this “area coefficient” from the mentioned literature we first define the function

U : [0, 1]× [0, 1]→ [0,∞[, (r, t) 7→ U(r, t) by

U(r, t) :=
1

8π2

∫ 1

0

dλ
h̃(λ, r, t)

λ(1− λ)
, (22)

see (16) and (17) for the definition of h̃. Then we consider the integral

U [g] := lim
δ↓0

∫
R×R

dv dwΘ(|v − w| − δ)
U
(
g(v), g(w)

)
(v − w)2

(23)

defined, in the principal-value sense, for smooth functions g : R → [0, 1]. Observe that

U [g] ≥ 0 since U(r, t) ≥ 0 due to the concavity of h. If the function h were smooth,

then U [g] could be defined as a standard Riemannian integral, whose finiteness could be

easily checked (for smooth g). For the function (16) however, as well as for certain other

functions (such as t 7→ tα(1− t)α, α ∈ ]0, 1[ ) being continuous but not differentiable at

the points t = 0 and t = 1, the finiteness of U [g] is a non-trivial matter. This and other

relevant properties of the integral (23) are investigated in [11].

If d ≥ 2, then we consider for g at given T > 0 the 2(d − 1)-parameter

family of functions fT ;(p,q) : R → [0, 1] defined in terms of the Fermi function by

fT ;(p,q)(v) := fT
(
ε(p + v n(q)) − µ

)
, where v ∈ R, q ∈ ∂Ω and p ∈ T∗q(∂Ω) with

T∗q(∂Ω) ∼= Rd−1 being the dual space of the (d− 1)-dimensional tangent space of ∂Ω at

the point q. The vector n(q) ∈ Rd and the subsequent area measure τ have the same

meanings as in (12). Finally, we define

η(T, ∂Ω) := (2π~)1−d
∫
∂Ω

dτ(q)

∫
T∗
q(∂Ω)

dp U [fT ;(p,q)] . (24)

If the dispersion relation ε is isotropic, then the functions fT ;(p,q) do not depend on the

parameter q ∈ ∂Ω due to the orthogonality of p ∈ T∗q(∂Ω) and n(q). Consequently, the

surface area |∂Ω| can be factored out on the right-hand side of (24). Nevertheless, the

multiple integral underlying η(T, ∂Ω) remains to be a fourfold one for d ≥ 2. For d = 1

the set Ω ⊂ R is the union of finitely many pairwise disjoint bounded intervals, according

to an assumption in the subsequent theorem. Then |∂Ω| equals the (even) number of

all endpoints of the constituent intervals and one has η(T, ∂Ω) = U [fT ◦ (ε − µ)] |∂Ω|,
which still involves a threefold integral.

Now we are prepared to state our central “technical” result as the following

Theorem. For any temperature T > 0, for any bounded subregion Ω ⊂ Rd with finitely

many connected components and (if d ≥ 2) piecewise smooth boundary surface ∂Ω (see

Ref. [23]), and for any smooth and polynomially bounded dispersion relation ε the trace

of ∆(T,Λ) is finite and positive for Λ = Ω or Λ = Rd \Ω with the same leading term in

both large-scale expansions,

Tr ∆(T, LΛ) = η(T, ∂Ω)Ld−1 + . . . , (25)

up to terms growing slower than Ld−1 as L→∞.



Local and entanglement entropy of the free Fermi gas 8

The proof goes as follows. First we “smooth out” the function h, which enables us

to refer for the formula (25) directly to available literature, notably to [15] or [17] (see, in

particular, Chap. I and V in [17]). To return to the original non-smooth function h, we

“close” the asymptotics using the estimates obtained in [22] for non-smooth functions

of operators of the type D(f,Ω). This strategy is similar to the one applied in [8].

Full mathematical details will be published elsewhere [12, 13]. There we also establish

the validity of formula (25) even if L → ∞ and T ↓ 0 simultaneously provided that

LT/T0 ≥ 1 throughout. In our view, these observations provide a deeper insight into

the low-temperature behaviour of the thermal EE.

Combining (20) and (25) immediately gives the claimed large-scale behaviour (4)

of the thermal EE. From (25) we also infer the claimed two-term large-scale behaviour

(3) of the local thermal entropy (18) by observing

S(T, LΩ) = TrD(h ◦ fT , LΩ) + Tr ∆(T, LΩ)

= s(T )|Ω|Ld + Tr ∆(T, LΩ)

= s(T ) |Ω|Ld + η(T, ∂Ω)Ld−1 + . . . , (26)

where we have used the identities

(2π~)−d
∫
Rd

dp h
(
fT (ε(p)− µ)

)
=

∫
R

dEN ′(E)h
(
fT (E − µ)

)
= s(T ) (27)

in the second equality. The leading large-scale behaviour of the local entropy S(T, LΩ)

at T > 0 was first proved in [24, 25]. The subleading correction of the order Ld−1 in

(26) is new.

4. Summary, discussion and an open problem.

For the free Fermi gas in multidimensional continuous space Rd in thermal equilibrium at

temperature T > 0 and for a given bounded subregion Ω ⊂ Rd we carefully distinguish

between the local thermal entropy S(T,Ω) ≥ s(T )|Ω| and the thermal entanglement

entropy H(T,Ω) ≥ 0. Their large-scale behaviours (3) and (4) contain the thermal

entropy density s(T ) ≥ 0 and the new asymptotic coefficient η(T, ∂Ω) ≥ 0 as two

characteristics of the rather old free Fermi-gas model [14]. The results (3) and (4) are

physically even more relevant than the corresponding ground-state results (13) and (1),

because in real gases the temperature is never strictly zero. Furthermore, the new results

(3) and (4) deepen our understanding of the older ones (13) and (1) by observing that

s(0) = 0 and that η(T, ∂Ω) diverges logarithmically as T ↓ 0 according to (11). A result

similar to (11) for noninteracting fermions in the one-dimensional lattice Z1 was derived

in [10], but without an explicit prefactor. As in [8, 10], many of our present results

extend to the whole one-parameter family of (quantum) Rényi entropies, see [12, 13].

Finally, we check whether the exact asymptotic results (13), (3), (7) and (11) for

the local thermal entropy S(T, LΩ) can be descibed consistently by a so-called universal
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crossover formula as obtained [26, 27, 28, 29, 30, 31] by arguments from a suitable

conformal field theory, at least for d = 1. Such a formula has the appealing form

S(T, LΩ) = Ld−1A ln
[T0

T
sinh

(
L
T

T0

)]
(28)

with suitable constants A ≥ 0 and T0 > 0 not depending on L and T . Remarkably, if

we choose A = (1/12) J(∂Γµ, ∂Ω) and T0 = 3A/[π2N ′(µ)|Ω|], then we find consistency,

provided that L� 1 and T � T0. We conclude that (28) correctly reflects asymptotic

properties of the free Fermi gas in Rd if L is large and T is small, but does, for example,

not reproduce the large-T behaviours (10) and (14) (of the ideal Fermi gas). However,

Eq. (28) suggests the scaling-type formula

lim
L→∞

1

Ld−1

[
S
(xT0

L
,LΩ

)
− S(0, LΩ)

]
= A ln

[sinh(x)

x

]
(29)

for any x > 0. Although we have a result for the simultaneous limits L→∞ and T ↓ 0

with x = LT/T0 (> 1) kept fixed, see a remark below the above theorem, at present we

do not know whether (29) or a similar formula follows from the “microscopic” definition

(18), not even for d = 1.
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