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Abstract—We propose a quality assessment framework for
crowdsourced media streaming in urban railway networks. We
assume that commuters either “tune in” to some TV/radio chan-
nel, or submit requests for content they desire to watch or listen
to, which eventually forms a playlist of videos/podcasts/tunes.
Given that connectivity is challenged by the movement of trains
and the disconnection that this movement causes, users collabo-
ratively download (through cellular and WiFi connections) and
share content, in order to maintain undisrupted playback. We
model collaborative media streaming for the case of the London
Underground train network. The proposed quality assessment
framework comprises a utility function which characterises the
Quality of Experience (QoE) that users (subjectively) perceive
and takes into account all the necessary parameters that affect
smooth playback. The framework can be used to assess the media
streaming quality in any railway network, after adjusting the
related parameters.

To the best of our knowledge, this is the first study to
quantify the perceptual quality of collaborative media streaming
in (underground) railway networks from a modelling perspective,
as opposed to a systems perspective. Based on real commuter
traces from the London Underground network, we evaluate
whether audio and video can be streamed to commuters with
acceptable QoE. Our results show that even with very high-
speed Internet connection, users still experience disruptions, but
a carefully designed collaborative mechanism can result in high
levels of perceived QoE even in such disruptive scenarios.

Index Terms—Mobile Video/Audio Delivery, Collaborative
Video/Audio Streaming, Crowdsourcing.

I. INTRODUCTION

We envision ubiquitous streaming of popular channels, e.g.,
national broadcasters, in smart city environments. We argue
that there is a lot of space for resource optimisation in mixed
cellular and WiFi access environments complemented with lo-
cal transmission of content between mobile devices. Arguably,
the quality of Internet services deteriorates when several
hundreds of users attempt to connect simultaneously through
the same WiFi Access Point (AP) or cellular Base Station
(BS). This situation is rather common in large metropolitan
areas where hundreds of users commute (e.g., in trains or
buses), wait in stations or airports, or just move slowly
towards their destination [1]. The case becomes even more
challenging when connectivity is physically disrupted, e.g.,
when (underground) trains travel between stations. In those
cases, installing more bandwidth will not necessarily improve
performance [2], simply because quality often suffers due to: i)
frequent handovers, ii) the hundreds of sessions that an AP/BS

has to handle simultaneously, and iii) physical challenges, such
as long disconnection periods. In urban railway networks, for
instance, it is not uncommon the situation where in busy times
more than 500 commuters are onboard a train (and might want
to access online services), trains stay in stations (and therefore,
connectivity is available) for as little as 20 seconds, followed
by a disconnection period of 4 minutes (or more), when the
train is in the tunnel. The situation is even worse for real-time
streaming sessions, as opposed to downloading some static
web-page content.

In the absence of any collaboration between users to down-
load and stream content collectively, the users end up with
degraded media quality and, more often than not, abandon
their sessions.

Crowdsourcing-based approaches have been proposed re-
cently in order to deal with the above challenges [3], [4], [5],
[6]. Crowdsourced content retrieval is based on the premise
that users share their storage, connectivity and energy re-
sources given some direct or indirect incentives, e.g., improved
service quality [7], or some monetary reward [6], [8].

The implementation details of such a crowdsourced mobile
video and audio on demand streaming service for commuters
in urban railway networks have been studied in [3]. However,
the question of whether such a system can provide acceptable
media experience (or QoE) to participating users has not
been answered yet. That said, in this study, we fill this gap
by building a quality assessment framework that attempts to
answer the above question.

Quality of Experience (QoE) is traditionally characterised
by the subjective perception of users [9] and as such, it is
difficult to quantify in terms of objective metrics [10]. In-
deed, objective measures of user engagement, such as bitrate,
throughput, startup delay and buffering, which by and large
comprise the state of the art to date, are not adequate in
a media-dominated Internet, let alone a mobile environment.
The proposed framework, which is based on a utility function,
extends our previous work in [5] and goes beyond the above
primitive metrics to take into account the user’s tolerance to
disruptions, the energy needed to download and share media
content, as well as the cost of using the cellular network. The
energy factor, for instance, can influence user engagement in
collaborative streaming in fear of battery depletion. In other
words, users will not spend energy (and cellular data) to
participate in a collaborative streaming system unless quality
compensates. As such, we argue that a quality assessment
framework for media delivery is necessary to characterise theISBN 978-3-901882-83-8 c© 2016 IFIP
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perceptual and subjective quality as opposed to the network-
dependent, objective quality.

An urban railway system exhibits a number of challenges,
as well as a number of physical properties, which can be
utilised to make design decisions. For example, the train
route and timetable is fixed (as opposed to walking users
or vehicles). On the other hand, connectivity is physically
disrupted when trains move between stations. Furthermore,
disconnection periods can be as long as eight times this of the
connection period, during which there is no WiFi connectivity
and cellular connection is rather poor. Finally, the users’
commuting patterns are unknown, but the aggregate number of
commuters can be approximated depending on factors such as
the time of day (i.e., peak or off-peak time) and the direction
of travel (i.e., bound towards the city centre or not).

The main contributions of this work are:
• We define a utility function as the key aspect of our

quality assessment framework. This utility function takes
into account playback disruption and energy factors and
provides a quantitative measure of a media delivery system
for railway networks.

• We analyse a 17-day sample of commuters’ jour-
ney traces, provided by Transport for London (TfL,
http://www.tfl.gov.uk). We identify and illustrate
commuting patterns and approximate the number of users
travelling in each train throughout the day, as well as the
connection and disconnection periods they experience.

• We quantify the users’ experience by applying the utility
function to the commuters’ traces. Interestingly, we find that
although it is difficult to achieve undisrupted multimedia
playback, especially during the rush hours, a collaborative
media streaming application can provide acceptable QoE.
The rest of the paper is organised as follows. In Section II,

we discuss related works. Section III includes the analytical
description of the problem under consideration, while in
Section IV we give details of our commuter data trace and
we evaluate the performance of the system. Finally, Section V
concludes this study.

II. RELATED WORK

The mobility properties of public transportation systems, as
well as the limited connectivity during the commute makes
communications in these environments a rather challenging
problem. In the absence of any connectivity in underground
train networks, authors in [11] build on the concept of Familiar
Strangers [12] and analyse commuter traces to investigate
whether collocation patterns exist. They find that such patterns
indeed exist and build a content sharing and distribution
network around content stored in commuters’ devices. They
identify users who posses content which is of interest to others
and who will travel long enough within range of each other
in order to successfully transfer the content in a p2p manner.

In [13] and [14] authors propose installation of a hub
on public transportation vehicles, which commuters utilise in
order to stay connected throughout their journeys. Although
existence of a connectivity device on board the vehicle is
desirable, the authors do not exploit aggregate connectivity

and storage opportunities offered by user devices. Peer-to-peer
communications between mobile devices have been exten-
sively studied in the context of delay-tolerant networks, taking
also advantage of social links to drive connectivity decisions
[15], [16], but also with a target to improve QoE [7], [17].

None of these works, however, has attempted to model the
performance of real-time multimedia streaming in challenged,
intermittent connectivity environments and as such we con-
sider these works complementary to ours.

Closer to our work are studies that investigate co-operative
download techniques for mobile users. Such studies are ap-
plicable to a broader scope of problems in the context of
delay-/disruption-tolerant networks. For instance, co-operative
techniques that exploit cellular and local WiFi connectivity
have been studied to improve the capacity available to mobile
users, or in other words, increase the aggregated downlink rate
of each user, e.g., [6], [18], [19]. In [20], a group of collocated
train commuters, using several wireless Internet access links,
jointly access a video stream and each user contributes to the
group by sharing his downloaded content. In [4], the authors
formulate a network utility maximisation problem where a
single static group of commuters attempts to access a video
stream. According to [4], users try to utilise Internet access
links as well as the device-to-device capacity by taking into
account packet loss and applying network coding. The model
in [4] is complementary to any study that investigates co-
operative download for mobile devices. Finally, the authors
in [3] design, implement, and evaluate Microcast, a system
that improves the streaming experience of a group of users,
albeit in relatively static conditions.

This second group of studies focuses mainly on the im-
plementation principles of a co-operative streaming service,
ignoring to a large extent the performance that such systems
would achieve in reality. Quality of Service (QoS) metrics
cannot be used for this purpose as they focus on network-
related aspects and ignore the human perception factor. There
is a clear lack in the literature of studies that characterise QoE
for mobile media delivery. Mean Opinion Score (MOS) is the
most widely used ranking metric that takes into account the
objective opinion of individual users [9], [10]. In this study,
we fill this gap by building a utility function that characterises
the user’s QoE when streaming media in train networks.
Given the connectivity challenges in this case, tolerance to
disruptions is a central factor. Furthermore, given that in order
to participate in collaborative media streaming, users spend
battery resources, energy consumption also plays a central role
in the QoE assessment.

III. QUALITY ASSESSMENT FRAMEWORK

A. System Model

We consider that users access the Internet through either
WiFi or cellular links and can either individually Pull, or
collectively PUll and SHare (PUSH) content. In this section
we lay out the description of the model for each of the Internet
access methods considered (i.e., cellular and WiFi), as well as
for each content retrieval approach (i.e., Pull or PUSH). We
define as an epoch i, Epi, a time interval of duration |Epi|,



which consists of a connection period Ci (of duration |Ci|)
and a disconnection, or poor connection quality period C̃i (of
duration |C̃i|). Clearly, |Epi| = |Ci|+|C̃i|, which also implies
that a new epoch starts at each station, where the previous one
finishes. Connection period is the time that a train spends in
a station and disconnection period is the time it takes for the
train to arrive at the next station.

In the simple case, users Pull content individually from
the Internet. Video or audio content is split in chunks, where
every chunk contains y seconds of playback time at bit-rate
b. Users can also form groups to PUll and SHare (PUSH)
content with fellow-commuters in the vicinity. Initially, we
present the basic framework which effectively quantifies the
utility obtained by individual users (Sections III-B, III-C). We
then extend the utility function to incorporate aspects such
as energy consumption and cellular download data charges
(Section III-D). Finally, we adjust the basic framework to each
of the content retrieval approaches (i.e., Pull and PUSH) and
access method technologies in Sections III-E, III-F, III-G.

We assume that the functionality of the PUSH approach,
is realised in the context of a mobile Backend as a Service
(mBaaS) platform that runs in the cloud (similar in rational
to [3] and [6]) and is responsible for managing group syn-
chronisation in terms of collaborative content retrieval. For the
purposes of this study we ignore any potential implementation
overhead (e.g., chunk download scheduling). In particular, the
mBaaS platform assigns to each member the content chunks
that (s)he has to download and share with the rest of the group
participants. All members of a group download and share
equal number of chunks which implies fairness in terms of
computation and communication effort. Our model notation is
given on Table I.

B. Playback and Playback Disruption

The Internet access medium (i.e., WiFi or cellular), as well
as the content retrieval approach (i.e., Pull or PUSH) affects
the number of chunks that a user can receive over a predefined
period of time. We denote as Xi

A,R the number of chunks that
a user receives over epoch i when (s)he accesses the Internet
by technology A and retrieves a content by approach R.

Given reception of Xi
A,R chunks, we calculate the playback

and playback disruption periods that a user experiences over
consecutive epochs. Firstly, we estimate the total number of
chunks received by a user over epochs f to i as Xf→i

A,R =
i∑

j=f

Xj
A,R, where f is the epoch during which the user enters

the system.
Next, we express the number of chunks in terms of playback

time. We assume that a chunk can be watched/listened only
when it has been fully downloaded. Hence, the watching time
worth of downloaded content from epoch f to epoch i for one
user is:

Lf→i
A,R = bXf→i

A,R c × y, (1)

where y is the playback duration of a content chunk.
Given that we model an on-demand streaming service,

the downloaded playback time will differ from the actually
watched playback time over epochs f to i, W f→i

A,R , due to

|Ci|, |C̃i| i-th connection/disconnection duration
|Epi| i-th epoch duration
A Internet access technology (WiFi,cellular)
R Content retrieval approach (Pull,PUSH, Hybrid)
f Epoch user started downloading the content
y, b, S Playback time, bit-rate, and size of a chunk
Y Content playback time duration
Xi

A,R Chunks received at epoch i for A and R
Xf→i

A,R Total chunks received until epoch i (incl.)

Lf→i
A,R Total playback time received until epoch i (incl.)

W f→i
A,R Playback time watched until epoch i (incl.)

Df→i
A,R Playback Disruption until epoch i (incl.)

Uf→i
A,R User utility until epoch i (incl.)

Ũf→i
A,R User extended utility until epoch i (incl.)

UC,f→i
A,R , UE,f→i

A,R User cellular and energy cost to epoch i
ad,ac,ae User disruption, cell, and energy sensitivity
Xcell,XWiFi Per second chunks delivery rate at cellular,
Xg

p2p WiFi, and sharing interface for a group g

N(t) # of users requesting access at moment t
BWiFi Total bandwidth assigned to a platform of a station
BCell, ḂCell User good and poor cell bandwidth
Ng(t) # of users of group g at moment t
Bp2p Bandwidth limit for local p2p transfers
V i,g
max(p2p)

Maximum amount of content to be shared
and downloaded over an epoch i for group g

V i,g
A , Ṽ i,g

A Identical chunks downloaded by all the
members of group g during good and poor connectivity

TABLE I: Model Notation

buffered content. We model this difference in a retrospective
manner between epochs i and i − 1 and express the actually
watched playback time W f→i

A,R as the sum of: i) the watched
playback time during the previous epochs W f→i−1

A,R and ii)
the difference between the total downloaded playback time
between f and i, Lf→i

A,R , and the actually watched playback
time during the current epoch (Lf→i

A,R −W f→i−1
A,R ). Note that

in case the user has buffered enough content to get through
the current epoch, then Lf→i

A,R −W f→i−1 = |Epi|. Therefore,
we have:

W f→i
A,R = min[W f→i−1

A,R +min(|Epi|, Lf→i
A,R −W f→i−1

A,R ), Y ],
(2)

where Y is the total playback duration from the beginning of
the journey, which apparently works as an upper bound of the
watched time and W f→i−1

A,R = 0 for the first epoch.
Finally, the playback disruption time until epoch i, Df→i

A,R ,
is calculated as:

Df→i
A,R =


Df→i−1

A,R , if W f→i
A,R = Y

i∑
j=f

|Epj | −W f→i
A,R , otherwise,

(3)

where Df→i−1
A,R = 0 for the first epoch.

C. Utility Function

The playback time, W f→i
A,R , as well as the playback disrup-

tion, Df→i
A,R , are the fundamental components that we use in

order to describe the user’s utility in terms of QoE. Clearly,
the ideal utility of a user until epoch i is equal to the sum of
the epochs’ duration, or the content duration Y , whichever is
shorter:

Uf→i
ideal = min(Y,

i∑
j=f

|Epj |). (4)



We consider that the utility decreases due to the playback
disruption Df→i

A,R and express a user’s utility in terms of
undisrupted playback time according to the formula:

Utility Function : Uf→i
A,R = W f→i

A,R − ad ×Df→i
A,R , (5)

where ad is the user’s tolerance to playback disruptions.
The disruption tolerance factor decreases the user’s utility
by ad. For instance, for a user who has watched 10 secs of
undisrupted playback and therefore has built a utility function
equal to 10, a disruption tolerance factor equal to 2 will
decrease his utility to 8, after 1 second of disruption. We
consider the disruption tolerance factor as a central component
of the utility function for media delivery in connectivity-
challenged mobile environments.

We express the “efficiency” of an Internet access technology
A and content retrieval approach R for a commuter according
to the following utility ratio:

Utility Ratio / Efficiency : Qf→i
A,R =

Td + Uf→i
A,R

Td + Uf→i
ideal

, (6)

which is bounded by the interval [0, 1]. Td is the “Initial
Tolerance Interval”, which indicates the user’s patience to
start-up delay. In the rest of this work, we use Eq. 6 to quantify
the QoE that users obtain during their journeys, which together
with the utility function in Eq. 5 comprise the two main
building blocks of the proposed quality assessment framework.

Fig. 1 illustrates the utility (Eq. 5) and efficiency (Eq. 6)
fluctuation for 3 users with disruption tolerance (i.e., ad)
0, 2, and 3.5, respectively; the users experience a playback
disruption of 2 seconds after 10 seconds of playback time
and another disruption of 3 seconds after playback time of
20 seconds; the total playback duration is 30 seconds, which
also means that the ideal utility is equal to 30. Apparently,
delay sensitivity equal to 0 leads to efficiency equal to 1
(Fig. 1b), while for delay sensitivity equal to 2 and 3.5 in this
setting the produced efficiency is 0.666 and 0.416, respectively.
This result demonstrates that efficiency is subjective when
it comes to QoE, since it is subject to the users’ temporal
utility/satisfaction and their personal tolerance to disruptions.

The Utility Ratio or Efficiency can get negative values due
to extended disruptions. In this case we assume that a rational
user would quit the attempt to watch (listen) this video (music
playlist), which would set the Efficiency’s value to zero, or
more formally:

Qf→i,t
A,R = max(

Td + Uf→i,t
A,R

Td + Uf→i,t
ideal

, 0). (7)

D. Cellular and Energy Cost

To further extend our model with a realistic representation
of a working system we incorporate two more factors in the
utility function of users. The first relates to the medium used to
download content and is associated with the cost of using the
cellular network, denoted as cellular cost. The second factor
relates to the energy consumed in order to use this medium,
denoted as energy cost. Given the description and structure
of the utility function in Eq. 5 the cellular and energy costs
need to be converted to actual playback time. That said, the
cellular cost is the equivalent of the playback time downloaded
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Fig. 1: Comparison of user utilities and efficiencies over time
for a disruption of 2 and 3 seconds after 10 and 20 seconds
of playback time.

through the cellular network, denoted as UC,f→i
A,R for epochs

f to i.
As regards the energy cost, an interface supporting radio

technologies works in different power states, each one related
to a different workload as well as power consumption. These
states include the Idle state, when no Internet connection is
required, and consumes the least possible energy. Starting
from this state, an interface can be promoted to one or more
productive states by spending a fixed amount of energy and
time, where productive means that an interface becomes able
to receive or transmit data. Finally, an interface experiences a
tail power phenomenon where it stays in a high power state,
in anticipation of more data exchange, before returning to its
initial Idle state.

We denote as Eprom
A,R and Etail

A,R the fixed energy cost of all
involved interfaces, of technology A and approach R, when
being promoted to a productive state and when experiencing
the tailing phenomenon, respectively. Thus, the energy spent
until epoch i, Ef→i

A,R , is:

Ef→i
A,R = Eprom

A,R + Eprod,i
A,R + Etail

A,R + Ef→i−1
A,R , (8)

where Eprod,i
A,R is the energy spent on the productive state of

all interfaces for receiving and sharing content during epoch
i. Therefore, by identifying the technology, A∗, and approach,
R∗, which spend the smallest possible amount of energy until
epoch i, Ef→i

A∗,R∗ , we can express the energy cost of a candidate
technology, A, and approach, R, in terms of playback time,
UE,f→i
A,R , by:

UE,f→i
A,R = (

Ef→i
A,R

Ef→i
A∗,R∗

− 1)× Lf→i
A∗,R∗ . (9)

The value of UE,f→i
A,R in Eq. 9 is effectively the additional

content (in terms of playback time) that a user would download
if (s)he used technology, A∗, and approach, R∗.

Building on Eq. 5, the extended utility function that inte-
grates the energy and cellular costs is:

Ũf→i
A,R = Uf→i

A,R − ac × UC,f→i
A,R − ae × UE,f→i

A,R , (10)

where ac and ae are the corresponding weights of cell and
energy cost, called cell and energy sensitivity.

In the following, we first discuss the general chunk reception
rates over WiFi and cellular connectivity, which are indepen-
dent of the content retrieval approach (Section III-E). Then we
adjust those reception rates to the Pull and PUSH cases, in



Sections III-F and III-G, respectively. The target is to define
the total chunks received until epoch i, that is, the bXf→i

A,R c
component of Eq. 1, which then feeds Eq. 2 and eventually
the Utility Function defined in Eq. 5 and extended in Eq. 10.

E. Chunk Reception Rate over WiFi and Cellular

The size of a single chunk, S, is S = b × y, where b is
the bitrate and y is the chunk’s playback duration.1 Then,
assuming interference-free cellular downlinks, the cellular
chunk delivery rate (per second) will be Xcell(t) = Bcell/S,
where Bcell is the bandwidth allocated to the user by the
cellular network provider. For simplicity, we consider that
the cellular bandwidth is stable, irrespectively of the number
of active users.2 We assume that Bcell is the bandwidth
availability when the train is stopped at some station and that
the connection quality deteriorates when the train is moving
(i.e., B̈cell < Bcell).

Without loss of generality, we assume that the available
WiFi access bandwidth per platform of each station is equal
to BWiFi, which is equally shared among the users/commuters
at each platform. Therefore, the chunk reception rate per
second and per user at time t, received through the WiFi
AP of a platform is, XWiFi(t) = BWiFi

N(t)·S , where N(t) is
the number of users requesting Internet access at moment
t ∈ [ti, ti+1) at the given platform. Please note that there is
no WiFi connectivity during disconnection periods (i.e., when
trains are in-between stations), which means that the chunk
reception rate is: ẌWiFi = 0.

In the PUSH approach, apart from the chunks received
through the Internet, users receive chunks from group mem-
bers too. The chunk reception rate between group members in
the PUSH approach is proportional to the group size. Chunks
are shared over bandwidth Bp2p and the number of chunks
that can be shared among a group g of Ng(t) members at a
moment t, Xg

p2p(t), is defined as:

Xg
p2p(t) =

Bp2p

N(t) · S
×Ng(t), (11)

Eq. 11 implies an underlying pseudo-broadcast sharing mech-
anism (similar to [3]) where a single peer at a time unicasts its
content to another peer, while the rest of the members of the
group overhear the transmission. Note that the mBaaS platform
(mentioned earlier in Section III-A) is also responsible for
organising the “sharing turns”, given that only one user can
unicast at a time.

F. Pull Reception Rate

In the simple Pull approach users pull content individually.
For cellular Internet access, the total number of chunks re-
ceived during epoch i is equal to:

1Note that we do not consider dynamic rate adaptation (e.g., DASH) for
simplicity of modelling. We evaluate the proposed model under the lowest
possible rate, hence, any higher bandwidth availability will only increase the
performance we observe.

2In reality, even the cellular bandwidth assigned to each user can be
influenced by the level of contention (that is, number of users), but this
happens for larger number of users, possibly in the order of thousands, which
is not the case of a train (station).

Xi
cell,Pull = |Ci| ×Xcell + |C̃i| × Ẍcell. (12)

In the WiFi AP case, where the medium is shared between
users, the total number of chunks that a user receives through
a WiFi AP over epoch i is:

Xi
WiFi,Pull =

ti+|Ci|∫
t=ti

XWiFi(t)dt, (13)

where ti is the starting time of epoch i.
Finally, in case users utilise both interfaces for Internet

access, in a Hybrid way, the total number of chunks they
receive during epoch i is:

Xi
Hybrid,Pull = Xi

cell,Pull +Xi
WiFi,Pull. (14)

G. PUll and SHare (PUSH) Reception Rate

In the PUSH approach, users who belong to a group g of
Ng(t) members, at moment t, share their downloaded content.
The chunk reception rate from fellow group members is given
in Eq. 11. Our model does not include multi-hop transmissions
which implies that all members of a group have to be within
transmission range of each other. For that purpose, we consider
WiFi Direct as the technology of choice in order to transmit
in long distances with high rates [21]. We also assume that
devices can make simultaneous use of two separate half-duplex
WiFi interfaces, one for downloading through the WiFi AP and
another one for local sharing. Our approach is also applicable
in the simple scenario where only one WiFi interface is
available per device, but in that case downloading and sharing
should take place sequentially, that is, the users would first
download the required chunks and then share them with the
rest of the group.

The total volume of content that can be shared between a
group (according to Eq. 11) is Xg

p2p, or more formally, the
theoretical maximum amount of content that can be shared
over an epoch i for a group g, V i,g

max(p2p), is:

V i,g
max(p2p) =

ti+|Epi|∫
t=ti

Xg
p2p(t)dt. (15)

On the other hand, the maximum volume of content that can
be downloaded collaboratively over the connection period of
an epoch by access approach A, V i,g

A,C , is:

V i,g
A,C =

ti+|Ci|∫
t=ti

XA(t)×Ng(t)dt, (16)

where XA(t) is the number of downloaded chunks per second
per group member, during the connection period.

Finally, the corresponding maximum downloaded content
under poor connectivity (i.e., using cellular connection when
the train is in-between stations), V i,g

A,C̃
, is:

V i,g

A,C̃
=

ti+|Epi|∫
t=ti+|Ci|

ẌA(t)×Ng(t)dt, (17)

where ẌA(t) is the number of downloaded chunks per second
per group member, during poor connection (or disconnection)
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Fig. 2: Average journey duration and number of commuters
per end-to-end journey of the line.

period. It follows that the total volume of content that can be
downloaded over an entire epoch i, Xi

A,PUSH , is:

Xi
A,PUSH = V i,g

A,C + V i,g

A,C̃
. (18)

Eq. 18 effectively expresses the total number of chunks that
the group can download and share within epoch i. In case
Xi

A,PUSH > V i,g
max(p2p) the group has downloaded exactly

as much content as it can share during epoch i. This would
happen when the Internet access bandwidth is higher than the
p2p one and therefore, users can download faster than they can
share. In this case, users continue downloading individually
without sharing.

IV. EVALUATION

A. Commuter Journey Traces Dataset

We analyse the anonymised commuter trace dataset from
London’s Oyster Radio Frequency Identification cards. The
dataset is a 17-day trace of all journeys made in all of the 11
lines of the London Underground network; the total number of
journeys in our dataset is in the order of one million per day.
Each journey is identified by an entry and exit point in the
network, which is recorded at the granularity of one minute.
The traces do not include information regarding the specific
lines used by commuters, hence, in order to get an insight of
how many passengers are on board a train at some given point
throughout the day, we build a custom simulator which takes
into account both the entry/exit points of commuters, but also
the specific topology of the network. That is, we also consider
the distance between stations, as well as the intersections of
lines at each station and the routes that each line follows.

Given that a journey’s route might cross more than one lines,
and that commuters follow the shortest path with the fewest
interchanges between their entry and exit points, we process
the trace and assign commuters to specific lines and then to
individual trains.

Due to space limitations and for better visualisation of our
results, we choose one line and present results for this line
only. However, we report that evaluations with most of the
lines of the network present similar results.

B. Group Formation Insights/Potential

Fig. 2 depicts the average number of commuters that our
chosen line serves per one end-to-end journey. Obviously, not
all commuters travel from one end to the other, but this plot
includes all commuters that at some point in their journey use
this line of the network. The number of commuters is averaged
over all trains of the day in per hour time slots. We observe
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Fig. 3: Number of commuters per train (single direction) for
a station in the beginning, middle, and end of the line.

that there are two clear peaks during the morning and the
afternoon rush hours. During those times, one train can serve
up to 1400 commuters in its end-to-end journey. Depending on
their entry and exit points, these commuters can form groups
to PUll and SHare content from the network.

In order to get a closer view of the potential to form
groups, in Fig. 2, we also depict the average journey time
per commuter, as well as the standard deviation of the per
commuter journey time. According to this plot, commuters
use this line on average for approximately 9 minutes with a
standard deviation of around 5 minutes. Although the propor-
tion of time that commuters physically share journeys depends
on how much the chosen routes overlap (i.e., entry and exit
points), this time is enough to watch or listen to the headline
stories of some TV/radio channel.

Clearly, from Fig. 2 we see that a line serves different
volumes of commuters at different times of day, but their
distribution over the stations of the end-to-end line needs fur-
ther investigation. A more detailed analysis though, shows that
commuters’ volumes differ hugely at each station depending
on the train direction and the time of day. We note that the
lines normally start and terminate at the outskirts of the city
centre, but always cross the city centre itself. In Fig. 3 we
present the average number of commuters per train at three
different stations over the duration of a day. The three stations
chosen are towards the beginning of the line (Station 1), the
middle of the line (a central location, Station 6) and the end of
the line (Station 12). Interestingly, and somewhat expectedly,
we see that the station at the beginning of the line serves most
users in the morning rush hours (i.e., users move towards the
city centre), whereas the station towards the other end of the
line serves most users during the afternoon rush hours (i.e.,
on the way back). The station in the city centre presents two
peaks one in the morning and one in the afternoon rush hour.

This result makes clear the need for provisioning of Inter-
net streaming services according to journey patterns, station
locations and the time of day. That is, given that connectivity
is available only when trains are within stations, where they
normally stay for about 20-30 seconds and that disconnection
periods last 1-4 minutes, the amount of content that needs
to be buffered in order to avoid playback disruptions differs
hugely. Given also that different stations are busy at different
times of day depending on the area and the direction of the
train, the system has to be carefully modelled to include these
factors in order to guarantee undisrupted playback.



Standard Setting Variable Value
Total bandwidth per station, BWiFi 0.5 Gbps

Cell rate - moving (B̈cell)/static (Bcell) train 150-550 Kbps
Sharing bandwidth, Bp2p 54 Mbps

Connection period duration for each station i, |Ci| 20”
Participation probability, plist 50%

Music/Video bit-rate 160/419 Kbps
Chunk playback time, y 5”

Playlist duration, Y 15’
Zipf’s exponent, a 1

Playlists generated per station, Z 5-95
Delay (ad), Energy (ae), Cell (ac) Sensitivity 3, 0, 0

TABLE II: Standard Evaluation Setting

C. Simulation and Evaluation Setup

We assume that users have access to both WiFi connec-
tivity when trains are in stations and cellular connectivity
throughout their journeys. Although in the case of the London
Underground cellular connectivity is not available, here we
include this access option for completeness. We also assume
that users can use both their cellular and their WiFi interfaces
simultaneously to receive content (Hybrid approach).

Although the current WiFi access deployment at the London
Underground network provides download speeds of up to
100Mbps, here, we consider a future, overprovisioned network
where each station is connected to the Internet with 500Mbps
links. This bandwidth is split between all platforms and among
all lines passing through each station.

For the cellular case, we assume that users get between
150Kbps and 550Kbps - closer to the lower value when the
train is moving and to the highest one when the train is static
in the station. Finally, we set the users’ sensitivity to delay
(ad in Eq. 5) equal to 3, which means that for every second
of disruption the users’ utility decreases by three, whereas
their utility increases by one for every second of undisrupted
playback. This value is specifically chosen as an extreme
scenario, where users are not tolerant to disruptions.

In addition to the different access methods, we evaluate the
users’ QoE (i.e., Eq. 6) when two different types of content
are available, that is, music content (at 160Kbps) and video
content (at 419Kbps). The chosen bit rates are the lowest
possible for acceptable quality streaming. In cases where the
system can achieve minimum disruptions, an adaptive increase
of the corresponding bit rates can be applied (e.g., through
DASH), but this is out of the scope of this paper. Unless
mentioned otherwise, the full list of settings of our evaluation
setup is given on Table II.

Due to the limitations of the environment under investiga-
tion, we do not assume that users individually choose to stream
content and only if requests match, then users form groups.
This would clearly result in very few and very small groups,
effectively reflecting the Pull case. Instead, we evaluate two
specific scenarios. In the first one, we assume that users create
music or video “playlists” according to genre preferences, e.g.,
sports clips, or jazz music. Users then join a group and add
their own preferences to the list. We assume that between 5
and 95 playlists are generated in each epoch, resulting in more
than 500 playlists available throughout the train’s end-to-end
journey. The playlists’ duration is set to 15 minutes to reflect
the average journey time plus standard deviation. In our second
scenario, users tune in to radio or TV channels [22], [23]
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Fig. 4: 15-min Playlists scenario Pull efficiency for WiFi, Cell,
and Hybrid access methods.

and we assume that 50 channels are supported by the system,
which would cover the main broadcasters of a country. The
difference between the playlist and channel scenario is that in
case of the latter, users form larger groups. In both cases, users
choose which playlist or channel to subscribe to following a
Zipf distribution [24].

In both scenarios, and after the users have created new
playlists at each station, these playlists are suggested to the
rest of the commuters who are not participating in any other
group. A commuter is interested in this list and participates
with a probability plist while choosing the r-th element of the
list according to a Zipf distribution with probability f(r; a, Z)
where a is the Zipf exponent and Z is the number of elements
in the list.

We measure the users’ perceptual QoE as expressed through
Eq. 6. The initial tolerance interval (Td in Eq. 6) is set to 5
seconds, after the expiration of which each user abandons the
attempt to receive content. This setting is based on studies that
assess the patience of users to load web content (e.g., [25]).

D. Performance Evaluation

1) Pull Approach - Playlists scenario: Fig. 4 illustrates the
average (over all trains) efficiency of WiFi, Cell, and Hybrid
access methods of the Pull approach for music and video
streaming over one operational day of the tube network. Given
that with the Cell approach each user gets between 150Kbps
and 550Kbps and that the bitrate for streaming music rate is
160Kbps, it is straightforward that the network can support
such a service. Hence, the Cell approach (and stemming from
that, obviously, the Hybrid approach) can provide good QoE.
On the other hand, the WiFi access method experiences dis-
ruptions which increase as the volume of commuters increases
(i.e., during rush hours - see Fig. 2 and Fig. 3). In the case
of video streaming all three access approaches, WiFi, Cell and
Hybrid perform worse than music streaming. In the following
we exclude the music bitrate for the cell access approach, as
it clearly can be supported when cell access is available (not
for the case of the London Underground network though).

2) PUSH Approach - Playlists scenario: From Fig. 5 we
observe that streaming music over the WiFi network is chal-
lenged by disruptions/disconnections, achieving performance
close to 0.8 at best, while during rush hours this can go
as low as 0.4. In the case of Video playlists, which is
even more demanding (i.e., higher bit rates), achieves lower
performance ranging between 0.7-0.8 when utilising both the
WiFi and the cellular connection. Note that the performance
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of the PUSH approach is acceptable during off-peak time,
especially considering the extreme delay sensitivity assumed
here. Overall, based on the parameters used here (especially
for the delay sensitivity) collaborative download can provide
acceptable service quality, especially when it is combined with
cellular connectivity. In the following we experiment with
different parameters to investigate whether quality can improve
further.

3) PUSH Approach - Channels scenario: Efficiency perfor-
mance follows similar trends in the case of the second scenario
(i.e., TV/radio channel streaming - see Fig. 6), where, however,
we observe a small increase in the QoE perceived by the users.
This is because, in the “channel” case, groups form for longer
time periods [26] and also more users join in as trains move
towards their destination. That said, groups are bigger in size
compared to the playlists scenario, giving the opportunity to
move more content locally. Of course, during the rush hours
the available WiFi bandwidth per commuter is significantly
small and despite the size of the formed groups the efficiency
is still quite low, since each user can download and share a
very small portion of the desired content. As we show next, it
requires a large amount of available WiFi bandwidth at each
station in order to increase the performance of the system.
Furthermore, another important factor that affects performance
is the initial tolerance interval as we show later in this section.

4) PUSH Approach - WiFi Bandwidth Factor: In general
more bandwidth available at each platform/station improves
performance, but here we examine whether investing more on
bandwidth would pay off in terms of users’ QoE. In Fig. 7 we
present the case for video streaming to groups of commuters
(i.e., PUSH approach) for the WiFi and the Hybrid access
methods.

Interestingly, the efficiency achieved by the WiFi access
method during peak times overtakes the one achieved during
off-peak times when the available bandwidth at each station
is significantly large (≥ 1Gbps). In those cases, larger number
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of commuters on board the trains result in larger groups. In
turn, each group gets a larger stake of the available bandwidth.
Overall, we see that even when 1Gbps is readily available at
each of the hundreds of tube stations throughout the network,
it is still difficult to achieve uninterrupted video streaming
relying on the WiFi connectivity only, even at off-peak times.
On the other hand, when collaborative streaming is combined
with cellular connectivity, we observe performance close to
0.8, even for smaller bandwidth values and rather disruption-
sensitive users (i.e., ad = 3).

5) PUSH Approach - Cell and Energy Sensitivity: The cell
sensitivity integrates the cost factor, that is, the monetary cost
to download through the cellular network (i.e., ac in Eq. 10),
as opposed to the WiFi access. In general the efficiency
decreases linearly in all the retrieval approaches (i.e., Pull and
PUSH) with respect to the cell sensitivity. In more details in
the Pull case it declines with exactly the same rate during
both peak and off-peak times, since the amount of data that
each commuter downloads from the cellular interface in each
case remains the same. On the other hand, for the PUSH
approach (Fig. 8) the efficiency decline rate is less steep
and the difference between the peak and off-peak time is
proportional to the average group size. In this approach users
also exchange a significant amount of data minimizing the data
to be directly downloaded from the cellular network.

We use the power state machine presented in [27] to evaluate
the energy sensitivity of the cellular and WiFi interfaces of
smartphone devices for each one of the power state (i.e.,
Promotion, Productive and Tail). Our findings show that
despite the fact that PUSH uses an additional interface for
sharing data, the low promotion and tail energy required by
the sharing interface decreases the overall performance as
we increase the energy sensitivity. Finally, we notice that
increasing the sharing energy transmission coefficient, atr,
causes only slight performance decline, proportional to the
coefficient’s actual value (Fig. 9). This is partly because local
transfers (through the sharing interface) completes much faster,
therefore, spending little time in “transmission mode”.

6) PUSH Approach - Tolerance Interval: The “Initial Tol-
erance Interval” of users indicates the patience of users to
startup delay. Throughout our evaluation this interval was set
to 5 seconds, according to related studies on users’ tolerance
to delays [25]. In this experiment, we investigate the effect of
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the tolerance interval on users’ QoE (in Fig. 10); we assume
a 15-min playlist when users are pulling and sharing content
over WiFi and the tolerance interval is set to 10, 20 and 30
seconds. As the users’ tolerance increases, we observe that the
QoE increases too. This is a straightforward result, given that
the groups formed in this case are larger and can therefore, get
larger share of the available WiFi bandwidth. However, we also
observe that after the 20-second threshold the performance
does not improve further.

V. CONCLUSIONS

We have designed a model that characterises the QoE of
users in an urban railway network, when they attempt to stream
real-time media content. Our model applies to both simple
Pull cases, and to collaborative download, PUll and SHare
(PUSH) cases and assumes WiFi connectivity in train stations,
as well as cellular connection throughout the journey. The
QoE is expressed in terms of the efficiency that users enjoy
and takes into account connection and disconnection periods,
sensitivity to disruptions and to the energy spent to download
content, as well as the cost to use the cellular network. We
have analysed commuters’ traces and have applied our model
to these mobility patterns. We found that it is difficult to
maintain undisrupted playback, especially in case of high bit
rates, i.e., video content, but at the same time, well thought-out
collaborative mechanisms can increase the perceived QoE even
under such challenged conditions. When cellular connectivity
is available, performance improves considerably, given that
users can utilise both interfaces (the WiFi and the cellular
one) simultaneously.
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