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Abstract: It is demonstrated that the reachability paradigm from Variable Structure Control (VSC)
theory is a suitable framework to monitor and predict the progression of the Human Immunodefi-
ciency Virus (HIV) infection following initiation of antiretroviral therapy. A manifold is selected
which characterises the desirable infection-free steady-state. A model of HIV infection together
with an associated reachability analysis which considers the action of antiretroviral drugs is used to
formulate a dynamical condition for the containment of HIV infection on the desirable manifold.
This condition is tested using data from two different HIV clinical trials which contain measure-
ments of the CD4+ T cell count and HIV load in the peripheral blood collected from HIV infected
individuals for the six month period following initiation of antiretroviral therapy. The biological
rates of the model are estimated using the multi-point identification method and data points col-
lected in the initial period of the trial. Using the parameter estimates and the numerical solutions
of the model, the predictions of the reachability analysis are shown to be consistent with the sub-
sequent clinical diagnosis at the conclusion of the trial. The methodology captures the dynamical
characteristics of eventual successful, failed and marginal outcomes. The findings evidence that
the reachability analysis is an appropriate tool to monitor and develop personalized antiretroviral
treatment.

1. Introduction

The Human Immunodeficiency Virus (HIV) is a persistent infection which preferentially targets
activated CD4+ T cells, causing Acquired Immune Deficiency Syndrome (AIDS) [34]. Using cur-
rent experimental facilities, the standard clinical data for diagnosis and monitoring HIV infection
in patients are the total number of CD4+ T cells measured by flow cytometry and HIV viral load
measured by Polymerase Chain Reaction (PCR) [34, 16, 19]. Experimental studies have demon-
strated that the HIV-specific CD8+ T cell response is a major immunological dynamic opposing
the spread of infection in the host [9, 11, 25]. This dynamical response can be regarded as a control
strategy implemented by the immune system to combat HIV infection in vivo [11, 1] forming a
closed-loop system that can be analysed using the tools of control theory.

Antiretroviral therapy (ART) seeks to perturb the pathogenesis of the virus to allow infected
individuals to cease exhibiting HIV related symptoms and to recover a certain level of immunity
so that the quality of their lives can be improved [34]. Thus, ART can be viewed as a control
strategy applied to enforce recovery. In effect, ART attempts to reduce HIV load and this usually
leads to recovery to a suitable level of CD4+ T cell count (> 200 cell/mm3) in the peripheral blood
[25, 27, 16]. However, this desirable outcome is not always achieved and the design of appropriate
ART, the prediction of outcomes using clinical data and the assessment of virologic failure are the
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subject of active experimental and mathematical research [37, 31].
Mathematical modelling has contributed significantly to the understanding of HIV pathogene-

sis along with the design of novel treatment regimes [25]. To allow mathematical models of HIV
dynamics to be used as a tool for personalized clinical diagnosis and ART, it is crucial to estimate
all the biological rates of the chosen model for each patients [37, 17, 27]. This can be a challenging
problem using standard clinical data [37, 17]. A third order Ordinary Differential Equation (ODE)
model has been shown to encompass the observed biological characteristics of the acute phase of
HIV infection using the variation over time of the population of healthy CD4+ T cells, the infected
population of CD4+ T cells which produce new virions along with the concentration of the HIV-1
particles [23]. Using techniques from engineering, it has been shown that the parameters of the
model can be estimated from standard clinical data [38, 13]. This method is based on the compu-
tation of higher order derivatives of the output measurements to formulate a set of identification
equations. Subsequently, a multiple time point (MTP) estimation algorithm using values at differ-
ent time instants to reduce the need for higher order derivatives of the output measurements has
been used to formulate the identification equations [37].

The outcome of a viral infection in a host is classically evaluated using the reproductive ratio
R0 which is defined as the number of new cells that a single infected cell produce at the start
of infection when there is no target cell limitation [29] The reproductive ratio is an algebraic
combination of biological rates and is used to determine the stability of the equilibrium points of
HIV dynamic models [28, 31]. The expression for R0 is a function of the model parameters and
not the states and thus a time-invariant condition for the containment of the infection is formulated.
Recent studies argue that the condition for the containment of the infection rather than being static
changes during the course of the infection [26, 25, 30]; the immunological requirements may be
weaker before the peak of the virus load due to the small number of viral particles at the site of
the infection [26]. In addition, the parameters of the HIV model are time varying biological rates
[23, 8, 17] and the condition for the containment of HIV infection provided byR0 is fundamentally
not robust to uncertainty in the model and parameters of the HIV infection dynamics. Hence, the
framework of the reproductive ratio does not encompass the emerging notion that the condition for
the containment of HIV infection in vivo changes during the course of the infection according to
changes biological rates, cell population and viral dynamics [26, 25, 30, 31].

In this paper, the Variable Structure Control (VSC) paradigm is used to investigate a dynamical
condition for the containment of HIV infection in vivo by antiretroviral therapy. The analysis is
conducted on the third order model of HIV dynamics [23] to facilitate comparison of the obtained
results with those in the existing literature [29, 27, 31]. The philosophy of VSC allows the con-
trol structure to change according to a predefined switching logic to achieve desired performance
[32, 10]. In the domain of sliding mode control, a special type of VSC, the dynamics will typically
attain a desired steady-state which is defined by a chosen sliding manifold when a so called reach-
ability condition is met [32]. This reachability condition is basically a dynamical condition for the
control input to achieve the desired dynamics. When the reachability condition fails to hold, the
system will exhibit different dynamics, usually exhibiting a different equilibrium. Formulating ap-
propriate sliding manifolds to represent immunological or therapeutical objectives enables the use
of the reachability analysis to provide a dynamical condition for the containment of the infection
by the HIV-specific CD8+ response as well as providing a framework to hypothesize therapeutic
strategies for individual patients. Unlike the static condition provided by the reproductive ratio,
the major contribution of the VSC approach resides in the fact that the reachability analysis pro-
vides a dynamical condition for antiretroviral therapy to force HIV infection dynamics in vivo to
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reach and maintain the infection-free steady-state. Furthermore, this condition encompasses the
nonlinearities of the model and exhibits some robustness properties with respect to parameter and
modelling uncertainty. In this paper the dynamical condition for immunity provided by the VSC
analysis is tested using standard clinical data collected from HIV infected individuals involved in
two different HAART clinical trials [16, 27]. Collectively, the findings demonstrate the reachabil-
ity analysis to be an alternative framework which provides useful insight to monitor and predict
the progression of the infection in vivo along with the performance of antiretroviral therapy.

The paper is organized as follows: Firstly, the HIV model and the reproductive ratio are out-
lined. In Section 3 a dynamical condition for the containment of HIV infection by antiretroviral
therapy is formulated using the reachability paradigm from variable structure control. The clin-
ical data sets used for the study and the method used to estimate the parameters of the model is
described and evaluated in Section 4. Section 5 presents the results of simulation experiments
conducted to show that the proposed dynamical condition for immunity is a reliable tool for early
diagnosis of the outcome of antiretroviral therapy on HIV infection.

2. Mathematical model of HIV infection

The dynamical equations of HIV infection for patients being treated with antiretroviral therapy can
be written as:

dT

dt
= λ− δTT − β0TV + u1(t)

dP

dt
= β0TV − µ1P − u1(t)

dV

dt
= k0P − µ2V − u2(t) (1)

with δT < µ1 [20, 23, 37]. The state variables are the number in cell/mm3 of uninfected target
CD4+ T cells (T ), the number in cell/mm3 of HIV-infected CD4+ T cells producing new virions
(P ) and the concentration in RNA copies/ml of HIV-1 free virions (V ). Uninfected CD4+ T cells
are produced by the thymus at a rate λ (in cell/day) and die at a rate δT (in day−1). HIV infects
healthy CD4+ T cells at a rate β0 (in µlvirion/day x10−3). HIV-infected CD4+ T cells produce
new virions at a rate k0 (in virion/day) and die at a rate µ1 (in day−1). HIV free virions are
cleared at a rate µ2 (in day−1) in the peripheral blood. As in [23, 37, 19], these six biological rates
are non-negative and assumed to be constant for a given patient. The functions u1(t) and u2(t)
represent the action of reverse-transcriptase (RT) and protease inhibitor (PT) drugs respectively.
The effect of antiretroviral drugs on HIV infection dynamics can be modelled as follows:

u1 = η1β0TV (2)
u2 = η2k0P (3)

where 0 ≤ η1 < 1 and 0 ≤ η2 < 1 are constants related to the efficiency of the deployed RT
and PT drugs, assuming that 100 percent drug efficacy cannot be achieved [23, 21]. The action of
antiretroviral therapy will be considered from the perspective of control engineering and regarded
as a control action which seeks to enforce the containment of the HIV infection. In practice,
antiretroviral therapy is declared efficient when it reduces and maintains the HIV viral load in the
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peripheral blood stream below the threshold of 50 HIV RNA copies/ml [21]. The available output
measurements of (1) are assumed to be

y1(t) = T (t) + P (t); y2(t) = V (t) (4)

where y1(t) is the total number in cell/mm3 of CD4+ T cells in blood samples collected from
patients [16, 27, 17]. This choice is motivated by the information available in the clinical data sets
used for later validation of the proposed methodology.

The clinical trial data available relates to the period following the initiation of antiretroviral
therapy and thus it is not possible to estimate the values of β0 and k0 [17, 16, 19]. Thus β0(1− η1)
and k0(1 − η2) i.e the resultant effects in vivo of the uptake of RT and PT drugs respectively will
be considered and in the model (1), the following substitutions are made

β = (1− η1)β0 (5)
k = (1− η2)k0 (6)

to yield the closed-loop representation

dT

dt
= λ− δTT − βTV

dP

dt
= βTV − µ1P

dV

dt
= kP − µ2V (7)

This parametrization of the effects of antiretroviral drugs is as used in previous studies [37, 19, 21].
The model (7) has a trivial equilibrium corresponding to an infection-free steady-state at

Ts0 =
λ

δT
; Ps0 = Vs0 = 0 (8)

The expression for the non-trivial equilibrium is given by:

Ts1 =
µ1µ2

βk
; Ps1 =

λ
µ1
− δTµ2

βk
; Vs1 =

λk

µ1µ2

− β

δT
(9)

This non-trivial equilibrium can represent either an undesirable steady-state corresponding to
chronic infection or a desirable steady-state depending on the parameter values [25, 23, 29, 27].

2.1. The reproductive ratio

The reproductive ratio is a static condition used to investigate the stability of the infection-free
steady-state (8). This may be computed from the Jacobian of the system (7) and is effectively a
condition which must be satisfied for the coefficients of the corresponding characteristic polyno-
mial to produce stable roots [6, 28, 26]. The expression for the reproductive ratio is given by

R0 =
λ

δT

1

µ1

k

µ2

β (10)

The first term is the population size of uninfected CD4+ T cells T at the infection-free steady-state,
see (8). The second term is the lifetime of a virus-producing cell. The third term is the number
of virus particles produced per infected cell and the final term represents the infection rate for a
single virus particle. The infection free steady-state is stable when R0 < 1.
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3. A reachability condition to monitor the containment of HIV infection

The sliding mode control paradigm [32, 10] is used to investigate dynamical requirements for the
containment of HIV infection in vivo following the initiation of antiretroviral therapy. The im-
mune system is a set of sophisticated biological mechanisms which aim to remove pathogens and
to maintain a healthy state in the body [33]. Mathematical studies in immunology show that the
antigen-specific immune response of CD8+ T cells can be appropriately modelled using a discon-
tinuous [5, 14] or a sigmoidal function [1, 8]. The effects of these candidate immune response
functions have been reviewed from a control engineering view-point in [2, 3]. It has been hy-
pothesized that the immune response function is a state feedback mechanism which influences the
stability, the performance, the transient dynamics and the steady-state population of the immune
system in both health and disease. Further, it has been shown that the broad class of immune re-
sponse functions appearing in the literature [4, 5, 15] can be conveniently modelled as a variable
structure control system which provides a convenient synthesis tool to assess for example a dynam-
ical condition to sustain the proliferation of memory CD8+ T cells to achieve proctective immunity
following chronic viral infection [2]. It will be seen that the variable structure control paradigm
will be particularly useful in explaining dynamic behaviour which occurs within a boundary layer
of the infection free steady-state. Currently measured data and analytical analysis has produced
conflicting conclusions in such cases [25].

The formulation of a reachability condition to monitor the containment of HIV infection in-
volves defining an appropriate switching function to describe the desired clinical outcome of the
treatment. A candidate switching manifold is chosen to be compliant with the objective of an-
tiretroviral therapy to reduce and maintain the HIV viral load below the limit of detection. The
hypothesis is that in the ideal case, the uptake of antiretroviral drugs, as a control mechanism, has
to force the HIV infection dynamics to attain and remain on the infection-free steady-state (8). A
valid candidate switching function is

sE(t) = P (t) (11)

because the manifold sE(t) = P (t) = 0 in which the population dynamic of productively infected
CD4+ T cells vanishes has been observed to be a naturally occurring attractive manifold in the
state-space of (7) when the trajectories exhibit a stable motion towards the infection free steady-
state (8). The reachability condition for exhibiting a sliding mode as defined in [32] may be
expressed as

sE
dsE
dt

= sE (βTV − µ1P ) < 0 (12)

This inequality is fundamentally a dynamical condition for the manifold sE(t) = 0 to be attractive.
In the present context, enforcing a sliding motion on sE(t) = 0 is synonymous with achieving
the containment of HIV infection. In order to ensure (12) attains and remains at a negative value,
the therapeutic control u1 associated with the effects of antiretroviral drug therapy must have a
sufficiently large magnitude to overcome the positive feedback β0TV associated with the HIV
pathogenesis. The reachability condition (12) thus represents a dynamical condition for antiretro-
viral drugs to force the dynamics to lie within a neighbourhood of the manifold sE(t) = 0. The
inequality (12) represents a dynamical condition for antiretroviral drug therapy to contain HIV
infection. It should be noted that assessing the sign of dsE

dt
is sufficient to determine whether the

reachability condition is satisfied due to the fact that sE(t) = P (t) ≥ 0 because it represents the

5



number of infected CD4+ T cells producing new virions. The reachability condition (12) can be
written as:

βTV − µ1P < 0 (13)

The expression (12) can be written in terms of the output dynamics and their derivatives to allow
direct monitoring of the condition for immunity using the measured state variables if desired:

dsE
dt

= βy1y2 −
(
βy2+µ1

k

)
(ẏ2 + µ2y2) < 0 (14)

4. Parameter identification

4.1. The clinical data sets

Two clinical trials have been considered to evaluate the framework proposed in Section 3. It should
be noted that a strong motivation of this work is to provide a prediction method that can be applied
clinically and these data sets selected contain representative data that may be routinely available
to the clinician. From the theoretical point of view, having more data points at equally spaced
intervals may be desirable. However, the emphasis here is to use data available in the field to test
the practicality of the paradigm.

In the EDV05 clinical trial [21, 19, 27], measurements of the total number of CD4+ T cells and
HIV viral load in the peripheral blood stream were collected following the initiation of Highly
Active Antiretroviral Therapy (HAART). HIV viral load was measured up to the limit of 50
RNAcopies/ml. As in [19, 27], the data collected in the first 21 days are used to compute es-
timates of the biological rates. This information is then used to predict the outcome of the full
treatment regime. The data measured following the initial period of 21 days are used to validate
the resulting theoretical predictions. The EDV05 trial has been considered because model param-
eters have been estimated by other studies for this patient data [22, 27, 19]. This is useful to assess
the results of the proposed parameter estimation approach. The syntax pti is used to refer to the
patients involved in the EDV05 trial where i denotes a specific patient number. The results of pt10
are discarded because there is no clinical data available from the final follow-up visit in the clinical
trial. Thus, the efficiency of the treatment cannot be validated.

The longitudinal data recorded by the AIDS Clinical Trials Group (ACTG 315) [16] are also
chosen to verify the performance of the proposed reachability condition for cases of success and
failure of HAART. The syntax pai is used to refer to the patients involved in this study. For this
trial, data points in the interval [0, 30] days are used to compute the estimates of the biological
rates. The limit of detection of HIV free virion in this trial is 100RNAcopies/ml.

4.2. Parameter Identification Procedure

Previous mathematical analysis [38, 37, 27] has proved the algebraic and practical identifiability
of the parameter set λ, δT , β, µ1, k, µ2 of the model (7) using the output measurements (4). Here
the multi-point identification method described in [37] is applied to identify the six biological pa-
rameters λ, δT , β, µ1, k, µ2 of the model (7) using measurements taken at irregular intervals within
a set period following initiation of antiretroviral treatment for patients across the two data sets.
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For each patient, shape-preserving piecewise cubic interpolation is used to generate a continuous
stream of data points within the range of the discrete set of measured clinical data considered for
the computation of the estimates of the biological rates. Next, the least-squares polynomial that are
the best fit for y1(t) and y2(t) are computed to evaluate the time derivatives of the measurements
at different time points as in [17]. The degree of the least-squares polynomial for each patient is
selected to improve the quality of the fit. Subsequently, the following multi-point identification
process is carried out. Consider y2 and its time derivative up to the third order

y
(3)
2 =

(
y−1
2 ẏ2 − δT − βy2

)
(ÿ2 + (µ1 + µ2)ẏ2 + µ1µ2y2)

+λkβy2 − µ1µ2ẏ2 − (µ1 + µ2)ÿ2 (15)

The identification coefficient θ1 is defined as:

θ1 = (β, δ, ρ, ν, η) (16)

where

β = β; δ = µ1; ρ = δT ; ν = µ1µ2;µ = µ1 + µ2; η = λkβ (17)

This implies that four of the six parameters of the model (7) can be identified using measurement
of y2 and corresponding derivatives. The values of the parameters λ and k are indistinguishable
and only their product λk can be estimated. Consider the right hand side of (15):

f(t, θ1, y2, ẏ2, ÿ2, y
(3)
2 ) =

(
y−1
2 ẏ2 − δT − βy2

)
[ÿ2 + µẏ2 + vy2]

+ηy2 − νẏ2 − µÿ2 (18)

Assume that the quantities (y2, ẏ2, ÿ2, y
(3)
2 ) are either available from direct measurement or can be

constructed from measurements at five different time points. Denote the values of (y2, ẏ2, ÿ2, y
(3)
2 )

at t = ti as (y2(i), ẏ2(i), ÿ2(i), y
(3)
2 (i)) and fi = f(t(i), θi, y2(i), ẏ2(i), ÿ2(i), y

(3)
2 (i)) for i =

1, ..., 5. Using these measurements, a system of five equations and five unknowns can be con-
structed:

ϕ1 =
(
y
(3)
2 (i)− fi

)
= 0 (19)

If

det
δϕ1

δθ1
6= 0 (20)

then by the implicit function theorem, the system of equations (19) has a unique solution for θ1.
This solution provides an estimate of the biological rates δT , β, µ1 and µ2. However, λ and k
cannot be identified using measurement of y2 alone.

To recover the remaining parameters, the first derivative of y1 is written in terms of the output
dynamics as follows:

ẏ1 = λ− δTy1 − δPP (21)

where µ1 = δT + δP . Using the expression for ẏ2, the state variable P can be written in terms of
the output dynamics y2 and its first derivative as

P =
1

k
(ẏ2 + µ2y2) (22)
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Substitute (22) into (21) to obtain

ẏ1 = λ− δTy1 −
δP
k

(ẏ2 + µ2y2) (23)

Define the identification coefficient θ2 as:

θ2 = (λ, δT , ξ, σ)

where ξ = δP
k

and σ = µ2δP
k

. Let the identification function be

g(t, y1, ẏ2, y2) = λ− δTy1 − ξẏ2 − σy2 (24)

The multi-point identification process [37] is performed to estimate θ2. Here, the values of (ẏ1, y1, ẏ2, y2))
are needed at four time points to construct a system of four equations and four unknowns to esti-
mate θ2. Consequently, the identification equation is given by

ϕ2 = (ẏ1(j)− gj) = 0 (25)

where ẏ1(j) and gj denote the values of ẏ1 and g(t, y1, ẏ2, y2) at four time points for j = 1, ..., 4.
Proceeding as before, estimates of the biological rates λ,δT and µ2 can be computed. Nevertheless,
µ1 and k cannot be identified using (25) only.

Combining θ1 and θ2 from (19) and (19) respectively, it is possible to construct estimates of the
six biological rates in the model (7). In the presented results, λ, δT and µ2 are taken from θ2, β and

µ1 = −−ν−ν2+4µ
1
2

2
are taken from θ1 and k = η

λβ
.

The estimation process is conducted for each patient and resulting numerical solutions of the
model (7) are obtained using the Runge-Kutta method [17]. To estimate the quality of the fits, error
vectors are constructed where the error at each data point is given by

ey1(ti) = y1(ti)− ŷ1(ti) (26)
ey2(ti) = y2(ti)− ŷ2(ti) (27)

for i = 1, ..., n where i is the time point of the corresponding measurement and n is the number of
measurements collected within a set period. ŷ1(ti) and ŷ2(ti) are the estimated values of the total
number of CD4+ T cells and HIV viral load produced from the numerical model which uses the
estimated parameters. The relative accuracy of the output dynamics produced using the estimated
biological rates is evaluated from

ay1 = 100
n∑
i=1

e2y1(ti)

y1(t)2(ti)
(28)

ay2 = 100
n∑
i=1

e2y2(ti)

y2(ti)2
(29)

for i = 1, ..., n.
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4.3. Parameter Estimation Results

In the results presented, a set of patients from each clinical trial has been randomly picked. Note
that the values of the estimated biological rates presented in the following tables are rounded and
the tabulated biological rates may not identically reproduce the results presented for the reproduc-
tive ratio as the values of the estimates produced by the identification algorithm are used to compute
R0, ay1, ay2. As will be seen in the results presented, the dynamics exhibit good robustness to such
changes in the parameter values.

Previous work in the literature has estimated parameter values for the dynamics of HIV infection
in the course of antiretroviral drug treatment. Here biological rates estimated using the Monte
Carlo approach from [19, 27] are used to benchmark the results presented in this paper. For both
estimation approaches, the initial conditions are selected such that T (0) + P (0) = y1(0) and
V (0) = y2(0) where the values of y1(0) and y2(0), see (4), are taken from the clinical data set
relating to the EDV05 trial as published in [27]. It is important to note that for both approaches
all the parameter estimates are generated only using data obtained during the initial 30 days of the
period of the trial. Motivation for this study is to be able to obtain patient specific data that can be
used to predict the likely outcome of the current drug treatment. If the eventual outcome is likely
to be unsuccessful, modification of the anti-retroviral drug treatment can take place based on the
patient specific parameter estimates. In this work, the measured data obtained across the remainder
of the trial will be used to validate the parameter estimates as will the known clinical outcome.

Table 1 reports the results of the Monte Carlo approach from [19, 27]. Table 2 shows the re-
sults obtained for the procedure described in this manuscript. A major difference between the two
estimation methods is that the algorithm chosen in [19, 27] uses the same values of the decay pa-
rameter δT , µ1 and µ2 for all patients. Nevertheless, as argued in [17], it is preferable to estimate
all parameters to improve personalized treatment and clinical decisions. For example, when com-
paring the values of the reproductive ratio R0 presented in Table 1 with the corresponding values
in Table 2 it is clear that the parameter values generated from the methodology presented in this
paper generate more realistic values.

Biological rates estimated using the procedure presented in this paper and patient data from the
ACTG 315 trial are shown in Table 3.

Table 1 Estimates of the biological rates taken from [19, 27]. Common parameters:δT = 0.01day−1,
µ1 = 0.05day−1 and µ2 = 0.28day−1

Results T (0) + P (0) V (0) λ β k R0 ay1 ay2
pt1 200+176 106 8.13 1.94e-07 0.04 4.50e-04 4.28 9.25
pt2 138+92 105.4 9.53 3.27e-07 0.21 0.0047 14.76 8.81
pt3 110+75 104.54 1.77 8.24e-07 0.41 0.0043 13.36 2.44
pt4 120+85 105.3 5.45 7.10e-08 293.00 0.809 7.06 22.90
pt5 200+183 104.82 6.76 3.94e-07 0.004 7.6098e-05 2.75 5.51
pt6 205+200 104.972 6.94 1.21e-07 46.80 0.2807 7.40 21.76
pt7 5+4 105.07 3.01 2.43e-06 0.008 4.17e-04 147.01 85.19
pt8 80+42 105.3 6.41 8.15e-07 0.002 7.46e-05 5.31 5.92
pt9 68+50 105.21 5.36 7.23e-07 0.003 8.30e-05 11.13 3.95
pt11 10+13 106.02 2.08 1.79e-07 0.012 3.19e-05 11.90 12.31
pt12 200+105 105.7 7.66 2.56e-07 0.002 2.80e-05 4.71 12.56

9



Table 2 Estimates of the biological rates produced by the identification method presented in this paper. Initial
conditions are identical to those in Table 1

Results λ δT β µ1 k µ2 R0 ay1 ay2
pt1 427.15 0.98 4.09e-04 1.002 1.65 0.39 0.73 3.10 13.74
pt2 525.63 1.13 1.14e-05 3.07 530.50 0.94 0.95 6.44 25.51
pt3 137.97 0.70 0.0028 0.90 0.75 0.49 0.92 20.56 7.56
pt4 91.34 0.21 8.44e-05 0.37 3.50 0.46 0.72 7.97 38.6
pt5 511.21 1.16 0.0014 1.23 0.106 0.48 0.107 0.78 6.25
pt6 447.26 0.87 3.83e-04 1.08 0.98 0.20 0.87 3.25 22.72
pt7 48.54 0.88 1.05e-04 1.09 237.41 1.98 0.63 21.23 84.15
pt8 77.45 0.30 2.39e0-5 0.67 72.35 0.66 1.002 0.91 0.10
pt9 255.40 0.83 2.45e-04 1.48 4.66 0.50 0.46 9.50 0.08
pt11 20.23 0.24 2.11e-05 1.59 717.20 0.76 1.008 5.67 0.1
pt12 216.15 0.47 5.53e-04 0.53 0.57 0.87 0.30 0.54 0.01

Table 3 Estimates of the biological rates produced by the identification method presented in this paper.

Results λ δT β µ1 k µ2 R0 ay1 ay2
pa3 19.44 0.05 1.83e-04 0.39 24.61 0.33 11.50 1.50 1.16
pa8 72.46 0.18 7.39e-04 1.05 2.49 0.38 4.95 2.10 0.07
pa10 117.28 0.15 4.15e-05 0.53 16.93 0.35 2.85 21.24 0.21
pa13 46.06 0.19 3.82e-04 0.65 0.03 0.27 0.01 1.92 2.17
pa24 118.39 0.34 4.84e-05 0.45 9.10 0.37 0.89 0.75 0.38
pa34 169.72 0.44 1.30e-04 0.46 4.67 0.49 1.01 3.90 3.44
pa38 137.66 0.49 1.76e-04 0.58 3.54 0.28 1.03 5.64 23.12
pt43 234.49 0.64 2.93e-04 0.73 0.45 0.19 0.33 0.86 10.98

The estimated parameter values obtained by the proposed method and presented in Tables 2 and
3 of the six biological rates of the basic HIV model (7) using patient data from the first period of
both clinical trials are reasonable and close to the ones published in other studies [22, 37, 17, 12].
Fig. 1-2 are displayed as examples to show that the output dynamics produced by the estimated
biological rates are realistic. In all figures, the parameter estimates have been obtained from clin-
ical measurements obtained in the early phase of the trial and later measurements are presented
to validate the output response predicted from the model. Fig. 1 illustrates the case in which the
uptake of antiretroviral drugs enforces the containment of HIV load to a small level along with the
recovery to a desirable CD4+ T cell count. Fig. 2 depicts a case in which antiretroviral therapy
fails. The figures reinforce that the estimation method used in this work produces responses similar
to the ones generated by other studies [17, 12, 31, 19, 25] and the responses align well with subse-
quent measurements obtained later in the drug trial and not used within the parameter estimation
procedure.

The data used to estimate the parameters can be expected to incorporate measurement error
and it is important to consider the likely effect of such errors on the computed parameter esti-
mates. A comprehensive review of the practical issues relating to the estimation of the parameters
of the dynamics of HIV can be found in [35]. Results from both structural and statistical analysis
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Fig. 1. Comparison of the time evolution of measured CD4+ T cell count and HIV load versus its
estimates for pt1

Fig. 2. Comparison of the time evolution of measured CD4+ T cell count and HIV load versus its
estimates for pa3

have shown that it is sensible to estimate the parameters using measurements in the early weeks
following the initiation of antiretroviral therapy because the transient phase after the initiation of
treatment contains more dynamic information [35, 38, 24]. This supports selecting measurements
in the first month following initiation of treatment as adopted in this study. A statistical noise
model for HIV standard clinical data has recently been determined in [12]. The local polynomial
regression technique used in [17] was used to smooth the longitudinal data and to estimate the
measurement noise. After conducting normality tests with the Chi-square and Lilliefors tests, the
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authors concluded that a multiplicative zero mean Gaussian noise affects both measurements of
CD4+ T cell count and HIV load. Further, similar noise parameters i.e sample mean and standard
deviation have been found for two patient datasets. Interestingly, an earlier study on noise char-
acteristics based on visual observations of the noise on the viral load data also suggested that the
noise might follow a Gaussian distribution [24]. Simulation studies in a number of publications
have incorporated a zero mean Gaussian noise with different levels of standard deviation to the
numerical solutions of the basic HIV model to test the practical identifiability of the biological
rates [17, 37, 36, 18]. Collectively, these simulation results provide evidence that reasonable pa-
rameter estimates can be obtained in the presence of noise in the measured data. Furthermore, the
estimated biological rates from patient datasets has been shown to produce viral load dynamics
which closely match the trajectory of observed data [24, 17, 12, 19].

To determine the robustness of the biological rates determined in this study to measurement
noise, the established noise model from [12] was added to the patient data and a second set of
parameter estimates was computed. The responses of the HIV model with parameter estimates
generated in the presence of additional noise are compared with the results obtained with param-
eter estimates obtained without additional noise for pt1 in Fig. 3. This reinforces that the output
dynamics generated by the estimated biological rates are not dramatically affected by noise and
the traces are visually indistinguishable. Hence, the infection dynamics following antiretroviral
treatment are shown to exhibit some robustness with respect to measurement noise.

Fig. 3. Comparison of the time evolution of measured CD4+ T cell count and HIV load for pt1.
Original data and the responses generated with parameters estimated in the presence of additional
noise and without additional noise are presented.

5. Prediction of the outcome of antiretroviral treatment

For each patient listed in Table 2 and 3, the proposed reachability analysis for the containment
of HIV infection is evaluated to predict the outcome of HAART. Note that these predictions are
based only on measured data obtained in the first 30 days following treatment. The predictions
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are then compared with clinical outcomes determined from examining the CD4+ T cell count and
HIV viral load at the conclusion of the clinical trial. The findings show that the time evolution
of the reachability condition (13) and the switching function (11) exhibit a particular dynamical
behaviour characterizing desirable and undesirable outcomes. This underpins the discrimination
of outcomes. The predictions from the reachability analysis and indeed the reproductive ratio
are congruent with clinical outcomes for all patients except pt7 and pa24. For patient pt7 and
pa24, the reachability analysis suggests that HIV infection will be contained. This prediction fails
for pa24 because, despite the fact that HIV load fell below 100(RNAcopies/ml) within 56 days
following the initiation of treatment, a significant viral rebound i.e y2(175) = 670.03 was measured
at the final visit of the trial. Similarly, the data for pt7 in [27] shows a large viral rebound i.e
y2(29) = 2.53 to y2(149) = 5.41log10(RNA copies/ml) and the HIV viral load at the final clinic
visit is y2(212) = 2.58log10(RNA copies/ml). These results may correspond to cases where
model predictions fail due to the appearance of drug resistance or viral rebound [31]. The results
are now explored in situations corresponding to effective treatment, marginal cases and cases where
treatment fails.

5.1. Effective treatment

The following results are associated with patients where antiretroviral drugs reduce and then main-
tain HIV load in the peripheral blood below the limit of 100(RNA copies/ml) i.e 2log10(RNA
copies/ml) within six months. These cases relate to patients pt1, pt2, pt3, pt4, pt5, pt6, pt9, pt12,
pa13, pa38, and pa43. For these patients, the reproductive ratio is below unity, see Table 2 and 3
and the existing methods successfully predict that antiretroviral treatment will be able to eradicate
the infection. The time evolution of the reachability condition, see Fig. 4 for pt1, is representa-
tive of the dynamical behaviour of the reachability condition in the other patients in this category.
Antiretroviral drugs in these patients are able to render and maintain the reachability condition
negative some 5 days after the initiation of treatment. As a result, the magnitude of the switching
function (11) is driven to zero and the dynamics of the system (7) are forced to move and remain at
the infection-free steady-state (8) such as in Fig. 1 for pt1. Thus, the reachability analysis predicts
that antiretroviral drugs are successful in eradicating the virus in these patients. Importantly, it
should be noted that there is no oscillation in the magnitude of the reachability condition in the
first weeks and the term βTV keeps on decreasing before and after the reachability condition is
satisfied.

5.2. New insight into marginal cases

The proposed reachability analysis reveals insight into marginal cases in which the HIV viral load
is not completely eradicated by HAART and remains at an undetectable level in the steady-state.
From a clinical point of view, treatment of patient pt8 is efficient because the antiretroviral drugs
reduce and maintain the HIV viral load below the limit of detection of 50RNA copies/ml i.e
1.699log10(RNA copies/ml) within six months. Nevertheless, the value of the reproductive ratio
is above unity in this case, see Table 2. Although antiretroviral drugs are classified as efficient,
the value of the reproductive ratio infers that the infection may not be eradicated. The existing
prediction methodology using R0 appears to contradict the clinical outcome. In contrast, this
prediction is not supported by the reachability analysis because though the time evolution of the
reachability condition in Fig. 5 shows that antiretroviral drugs are able to maintain the reachability
condition negative i.e βTV − µ1 < 0, the switching function sE(t) does not reach the manifold of
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Fig. 4. Time evolution of the dynamical condition for immunity using simulation results for pt1

interest. Nevertheless, it should be noted that sE(t) reaches a steady-state value which is close to
the desired sliding manifold sE(t) = 0. Similar results are obtained for patient pa34.

Unlike the measured HIV load data of pt8, measurements of HIV load for pt11 remain above
the limit 2log10(RNA copies/ml). However, the last measurement 2.02log10(RNA copies/ml)
is very close to this threshold, see data in [27]. Here again, although the R0 > 1 for pt11, clinicians
found this patient asymptomatic because the HIV load is relatively low. The reachability analysis
conducted using the biological rates estimated here indicates that sE(t) for pt11 attains a steady-
state value close to the desired sliding manifold sE(t) = 0. Further insight can be gained from the

Fig. 5. Time evolution of the switching function and dynamical condition for immunity for pt8

phase portrait of the sliding surface in these cases. Fig. 6 reveals that the trajectories move towards
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an equilibrium point close to the origin for pt11. This suggests that the infection dynamics move
and remain at a clinically desirable steady-state located close to the infection free steady-state for
both pt8 and pt11. It can be thus deduced that the limit of detection of the HIV viral load in the
peripheral blood can be associated with a boundary layer in which the steady-state of HIV viral
load is desirable. In the field of control systems, the concept of boundary layer control is well
established [10, 7] and it is acceptable to have a control action which forces the sliding surface to
remain within a region close to zero. It is well known that the assumed dynamics of the switching
behaviour in the control strategy directly impact on the characteristics of the boundary layer. In the
case of a switched control using a boundary layer implementation, ideal sliding motion, and the
performance it describes, is not exhibited, yet the performance of the system may still be desirable.
This finding explains the difference between the clinical observation and the outcome inferred from
the reproductive ratio for these patients. The origin is not attained but the outcome is sufficiently
close to the desired outcome and within the limits of accuracy of the measurement approach to be
clinically satisfactory.

Fig. 6. Phase portrait of the sliding surface for pt11

5.3. Failure Cases

The following results relate to patients pa3, pa8 and pa10 for whom antiretroviral drugs are unable
to reduce and maintain the HIV viral load below 100RNA copies/ml i.e 2log10(RNA copies/ml)
within six months. In all cases of failure of antiretroviral treatment, the estimated biological rates
predict a steady-state viral load Vs1, see (9), which exceeds that limit significantly. Furthermore,
the reproductive ratio (10) is above unity in all cases, see table 3. Therefore, the value of the
reproductive ratio suggests that antiretroviral drugs are not able to render the infection-free steady-
state (8) attractive and to eradicate the virus. To investigate the performance of antiretroviral
drugs in these patients, the reachability analysis was performed and results from pa3 are shown
in Fig. 7 where it can be seen that the effects of antiretroviral drugs are not sufficient to zero the
switching function (11). The dynamical behaviour of the reachability condition seen for pa3 is
the same for patients pa8 and pa10. The phase portrait of the sliding surface, see Fig. 8, for these
failure cases demonstrates that the HIV infection dynamics do not reach the infection free steady-
state located at the origin but attain a chronic HIV infection steady-state. For instance, the phase
portrait of pa3 shows dynamics moving away from the origin to reach a chronic infection steady-
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Fig. 7. Time evolution of the switching function and dynamical condition for immunity for pa3

state whilst the dynamics of pa10 move towards the origin but stop at a chronic infection steady-
state. Importantly, the comparative analysis of the phase portrait of the sliding surface for different
patients reinforces the fact that the transient dynamics induced by the antiretroviral treatment are
diverse in failure cases. This motivates the design of personalized antiretroviral treatment regimes
to improve efficacy and demonstrates that the reachability analysis presented in this paper may be
helpful in developing appropriate treatments.

Fig. 8. Phase portrait of the sliding surface for pa3, pa8 and pa10
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6. Conclusion

The dynamics of HIV infection after initiation of antiretroviral therapy are analyzed from a control
engineering standpoint. Using sliding mode control theory, a reachability condition has been for-
mulated to provide a dynamical condition to assess the ability of antiretroviral therapy to enforce
an infection free steady-state. Longitudinal data from two different HIV clinical trials were consid-
ered to validate the hypothesised condition. These data sets contain measurements of CD4+ T cell
count and HIV load in the peripheral blood collected from HIV infected individuals after initiation
of HAART during a six month period. Using the multi-point parameter identification method, the
biological rates of the HIV model were estimated. These estimates have been validated by nu-
merical simulation and by comparing the values with those published in other studies. The time
evolution of the switching function and the reachability condition are shown to be good predictors
of the outcome of antiretroviral treatment because the infection dynamics during HAART exhibit
specific dynamical characteristics corresponding to healthy, unhealthy and marginal outcomes. The
findings of this work evidence that the proposed analysis is a suitable framework to improve early
diagnosis of the outcome of antiretroviral therapy for individual patients. Future work will focus
on assessing the ability of the framework to inform drug treatment and support the development of
personalised treatment.
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