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Advantages and pitfalls of an extended gene
panel for investigating complex
neurometabolic phenotypes
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Neurometabolic disorders are markedly heterogeneous, both clinically and genetically, and are characterized by variable neuro-

logical dysfunction accompanied by suggestive neuroimaging or biochemical abnormalities. Despite early specialist input, delays in

diagnosis and appropriate treatment initiation are common. Next-generation sequencing approaches still have limitations but are

already enabling earlier and more efficient diagnoses in these patients. We designed a gene panel targeting 614 genes causing

inborn errors of metabolism and tested its diagnostic efficacy in a paediatric cohort of 30 undiagnosed patients presenting with

variable neurometabolic phenotypes. Genetic defects that could, at least partially, explain observed phenotypes were identified in

53% of cases. Where biochemical abnormalities pointing towards a particular gene defect were present, our panel identified

diagnoses in 89% of patients. Phenotypes attributable to defects in more than one gene were seen in 13% of cases. The ability

of in silico tools, including structure-guided prediction programmes to characterize novel missense variants were also interrogated.

Our study expands the genetic, clinical and biochemical phenotypes of well-characterized (POMGNT1, TPP1) and recently

identified disorders (PGAP2, ACSF3, SERAC1, AFG3L2, DPYS). Overall, our panel was accurate and efficient, demonstrating

good potential for applying similar approaches to clinically and biochemically diverse neurometabolic disease cohorts.
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Abbreviations: IEM = inborn errors of metabolism; NGS = next-generation sequencing; WES = whole-exome sequencing; WGS =
whole-genome sequencing

Introduction
Inborn errors of metabolism (IEM) are markedly heteroge-

neous, both clinically and genetically, with more than 600

genes known to cause disease. In the presence of neuro-

logical dysfunction, which is not only common in IEM

but also often the most prominent phenotypic feature,

these patients are frequently labelled as having ‘probable

neurometabolic disease’, especially if suggestive neuroima-

ging or laboratory findings co-exist. The challenges when

diagnosing neurometabolic disorders are largely attribut-

able to the clinical and genetic heterogeneity (including

often non-specific or atypical presentations early on in the

disease course) and lack of clinical awareness of rare enti-

ties. Patients with suspected neurometabolic disease are fre-

quently referred to specialist centres and undergo extensive

and often invasive diagnostic testing. Despite this, diagnos-

tic delays or difficulties establishing a definitive diagnosis

are commonly encountered, with many such patients at-

tending secondary and tertiary neurology clinics remaining

undiagnosed (Verity et al., 2010).

Timely diagnosis of neurometabolic disease is crucial, es-

pecially for those disorders that are treatable or manage-

able, with early initiation of treatment often resulting in

improved outcomes. Next-generation sequencing (NGS)

has revolutionized the diagnostic approach to such condi-

tions (Nemeth et al., 2013; Martin et al., 2014) and helped

to reduce the number of tests required for a diagnosis to be

established. However, despite the continuous progress

made in the field, there are still limitations to the approach,

including access to NGS technology (especially in a non-

specialist setting), costs, incomplete coverage of candidate

genes and generation of large amounts of data that are

difficult to interpret. Whole-exome sequencing (WES) and

whole-genome sequencing (WGS) studies are primarily

offered either in research laboratories or in a commercial

setting, and have not yet been fully integrated into the clin-

ical genetics services of many healthcare systems world-

wide. An alternative NGS method, gene panel testing, has

recently become available in clinical services and offers tar-

geted testing of candidate genes. An extended genetic panel

approach to investigating IEM might be advantageous

(Saudi Mendeliome Group, 2015) due to reduced times

required for data processing and increased coverage depth

compared to WES and WGS. Our objective was to inves-

tigate the utility of this approach by designing an IEM gene

panel and applying it to patients presenting with a wide

array of neurometabolic phenotypes. We discuss the

panel’s effectiveness in establishing a diagnosis, the clinical

implications of its use as well as potential pitfalls of using

broad-scale genetic testing. We also consider the predictive

value of in silico tools commonly used for characterization

of novel variants and investigate whether mapping of de-

tected variants to known 3D protein structures can help

further elucidate their significance.

Materials and methods

Patients

This study was approved by the National Research Ethics
Service (NRES) Committee London – Bloomsbury (REC refer-
ence: 13/LO/0168). We recruited patients from a single UK
tertiary centre’s neurometabolic disease clinics presenting
with a range of neurological features such as developmental
delay, macro or microcephaly, neurological regression, ataxia,
epilepsy and/or organomegaly with or without other diagnostic
indicators [including suggestive biochemical marker(s) or neu-
roimaging abnormalities]. All participants had undergone ex-
tensive previous investigations including multiple standard and
specialized biochemical tests, invasive procedures (e.g. muscle
and/or skin biopsy, lumbar puncture) and targeted gene testing
but lacked a definitive molecular diagnosis. Thirty patients
were included (Tables 1–3). First, we recruited 21 patients
with suspected IEM but absence of specific clinical findings
or biochemical pointers towards a particular disorder.
Additionally, we included nine cases where biochemical find-
ings indicated a particular disorder or group of disorders, not
only to investigate the utility of this approach in more specific
presentations but also because similar biochemical abnormal-
ities could result from mutations in multiple genes. Finally, for
panel validation purposes, we additionally recruited 13 pa-
tients with a known genetic diagnosis (Supplementary Table
1). Written informed consent was obtained in all cases.

Gene capture, sequencing
and variant analysis

A custom HaloPlex target enrichment system (Agilent) was
used to capture 614 genes, covering 16 broad classes of IEM
(Supplementary material). Sequencing was performed using the
HiSeq 2500 platform (Illumina). Sequence variants with puta-
tively deleterious effects were confirmed by Sanger sequencing
(Supplementary Table 4). To interrogate for potential patho-
genicity in identified variants, we investigated whether variants
had been reported previously as pathogenic, their frequency in
the population, segregation within the family (where samples
were available) and predicted functional impact utilizing SIFT
(http://sift.bii.a-star.edu.sg/), PolyPhen-2 (http://genetics.bwh.
harvard.edu/pph2/) and Combined Annotation Dependent
Depletion (CADD) (http://cadd.gs.washington.edu/). Where
possible, missense variants were mapped to known 3D protein
structures and compared to in silico findings (Supplementary
Table 5).
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Results

Panel validation

Nineteen of 20 pathogenic sequence variants were identi-

fied in the 13 genetically diagnosed control samples

(Supplementary Table 1). These included seven heterozy-

gous and five homozygous missense, two heterozygous

splice site mutations, a heterozygous single base insertion

and four deletions ranging in size from 2 bp to �6 kbp.

The homozygous 37-amino acid deletion in Patient D6

was not identified. Seven of 20 variants had not been pre-

viously reported in the literature.

Clinical characteristics of
undiagnosed cohort

Age ranged from 1 to 20 years (mean 7.2 years, median 6

years). Only 9/30 patients (Patients B1–B9, Tables 1–3)

had abnormal biochemistry suggestive of an underlying

genetic diagnosis, despite previous extensive testing in all

cases. Our panel identified 21 variants in 16 patients, of

which only seven had previously been reported in the lit-

erature (Reichardt et al., 1991; 1992; Shen et al., 1996;

Wohlers et al., 1999; Aoshima et al., 2001; Yoshida et al.,

2001; Santer et al., 2005). Ten variants were classified as

pathogenic, 10 as likely pathogenic and one of uncertain

significance (Richards et al., 2015) (Supplementary Table

5). Variants included 15 missense, two nonsense, three in-

sertions/deletions and one splice site mutation. Identified

variants could at least partially explain the observed clin-

ical phenotype in all cases.

Of nine patients with previous biochemical testing point-

ing towards a diagnosis, identification of pathogenic vari-

ants was possible for eight (88.8%). Parental DNA to

check segregation within families was not available. We

were unable to identify any potential pathogenic variants

in Patient B9, whose biochemical profile suggested hyper-

prolinaemia type II and, in whom, a homozygous complex

insertion/deletion event resulting in a frameshift and pre-

mature stop codon in ALDH4A1 was subsequently iden-

tified via Sanger sequencing. Otherwise, in most other

cases, two pathogenic variants were identified in each can-

didate gene.

We were also able to attain a molecular genetic diagno-

sis in 8/21 (38%) of patients without a biochemical

marker pointing towards a specific genetic diagnosis

(Tables 1–3). Two pathogenic (or likely pathogenic) vari-

ants were identified for each candidate gene. All variants

were confirmed by Sanger sequencing in probands and

family members where possible. Detailed clinical descrip-

tions of these patients are given in the Supplementary ma-

terial. In Patients B6, B7 and U2, the identified variants

could explain the biochemical abnormalities but not other

clinical features observed, indicating the presence of other,

as yet unidentified gene defects. Additionally, Patient U7T
a
b
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had pathogenic variants identified in ALDOB and TPP1,

while the clinical and biochemical phenotype was consistent

with simultaneous presence of mutations in both genes

(Supplementary material).

3D structure analysis

3D structural analysis of identified variants was performed

using the ICM-Pro software (Molsoft LLC), when struc-

tural data were available for the proteins (Patients B2, U7

and U8) or for ‘close homologues/orthologues’ (Patients B8

and U4) (Supplementary Table 6). The impact of the amino

acid substitution for six missense variants, all predicted to

be deleterious and probably/possibly damaging by SIFT

and PolyPhen-2, was determined by mapping them onto

the wild-type structures and inspecting potential changes

in bonding interactions, packing and secondary structures

due to the amino acid substitution. In all cases, our struc-

ture-guided findings concurred with in silico prediction

software, further supporting variant pathogenicity.

Discussion
In our study, we investigated the utility of an extended gene

panel in diagnosing patients with neurometabolic disorders.

Due to the marked clinical, biochemical and genetic hetero-

geneity encountered in neurometabolic disease, targeted

gene testing is often not advantageous, economical or effi-

cient. The panel described in our study was shown to be a

powerful tool that enhances the diagnostic ability in the

clinical setting. It covers 614 genes, including the vast ma-

jority of genes currently known to cause neurometabolic

disease, hence sharing similarities with WES approaches

but with the added advantage of more optimal coverage

of targeted areas (Kammermeier et al., 2014). Indeed,

coverage of targeted areas was similar or superior to that

reported in other gene panels despite the large number of

genes covered (Nemeth et al., 2013; Yohe et al., 2015).

Moreover, the diagnosis rate in our study was comparable

to, or higher than, that reported in similar approaches re-

cently applied in other patient groups exhibiting phenotypic

heterogeneity (Kammermeier et al., 2014; Sommen et al.,

2016; Trump et al., 2016).

We investigated patients with a wide array of, and often

non-specific, neurometabolic symptomatology and were

able to identify disease-causing mutations in a large

number of cases. We interrogated 30 cases with no defini-

tive molecular diagnosis despite having had all the path-

ology laboratory (including metabolic biochemistry) tests

and imaging modalities that a tertiary referral metabolic

centre considered might lead to a diagnosis. Of the 21/30

patients lacking pointers towards an underlying molecular

diagnosis, pathogenic variants that explained all the clinical

and biochemical findings were identified in seven (33%)

and some of the phenotypic features in one (5%); demon-

strating the effectiveness of this approach in a clinically

heterogeneous, diagnostically challenging cohort. In these

patients, there was no clear phenotypic or biochemical fea-

ture associated with higher or lower diagnostic rates on our

panel, although study numbers preclude further conclu-

sions. Additionally, where suggestive biochemical abnorm-

alities existed, our panel efficiently led to a definitive

genetic diagnosis in 8/9 cases. However, it is important to

note that our cohort was recruited through a single tertiary

referral centre, which may lead to selection bias. Therefore,

further studies using large cohorts of patients consecutively

enrolled from multiple metabolic medicine centres are war-

ranted to establish the exact sensitivity and specificity of

our panel. Nevertheless, we demonstrate that our extended

panel approach, with subsequent focus on candidate

gene(s), can be an initial relatively cost-effective approach

to investigate patients with suspected neurometabolic dis-

orders. Moreover, although applied to a paediatric cohort,

our approach would arguably be even more useful in adult

populations, where neurometabolic phenotypes can be even

more atypical, presentations more variable and biochemical

phenotypes even more subtle. Indeed, many lysosomal stor-

age, mitochondrial, peroxisomal and other metabolic dis-

orders present atypically in adults. For example,

adrenoleukodystrophy can present as early-onset dementia

(Kumar et al., 1995). Patients with urea cycle disorders,

organic acidaemias and Niemann Pick type C can also ex-

hibit psychiatric manifestations (Sedel et al., 2007). Thus, a

comprehensive panel approach can have high utility in pa-

tients presenting with unexplained/atypical psychiatric or

neurological manifestations.

Our study expands the genotypic and phenotypic spec-

trum of several disorders but also re-emphasizes the com-

plexity of diagnosing patients with IEM. Patient U1

presented with a multi-system disorder and significant my-

opathy; however, due to unremarkable brain imaging and a

non-diagnostic muscle biopsy (Supplementary Fig. 1), the

diagnosis of POMGNT1-related dystroglycanopathy was

delayed. Although uncommon, normal glycosylated a-dys-

troglycan immunofluorescence staining has been reported

previously in POMGNT1 patients (Clement et al., 2008).

Patient U7 had neurodevelopmental difficulties and hyper-

reflexia, hence representing a mild TPP1-related phenotype

compared to those typically reported in the literature

(Breedveld et al., 2004; Sun et al., 2013), whereas his ab-

normal transferrin isoelectric focusing was attributable to

the ALDOB mutations. Indeed, following variant identifi-

cation, tripeptidyl peptidase I activity in patient leucocytes

was found to be at the upper boundary of the affected

range. The above cases demonstrate the spectrum of sever-

ity associated with IEM and how common it is for clin-

icians investigating neurometabolic disorders to be

misguided by investigation results, with resulting diagnostic

delays. For example, an abnormal transferrin pattern com-

bined with neurological dysfunction would prompt investi-

gations for congenital disorders of glycosylation (Scott

et al., 2014), which was the case in Patient U8 in whom

variants in GALE were identified and UDP-galactose

Gene panel for neurometabolic disorders BRAIN 2016: 139; 2844–2854 | 2849
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4’-epimerase activity was subsequently found to be

undetectable.

Apart from expanding the phenotypic spectrum of ‘well-

described’ disorders, our results help expand the genotypic

and phenotypic spectrum of recently described genetic con-

ditions including PGAP2 (Hansen et al., 2013; Krawitz

et al., 2013), ACSF3 (Sloan et al., 2011), DPYS (van

Kuilenburg et al., 2010), AFG3L2 (Pierson et al., 2011)

and SERAC1 (Wortmann et al., 2012). Hence, panel

approaches enable clinicians to establish diagnoses in

(and increase awareness of) ever broadening phenotypes

and recently-described disorders, while at the same time

circumventing problematic heterogeneity issues and poten-

tially shortening the time to establish a definitive diagnosis

for some patients.

Some patients with IEM have defects in more than one

gene contributing to observed phenotypes. Patient U7 had

mutations in ALDOB and TPP1. While mutations in

ALDOB have been associated with abnormal transferrin

patterns (Adamowicz et al., 2007), the majority of clinical

features seen in this case are likely attributable to the TPP1

mutation (Breedveld et al., 2004; Sun et al., 2013).

Similarly, Patients B6 and B7 had mutations in AASS,

which would explain the hyperlysinaemia seen in both

plasma and CSF but not the presence of developmental

delay, microcephaly, hypotonia and epilepsy (Houten

et al., 2013). Patient U2 had mutations in DPYS, which

are associated with abnormal purine and pyrimidine metab-

olites but not with dysplastic kidneys, eczema, microceph-

aly and developmental delay (van Kuilenburg et al., 2010).

The phenotypic features in these patients are most likely

attributable to other, yet unidentified, genetic defects. The

existence of pathogenic variants at two genetic loci in one

patient is not surprising, as individuals have �3.5 million

variants in their genome (Gonzaga-Jauregui et al., 2012). A

recent genetic study showed that 4.6% of participants had

blended phenotypes resulting from two single gene defects

(Yang et al., 2014). The above issues further complicate the

diagnosis of IEM and highlight the utility of NGS, espe-

cially in highly heterogeneous disorders while emphasizing

the need for diagnosticians to perform elaborate clinical

phenotyping and not over-rely on sequencing results, espe-

cially when identified gene defects do not account fully for

the observed clinical picture.

Despite our panel’s usefulness, there were also limitations

in our approach. No potential disease-causing gene alter-

ations were identified in 14/30 patients. While established

metrics indicate that our capture efficiency and depth of

coverage was good overall (Supplementary Table 3), muta-

tions may have been missed because of less efficient capture

of GC-rich regions or low coverage due to sample complex-

ity. It is also plausible that the disease-causing genes were

not included in our design or that the causative mutations

were intronic or within regulatory regions. We were also

unable to identify the second pathogenic variant in Patient

B3 (CPS1 deficiency), possibly because it lies within exon

21 (regions of which were only covered at a read depth ofT
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3� ), an intronic area or a promoter region. More research

including WES or WGS in mutation-negative cases is war-

ranted to reach further conclusions. Overall, our findings

agree with previous studies indicating that, when analysed

by NGS, targeted genetic regions can be inconsistently cov-

ered at read depths sufficient for comprehensive variant

analysis (Dewey et al., 2014). Additionally, although able

to identify deletions, we were unable to detect the homo-

zygous 111 bp deletion in Patient D6 or insertion/deletion

event in Patient B9, which highlights the challenges of using

NGS to detect copy number variants (Mullaney et al.,
2010). Indeed, some common pathogenic alleles can be

missed by conventional sequencing approaches, including

targeted NGS, unless methods are specifically adapted or

additional assays are included to capture them. These can

include deep intronic splice variants as in leukoencephalo-

pathy with brainstem and spinal cord involvement and lac-

tate elevation (van Berge et al., 2014) or whole gene

deletions and duplications as in Pelizaeus-Merzbacher dis-

ease (Lee et al., 2006).

Finally, detection of variants of uncertain significance

could pose a diagnostic and ethical issue, especially in

patients with specific phenotypes where more targeted gen-

etic testing could be a reasonable alternative. We firstly

addressed this by following a ‘panel within a panel’

approach, initially interrogating genes in which mutations

were likely to result in the observed phenotypes (e.g. MUT,

MCEE, ACSF3, ALDH6A1, MMAA, MMAB, SUCLA2,

LMBRD1, ABCD4, MMADHC and MMACHC in patients

with methylmalonic aciduria) and expanding our search

when no likely pathogenic variants were identified.

Moreover, during the consenting process, we specifically

counselled all study participants that they would not be

informed about variants that were not deemed relevant to

the clinical presentation. Utilizing expert phenotyping, cur-

rent guidance on variant interpretation (Richards et al.,

2015) and close collaboration between clinicians and

scientists interrogating the data is crucial for the above to

be successfully implemented. Nevertheless, our study

shows that such approaches are feasible, even in pa-

tients with more specific clinical and/or biochemical pheno-

types. This approach is particularly applicable in various

neurometabolic conditions (such as the cases of peroxi-

somal biogenesis disorders and congenital disorders of gly-

cosylation in our cohort), where mutations in a large

number of genes could lead to similar biochemical

abnormalities.

We also encountered difficulties when utilizing in silico

tools for novel missense variant interpretation. When using

SIFT and PolyPhen-2 interpretation, discordance was occa-

sionally evident, not only for novel variants but also for

common variants of established pathogenicity in ASL

(Linnebank et al., 2002) and GALT (Reichardt et al.,

1992) (Tables 2 and Supplementary Table 1). However, des-

pite this discordance, CADD scores for these variants rank

them more deleterious than 99.5% of all possible human

single nucleotide variants. Additionally, SIFT, PolyPhen-2

and CADD suggested that a known pathogenic IDUA vari-

ant (Bach et al., 1993) was not likely to be deleterious

(Supplementary Table 1). Inability of online prediction

tools, particularly those using sequence-based algorithms,

to predict pathogenicity of all variants analysed correctly

has been evaluated previously (Castellana and Mazza,

2013; Dong et al., 2015; Walters-Sen et al., 2015). In

silico tools remain invaluable in filtering large numbers

of variants identified using NGS platforms; however, fur-

ther evidence to support or refute pathogenicity should

be sought (Richards et al., 2015), for example segrega-

tion analysis and enzymatic assays in appropriate patient

tissues. In our study, we further characterized identified mis-

sense variants by mapping them to 3D protein structures

where possible. All variants were predicted to be deleterious

and probably/possibly damaging by SIFT and PolyPhen-2

and structural analysis supported these predictions in all

cases, providing further evidence of pathogenicity. Should

3D structural information become available for larger parts

of the human exome, this approach could become a valuable

aid towards novel variant analysis (Yue et al., 2014).

Extended panel approaches have gained popularity and

are used by many clinical laboratories in the investigation

of a wide range of genetically heterogeneous conditions

(http://www.labs.gosh.nhs.uk/media/759058/goshome_v7.p

df) including neurometabolic disease. With decreasing NGS

costs and the advent of the Genomics England 100 000

Genomes Project, WES and WGS will likely supersede the

use of gene panels in the clinical diagnostic setting in the

future. However, many challenges remain prior to this im-

plementation, including difficulties in interpreting over-

whelming amounts of data generated and uncertainties

about clinically reportable findings (Dewey et al., 2014).

Moreover, WES and WGS have proven invaluable in the

identification of novel genes (Saitsu et al., 2013; Howard

et al., 2014) but such findings are not currently actionable

within the diagnostic setting. Elucidating the significance of

these variants is not possible without functional character-

ization in appropriate settings and models, which is often

expensive and beyond the capacity of most clinical diag-

nostic laboratories. Until such challenges are surpassed,

gene panel approaches provide a rapid and cost-effective

method of testing patients with neurometabolic disorders

and enable more timely diagnosis and prompt treatment

initiation in these conditions.
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