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Abstract—In this paper, we explore the use of Censored
Likelihoods in Gaussian Process Regression when predicting
bounded clinical scores from neuroimaging data. The standard
approach, which uses a Gaussian Likelihood, does not respect
the fact that the clinical scores are bounded, and so may produce
suboptimal models. Conversely, Censored Likelihoods explicitly
model the restricted range of such clinical scores and carry
this property through inference. We apply both the standard
approach and the Censored Likelihood approach to the prediction
of the MMSE score from structural MRI. Overall, we find
small improvements in mean squared error when using the
Censored Likelihood and in addition, the censored models are
more favoured from a Bayesian perspective. We also discuss the
qualitative nature of the predictions of the two approaches.

Keywords—gaussian processes, clinical scores

I. INTRODUCTION

There has been substantial interest in recent years in
using multivariate regression models to predict clinical and
psychometric scales from neuroimaging MRI [1].

One attractive framework for learning the predictive models
for such measures is Gaussian Process Regression (GPR).
Gaussian processes are flexible Bayesian methods for model
estimation that have recently gained popularity for building
predictive neuroimaging models for regression and classifica-
tion [2], [3], [4]. The standard Gaussian Likelihood used for
GPR , however, does not respect the fact that the clinical score
y is often bounded below y ∈ [a,∞], above y ∈ [∞, b] or both
y ∈ [a, b], where a, b ∈ R. This can mean that some of the
attractive properties of Gaussian Processes, such as automatic
hyperparameter estimation, become compromised resulting in
sub-optimal models and poorer predictions.

In this work we explore the use of GPR with Censored
Likelihoods when the clinical score we aim to predict is
bounded. The use of Censored Likelihoods enables the mod-
elling procedure to explicitly take into account the restricted
range of the the clinical score during model building and
inference. Using imaging data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database, we show that the
use of GPR with Censored Likelihoods can result in better
models for the data from a Bayesian perspective, whilst also
improving prediction accuracy.

II. MATERIALS

The dataset consisted of the MP-RAGE images of 592
unique subjects from the ADNI database (adni.loni.usc.edu).
The data was preprocessed using SPM12 (http://www.fil.

ion.ucl.ac.uk/spm/software/spm12/) by performing grey matter
segmentation and group-wise registration with Dartel to a
study-specific template. The aligned images were transformed
to the 2mm MNI template and smoothed with a Gaussian
kernel of 2mm FWHM. A mask was applied to select voxels
that had a probability of being grey matter above 0.025,
giving a set of images that provide the 157026 image features
x in the matrix X. In our experiments, the grey matter
image features are used to predict the ‘Mini-Mental State
Examination’ (MMSE) which is thus the target variable y. The
MMSE is commonly used to diagnose and assess dementia
and tests subject performance in areas such as arithmetic,
comprehension, and basic motor skills. Subjects can achieve
a minimum of zero and a maximum of thirty for the MMSE
score, ie. y ∈ [0, 30]. Figure 1 shows the distribution of MMSE
score over the 592 subjects used in our analysis, and we can see
that a large proportion of the scores ‘pile up’ at the maximum
possible score of 30.

Fig. 1. This figure shows the distribution of the MMSE scores over the 592
subjects used from the ADNI database

III. METHODS

A. Gaussian Process Regression

Given a set of n observations xi ∈ Rp with associated
target variables yi, Gaussian processes impose a multivariate
Gaussian prior on a set of latent variables fi, where the mean
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and covariance of the prior are functions of the inputs xi [5]:

E(fi) = m(xi)
Cov(fi, fj) = k(xi,xj)

(1)

We assume a zero mean function m(xi) ≡ 0 throughout this
work. The covariance function k(xi,xj), also referred to as
the kernel function, describes how the values of the latent
variables covary across the input space, and it will have a set of
associated kernel parameters θ. We employ a linear covariance
function with a bias term in our analysis:

k(xi,xj) =
xixjT

l2
+ b2 (2)

The posterior for the latent variables fi is given by:

P (f | X,y,θ,σ) =
1

P (y | X,θ,σ)

n∏
i=1

P (yi | fi,σ)P (fi | xi)

(3)
where the likelihood function P (yi | fi,σ) relates the observed
targets to the latent variables, and has hyperparameters σ. In
order to perform inference, we firstly need to estimate the
complete set of kernel and likelihood hyperparameters {σ,θ},
and this is performed by maximizing the marginal likelihood
P (y | X,θ,σ) which is the normalizing factor in equation (3).
Once we have the optimised hyperparameters {θ,σ}, we can
then perform inference for a set of test points X∗ to derive the
predictive distribution for the test targets y∗. We now describe
the Gaussian and Censored Likelihoods used for modelling in
this paper and how inference proceeds in each case.

1) Gaussian Likelihood: The model underlying the Gaus-
sian Likelihood is

yi = fi + ε (4)

where ε ∼ N (0, σ2) and σ > 0 is the standard deviation of
the noise. This gives rise to the Gaussian Likelihood

P (yi | fi) =
1

σ
√

2π
e−

(yi−fi)
2

2σ2 ,∀yi ∈ R (5)

For a Gaussian Likelihood, the predictive distribution of the
target y∗ of a test point x∗, given the training data, has the
closed form

y∗ | X,y,x∗ ∼ N (ȳ∗, V ar(y∗)) where
ȳ∗ = k∗(K + σ2I)−1y

V ar(y∗) = k(x∗,x∗)− k∗(K + σ2I)−1kT∗ + σ2

(6)

in which K is the n×n matrix of training set covariances and
k∗ is the n-dimensional row vector of test-training covariances.
Typically, the mean of the distribution, ȳ∗, is taken to be the
prediction of the target at test point x∗.

Note that the Gaussian Likelihood in equation (5) gives
non-zero probabilities for every possible value of the target
variable, given the latent variable. This means that even if the
target variable y is bounded within [a, b], this is not taken into
account during inference. One consequence of this is that the
mean predictions ȳ∗ may lie outside [a, b]. In this work, we
ensure that all predictions using the Gaussian Likelihood lie
within the appropriate range by taking the final predictions to
be the closest value within [a, b] to the mean predictions.

2) Left and Right Censored Likelihood: Here the targets
yi are explicitly bounded below (‘right censoring’) and above
(‘left censoring’), y ∈ [a, b]. The underlying model is

yi =


a if fi + ε < a

b if fi + ε > b

fi + ε otherwise
(7)

with ε ∼ N (0, σ2). The likelihood for yi is then

P (yi | fi) =


Φ(a−fiσ ) if yi = a

Φ( fi−bσ ) if yi = b

1
σ
√

2π
e−

(yi−fi)
2

2σ2 if yi ∈ (a, b)
(8)

where Φ is the cumulative distribution function for the normal
distribution, Φ(z) =

∫ z
−∞N (0, 1)dz.

Comparing this with the Gaussian Likelihood in equa-
tion (5), we can see that the Censored Likelihood is identical
to the Gaussian Likelihood for values of the target yi ∈ (a, b),
but differs at the bounds a, b. The resulting likelihood also
gives zero probabilities for values of the target yi that lie
outside [a, b], ensuring that the range of the targets is explicitly
included in the model and is carried through inference. Note
that our main motivation for using a Censored Likelihood when
predicting clinical scores is to respect their bounded nature: We
are not using it to directly address any possible skewness in the
distribution of target variables, such as that seen in figure 1,
although skewness may naturally arise with bounded targets.
Indeed, a Gaussian Likelihood may still be appropriate for a
skewed distribution of non-bounded target variables.

Inference with a Censored Likelihood cannot be performed
analytically as with the Gaussian Likelihood, and so approxi-
mations must be used. In this work we test both the Laplacian
approximation for Censored Likelihoods, described in [6], and
the Expectation Propogation (EP) approach from [7]. These
methods are essentially different ways of approximating the
posterior distribution of the latent variables given in equa-
tion (3), enabling the marginal likelihood to be optimized,
and inference to be performed. In each case, this results in
gaussian predictive distributions for the latent variables of the
test points:

f∗ | X, x∗, y ∼ N (µf∗ , σ
2
f∗) (9)

giving rise to the following predictive distribution for y∗:

P (y∗ | X,y,x∗) =


Φ( a−µf∗√

σ2+σ2
f∗

) if y∗ = a

Φ( µf∗−b√
σ2+σ2

f∗
) if y∗ = b

1√
2π(σ2+σ2

f∗
)
e
−

(y∗−µf∗ )2

2(σ2+σ2
f∗

) if y∗ ∈ (a, b)

(10)
The mean prediction ȳ∗ using the Censored Likelihood is then
given by

ȳ∗ = aΦ(z1) + bΦ(−z2)

+ (Φ(z2)− Φ(z1))
(
µf∗ − σ∗

(
φ(z2)− φ(z1)
Φ(z2)− Φ(z1)

))
(11)

in which z1 = a−uf∗√
σ2+σ2

f∗
, z2 = − uf∗−b√

σ2+σ2
f∗

, σ∗ =
√
σ2 + σ2

f∗
,

and φ is the probability density function of the standard normal
distribution.



B. Model Evaluation

We evaluate the different GPR models described in sec-
tion III-A when predicting the MMSE score using the imaging
features as predictors. In addition to those models, we also
perform predictions with naive models that consist solely of
a constant bias term, using both a Gaussian Likelihood and
Censored Likelihood with EP inference. These models do not
use the image features during inference and serve as reference
models for the other approaches. Model performance was
determined using 5-fold cross validation, repeated over 10
different splits of the data. In each case all features were
standardised to mean zero and unit variance using the training
folds only, and the predictions were rounded to the nearest
whole number. We calculate the mean-squared error (MSE),
the mean-absolute error (MAE), and Kendall’s coefficient τ
of each model for each of the 10 splits of the data, and
then average them to give summary measures of predictive
performance. In addition to the above metrics, which are
calculated using only point estimates of the predictions, we
determine extra measures that are often used when assessing
Bayesian modelling approaches. Firstly, we calculate the mean
negative log predictive density (MNLPD) for each model.
The log predictive density (LPD) essentially describes how
probable the real targets, ie. the MMSE scores, are, according
to the predictive distribution given by a particular model [5]
ie.

LPD = logP (y∗|X,y,x∗) (12)

Unlike the MSE and MAE, the LPD takes into account the
uncertainty in the predictive distribution. We take the negative
log predictive density to turn this into a loss function, and
average over each observation and split to give the summary
measure MNLPD of how well the model has captured the
predictive distribution of the data. Lower values of MNLPD
will then correspond to better fits of the predictive distribution.
Lastly, we determine the optimised Log Marginal Likelihood,
logZ , using the whole dataset for training. Since logZ is the
optimized value we correct for the number of model hyper-
parameters to enable model comparison using the Bayesian
Information Criterion:

logZBIC = logZ − p

2
log(n) (13)

Here n is the size of the dataset, and p is the number of model
hyperparameters (equal to the number of kernel parameters
plus 1 likelihood parameter).

IV. RESULTS AND DISCUSSION

TABLE I. PREDICTION OF MMSE FOR THE DIFFERENT MODELS.

Model MSE MAE τ MNLPD logZBIC
Bias Only (Gauss Lik) 11.86 2.51 - 2.66 −1578.4
Bias Only (Cens Lik) 11.86 2.51 - 2.43 −1443.7
Gauss Lik 7.06 1.88 0.48 2.42 −1457.5
Cens. Lik (Laplace) 6.94 1.88 0.48 2.20 −1328.8
Cens. Lik (EP) 6.88 1.86 0.48 2.20 −1327.4

Table I summarizes the predictive accuracies for the dif-
ferent models. Firstly, we can see that all the models that use
the image features outperform the corresponding naive models
that utilize a covariance function containing only a bias term.
We can also see that the Censored Likelihood model with
EP inference gives slightly more accurate predictions than the

model using the standard Gaussian Likelihood, according to
both the MSE and MAE. The Censored Likelihood model
using Laplace inference gives a smaller improvement in MSE
than the one using EP inference. The Kendall correlation
coefficient appears similar for the different approaches. It
is possible that the use of the more appropriate Censored
Likelihood produces the improvements in MSE and MAE
compared to the Gaussian likelihood model. We found that
the censored models improved the MSE for all 10 splits of the
data, providing further evidence that the slight improvements in
accuracy were due to the modelling approach. As the Censored
Likelihood with EP inference outperformed that with Laplace
inference, we mostly focus on that approach in the following
discussion.

Figure 2 shows the predicted MMSE scores against the
true MMSE scores when using the Gaussian Likelihood, and
the Censored Likelihood with EP inference, averaged over
the 10 splits. The dashed red lines indicate predictions for
a model that has zero test error. The first thing we can notice
is that the predictions of subjects with low MMSE scores
tend to be too high for all the models, as shown by the large
number of points to the left of the red line. However, we can
also observe subtle differences in the qualitative behaviour of
the different approaches over the range of the targets. The
principal apparent difference is that the predictions of the
censored approach (bottom) do not appear to push predictions
of high MMSE scores ≥ 27 as strongly to the maximal
score of 30 as those with the Gaussian Likelihood (top). This
can be further seen in table II, where we show the average
errors over the 10 splits using the Gaussian Likelihood and
Censored Likelihood (EP) within each quartile of the targets:
Q1 : y ≤ 26, (n = 179);Q2 : 27 ≤ y ≤ 28, (n = 152);Q3 :
y = 29, (n = 131);Q4 : y = 30, (n = 130). Here we can
see that the ‘softening’ of predictions for subjects with high
MMSE scores using the Censored Likelihood seems to have
mostly affected the predictive accuracy of subjects with the
highest MMSE score, as the Censored Likelihood gives smaller
MSE and MAE for each quartile apart from Q4.

TABLE II. ERRORS WITHIN EACH QUARTILE FOR THE DIFFERENT
MODELS.

Q1 Q2 Q3 Q4
Model MSE MAE MSE MAE MSE MAE MSE MAE
Gauss Lik 14.09 2.64 3.51 1.47 3.62 1.45 4.99 1.75
Cens. Lik (EP) 13.67 2.63 3.20 1.34 3.27 1.28 5.48 1.99

In terms of the overall predictive distribution, the censored
models perform better than the Gaussian Likelihood as shown
by the lower MNLPD values for these approaches. Calculation
of the Log Bayes Factors logK of pairs of models, given by
the difference between the corresponding values of logZBIC,
gives very strong support for both of the censored models over
the Gaussian Likelihood model (logK = 129, 130). Given that
the Censored Likelihood explicitly restricts the range of the
target variable to [0, 30], it is perhaps not suprising that these
models are so strongly favoured over those using the Gaussian
Likelihood, according to the Bayes Factors and MNLPD.

For illustration, figure 3 shows the (unnormalized) weight
images for the different approaches when training with the
complete dataset. A positive weight at a voxel v indicates an
increase in the prediction of the latent function (but not the pre-
dicted target variable for the Censored Likelihood models) as



Fig. 2. This figure shows the predicted MMSE scores against the true
MMSE scores for different models, averaged over 10 splits. Some jittering
has been added to the true scores for visualisation purposes. The top shows
the predictions using the Gaussian Likelihood, while in the bottom we see the
predictions using the Censored Likelihood EP approach. The dashed red lines
indicate predictions for a model that has zero test error.

Fig. 3. This figure shows the weight images for each model when training
using all 592 subjects. Positive weights are indicated with a hot colour and
negative weights with cool colours. The Gaussian Likelihood model is shown
on the right in (a), while (b) shows the model for the Censored Likelihood
using EP inference.

the value of the image feature at v increases, holding the values
of all other features constant. Visually, the weight vectors for
the approaches are not substantially different, and all indicate
large positive weights in the left hippocampus/amygdala which
are proximal to the crosshair, positioned at (-26,-14,-22) in
MNI space. However, the Censored Likelihood has a larger
range of values in the weight vector, corresponding to a larger
increase in the prediction of the latent function as the image
feature values change.

V. CONCLUSION

In this work we have explored using Gaussian Process Re-
gression with a Censored Likelihood when predicting clinical

scores from neuroimaging data. We compared this approach
to Gaussian Process Regression with a Gaussian Likelihood,
which is the standard model used when predicting scores that
have a large range. We found that the use of the Censored
Likelihood with both Laplace and EP inference gave small
improvements in the MSE compared to the standard model,
although they did not appear to improve Kendalls τ correlation
coefficient. The use of a Censored Likelihood also appeared
to improve the overall predictive distribution for those models,
and the Bayes factors gave strong supporting evidence that they
were more appropriate for the data.

Whilst we saw modest improvements in prediction accu-
racy using the Censored Likelihood, it is possible that further
improvement may be obtained by adding complexity to the
model so that non-linear relationships within the range of target
values [a, b] can be captured, while simultaneously enforcing
censoring of the likelihood. It would also be interesting to
investigate performance using different kernels rather than the
single linear kernel utilized in this work. Further experiments,
using datasets with different properties and dimensionality and
comparison with methods such as Gaussian Process Ordinal
Regression [3] will be performed to investigate the behaviour
of these different approaches.
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