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Abstract 

      The functional design of submerged breakwaters is still developing, particularly with respect to modelling of the nearshore 
wave field behind the structure. This paper describes a method for predicting the wave transmission coefficients behind 
submerged breakwaters using machine learning algorithms. An artificial neural network using the radial-basis function approach 
has been designed and trained using laboratory experimental data expressed in terms of non-dimensional parameters. A wave 
transmission coefficient calculator is presented, based on the proposed radial-basis function model. Predictions obtained by the 
radial-basis function model were verified by experimental measurements for a two dimensional breakwater. Comparisons reveal 
good agreement with the experimental results and encouraging performance from the proposed model. Applying the proposed 
neural network model for predictions, guidance is given to appropriately calculate wave transmission coefficient behind two 

dimensional submerged breakwaters. It is concluded that the proposed predictive model offers potential as a design tool to predict 
wave transmission coefficients behind submerged breakwaters. A step-by-step procedure for practical applications is outlined in 
a user-friendly form with the intention of providing a simplified tool for preliminary design purposes. Results demonstrate the 
model's potential to be extended to three dimensional, rough, permeable structures. 
 
Keywords: Submerged breakwater; Nearshore wave transmission; Numerical modeling; Artificial neural network; Radial-basis 
function; Predictive model. 

1. Introduction 

       Shoreline erosion has been a concern for mankind throughout history, and today, because of population growth 

in coastal areas through urbanization and tourism, this concern would be of even greater significance. Detached 

breakwaters, either emerged or submerged, are a form of coastal defence that are designed and constructed for 

shoreline protection purposes. Detached breakwaters contribute to dissipation of incident wave energy and provide a 

calm sheltered area behind the structure. Many researches on detached breakwaters have been performed; see e.g. 

[1], [2], [3] and [4]. Detached breakwaters are often adopted to protect the shoreline and, among these, submerged 

breakwaters are increasingly preferred due to the significant dissipation of incident wave energy, lower construction 

costs, retention of a clear view of the sea and maintenance of high water quality leeside in an environmentally-

friendly way. The latest results on submerged breakwaters seem to be very promising: [5], [6], [7], [8], [9], [10], 

[11], [12]. However, contribution to the movement and advancement in the new methods and techniques of analysis 

and design of submerged breakwaters is continuously growing through time. The stimulus of the present paper is to 

develop an enhanced prediction tool and wave calculator for the transmitted waves behind submerged breakwaters 

as a step towards the design of more efficient coastal structures. This is basically implemented through the 

calculation of an averaged coefficient based on the ratio of averaged transmitted wave height behind the structure to 

incident wave height. This coefficient is used widely to quantify the wave transmitted behind coastal structures such 
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as submerged breakwaters and is known as the wave transmission coefficient Kt. 

     The majority of studies on submerged breakwaters are restricted to semi-submerged breakwaters or low-crested 

structures with a small number considering fully-submerged breakwaters. Calculation of transmitted wave height 

behind submerged breakwaters has been investigated numerically using data-driven algorithms called Artificial 

Neural Networks (hereafter ANN).  ANN models have been demonstrated to be effective tools in many fields of 

engineering to solve intricate nonlinear problems where multiple relationships are involved. They have recently 

been employed widely in the field of coastal engineering ([13], [14], [15], [16], [17], [18], [19], [20], ([21], [22], 

[23], [24]). Results from tests on wave transmission over submerged breakwaters are very encouraging and have led 

to several design tools including empirical formulae and neural networks ([25], [26], [27], [28], [29], [12]).  In the 

present study, an ANN model has been designed and trained using the Radial Basis Function (RBF) approach and 

the results compared with new experimental laboratory data. 

RBF networks can be trained much faster than MLP networks. The Gradient Descent method is used in this study 

to train the RBF network. This is an optimization algorithm used when dealing with an unknown function and for 

function approximating purposes [30]. It is basically a derivative-based algorithm. Kalman Filtering is an alternative 

derivative-based algorithm applied in many different practical applications. Genetic Algorithms offer another 

approach to optimization and are applicable in many engineering problems. They are based on a population-based 

algorithm. A very slow convergence rate is the main weakness of genetic algorithms [30]. A drawback of Gradient 

Descent and Kalman Filtering algorithms is related to the local extreme trap when for example the algorithms get 

trapped in the local minima. Another disadvantage is related to the training process which is sometimes very time-

consuming. A slow convergence rate can be another weakness [30]. The complexity of the RBF network grows 

significantly with the number of the computational units. Gradient Descent and Kalman Filtering have relatively 

faster training [30]. 

The proposed model in this paper is proved to be capable of handling two dimensional wave transmission 

prediction and could be applied in real practical applications with high accuracy and reliability by engineers and 

scientists as a more precise and dependable design tool than existing models. The proposed model is a significant 

advance in that it can be used to predict Kt consistently behind submerged breakwaters in a wide range of water 

depths and wave climates whereas existing models in the literature are restricted to calculating wave transmission 

coefficient in a limited range of input parameters which make them less accurate and reliable with lower usefulness 

and applicability. 

2. Background 

      Various experimental, field or theoretical studies have been undertaken and mathematical and numerical models 

have been developed to understand and predict the different physical phenomena related to submerged breakwaters. 
Previous physical models and laboratory experiments, empirical formula, data-driven tools or models, theoretical 

studies, mathematical or statistical approaches, numerical models and field measurements have been used to 

investigate the impacts of submerged breakwaters on the wave field leeside. Among these various approaches, 

empirical formula and data-driven tools are being used widely and are more popular than others. These techniques 

are applied as simple and easy to use Kt calculators. This section looks into their historical development and focuses 

on the previous research into wave transmission behind submerged breakwaters. 

      Accurate prediction of the coefficient Kt is an important step in reliable modelling of the morphodynamics of the 

seabed and shoreline in response to the construction of submerged breakwaters. Most existing approaches employ 

few physical parameters over a limited range and under some specific test conditions. Full consideration of all the 

physical parameters involved in the process is not applied in most Kt calculators for submerged breakwaters, simply 

because of the very high costs of physical tests or lack of access to the good laboratories. Various calculators have 
been developed for prediction of the wave transmission coefficient (Kt) over and behind the submerged breakwaters 

([31]; [32]; [33]; [26]; [34]; [27]; [28]; [29]; [35]; [12]; [36]).  

      The majority of these calculators are developed from data collected in physical tests and laboratory experiments. 

Thus, the accuracy and reliability of these tools depend on the quality of the data collected in the laboratories. The 

first reported physical experiments on the wave transmission behind 2D submerged breakwaters were performed by 

Stucky and Bonnard [37]. Further studies on 2D structures were reported later by [38], [39], [40], [41], [42], [43], 

[44], [45] and [46]. 
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      d'Angremond et al. [32] proposed a more precise expression for transmitted wave height passing over permeable 

and impermeable submerged breakwaters using data sets from [43]; [44], [47]; [48]; [49] and [50]:  
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      where a=0.64 and 0.8 for permeable and impermeable breakwaters respectively with limits 0.075< Kt <0.80. In 

this equation, hs is submergence depth, Hi is incident wave height, B is breakwater crest width and ξo is Iribarren 

number that can be calculated as follows: 
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in which Lo is incident wave length in deep water and α is breakwater seaside slope.  

      Seabrook and Hall [33] developed a predictive expression for Kt at submerged rubble mound breakwaters:  
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where D50 is diameter of the armor units. The proposed equation by [33] is valid in the following ranges: 
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      Seabrook and Hall [51] found that the armour size has little effect on wave transmission. Bleck and Oumeraci 

[52] proposed a modified empirical equation for Kt using two dimensional experimental data for rectangular 

impermeable breakwater. The equation, therefore, is only applicable for the rectangular breakwaters and is less 

reliable for the trapezoidal breakwaters. Calabrese, et al. [53] found that the d'Angremond et al. Equation [32] is 

more reliable than other previous methods for the prediction of Kt.  

      The DELOS database (see: [26] and [54]) consists of more than 2300 tests for 2D rubble mound low-crested 
structures  (LCS). van der Meer et al. [25] and [26] improved the 2D empirical formulae for rubble mound low-

crested breakwaters provided by [55] and [32] using the collected data from the DELOS project. The following 

equations were provided by [25] and [26] for smooth and impermeable low-crested structures: 
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where the values of 0.075 and 0.8 were proposed for the lower and higher limit of Kt, respectively. van der Meer, et 
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al. [25] and [26] also indicated that incident wave angle has not significant effect on Kt behind the rubble mound 

structures. 
     van Oosten, et al. [34] developed an artificial neural network model for prediction of 2D wave transmission 

behind submerged structured based on the DELOS database [54]. Similarly, Panizzo and Briganti [27] developed an 

artificial neural network model for prediction of the wave transmission coefficient behind 2D submerged structures. 

Both methods produced much better predictions in comparison with existing prediction formula for wave 

transmission coefficient in 2D conditions. In the study conducted by [27], a total of 2285 tests were employed. Their 

model was basically an I6H6O1 model (i.e. including 6 inputs, 6 hidden units and 1 output). The data sets were as 

follows: Set 1: including the data from [32]; [56] ; [57]; [58] and [53]) was made up of 354 tests. Set 2: data from 

[33] which is the largest homogenous dataset available for rubble mound low-crested structures with negative and 

zero freeboard includes 632 tests. Set 3: data from [32] and [59] includes 236 tests. Set 4: data from [60], which is 

the largest among those considered in their work, includes 1063 data. These four subsets are independent from each 

other; other sets were based on combinations of them [27]. An artificial neural network model to predict Kt behind 
low-crested structures was developed by [27]. The datasets gathered within the DELOS project were used to train 

and validate their model, which includes a set of non-dimensional physical parameters. The calibrated and optimised 

model was found to perform more accurately compared with [26]. 

      Buccino and Calabrese [28] presented semi-empirical models and predictive equations for Kt behind both 

submerged and emergent breakwaters based on simplified modelling of wave breaking and overtopping as well as 

seepage through the body. The results show good agreement with a large ensemble of experimental data. The 

following is the proposed formula for submerged breakwaters [28]: 
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where hs=0. 

      Goda and Ahrens [29] proposed the following empirical formulae found from wave transmission coefficients 

derived by [61]: 

 

00, (1 [ ( )])c
t

i

h
K max exp a F

H

 
= − − 

                                               (9) 

where

 

  

0.248 [ 0.384 ( )]eff

o

B
a exp ln

L
= −

                                                         (10)

 



 Amir Sharif Ahmadian and Richard R. Simons  

 

      where Beff is the effective width of structure  and Fo represents an approximate limit of dimensionless wave 
runup which is evaluated [29]: 

 

0

1.0 0

0.5, (1.0, ) 0

eff

i
eff

eff

if D

F H
max min if D

D

=


=  
> 

                              (11)

 

 

      Deff denotes the effective diameter of the material from which the structure is built, which is taken as the median 

diameter D50 for rubble stone and 
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The effective width Beff of the structure depends on the crest height relative to the still water level [29]: 
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where Bswl is the width at the still water level, B is the crest width and Bo is the bottom width. 

3. Data set 

     The performance of the ANN scheme depends critically on the data used for training. Insufficient or noisy 

data can step down the efficiency of the network in predicting the unknown parameters of the phenomenon under 

study. This section describes preparation of the experimental data set used in this paper. Preparing data in ANN 

modelling is an essential stage. For an accurate prediction, data preparation should be undertaken firstly to reduce 

the training time, secondly to meliorate the model simplicity, and thirdly to increase its scope for generalization. In 

the study reported here, a large number of 2D experiments have been conducted in wave flumes with submerged 

breakwaters over broad ranges of wave height, period, water depth, submergence depth and distance from the beach. 

Impermeable breakwater models were constructed to prevent filtration through the structure. This restricted wave 

transmission to overtopping only. According to a series of tests carried out on solid and rubble mound breakwaters 

under both regular and irregular wave conditions, Davies and Kriebel [46] found that the solid and rubble-mound 

submerged breakwaters both have relatively similar wave transmission coefficients. Laboratory data sets collected 

are listed below [36]: 

Data sets: 

(a) Set 1 (Training data; Estimation and Validation subsets): This data set is from two different wave tanks both 

at UCL: (1) a wave flume 20m long, 1.2m wide and 1m deep with a 1:15 sloping beach at one end and (2) a wave 

flume 14m long, 0.45m wide and 0.75m deep with a false beach at one end. Experiments included various 

submergence depths, water depths and wave conditions. The data collected in this set were used for ANN model 

training [36].  

(b) Set 2 (Testing data): This data set was collected in the same flumes as Set 1, and within the same range of 

physical parameters including submergence depths, water depths and wave conditions. The data collected in this set 

were used to test the ANN model for the accuracy of its predictions [36]. 

The figure 1 [36] shows a schematic drawing of the wave tank 20m by 1.2m wide by 1.3m high at UCL where 
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the first series of experiments were carried out. The figure indicates the location of the probes throughout the tests 

with and without breakwater [36]. As mentioned above, a second series of experiments was also conducted in a 

smaller wave tank 14m by 0.45m by 0.75m under various wave conditions, submergence depths and breakwater 

geometries including width and height but with similar experimental setup, equipments, facilities, location of the 

wave probes and the method of data sampling throughout the tests as illustrated in Figure 1 for the first series of 

tests in the wave tank 20m by 1.2m wide by 1.3m high [36]. 

A total of 176 tests were conducted in the first flume and 180 tests were conducted in the second flume. 

Eventually, about 1760 data samples were collected from the first series of experiments with the breakwaters and 

about 1800 data samples were collected from the second series of experiments with the breakwaters [36].  The tests 

were conducted for various wave conditions, water depths, submergence depths and breakwater geometries 

including width and height. Only regular waves were considered in the tests [36]. 

An ideal model is one which explains the problem in the easiest and simplest way using the fewest variables. It is 

important to identify the variables that save modelling time and space [62]. Based on analysis of the experimental 

data using both dimensional and non-dimensional parameters, those main input parameters were considered, 

namely, incident wave height Hi, offshore wave length Lo, water depth over the breakwater crest hs, water depth in 

the toe of breakwater h, breakwater crest width B and the seaward slope of the breakwater α [36]. Figure 2 shows a 

simplified diagram of the breakwater and defines the physical parameters.  

Table 1 and Table 2 present the spectrum of data employed for training and evaluation of the RBF model 

including minimum, maximum, mean and standard deviation of each individual parameter expressed in dimensional 

and non dimensional forms respectively. Kt is determined as [36]:  
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where the first parameter ξo is Iribarren number which was defined before. 

 

Table 1. The range of training and testing data (dimensional datasets: Set 1 and Set 2) 

Parameter Mean 
Standard 

deviation 
Min Max 

Hi (mm) 51 24 10 104 

Lo (mm) 1893 671 976 3380 

hs (mm) 63 37 0 112 

h (mm) 321 85 187 400 

B (mm) 374 215 195 800 

 

Table 2. The range of training and testing data (non-dimensional datasets: Set 1 and Set 2) 

Parameter Mean 
Standard 

deviation 
Min Max 

ξξξξo 6.64 2.25 3.71 15.45 

Hi/h 0.17 0.10 0.03 0.54 

hs/Hi 1.69 1.61 0.00 10.73 

B/ Hi 9.92 9.40 1.88 51.55 
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Applying dimensionless parameters helps to clarify issues concerning scale effects. To obviate the scaling 

problem entirely throughout the training, validation and future application of the ANN models, a normalization 

process is also essential. This can be achieved by applying the following formula [63]: 
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where x represents the parameter to be normalized. 

 

4. ANN model setup, calibration and performance 

A cross-validation method [64] was employed in this study to deal with the problem of over-fitting during the 

training process and to improve the generalization for future applications of the model. This involved dividing the 

data into three subsets, for estimation, validation, and testing. The estimation subset contains data used to train the 

ANN models, while the validation subset was employed in order to evaluate the manner of functioning of the model 

and monitor the training process. The training samples were set up to be completely random for an improved 

learning procedure. The network weights and biases were saved using values giving the minimum error from the 

validation set. Having been tuned using the entire training data set, the network was verified using the test data not 

seen before [64]. The data set described in Table 2 was used to train the networks and to investigate the model 

performance. 

The model included a 15-node hidden layer RBF network with Gaussian transfer function in computational units. 

It included the following non-dimensional parameters: surf similarity parameter ξo, relative wave height Hi/h, 

submergence ratio hs/Hi and crest width ratio B/Hi. The output of the ANN model was the wave transmission 

coefficient (Kt). Performance of the RBF network is examined and predictions are compared with new observations 

in Section 6. For further details about the RBF network please see the Appendix B. 

 

5.  Classical approaches 

      In order to investigate the capability of existing empirical formulae and to highlight the need for a new design 

tool, analysis is presented below using methods selected from the literature. In particular the 2D empirical formulae 

presented by [28] and [29] are applied. These formulations will hereinafter be referred to as BC2007 and GA2008 

respectively. In order to perform a meaningful comparison, these approaches are tested using experimental data 

within the same range the models were calibrated.  

      Figure 3 presents a comparison between the present measurements of Kt and 2D predictions for the full range of 

wave conditions, water depths and breakwater geometries considered. The predictions are calculated using models 

by [28], [29], and the RBF model. The comparison indicates that the models by [28], [29] do not agree well with the 
experiments. These analyses confirm the significance of wave transmission behind submerged breakwaters and the 

need for an accurate and reliable design tool. 

      We can also quantify the accuracy of these tools by means of  five statistical parameters (Table 3). RBF model 

gives an R2 equal to 0.97 and Iw=0.76 while other models gives much lower values. The error indexes also confirm 

the more accurate prediction of RBF model than other models (RMSE=0.07, ε =0.34). Moreover, the RBF model 

does not show virtually any bias of the estimate, and the error is symmetrically distributed within the whole range of 

Kt (β =1.00). However, in comparison with the BC2007, the GA2008 seems to perform better with an R2 equal to 

0.86. 
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Table 3: Statistical comparison of RBF model with existing design tools 

Statistical index Iw ε R
2
 β RMSE 

BC2007 [28] 0.53 0.70 0.66 1.15 0.69 

GA2008 [29] 0.61 0.50 0.86 1.47 0.55 

RBF 0.76 0.34 0.97 1.00 0.07 

 
 

      Figure 4 presents a comparison between measurements and wave transmission coefficients calculated by the 

proposed model, along with the [28] and [29] formulations for various non-dimensional input parameters. As can be 

seen, very similar patterns are observed with the RBF model for all non-dimensional variables, which also confirm 

the accuracy of predictions by the proposed model in comparison with the two other approaches.  

6. Validity and reliability of the prediction model 

To assess the performance of the trained RBF model, it was applied over a set of data not employed in the 

training process. The neural networks were trained within a specific range of inputs as defined in Table 2 (Set 1) and 

were tested for new values of input parameters within the same range (Set 2). A sensitivity analysis was conducted 

carefully to evaluate the influence of each individual input parameter on the final ANN’s outcomes. The results are 

considered in the next section. 

 

6.1. Accuracy analysis 

The proposed ANN model in this paper has been compared with the laboratory data measured in two wave 

flumes described above. The comparison was done using the five statistical parameters [12]: Root Mean Squared 

Error (RMSE), squared multiple correlation coefficient (
2

R ), bias or distortion (β), Wilmott index ( wI ) [65] and 

error function (ε ) [66] as below: 
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where N represents the number of samples in each group and where cX  is the calculated values, mX is the 

measured values and the barred parameters demonstrate the average values of the parameters [67].  

Perfect agreement is achieved if R2 and Wilmott index are 1.0 and the error function is zero. The values of 

distortion closer to 1.0 and the lower values of RMSE also indicate better performance. R2 is considered 

unsatisfactory as a measure of the goodness of fit for a multivariate regression relationship [67] and thus the validity 

of the model will be assessed mostly by the other parameters. 

All of the efficiency criteria for model assessment contain their own advantages and disadvantages. The most 

used one is coefficient of determination, (R2) [68]. This method is very sensitive to outliers. Also, from previous 

studies, it has been shown that R2 alone is not sufficient for model assessment because it is based simply on 

correlation. So R2 should be used along with other criteria [68].  
     Calculated values of the five statistical indexes are provided in Table 4. These indicate that the ANN model is 

able to calculate wave transmission coefficient with reasonable accuracy. 
2

R is fairly high (higher than 0.95) and 

also Wilmot number wI  (higher than 0.75). With β (≈1) and low values of ε (=0.24) and RMSE (less than 0.05) 

there is clearly good agreement with of the experiments.  

     The predictions of transmission coefficients obtained by the RBF model when plotted against the corresponding 

observed data (Fig.5) show the good agreement. The error distribution is also shown in Figure 5, using a notched 

box-and-whisker plot ([69], [70]) indicating the degree of dispersion (spread) and skewness in Kt, as well as 
identifying outliers. The error notched box-and-whisker plot in Fig. 5 illustrates the good performance of the RBF 

model for each error data category.  

 

 
Table 4: Statistical evaluation of RBF model 

Statistical index Iw ε R
2
 β RMSE 

RBF model 0.78 0.24 0.97 0.99 0.04 
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     Figure 6 illustrates the error from the RBF model in a different way for the four non-dimensional input variables. 

Figure 6 (a) demonstrates the distribution of computed error over the whole range of values of surf similarity 
parameter ξo. For most of the range, the average error is below 10%. Higher errors are seen for ξo between 4 and 6. 

Regarding the nondimensional wave height Hi/h, the error is found to decrease for increasing Hi/h. Except for a few 

points between 0.05 and 0.25 which have a high error, the average error over most of the range is below 10%. For 

points with submergence ratio hs/Hi between 1 and 3, large computed errors can be observed while, for other values, 

error is mostly less than 10%. Errors obtained for different values of crest width ratio B/Hi are mostly less than 10%, 

except for a few points where B/Hi is less than 10. The large scatter of values observed within some ranges is a 

consequence of the limited data points within those ranges.  

      Figure 7 shows a comparison between calculated wave transmission coefficients using the proposed model and 

measured values for various non-dimensional input parameters. As can be seen, very similar patterns are observed in 

all cases for all non-dimensional variables which also confirm the accuracy of predictions by the RBF model. 

 

6.2. Sensitivity analysis 

      As the influence of all relevant parameters involved in wave transmission modelling behind 2D submerged 

breakwater is included simultaneously in the present ANN model, to identify the influence of each parameter and its 

effect on performance of model, networks were designed and trained using the same training data set but with the 

omission of each parameter in order that the most effective parameter could be introduced. Assessments were made 

of the performance of the networks by comparison of network results using the statistical parameters. This 

investigation (Table 5) illustrated that ξo and Hi/h with the least correlation coefficient (0.93, 0.94) and the highest 

error (RMSE=0.21, 0.28) are the most influential parameters in the wave transmission behind breakwater. It should 

be mentioned that dividing the whole data set into estimation subset, validation subset and testing subset for the 

sensitivity analysis was carried out in the same way as the division for the construction of the main ANN model. 

The R2 correlation coefficient and RMSE values for the main ANN model are 0.97 and 0.04 respectively. 

 

Table 5: Sensitivity analysis for RBF model 

Omitted parameter ξo Hi/h hs/Hi B/Hi 

R
2
 0.93 0.94 0.94 0.97 

RMSE 0.21 0.28 0.13 0.10 

      A detailed sensitivity analysis is also presented in Figure 8 comprising different sensitivity graphs of individual 

non-dimensional input parameters. The sensitivity figures contain several lines. The dash lines show the band of the 

95% confidence interval, one line for the lower boundary (quartile 2.5%) and the other for the upper boundary 

(quartile 97.5%). The solid line is the ANN prediction (mean value). Figure 8 (a) reveals that the ANN model gives 

a relatively high reliability in the range of xo<12.4. Outside this interval the model tends to low reliability. Figure 8 

(b) shows that the model is also reliable in the range Hi/h<0.45. Based on Figure 8 (c), the model is reliable in the 

range hs/Hi<7.2. For larger submergence depth the ANN model is rather unreliable. According to this plot, Kt 

increases dramatically with submergence ratio from a value of Kt=0.1 at zero submergence to a value of Kt=0.73 at 

hs/Hi=6. Beyond this point, no significant influence of the submergence ratio is seen. There is a narrow confidence 

band with high reliability in Figure 8 (c) for 0<hs/Hi<4. It can be observed from the Figure 8 (d), the model seems to 

be reliable for B/Hi values up to 27. For greater values, the model still has acceptable reliability. 

     According to the physical observations, an increase in the submergence ratio results in a decrease in the wave 

transmission coefficient. The results obtained show a similar trend. Within the range 0<hs/Hi <4, a clear trend can be 

observed. The confidence band within this range is narrow. This trend is also seen within the range hs/Hi <7.2, 

although for hs/Hi >7.2 the model gives a physically unreliable prediction, which is caused by the limited number of 

data samples within this range. Higher errors are observed for larger values of B/Hi. It should be noted that data 

points with B/Hi<27 are more frequent in the database. 
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7. Conclusions 

Comparisons reveal encouraging performance and reliable predictions from the RBF model and illustrate that the 

model has the potential to be employed in a broad spectrum of practical applications. The sensitivity analysis 

showed that the non-dimensional parameters ξo and Hi/h were the most effective in describing the process. When 

these parameters were excluded from the training of the network, the lowest correlation coefficients and the greatest 

errors were obtained. A restricted range of input parameters has been found to give more reliable and valid 

predictions while out of this range the results are still reasonable. A Kt calculator is presented, based on the proposed 

non-dimensional RBF model. A step by step procedure for practical applications is outlined in a user-friendly form 

with the intention of providing a simplified tool for preliminary design purposes which can be used in submerged 

breakwater design. Applying the proposed ANN model for predictions, guidance is given to predict Kt behind 

submerged breakwaters. It is concluded that the proposed model offers potential as a design tool to predict wave 

transmission coefficients behind submerged breakwaters.  

The proposed model could be applied in real practical applications with high reliability by engineers and 

scientists as a more precise and dependable design tool than existing models. The results of this study can be applied 

not only for wave modelling behind submerged structures but also in flow models around these structures by 

importing the wave data in to the available models and calculating flow patterns behind such structures. Although 

the model is calibrated and designed using regular wave data, similar prediction could be achieved using Significant 

Wave Height (Hs) or Zero Moment Wave Height (Hmo) for incident wave height and the peak wave period, Tp for 

wave period for irregular waves. Given the availability of training data, the model has the capability to be extended 

to include other physical parameters such as other breakwater geometries and shapes, distance to the shore line, 

seabed slope, etc can be tested in the laboratory.  
 

 
 

Appendix A. 

 

A simplified tool and initial prediction scheme with a step by step procedure (Kt calculator) 
      The algorithm used in this appendix is based closely on the algorithm introduced by [12] and the later work by 

[36]. 

      As explained in Section 5, the final optimized RBF network has one radial basis function layer with 15 nodes. A 

Kt calculator including details about the model mathematics is described below, based on the proposed non-

dimensional RBF model. A step-by-step procedure for practical applications is outlined in a user-friendly form ([12] 

and [36]) with the intention of providing an initial prediction scheme according to the proposed ANN model 

described in the paper. For more details and theoretical aspects see [63] or [64]. 
     Referring first to the non-dimensional parameters used throughout the paper, an input vector I should be 

considered: 

 

I = [ξo, Hi/h, hs/Hi, B/Hi]            (A.1) 

 

      The normalization process according to the Eq. 7 is performed: 

 

In = (I-Imin)/(Imax-Imin)           (A.2) 

 

where vectors Imin, Imax are characterized by values: 

 

Imin = [3.7066, 0.0348, 0.0000, 1.8775]          (A.3) 

 

 

Imax = [15.4525, 0.5384, 10.7259, 51.5480]          (A.4) 

 

     Considering the center and weight matrices defined below, the input signals are passed through the network. 

The center matrix c and weight vector w are applied in the transfer functions Eq. (A.7) and Eq. (A.11) respectively. 
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The values in the last column of the center matrix c and the weight vector w are the bias values for the hidden and 

output layers respectively. 
 

0.8994 0.0000 1.0000 0.3382 0.8326 

0.6765 0.0093 0.2950 0.8542 0.8326 

0.6631 0.0115 0.5742 0.7062 0.8326 

0.5942 0.0086 0.2979 0.8629 0.8326 

0.4123 0.0193 0.7819 0.2562 0.8326 

0.4341 0.0269 0.2410 0.5867 0.8326 

0.4268 0.0288 0.4728 0.4726 0.8326 

          c   =      0.7090 0.0868 0.0000 0.2296 0.8326              (A.5) 

1.0000 0.0433 0.4084 0.2396 0.8326 

0.5901 0.0093 0.2952 0.9821 0.8326 

0.2849 0.0608 0.5321 0.1623 0.8326 

0.3095 0.0954 0.1406 0.1444 0.8326 

0.4292 0.0977 0.1350 0.1727 0.8326 

0.6522 0.0133 0.5615 0.9322 0.8326 

0.3449 0.1031 0.0000 0.2043 0.8326 

 

w  =  {35.2393   -186.0468   -179.6246   733.9377   -66.3753   -180.8649   57.2453   -2.2679 

 

           -2.3436   -379.9198   85.0211   -76.2526   39.5692   93.4942   29.6973}              (A.6) 

 
     Activation functions of radial basis type are used to determine the values of hidden neurons, such as: 
 

a1(i,1)=exp(-(dist(c(i,:),ao).d)
2
);        for i:1…15             (A.7) 

 

where 

 

ao(5,1)=1                (A.8) 

 

and constant value d is: 

 

d=sqrt(-log(.5))/sp               (A.9) 

 

where sp=1.0. 

 

      The Euclidean distance between the vectors ao and c, is defined as follows: 

 

dist(ci-ao,i)= √(∑ (ci-ao,i)²)        for i:1...5           (A.10)
 

  

where ci and ao,i are the coordinates of c and ao,i in dimension i. 

 

      Whereas a linear activation function has been applied, the scaled model outcome can be computed as follows: 

 

a2=w.a1+b2             (A.11) 

 

 where b2=-0.3438 is the bias neuron for the output layer. 

Finally, the model output needs to be rescaled. Thus, Kt is calculated as follows: 

 

Kt=(Omax-Omin).*a2+Omin               (A.12) 

 

where Omin=0.1187  and Omax=0.8416. 
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    The main aim is to introduce a simplified tool for preliminary design purposes which can be used in submerged 

breakwater design. Although the model is calibrated and designed using regular wave data, similar predictions can 
be made using significant wave height (Hs)/zero moment wave height (Hmo) and peak wave period, Tp as inputs. 

However, some considerations might be required in applying regular wave results to random sea‐states ([12] and 

[36]). 

 

 

Appendix B.  

Radial basis function (RBF) network 

This appendix gives a concise description of the training algorithm adopted in this paper for the RBF network.  

In engineering applications, the most popular artificial neural network is the multi-layer perceptron (MLP). 

Radial basis function (RBF) networks with universal non-linear approximation properties are similar to the multi-

layer perceptron in that they also use memory-based learning algorithms for their design ([71], [63]). 

RBF networks are used widely for non-linear function approximation comparable to MLP networks ([72],[73]), 

with some additional benefits, for instance, RBFs are trained usually with a relatively higher speed [74]. The 

concept of a RBF neural network was introduced by [72]. In the same way as for a MLP network, the entire data set 

is split into two main data sets and training and testing performed in two distinct stages ([72], [73]). 

     While the number of layers in MLP can be variable, RBF networks are always designed with three layers of 

neurons: input layer, hidden layer and output layer. Working as a feed-forward RBF network: the input layer 

receives the input data, the hidden layer computes the outcome of the RBF units and the output layer combines the 

outputs from the RBF units linearly. The input and output layers in a RBF network are thus the same as in MLP, 

while the hidden layer is not. The main difference is related to the transfer functions applied in the hidden layer. The 

Euclidean distance between the input vector and the RBF unit’s centre vector c is calculated in the RBF networks 

while an MLP unit applies a transfer function which computes the inner product of the weight and the input vectors 

[63].  

      RBF models include biases in their hidden and output layers similar to MLP. However, RBF models usually 

have more computational units in the hidden layer than MLP as their transfer functions respond to a smaller area of 

the input space than MLP. This is of benefit as it requires less training time to design RBF compared with MLP. The 

outputs are also weighted. Hence, an expression of the RBF network can be presented as [75]: 

 

1

( ) ( )
n

k k

k

y x w x c bφ
=

= − +∑
⌢ ⌢

                                                         (B.1) 

 

where x
⌢

is the input vector, 1w , 2w ,…, nw  are weight factors, ck represents the centre of the kth RBF unit, b is bias 

value and Φ is the hidden layer transfer function (Gaussian function): 
 

 

2 2( /2 )
( ) k kx c s

kx c eφ − −
− =

⌢

⌢

                                                              (B.2) 

 

where sk is the scaling factor of the kth RBF unit [75]. 

 

Basically, the learning process in RBF networks is a form of supervised learning. Determining and making an 

appropriate decision on the number of computational neurons is basically an essential step since it influences the 

network complexity and its generalizing capability. Insufficient computational units mean the RBF network may not 

estimate the underlying function adequately. However, increasing the size of hidden layer (number of the 

computational neurons) may cause an overlearning situation [76]. In addition, carefully specifying the optimal 

locations of the centres and scaling factors in the computational neurons of the hidden layer would be important 

tasks over the training process and very essential to obtain proper results. The most preferred form of transfer 
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functions for a computational neuron is the Gaussian function ([75], [77], [78]). 

The next step is for the weights of the network to be computed. At last, the bias values added to each output are 

calculated. A derivative-based gradient descent algorithm [78] is used in this study, chosen from the various 

algorithms proposed in the literature for training RBF networks. 

Following the training procedure and having decided on the number of hidden units, c, s, w and b parameters are 

determined. The sum of squared errors (SSE) is typically applied over the training process to check the manner of 

functioning of the RBF network and is defined as follows [79]: 

2

1

ˆ( , , , ) ( )
J

j j

j

E c s w b y y
=

= −∑                                                                        (B.3) 

 

where y and ŷ  are the actual and desired outputs respectively. 
 

       The training procedure for a RBF network is organised using the following procedure [63]. The hidden layer 

initially has zero number of units. Data samples are presented to the network, signals pass through the network and 

the error is computed. The calculated output is compared to the target value of the respective sample. An RBF unit is 

added. The process is performed repeatedly and the connection weight parameters are then computed to meet the 

desired error. Basically, the calculated error, which is statistically described as the sum of squared errors (SSE), 

must be lower than the desired error. In addition, the maximum number of hidden neurons should be met before 

stopping training [63].  

       In the present case in this study, a 15-node hidden layer network was chosen. The training of the RBF model 

was terminated once the calculated error reached the desired values (in this study 0.01) or the chosen number of 

training iterations (here 100) had been completed. 
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Figure Captions 

Figure 1: Wave tank layout and wave probe positions for a 2D test with 190mm breakwater crest width, 300mm 

water depth at the toe of the breakwater and 112mm submergence depth (All measurements in cm) [36] 

 
Figure 2: Section of the submerged breakwater and definition of parameters 

 
Figure 3: Graphical comparison of RBF model with existing design tools 



 Amir Sharif Ahmadian and Richard R. Simons  

 

Figure 4: Variation of wave transmission coefficient with (a) ξo,(b) Hi/h,  (c) hs/Hi, and (d) B/Hi for Measured data, 

RBF model, GA2008 and BC2007 formulations 

 

Figure 5: Graphical comparison between predictions of Kt from the RBF model and measured data using a scatter 

and box-and-whisker plots (dataset: Set 2) 

 

Figure 6: Error computed by ANN model vs. (a) ξo, (b) Hi/h, (c) hs/Hi, and (d) B/Hi 

 
Figure 7: The variation of Kt with (a) ξo, (b) Hi/h, (c) hs/Hi, and (d) B/Hi compared with measured values  

 

Figure 8: Sensitivity analysis of the ANN model to the different nondimensional input parameters 
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