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Summary  

 Amphibians across the planet face the threat of population decline and extirpation caused 

by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the 

disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, 

nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and 

other sources of infection remains the first line of defence and a primary objective when mitigating 

the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis 

are already widespread, though, and we therefore focus on discussing options for mitigating the 

threats once disease emergence has occurred in wild amphibian populations. All strategies have 

shortcomings that need to be overcome before implementation, including stronger efforts towards 

understanding and addressing ethical and legal considerations. Even if these issues can be dealt 

with, all currently available approaches, or those under discussion, are unlikely to yield the desired 

conservation outcome of disease mitigation. The decision process for establishing mitigation 

strategies requires integrated thinking that assesses disease mitigation options critically and embeds 

them within more comprehensive strategies for the conservation of amphibian populations, 

communities and ecosystems. 

 

  

Page 29 of 58

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

3 

 

Introduction 

We are confronting an expanding array of pathogenic fungi that cause extensive mortality, 

demographic decline, and extirpations in livestock, crop, and wildlife hosts
1
. Developing strategies to 

limit the spread and impact of these pathogens is a priority that crosses the boundaries of politics, 

economics, science and health, and falls within the remit of the medical, veterinary, agricultural, and 

conservation sciences. Despite the increasing range of animal and plant taxa threatened by fungal 

pathogens, conservation science has not advanced disease mitigation in nature as a priority. This 

shortcoming has no better example than research on amphibian-associated chytridiomycete fungi. 

Our recognition of the threat posed by the global and regional emergences of the chytrid 

Batrachochytrium dendrobatidis (hereafter, Bd), has spurred significant advances in understanding 

the biology of the fungus and the dynamics of chytridiomycosis since the disease was first identified 

nearly twenty years ago
2
. Similarly, we have gained important insights into the European emergence 

of another chytrid fungus, Batrachochytrium salamandrivorans (Bsal)
3
. Unfortunately, the 

development of field interventions for disease management has lagged far behind and managing 

amphibian health in nature remains a largely unexplored topic
4-6

. Because applied conservation 

always operates under enormous financial constraints, it is important to critically assess the viability 

of conservation strategies before significant investment, which has rarely been done for strategies 

for controlling chytridiomycosis in wild amphibians
6-8

. Here we assess some of the commonly 

proposed approaches to control the spread and impact of amphibian chytridiomycosis in the field. 

We assume that an ideal strategy will be; i) safe, legal, and ethical; ii) effective and reliable; iii) 

transferrable across host species, communities, and environments, iv) relatively simple to 

implement; and v) cost-effective.  

Countering disease-driven amphibian declines should consist of a multifaceted approach 

adapted to the stages of pathogen emergence (pre-arrival, invasion front, epidemic, established)
9
. 

Current approaches include prevention and short term solutions (e.g. ex situ breeding programmes, 
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cryopreservation) but long term, in situ, sustainable solutions are required if the goal of amphibian 

conservation is to be attained. This implies neutralizing the disease threat in wild populations. 

Although we do not discuss the prevention of pathogen introduction here in any detail, attempts to 

do this (e.g. via trade regulations, such as the recent establishment of restrictions on caudate 

amphibian trade in the USA in response to the emergence of B. salamandrivorans, 

https://federalregister.gov/a/2016-00452) are probably the most effective disease mitigation 

measure available
9-10

. The international movement of amphibians plays a continuing role in 

establishing and extending the distribution of amphibian-associated chytrids and other pathogens), 

but the control of chytridiomycosis and other purely wildlife diseases is largely overlooked in 

commercial trade
3,11-13

. The World Organisation for Animal Health (OIE) is the international body that 

can regulate this, but even though its remit includes wildlife conservation it has a poor track record 

in doing so. Batrachochytrium dendrobatidis has been listed by the OIE but enforcement of 

chytridiomycosis control in the amphibian trade has not been implemented by OIE member states
14

.   

Here we review strategies for mitigating amphibian disease following pathogen emergence. 

These range from minimizing effects on host populations to pathogen eradication. Short term 

solutions have been discussed in detail or summarized elsewhere and these are considered vital in 

temporarily preserving amphibian populations at risk
4,6,15,16

. For example, interventions with 

antifungals during an epidemic can alter infection dynamics and alleviate disease, but in the absence 

of long term disease management in situ, any short term measure is unlikely to result in significant 

conservation success
17

. We focus on measures that offer the potential for long term 

chytridiomycosis management in situ. Bd currently infects hundreds of amphibian species on all 

continents where amphibians occur (Fig. 1)
18

. Amphibian infections with Bd predate the late 20
th

 

century identification of lethal chytridiomycosis, and global emergence of the lethal form of the 

disease at this time was widespread
19,20

. Chytridiomycosis continues to emerge across four 

continents, precluding its elimination from widespread and complex infected host communities
18

. 

Instead of focussing on short term solutions, we examine a more pragmatic approach that strives for 
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long-term, host-pathogen co-existence. An ambitious aim would be to preserve a maximum 

proportion and diversity of amphibian species across as much of their distributions as possible. This 

implies that conservation triage will be necessary, accepting the loss of individual populations and 

even species
21,22

. Indeed, culling of reservoir and superspreader hosts requires consideration (Fig. 2). 

Irrespective, aims and methods will depend on local conservation priorities and should be defined by 

local conservation managers
23

.  

Amphibian chytridiomycosis treatments have been developed for captive populations, but 

translating these to managing infections in wild amphibian populations and communities is not 

straightforward. This is because amphibians affected by chytridiomycosis occupy terrestrial, 

arboreal, aquatic, and subterranean habitats that can overlap in a single landscape. Host population 

sizes fluctuate enormously, often exhibit highly dynamic spatial dispersion, and are frequently 

undetectable for much of the year. Therefore, it is not surprising that the number of studies of 

infection and disease in the wild, and those exploring management of infection in captivity, far 

outstrip those on in situ intervention. We know of few published studies describing the outcomes of 

attempted mitigation, and only two describing success. Four different strategies to mitigate the 

impacts of chytridiomycosis in nature have been attempted and published: 

translocation/reintroduction, augmentation of the host microbiome with probiotics, treatment of 

individuals with antifungals, and a combination of antifungal treatment with chemical disinfection of 

the environment
16,17,24-26

. 

Trialled and tested 

Translocations/reintroductions often have strong appeal because they can promote the idea 

that “something is being done”. They are erroneously perceived to be cost-effective, simple to 

implement and transferrable. However, without a solid understanding of host-pathogen dynamics 

and the biology of the host and pathogen in the landscape, translocations/reintroductions have little 

probability of success. Several attempts have been made to repatriate amphibians affected by 
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chytridiomycosis in Europe, North America, the Caribbean and Africa but none have led to 

successful, long-term amphibian re-establishment
4,25,27,28

 (but see 29 for evidence of short-term 

post-release survival).  Although the majority of failures have been associated with the re-

emergence of lethal chytridiomycosis in the translocated/reintroduced species, the cause behind 

failure to re-establish in almost every case could not be attributed clearly
25,27

 (but see 11). This is 

important because lethal chytridiomycosis can be a secondary consequence of other threatening 

processes, which would mean conservation efforts focussed on the fungus could be 

misdirected
27,28,30

. The inability to unambiguously identify cause demonstrates the relative 

immaturity of the science of amphibian reintroduction as a means of mitigating chytridiomycosis, 

falsifies the assumptions of simplicity and transferability and violates the requirement of threat 

mitigation before reintroduction
31

. It also calls for greater investment in pathological investigations 

in concert with post release field monitoring. Given our incomplete understanding of Bd dynamics 

and potential for the development of resistance to Bd in wild populations, the use of 

translocations/reintroductions as a research tool is perhaps more appropriate than as a mitigation 

strategy against Bd.  

A decade ago Harris and collaborators discovered that a subset of bacteria isolated from the 

skin of living amphibians has the ability to inhibit Bd growth in vitro
32

. Since then bacteria that inhibit 

Bd have been isolated from amphibians from across the Americas, Africa, Europe and Australia. Field 

studies of amphibian microbiomes indicate that the bacterial community on amphibian skin changes 

with amphibian life history stage, with fewer Bd-inhibitory species in later life stages, suggesting that 

targets for field intervention may be age-specific
33

. An expanding research programme is underway 

to ascertain if resistance to or limitation of infection can be enhanced by augmenting amphibian skin 

microbiomes with inhibitory bacteria. Encouragingly, a limited, but successful, field trial has been 

published along with a strategy for the isolation and potential application of probiotics to augment 

skin microbiomes
24,34

. This strategy outlines the advantages of bioaugmentation, including the use of 
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local bacterial isolates, and describes the potential for environmental application of bacteria that will 

interact with an entire amphibian community
34

. 

Several general issues need to be overcome before probiotics can be considered a viable 

mitigation strategy. First, the potential risk probiotics pose to ecosystem and public health requires 

assessment and the practicalities of probiotic development are also largely 
unassessed35

. For example, 

there is little available information regarding the relationship between chytrid growth inhibition in 

vitro and effective inhibition of fungal growth or the development of disease in vivo. Experimental 

efforts using probiotics to control Campylobacter in poultry show that the relationship will likely not 

be straightforward and that some bacteria that are inhibitory are ineffective against pre-existing 

infections
36,37

. Efficient and persistent host and environmental colonization needs to be established: 

amphibian skin microbiomes are dynamic and can be unstable and unpredictable, and bacterial 

community composition changes over the animal’s lifetime
3
. Bioaugmentation requires a deeper 

understanding of bacterial community assembly, stability and permeability, couched in the context 

of amphibian host community, the skin secretions produced by species members of the community 

and how these are in turn influenced by environmental heterogeneity
38,39

. Probiotics should also 

exert their beneficial effect across Bd genotypes. It has already been documented that the ability to 

inhibit one isolate of Bd does not translate across different isolates of the globally pandemic 

lineage
40

. Finally, a probiotic should show characteristics that render it suitable for mass production, 

including prolonged shelf life. As it stands, we have an unclear understanding of how interactions 

amongst all these factors will influence the development of effective priobiotic therapies against 

chytridiomycosis. The research required to gain this understanding will likely to be less cost-

effective, implementable and transferrable than that for chemical treatments (see below), and, if 

animal experiment requirements are extensive and not well-justified, ethically questionable. 

However, if candidate bacteria can be characterized that meet the required criteria, their application 

could be far more cost-effective, ethical, and less controversial than chemical treatment. 
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Antifungals applied directly to susceptible hosts have proved ineffective as a long term 

strategy for in situ chytrid mitigation, as they afford no persistent benefits after treatment is 

stopped
17,26

. However, in an isolated and structurally simple ecosystem containing a single 

amphibian host species, antifungal treatments of individuals combined with chemical treatment of 

the environment did eliminate Bd and clearance persisted across years
26

. These findings suggest that 

the environmental application of fungicides may be a viable, cost-effective, simple to implement, 

and broadly transferrable strategy for controlling infection in some wild amphibian populations. 

Environmental treatment might not be applicable to many amphibian communities and species, 

however, and the environmental application of chemical pesticides has significant ecological, legal, 

and ethical ramifications. To be effective in the long-term, fungicides may have to be applied on a 

regular basis, much as they are in agricultural systems. Although any strategy that requires ongoing 

maintenance and has the potential for collateral impacts might seem untenable, decades of 

fungicide applications to food crops have had a significant and positive effect on global food yields
41

. 

The parallel suggests that in the face of the chytridiomycosis crisis environmental treatment with 

fungicides should be considered as a viable, long term management strategy for wild amphibians 

threatened by the disease. Very little effort has been expended in investigating existing chemical 

compounds that are effective against amphibian-associated chytrids or the development of chemical 

agents that specifically target chytrids, despite the evidence that some chemical pesticides mitigate 

infection in the aquatic environment without compromising amphibian development and larval 

survival
42

 (but see 43). Although the use of agricultural pesticides is greatly debated, the focal, short 

term application of antifungals targeted at a reduction of infection prevalence and infection load in 

specific cases of acute chytridiomycosis-driven amphibian die offs is worth exploring
44

. The 

application of any such measure should be weighed against its potential negative impacts on 

biodiversity, ecosystem function, human health, and the potential for amphibian-associated chytrids 

to develop resistance to these treatments
45

. Advances in our understanding of the virulence factors 

and cellular components key for chytrid reproduction, growth, and infectivity should inform the 
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selection of compounds that exhibit multi-modal antifungal action and also guide the development 

of application strategies
46,47

. 

Horizon-scanning or wishful thinking? 

Several mitigation strategies are gaining traction in the literature although they remain 

untested in real world settings. Evidence is accumulating that at least some species are responding 

to the emergence of chytridiomycosis through natural selection on immunity
48,49

. As a result, two 

arguments that incorporate selection into mitigation strategies are being promoted
50

. The first is 

based on the idea that, given time, natural selection will operate on immunogenetic variation in 

amphibian populations. To enable this, amphibians need to persist in the face of the pathogen and 

translocation/repatriation have been proposed as methods to facilitate population persistence 

during the process of selection. The second strategy is to breed selectively for resistant or tolerant 

genotypes for release into the wild
51

. Both strategies seek to establish resistant or tolerant 

populations and are based on the assumption that amphibian host immune responses to chytrids 

can be selected for and that immune function will be protective in a wild setting.  

We can apply the points for and against translocations/reintroductions that we outlined 

above to the strategy of translocation/repatriation, compounded with the need to understand 

resistance and tolerance in captive populations before any release could be ethically undertaken. 

But what about selective breeding? We are aware of a single example where captive selection and 

subsequent breeding created defined lines that exhibit variation in immunity in an amphibian: the 

genus Xenopus
52,53

. The knowledge base on Xenopus captive breeding, cell biology, genetics, and 

immunity took decades to develop. Advances are being made in comparative immunogenetics that 

could conceivably guide breeding designs, but this is still a long way from understanding host-species 

immune responses to chytrids and exploring heritable variation of amphibian immunity with the goal 

of selective breeding
54

. The elucidation of mechanisms underpinning resistance against Bd would 

greatly facilitate the development of resistance markers that could be used in marker-assisted 
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selective breeding programmes. The chances of finding any such marker, or a set of markers, are 

hampered by the context dependent interaction of Bd with the amphibian host
55

. Establishing 

captive colonies upon which selection can be imposed is a non-trivial task and requires extensive 

investment and resources. Even if assisted selection does produce genotypes that have the ability to 

resist or tolerate infection with chytrids, there is no guarantee that these abilities will function when 

transferred to a natural setting. Research has repeatedly shown how environmental variation can 

dictate the outcome of the amphibian host/chytrid pathogen interaction and the ability to mount 

innate immune responses to Bd can be significantly impaired simply by modifying ambient 

temperature
30,55-58

. We do not dismiss the possibility that selection might provide conservation 

benefits, only caution that the current knowledge base indicates significant research is still required 

before natural and assisted selection can be applied widely to chytrid mitigation. If genetic 

determinants of host-resistance are identified in multiple amphibian species and new technologies 

for genetic manipulation prove amenable to immunogenetic modification of susceptible amphibian 

species, the situation might change, but it will also open up new ethical issues for conservationists
59-

61
. Clearly, it is imperative to continue investigating the genetic basis of amphibian resistance and 

novel means by which it can be augmented.  

At least three published studies have investigated whether frogs could be immunized against 

Bd. Systemic injections of killed Bd were ineffective at reducing the probability of infection or 

death
62,63

. In contrast, increasing numbers of exposures to killed Bd or live Bd culture followed by 

clearance with antifungals was negatively correlated with strength of infection and positively 

correlated with survival following subsequent exposure to Bd
64

. The authors themselves questioned 

how their findings might be applied in a conservation setting but noted the potential for priming 

hosts against infection prior to release to the wild. These findings are contradicted by Hudson et al., 

where repeated use of antifungals on naturally infected frogs generated no long term benefits once 

antifungal treatments ceased
17

. Perhaps more importantly, every immunization study to date has 

focussed on post-metamorphic animals and immunization of pre-metamorphic stages might not be 
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possible as adaptive immunity is not available to pre-metamorphic stages
65

 (but see 53). 

Amplification of infection is commonly associated with larval stages, with high rates of mortality 

occurring at metamorphic climax. Controlling infection in amphibian larvae will be a key factor in 

mitigating impacts of chytridiomycosis because amphibian population growth rates are highly 

sensitive to survival rates of postmetamorphic juveniles
66-69

.  

The ideal vaccine for in situ use should elicit a strong protective response across life stages 

and across species against a broad spectrum of relevant and virulent chytrid genotypes, be safe, and 

have both its production and administration feasible. Indeed, the research process should engage 

with the relevant authorities from the outset, as policy applicable to vaccinating free-living wildlife 

populations also requires development. So far, immunization experiments have been conducted 

with fairly straightforward and crude fungal preparations. Designing effective vaccines is a time- and 

money-consuming undertaking, and for diseases in a range of species, fungal vaccines have proved 

far more difficult to develop than their bacterial and viral counterparts. To date, with few 

exceptions, potential vaccines against human fungal pathogens are still in preclinical stages of 

development and very few effective veterinary vaccines are available
70-72

. Although vaccinations 

currently afford no clear contribution to chytridiomycosis mitigation in wild populations, continued 

research on vaccines will undoubtedly aid in our understanding of amphibian immunity and host-

pathogen interactions, both topics essential for a variety of mitigation strategies including 

immunization, selection, and bioaugmentation. 

Manipulating environments to reduce infectivity or virulence of Bd is another strategy that 

may hold promise. The principle behind this ecological, rather than evolutionary, approach underlies 

environmental treatments (e.g., see  26), but in practice is accomplished by exploiting environmental 

variations that reduce chytrid growth and zoospore density and does not require elimination of the 

pathogen from the environment. The concept follows the recognition that environmental variability 

can inhibit, as well as exacerbate, the impacts of chytridiomycosis, with evidence of reduced 
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virulence even in highly susceptible host species
6,73-76

. Refuges from disease, but not necessarily 

infection, could be created by altering habitats to reinforce environmental factors not conducive to 

Bd growth within the host or zoospore survival outside of it. Habitat management is already integral 

to most amphibian conservation programmes and often involves repeated efforts to maintain useful 

habitats (e.g. 77), suggesting that environmental manipulations for the purposes of disease control 

could have quick uptake by the conservation community, with both concepts and strategies readily 

transferrable. Interventions could be chemical (e.g. altering salinity); physical (e.g., altering 

temperatures to not favour chytrid growth and reproduction), or biotic (e.g., promoting the 

abundance of organisms that consume environmental zoospores)
75,78-80

. These strategies will likely 

focus, at least initially, on manipulating the aquatic environment, as environmental persistence of Bd 

in water is deemed essential for amphibian decline and extinction scenarios
81,82

. Theory and 

empirical evidence shows that conservation efforts targeting aquatic life stages that reduce disease-

driven losses of newly metamorphosed juveniles should improve recruitment and reduce or reverse 

the effects of disease-driven decline; additional population models addressing this topic are clearly 

needed
15, 81,83

. 

Although environmental manipulations may create pockets of tolerance or resistance, they 

offer limited opportunities for amphibians with broad geographic ranges and/or disproportionately 

affected complex communities and habitats. As with environmental disinfection, even in simple 

settings environmental manipulations must be assessed for their impacts on biodiversity and other 

ecosystem functions. As with translocations/reintroductions, host ecology must be well-understood 

before changes to the habitat are undertaken. For now, environmental manipulation might provide 

long-term refuges for focal species of high conservation concern, but offers no broad scope for 

chytridiomycosis mitigation.  

A focus on disease mitigation may not always be the best way forward because simpler 

actions might achieve the required results: improving habitat quality might enable losses from 
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disease at one stage of the amphibian life cycle to be compensated for in gains at other life stages. 

For example, one might use pond draining to cull predators of amphibian larvae. As a consequence, 

tadpole survival might increase, leading to increased juvenile recruitment. Even if many juveniles still 

die of chytridiomycosis, this action might still facilitate population persistence. There is some 

empirical evidence that this might work and existing theory of harvested and exploited populations 

might guide such a strategy
5,84

.  

Single strategies or a marriage of methods? 

 Clearly, we do not know how to manage amphibian diseases in the wild and yet 

conservation managers have to make decisions and manage populations. They cannot wait until we 

understand amphibian-chytrid host-pathogen biology in great detail; a lack of action because of 

imperfect information is a management decision
85

. From our review, it is clear that a single strategy 

is unlikely to achieve the conservation outcome of disease mitigation. Each strategy has pros and 

cons but by combining methods strategically in situ mitigation is likely to have a greater likelihood of 

success. There are a number of tools to decide which management actions are best or most likely to 

succeed in the presence of uncertainty. Structured decision making and information analysis can be 

used to find a best management option and to define the direction of research most likely to 

illuminate critical uncertainties
86-88

. For example, structured decision making might identify 

important gaps in our understanding of chytrid epidemiology. These approaches have only recently 

been used in the context of chytrid mitigation
7,23

. Converse et al. used such an approach to study the 

effects of translocations in a toad metapopulation and found that efforts to reduce disease spread 

had weak effects, selection for resistance would increase the number of sites occupied by toads and 

translocations would speed up species recovery
7
.  

 Shortcomings of individual strategies outlined above may be compensated for by combining 

two or more strategies. In that sense, our outline of the major alternatives for Bd mitigation and the 

applicability and challenges of each forms a starting template that can inform decision-making 
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processes. The science of decision making links management options to measurable objectives (e.g. 

population persistence). Post-management monitoring then determines the outcome of 

management actions against the objectives and is used to update models for the next round of 

decision-making. This approach allows real-time assessment of the impact of management 

alternatives so that management can be rapidly modified to improve outputs
8,89

. 

 For these approaches to work researchers investigating mitigation strategies have to engage 

in the conservation management process and be willing to alter research programmes based on the 

outputs of structured decision making and adaptive management exercises. Precedence for this can 

be found in the literature on chytridiomycosis ecology, evolution and epidemiology and is 

exemplified by the initial effort to identify chytridiomycosis as the cause of amphibian mass 

mortality (Berger et al. 1998). Coordinating research and management efforts have already been 

proposed for Australian amphibian species at risk from chytridiomycosis
6
. Joined-up efforts will 

require field trials across a more extensive range of settings and amphibian communities than are 

currently being attempted. It remains to be decided –the authors of this review disagree on this 

point- at which stage of methods development sufficient knowledge has accumulated to justify field 

trials.  

What must be considered at all stages of the conservation management process, however, 

are the ethical and legal issues associated with whatever strategies are proposed or adopted. 

Strategies that are illegal or unethical are inapplicable irrespective of their cost-and field-

effectiveness, reliability, transferability, or simplicity. Ethical issues may be identified at any scale. 

Our example of conservation triage is a knotty ethical question: what is an acceptable format for 

deciding which species to conserve and which to cull or allow to go extinct? Expending effort on the 

mitigation of chytridiomycosis should also be subject to ethical consideration, as should any decision 

to expend highly limited resources available for biodiversity conservation
90

.Disease as a conservation 

issue remains a novel concept for most policy-makers and conservation practitioners, so legal 
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frameworks may have to be challenged and modified to account for responses to this new and 

growing threat to amphibian biodiversity. Ethical issues may be difficult to address, but failing to 

mitigate chytridiomycosis, a disease widely accepted as predominantly driven by human activities, is 

the least ethical option of all.   

Conclusion  

Despite decades of research into amphibian-chytrid host-pathogen biology, no effective 

method to reduce the impact of chytridiomycosis has emerged and been tested broadly in the field. 

A few case and proof-of-concept studies have produced mixed or limited success at best. A more 

collaborative approach to chytrid mitigation research is necessary, one that should start with an 

approach from the family of tools from decision sciences to define the most important research 

questions. Such exercises to identify those questions should be conducted by interdisciplinary 

research teams that are working with conservation managers and that can put research outputs into 

the context of the overall conservation objectives. It is always uncertain how the findings of research 

undertaken away from the field setting will transfer to the real world, but it is clear from our review 

that significant ex situ research efforts are required for all mitigation methods to ensure that the 

results of field trials can be fully explained. A lack of in situ evidence from chytridiomycosis 

mitigation efforts, however, indicates that field trials are not yet an objective in many research 

programmes, despite invoking amphibian conservation as a potential consequence of research 

discoveries. Clearly, if we are to mitigate chytridiomycosis, research must be focussed on delivering 

outputs that can be rapidly and critically assessed and, when warranted, implemented in field trials 

as soon as possible. 
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Figure 1. Examples of lethal chytridiomycosis from Latin America (a) and Europe (b). a) A Craugastor  

underwoodi dead and in situ Craugastor sp. killed by lethal chytridiomycosis in Monte Verde, 

Costa Rica . The isolate derived from this animal in 2008 has served as the source of DNA for 

qPCR positive controls for two of the authors to this day. B) An Alytes obstetricans again 

dead and in situ, found in Peñalara Natural Park, Spain. 

 

Figure 2. The relative impact of culling and antifungal treatment in a simple, single species 

population paramaterised using data for the Mallorcan midwife toad
91

. (a) Culling of Alytes 

tadpoles, undertaken at point m, results in pathogen elimination. Green line is adult 

population size, red line is free-swimming zoospore density. (b-c) Population responses after 

tadpole antifungal treatment and release (b) and culling (c), assuming maintenance of 

infection in the adult population and keeping model parameters identical across models. 

Mitigation is undertaken at point m. In (b), mitigation is unsuccessful due to increased host 

density after antifungal-treated tadpoles are returned to the pond. In (c), pathogen 

elimination is attributable to more persistent reduction in host density following culling. 
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Fig 1b  
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