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Abstract

Modern statistical models are often intractable, and approximation methods can be

required to perform inference on them. Many different methods can be employed in

most contexts, but not all are fully understood. The current thesis is an investigation

into the use of various approximation methods for performing inference on latent

variable models.

Composite likelihoods are used as surrogates for the likelihood function of

state space models (SSM). In chapter 3, variational approximations to their evalu-

ation are investigated, and the interaction of biases as composite structure changes

is observed. The bias effect of increasing the block size in composite likelihoods is

found to balance the statistical benefit of including more data in each component.

Predictions and smoothing estimates are made using approximate Expectation-

Maximisation (EM) techniques. Variational EM estimators are found to produce

predictions and smoothing estimates of a lesser quality than stochastic EM estima-

tors, but at a massively reduced computational cost.

Surrogate latent marginals are introduced in chapter 4 into a non-stationary

SSM with i.i.d. replicates. They are cheap to compute, and break functional depen-

dencies on parameters for previous time points, giving estimation algorithms linear

computational complexity. Gaussian variational approximations are integrated with

the surrogate marginals to produce an approximate EM algorithm. Using these

Gaussians as proposal distributions in importance sampling is found to offer a posi-

tive trade-off in terms of the accuracy of predictions and smoothing estimates made

using estimators.

A cheap to compute model based hierarchical clustering algorithm is proposed
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in chapter 5. A cluster dissimilarity measure based on method of moments esti-

mators is used to avoid likelihood function evaluation. Computation time for hier-

archical clustering sequences is further reduced with the introduction of short-lists

that are linear in the number of clusters at each iteration. The resulting cluster-

ing sequences are found to have plausible characteristics in both real and synthetic

datasets.
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Chapter 1

Introduction

One of the biggest challenges facing modern statisticians is the successful applica-

tion of a given model to a real world problem and/or dataset. Whether the model in

question is determined by a real world problem or by more abstract considerations,

it is a ubiquitous feature of modern statistics that popular models have non-trivial

implementation challenges. Furthermore, these challenges are largely computa-

tional in nature.

It is an unfortunate truth that statistical models largely belong to a spectrum

whose endpoints are - at one end - those that are easy to implement but are poor

models of reality, and - at the other end - those that are effective models of reality

but are difficult to implement. In practice this means that a trade-off between utility

and feasibility exists, and inference frameworks that lie at virtually all points on the

trade-off spectrum will be valuable in some context somewhere. Much of a statisti-

cian’s judgement, therefore, is often focussed on choosing an inference framework

that optimises this trade-off in their given context.

A simple but illustrative example of such a trade-off is the modelling of heights

of people in a mixed gender, adult population. A basic background in statistics

provides the intuition to suggest a Gaussian distribution being used:

Xi ∼N(Xi | µX ,σ
2
X) (1.1)

where Xi denotes each member of the population, and each member’s height is
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drawn independently from the same Gaussian. Inference is particularly simple for

this model; given a dataset {Xi}N
i=1, the maximum likelihood estimates of (µX ,σ

2
X)

are easily calculated as:

µ̂X =
1
N

N

∑
i=1

Xi

σ̂
2
X =

1
N

N

∑
i=1

(Xi− µ̂X)
2 (1.2)

and inferences on the population distribution can then be made using these parame-

ter estimates. If, for example, the boundaries of the central 1−α of the population,

α ∈ (0,1), want to be estimated then they are simply:

(
Q̂X

(
α

2

)
, Q̂X

(
1− α

2

))
=
(

QN

(
α

2

∣∣∣ µ̂X , σ̂
2
X

)
,QN

(
1− α

2

∣∣∣ µ̂X , σ̂
2
X

))
(1.3)

where QY (α) is the inverse distribution function of Y , which for Y ∼ N is almost

universally implemented on statistical programming platforms.

Such a choice, though, ignores the empirically observed structural difference in

height distribution between males and females. A model that could incorporate this

distinction would almost certainly model reality more effectively than a Gaussian

distribution.

If, instead of just one Gaussian distribution being used to model the heights of

all people, two Gaussians were used in a mixture model, then the guiding intuition

of using a Gaussian distribution could be satisfied simultaneously with the concern

of modelling a known artefact of the dataset in question. Such a distribution would

(assuming gender is a binary valued characteristic possessed by all members of the

population) look like:

Xi ∼ πMN(Xi | µM,σ2
M)+(1−πM)N(Xi | µF ,σ

2
F) (1.4)

where πM denotes the probability of an arbitrary person being male, (µM,σ2
M) are

the parameters for the distribution of male heights, and (µF ,σ
2
F) are the parameters
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for the distribution of female heights. The height of each person would be drawn

independently from (1.4).

While (1.4) is a conceptually simple statistical model, if the gender of the per-

son to whom each observation Xi belongs is unknown then its implementation is

much more complicated than that of (1.1). Maximum likelihood parameter esti-

mates are no longer available in closed form, and must be estimated iteratively:

θ̂
(k+1) = f

(
{Xi}N

i=1, θ̂
(k)
)

(1.5)

where θ is a vector collecting all model parameters together and f (·) is some func-

tion. Estimates of quantiles based on particular parameter estimates are also non-

trivial:

Q̂X(α) =F̂−1
X (α) (1.6)

where

F̂X(x) =π̂MFN(x|µ̂M, σ̂2
M)+(1− π̂M)FN(x|µ̂F , σ̂

2
F) (1.7)

which, given only the distribution function FN, is a non-trivial function to invert.

This example illustrates how introducing more realism into a model generally

increases both the theoretical and computational complexity of any inference that

might be made from data. While the computational challenges introduced in this

simple example are themselves not beyond the capabilities of modern technology,

this is not generally true in a typical modern statistical setting; modern technology is

not sufficient to successfully use a brute force approach towards the implementation

of realistic statistical models. Furthermore, the requirement of statistical modelling

that it be as realistic as possible means that maximising the effectiveness of infer-

ence under computational constraints is a permanent feature of research in statistical

computing.

It is in this context that approximation methods, and choosing from amongst
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them, become particularly relevant. Exact inference is not always possible in mod-

ern statistics and even when it is, it might take a lot of computing resources to

perform. If a particular approximation method produces results that are sufficient

for the context in question then it should be considered as a potential alternative

to exact inference. When both the accuracy and computing requirements of an ap-

proximation are favourable then by implication exact inference becomes needlessly

expensive.

The choices to be made regarding whether to employ an approximate infer-

ence framework, and if so then which one, thus boil down to trade-offs between

computational costs and statistical benefits. Some of these trade-offs can be de-

duced analytically, and in such cases the preference between alternatives can be

relatively clear cut.

Current statistical theory is not always sufficient to elucidate the optimal choice

among methods though. Variational approximations to likelihood evaluation, for

example, introduce a bias to parameter estimates that is not well understood (Jordan

et al., 1999; Turner and Sahani, 2008). They are often much cheaper to evaluate than

either unbiased approximations or the likelihood function itself though. It is difficult

to know a priori whether the trade-off between compute times and accuracy favours

them or not.

The current thesis is an investigation into the impacts on inference of using

various approximation methods. Particular state space models that require approxi-

mations to be made are used as objects of inferential interest. The use of variational

approximations to composite likelihoods is explored in chapter 3. In chapter 4 a

method of moments approximation to the prior marginals is integrated with Gaus-

sian variational approximations. A model based hierarchical clustering algorithm

that avoids likelihood evaluation is developed in chapter 5.

The remaining content of the current thesis is outlined as follows. Chapter 2

is a self contained review of the literature on approximate methods featuring in the

subsequent chapters. Descriptions of each method aim to be thorough, with a view

to allowing their implementations in subsequent chapters not to be encumbered with
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distracting detail. Occasionally, however, content from chapter 2 will be repeated

later, when deemed appropriate for purposes of exposition.

In chapter 3, a stationary state space model with Student-t observations is

the basis of approximate inference. Parameters are estimated via composite like-

lihoods, which are in turn evaluated approximately via variational approximations.

The composite structure of each composite likelihood affects the finite sample bias

and variance of parameter estimates, and the accuracy of variational approximations

depends on the size of each component in the composite likelihood. The effects of

using both methods in tandem is investigated to explore how they interact. The

behaviour of parameter estimates, and of further inference made using them, is ob-

served to find where optimal trade-off choices lie.

Chapters 4 and 5 use a non-stationary state space model with Poisson observa-

tions to further explore approximate inference in computationally challenging con-

texts. Composite likelihood evaluation is difficult when data is non-stationary, as

marginal latent distributions have varying functional dependencies on parameters.

Approximations to the latent marginals are introduced in chapter 4 that bypass this

issue.

Additionally, closed form factorised variational approximations are not avail-

able for this model. Gaussian approximations are chosen instead as classes of

tractable distributions under which to take expectations. Finding the optimal Gaus-

sians for approximating posterior distributions can be quite expensive computation-

ally, but is much less so if the Gaussians are constrained to be diagonal. The com-

putational and statistical trade-offs between using general Gaussians and the restric-

tion to diagonal Gaussians only is investigated.

Chapter 5 makes use of the same model as in chapter 4, only in a high di-

mensional setting. Likelihood based methods are not practical in such a context, so

inference founded on the method of moments framework developed in chapter 4 is

explored. A hierarchical clustering algorithm is developed, allowing a low dimen-

sional extension to the original state space model to be exploited. Clusterings in the

hierarchical sequence with sufficiently low dimensionality are used to fit parameters
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and perform subsequent predictions and smoothing approximations.

Chapter 6 gathers the results and conclusions of chapters 3 - 5 together for a

final summary of the thesis. The outcomes of experiments and the limitations of

the findings are discussed, along with general conclusions and avenues of further

research.



Chapter 2

Literature Review

This chapter will cover the current literature on the challenges described in Chap 1.

There is a brief section giving a description of the tasks looking to be achieved in

approximate inference. Following this, the major groups into which current method-

ologies can be placed will each be described, and example methodologies analysed

in more detail. Currently popular approximation strategies, and where they fit in the

literature on approximation methods, will therefore be available to the reader with

self-contained descriptions. This should serve as a general outline to the relevance

of the current thesis, as well as providing detail that will be referred to specifically

in the thesis itself.

2.1 Approximate inference

The current thesis is an investigation into the conditions under which different

choices regarding the trade-off between utility and feasibility might be optimal.

Various concepts regarding statistical models, inference, approximations, and mea-

sures of performance will be employed, giving rise to potential ambiguities. As

such, it is important to define key terminology precisely. The following section will

aim to clarify the subsequent use of terminology. For clarity it should be noted that

the models considered in the current thesis are frequentist, with fixed value parame-

ter estimates. The work in chapters 3 and 4 can in principle be extended to Bayesian

frameworks.
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2.1.1 Inference

Statistical inference is the task of reaching conclusions about a population of data

after having seen only a sample of it, and of quantifying the appropriate amount

of confidence that should be placed in them. The precise conclusions that can be

reached depend on the modelling assumptions that are made regarding the popu-

lation, but in general the output of an inference procedure is a posited distribution

for either the data population itself or for some subset of the complete collection of

random variables that are part of the model. Some of the fundamental objects that

need to be computed of a statistical model include:

Posterior distributions Posterior distributions are data dependent distributions that

take the form described by Bayes’ rule:

P(X | Y ) =P(X)P(Y | X)

P(Y )
(2.1)

where Y refers in this case to observed data, and X being the random vari-

able of interest. In general this can be either a latent variable or a Bayesian

parameter.

Marginal distributions Marginal distributions are distributions of a subset of vari-

ables that have a joint distribution. In general this requires jointly integrating

out the unwanted variables from the joint distribution, i.e. if fX,Y(x,y) is the

joint density of the variables of interest x and nuisance variables y, then

fX(x) =
∫

fX,Y(x,y)dy (2.2)

which may have a computational complexity that is exponential in the size of

the model, depending on how it is parametrised. If further assumptions can

be made about the independence structure of the joint model though, then the

computational complexity of this operation can be significantly reduced. This

idea will be expanded on in detail in chapter 2, sec 2.5.

Predictive distributions Predictive distributions are the modelled distributions of
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new data, conditioned on the data that has already been seen. The nature

of a predictive distribution depends on the choice made between a frequentist

and a Bayesian model:

Frequentist For a frequentist model with parameter θ , this is simply the mod-

elled distribution with parameters estimated from the observed data:

Y new|Y old ∼ P(Y new | Y old, θ̂(Y old)) (2.3)

where θ̂(Y old) is the estimate of θ made using Y old.

Bayesian In a Bayesian model, the prior distribution of the parameter θ can

be used to derive a prior predictive distribution:

fY (ynew) =
∫

fY |θ (y
new|θ) fθ (θ)dθ (2.4)

or alternatively, a posterior predictive distribution can be derived from

the prior and the observed data together:

fY |Y old(ynew | Y old) =
∫

fY |Y old,θ (y
new | Y old,θ) fθ |Y old(θ |Y old)dθ (2.5)

Clustering A desired outcome of some statistical analyses is a many-to-one func-

tion mapping elements x ∈ X of some population to a collection c ∈ C of

cluster labels:

k : x 7→ k(x) (2.6)

with |C| ≤ |X|, and the equality only holding in the case of the trivial clus-

tering where k(·) is a bijection. Cluster membership will generally be on the

basis of some shared statistical property.

Many algorithms to achieve this are employed in practice, and those that are

of a statistical nature are subject to the utility / feasibility trade-off described

above.
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2.1.2 Approximations

When the calculation of a quantity of interest is intractable, an approximation of

some sort has to be made. There are in general two strategies that can be pursued

when making approximations:

Surrogate quantities Sometimes it is possible to calculate a different quantity to the

one of interest, one that can be argued to be ‘similar enough’ that its value is

still of interest. In this case, interest can be transferred to this surrogate quan-

tity, with an acknowledgement that the general information available to base

inference on is reduced correspondingly. An example of such a strategy is the

use of composite likelihood estimators, described in detail in sec 2.3, which

maximise a product of low dimensional marginal or conditional likelihoods

as a surrogate for the data likelihood.

Numerical approximations If numerical methods can return, with acceptable com-

putational cost, a value that is sufficiently close to the quantity of interest then

this can often be the optimal approximation strategy. A particular method

could be deterministic or (pseudo) random, and some of such methods will

share the characteristic that, given enough time to run, an arbitrarily precise

approximation to the quantity of interest can be made. An example of such

a strategy is Monte Carlo integration, described in detail in sec 2.4, where

samples values are drawn from a distribution and their empirical distribution

is subsequently treated as representative of the underlying distribution itself.

Another example of a numerical approximation is making a variational ap-

proximation to the evaluation of a log likelihood, described in detail in sec 2.2.

As the approximation made takes the form of a tractable alternative quantity,

the view that this is a surrogate quantity could be held with some justifica-

tion. The current thesis takes the view that as this approximation needs to

be recalculated for each value of θ , the log likelihood function is not being

replaced but merely its evaluation approximated. As such it is categorised as

a numerical approximation, with an acknowledgement of other equally valid
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perspectives.

2.2 Variational approximations
This section is going to describe variational approximations, a thorough treatment

is given in Wainwright and Jordan (2008).

Variational approximations are a general class of approximations that directly

approximate the data likelihood with a lower bound. As such they can be used in

all inference tasks. They are an approximation method that trades bias for computa-

tional complexity / viability. Variational methods in general will first be described,

and then their application to parameter estimation will be focussed on. They are of

particular utility when the joint distribution of variables belongs to an exponential

family. If a random vector belongs to an exponential family then its joint distribu-

tion can be written as:

P(Z) = exp(〈θ ,φ(Z)〉−A(θ)) (2.7)

where Z = {X ,Y} contains both latent variable X and observed variables Y , 〈x,y〉

denotes the standard inner product between x and y, θ = (θ1, . . . ,θn)
′ is a vector of

parameters and φ(X) = (φ1(X), . . . ,φn(X))′ is a vector of functions on the realised

values of the variables. A(θ) = log
∫

exp(〈θ ,φ(x)〉)dx is the log partition function

and ensures the distribution is normalised. When a distribution from an exponential

family is represented as a Markov random field, the associated factorisation will

correspond to the elements of φ(x).

Variational approximations involve expressing calculations involving (2.7) in

a form in which variational calculus can be used. When computations of marginal

or conditional distributions, or of the log partition function, are intractable, varia-

tional calculus can be used to find the closest approximation subject to a specific

set of constraints. These constraints will be chosen to introduce tractability to the

computation, and if they are well chosen they will permit solutions that reasonably

approximate their target.

As these methods directly introduce incorrect solutions to intractable calcu-
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lations, they are necessarily biased. The theoretical properties of the bias are not

completely understood (Jordan et al., 1999; Turner and Sahani, 2008), but in prac-

tice these methods can in some cases provide satisfactory performance. By con-

struction they are tractable, and if the approximation constraints are suitable chosen

then trade-offs between bias and computational complexity will be beneficial to

practitioners.

There is a wide variety of applications for which variational approximations

can be used. One of these is approximate maximum likelihood estimation of pa-

rameters, which is the focus of the following section.

2.2.1 Variational EM

Variational EM (VEM) is a methodology for making approximate inference in mod-

els with latent variables, and it is a generalisation of the EM framework used in

Dempster et al. (1977) for making maximum likelihood estimates. While the pro-

cedure described here is for parameter estimates in a frequentist model, its Bayesian

analogue is obtained by simply absorbing the parameter θ into the latent variable

X .

VEM works by placing a lower bound on the data log-likelihood using Jensen’s

inequality, which is then maximised using variational calculus. Inference is per-

formed using the lower bound rather than the actual log-likelihood. In the following

exposition, the statistical model of interest contains latent variables X and observed

variables Y . It is assumed that the data likelihood P(Y | θ) =
∫
P(x,Y | θ)dx is

intractable and needs to be approximated to make estimates of the parameter θ .

The lower bound is introduced (Hathaway, 1986; Neal and Hinton, 1998)

through taking the expectation of the total log-likelihood logP(X ,Y | θ) with re-
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spect to an arbitrary distribution q(X):

logP(Y | θ) = log
∫

P(x,Y | θ) dx

= log
∫

q(x)
P(x,Y | θ)

q(x)
dx

≥
∫

q(x) log
P(x,Y | θ)

q(x)
dx

=Eq[logP(X ,Y | θ)]+H[q]

=L(q,θ) (2.8)

where x denotes a particular value of the random variable X , and H[q] =

−
∫

q(x) logq(x)dx is the differential entropy of q, and the inequality is an ap-

plication of Jensen’s inequality:

E[φ(X)]≥ φ(E[X ]) (2.9)

for all convex functions φ , and it is noted that − log is convex.

Maximising L(q,θ) over distributions q can be achieved using variational cal-

culus, which is from where the method gets its name. If q can be chosen without

constraint then the lower bound L(q,θ) is maximised by the posterior distribution

of the latent variables:

argmax
q

L(q,θ) = P(X | Y,θ) (2.10)

and in fact equals the data log-likelihood in this case:

L(P(X | Y,θ),θ) = logP(Y | θ) (2.11)

which is the result underpinning the common and popular Expectation-Maximisation

(EM) algorithm.

It is not always possible to evaluate P(X |Y,θ), in which case some other q can

be chosen to derive a lower bound. If some tractable class Q of distributions is cho-
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sen to maximise L(q,θ) over, then the lower bound can be evaluated. Finding this

q is analogous to calculating the posterior P(X | Y,θ), and as such is often referred

to as ‘inference’. Estimating the marginal data likelihood with its lower bound is

similarly known as ‘learning’. If P(X | Y,θ) can be approximated reasonably well

by distributions in Q, then the resulting approximate inference and learning can be

reasonably accurate (Jordan et al., 1999).

Precisely what is meant by one distribution approximating another reasonably

well can be expanded on by re-writing (2.8) in a different form:

L(q,θ) =
∫

q(x) log
P(x,Y | θ)

q(x)
dx

=
∫

q(x) log
P(x | Y,θ)

q(x)
dx+

∫
q(x) logP(Y | θ)dx

= logP(Y | θ)−KL [q(X) ||P(X | Y,θ)] (2.12)

where KL [q(X) ||P(X | Y,θ)] is the Kullback-Leibler (KL) divergence from q(X)

to P(X | Y,θ):

KL [ f (X) ||g(X)] =
∫

f (x) log
f (x)
g(x)

dx (2.13)

and is easily shown to be non-negative, KL [ f (X) ||g(X)] ≥ 0 with equality if and

only if f (X) = g(X) (Bishop, 2007). This non-negativity illustrates that the closer

a distribution q(X) is to the latent posterior P(X | Y,θ) in terms of KL divergence,

the tighter the lower bound L(q,θ) is to the true data log-likelihood logP(Y | θ).

A common choice of constrained distribution class Q is the set of all distribu-

tions over X with a given factorisation, where the factorisation is a) disjoint, and

b) finer than in the original model:

QS =

{
q(X) : q(X) =

M

∏
i=1

qi(Si)

}
(2.14)

for given S = {Si}M
i=1,

•
∪

M

i=1Si = X , with Si ⊂ S̃ j for some S̃ j ∈ S̃ of the original fac-

torisation S̃. The factorisation S will generally be chosen to introduce tractability
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to L(q,θ) with some nominally minimal number of additional conditional indepen-

dences.

By choosing the q(X) ∈ Q that minimises the KL divergence from q to

P(X | Y,θ):

q∗(X) =argmin
q∈Q

KL [q(X) ||P(X | Y,θ)] (2.15)

the lower bound is the tightest it can be when q is constrained to belong to Q.

When Q = QS as above, the q ∈ QS that optimises the lower bound is found

through variational calculus to have the following form:

logq∗i (Si) =c+Eq∗\i
[logP(X ,Y | θ)]

⇒ q∗i (Si) =
exp(Eq∗\i

[logP(X ,Y | θ)])∫
exp(Eq∗\i

[logP(X ,Y | θ)])dSi
(2.16)

where c is a constant with respect to Si and q∗\i refers to all factors q∗j , j 6= i. When

the complete log-likelihood is in the exponential family, the normalisation in (2.16)

can often be performed by visual inspection and comparison with known exponen-

tial family distributions.

As these distributions are coupled to each other through the expectation terms

in (2.16), an iterative method can be used to find them. After initialising each qi,

the equations in (2.16) are implemented in turn, with the expectations taken using

the newest estimate of each qi. This is summarised in algorithm 2.1.

Finding the distribution in a given class Q that optimises the lower bound is the

foundation of VEM, which is an iterative procedure. Once q∗
θ̂ (k)(X) has been found

for a given estimate θ̂ (k) of θ , the lower bound can be maximised over θ by noting

that only the first term in the right-hand side of (2.8) depends on θ . Maximisation

is therefore achieved by maximising the expected total log-likelihood (keeping the
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Algorithm 2.1 Finding the optimal q ∈ QS

1. Initialise q(0)i , i = 1, . . . ,M

2. Repeat until convergence:

(a) For each i in 1, . . . ,M:

i. Update estimate of q∗i according to (2.16):

logq(k+1)
i (Si) =c+E

q(l)\i
[logP(X ,Y | θ)] (2.17)

where

q(l)j =

{
q(k+1)

j j < i

q(k)j j > i
(2.18)

distribution q fixed):

θ̂
(k+1) =argmax

θ

L(q∗
θ̂ (k),θ)

=argmax
θ

Eq∗
θ̂(k)

[logP(X ,Y | θ)] (2.19)

The iterative scheme therefore consists of an expectation step, where the op-

timal q ∈ Q is chosen according to (2.15) and used to evaluate Eq[logP(X ,Y | θ)],

followed by the maximisation step (2.19). This is summarised in algorithm 2.2.

For the unconstrained class of all distributions over X , this procedure reduces to the

standard EM algorithm and, on convergence, will return a local maximum of the

data likelihood.

The simplest example of a tractable distribution of latent variables is the fully

factorised distribution, also known in this context as the mean-field approximation.

This is where the joint posterior distribution of all latent variables X , conditioned

on observed data Y , completely factorises such that each factor contains only one

variable. It corresponds to the sub-graph obtained by removing all edges between

latent variables in the original graph.

As an illustrative example, consider a latent variable model where an ob-
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Algorithm 2.2 Variational EM

1. Initialise θ̂ (0)

2. Repeat until convergence:

(a) Maximise lower bound L(q,θ) over distributions q ∈ Q according
to (2.15) and evaluate Eq∗k

[logP(X ,Y | θ)]:

q∗k(X) =argmin
q∈Q

KL
[
q(X) ||P(X | Y, θ̂ (k))

]
(2.20)

(b) Maximise lower bound with respect to θ :

θ̂
(k+1) =argmax

θ

Eq∗k
[logP(X ,Y | θ)] (2.21)

Y

X1 X2

Y2

X1 X2

Figure 2.1: Latent variable model (left) and the tractable sub-graph (right) corresponding
to a variational approximation. Observed variables are shaded grey.

served variable Y is Gaussian with variance σ2 and mean given by the sum

of two latent independent standard Gaussians, X1 and X2 i.e. Y | X ∼ N(X1 +

x2,σ
2), X1,X2∼i.i.d.N(0,1).

The latent variables Xi are conditionally dependent given the observation Y , so

their posterior distribution will not factorise between them. This fact is represented

in an undirected graph of the distribution by an edge between them, so the three

variables together form a factor in the joint distribution, see fig 2.1.

Approximating the true posterior distribution with a fully factorised distribu-

tion is equivalent to approximating the original graph with the sub-graph having all

edges between the latent variables removed. The specific fully factorised distribu-

tion is chosen to minimise the KL divergence from it to the posterior as described

above. For a detailed description of variational methods see Wainwright and Jordan

(2008), and for a detailed study of variational approximations in a Bayesian setting,

see Beal (2003).
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2.2.2 Limitations and mitigations

In general, the bias introduced to parameter estimation using variational EM is not

well understood. Some work has been done on specific models, in particular the

state space model (Wang and Titterington, 2004; Turner and Sahani, 2008). The

work in Wang and Titterington (2004) focusses on the linear Gaussian state space

model in its one dimensional form. This model operates according to the following

dynamics:

P(X1) =N(X1|µ0, σ
2
0 )

P(Xt+1 | Xt) =N(Xt+1|αXt , σ
2
x )

P(Yt |Xt) =N(Yt |γXt , σ
2
y ) t = 1, . . . ,T (2.22)

For more details on the state space model, see sec 3.1 in chapter 3.

The authors assume all variances are equal i.e. σ2
0 = σ2

x = σ2
y = σ2, and that

all parameters except α are known. They aim to estimate α ∈ (0,1). Under these

conditions the true posterior can be calculated analytically, so no approximation is

needed and exact EM can be used to obtain a maximum likelihood estimated. As

the true posterior is known, it can be compared to its variational approximation and

the KL divergence between them can be studied.

The class of variational approximation used in this study is the fully fac-

torised product distributions Q = QS S = ∪tXt described above. The KL divergence

KL [q∗(X) ||P(X | Y,θ)] is calculated analytically, and its dependence on T , α , γ

and σ2 is investigated.

The authors find that KL [q∗(X) ||P(X | Y,θ)] 9 0 as t → ∞, i.e the KL di-

vergence will not go to zero as the number of observations increases. This im-

plies that the variational EM estimate of α is not consistent. It was also found

that KL [q∗(X) ||P(X | Y,θ)] was independent of σ2 and as such the bias will not

go to zero even if the noise becomes very small. Furthermore, the KL divergence

will not go to zero for any value of γ either. On the other hand, it was found that

KL [q∗(X) ||P(X | Y,θ)]→ 0 as α → 0, so the bias will be small if α is small.
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The fully factorised approximation is not the only form the approximating dis-

tribution can take. Structure can be defined within the factors, which corresponds

to keeping some but not all edges between latent variables from the original graph.

It is such structured approximations that will be used in the current thesis. The

modern study of the use of structured mean-field approximations originated with

Saul and Jordan (1996), and developments in the area have continued since then.

For details, see amongst others Wiegerinck (2000); Jaakkola (2001); Jaakkola and

Jordan (1998).

An example of a structured approximation is studied in Barber and Wiegerinck

(1999). In this paper, approximations to both undirected and directed graphs are de-

scribed. The undirected graph that is approximated is that of a Boltzmann machine.

A Boltzmann machine is made up of a vector X of binary variables, only some of

which are in general observable. The probability of any particular configuration x,

parametrised by a symmetric weight matrix W , is:

P(X = x) =
1
Z

exp

(
∑
i, j

Wi, jxix j

)
∝ exp(x′Wx) (2.23)

where Z is a normalisation constant known as the partition function. Calculating

the partition function generally involves summing over 2|X | possible states, which

becomes intractable for large |X |. One of the findings in this paper was a princi-

pled method of defining sub-graphs of the original (fully connected) graph, whose

probabilities are tractable. These sub-graphs are then used to perform variational

EM and learn the optimal parameters for the observed variables. The authors find

that using such structured approximations can bring a considerable improvement in

performance over using a fully factorised approximation.

Another example is Ghahramani and Jordan (1997). In this paper, the authors

approximate the posterior distribution of hidden states in a factorial hidden Markov

model, which is an extension to the hidden Markov model. The hidden Markov

model is an example of a state space model, which are described in further detail

in chapter 4. A factorial hidden Markov model makes use of multiple independent
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Markov chains, and at each time point a linear combination of their values is used

to determine the distribution of the observed variable. In this paper, for example,

the observed variable is a Gaussian vector with mean given by a linear combination

of the latent variables:

P(Yt | Xt) =N(Yt |WXt ,C) (2.24)

where W is a weight matrix and C is a common covariance matrix. The authors

approximate the posterior of the hidden variables with a distribution that factorises

over the Markov chains at each time step, but does not factorise over time. This

is equivalent to using a sub-graph that keeps only the edges over time between the

nodes in each Markov chain as an approximation, see fig 2.2.

Y1

X1,1

X1,2

Y2

X2,1

X2,2

YT

XT,1

XT,2

Y1

X1,1

X1,2

Y2

X2,1

X2,2

YT

XT,1

XT,2

Figure 2.2: Factorial hidden Markov model (left) and the tractable sub-graph (right) corre-
sponding to a variational approximation. Observed variables are shaded grey.
Dashed lines indicate a repeating pattern until time T .

As the latent state space is finite, exact computation of the posterior is possible

but very slow. Furthermore, the authors found that using exact EM was liable to

over-fit the model to the data. Variational EM was found to offer similar perfor-

mance and run time to using an MCMC approach (see sec 2.4.3 for more details on

MCMC).

2.3 Composite likelihoods
This section is going to describe composite likelihoods and maximum composite

likelihood estimators, and how they can provide a computationally feasible ap-

proach to inference that can have consistency guarantees and understood asymp-

totic estimator distributions. A thorough review of composite likelihood methods
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can be found in Varin et al. (2011), which should be referred to for more detail on

the theoretical results stated here.

Composite likelihoods are used as alternatives to data likelihoods for perform-

ing parameter estimation. They are generally used when evaluation of the data

likelihood is either impossible or impractical. The first example of a composite

likelihood being used in practice was in Besag (1974), in which a product of condi-

tional likelihoods is used in the place of the data likelihood.

When performing parameter estimation, a common general method is to max-

imise an objective function of data and parameters with respect to the parameters.

A common choice of objective function is the likelihood function, which returns

the maximum likelihood estimator (MLE) as the result of maximisation. Maximum

likelihood estimators are commonly used in part because they have desirable prop-

erties. They are consistent and have optimal statistical efficiency, i.e. they achieve

the Cramér-Rao lower bound.

If evaluating or maximising the likelihood function is difficult or impossible

then an alternative to the MLE can be used in its place. One possibility is to use

composite likelihoods, which are products of marginal or conditional likelihoods

of subsets of the data. An estimator that maximises such an objective function is

known as a composite likelihood estimator.

Under suitable conditions, composite likelihood estimators are consistent, but

will have a higher variance than, for example, maximum likelihood estimators. In

addition to the standard conditions for MLE consistency, is the condition that the

data in each component interacts with the parameters being estimated; otherwise

any estimates would not depend on data. Unlike the MLE, maximum composite

likelihood estimators do not achieve the Cramér-Rao lower bound for estimator

variance. One motivation for using a composite likelihood objective function is as a

trade-off of reduced computational costs / practical viability against an increase in

estimator variance.

A composite likelihood is a surrogate for the likelihood function, made from

the low dimensional marginal or conditional distributions of subsets of the data. A
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set {Ai| i = 1, . . . ,k} of k marginal or conditional data events are defined, each of

which has an associated likelihood Li(θ | Ai) under the model being used for the full

(intractable) joint distribution. A weighted product of these associated likelihoods,

LC(θ | Y ) = ∏
k
i=1 Li(θ | Ai)

wi , is known as a composite likelihood.

Composite likelihood A composite likelihood is a product

LC(θ | Y ) =
k

∏
i=1

Li(θ | Ai)
wi (2.25)

of low dimensional marginal or conditional distributions Li(θ | Ai) derived from an

intractable joint distribution over Y .

A composite likelihood is used in inference just as a full likelihood normally

would be. Wherever the full likelihood appears in a procedure for parameter esti-

mation or for calculating the posterior distribution of latent variables, it is simply

replaced with the composite likelihood. If the log-composite likelihood is denoted

`C(θ | Y ), the composite likelihood estimator is then

θ̂cl = argmax
θ

`C(θ | Y ) (2.26)

The non-negative weights wi can be chosen to improve efficiency, if they are all

equal then their particular common value does not affect the results of any inference

performed. If unequal weights are chosen then they can be set to depend on the size

of the sets Ai, or on the strength of the correlations of the data inside each set. It is

common though, for them to be set to be equal.

Whilst the definition of a composite likelihood allows the use of both marginal

and conditional densities in the same product, in practice it is not common for them

to be mixed. The motivations for using either form are generally different from each

other, so their appearance in the same product is unlikely.
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The motivations for using a composite conditional likelihood can be illustrated

with an example of spatial data. With spatial data, it might be possible to assume

that each data point is strongly dependent on those data points close to it, and almost

conditionally independent of those which are not close. A conditional likelihood for

each data point could be far easier to calculate than a low-dimensioned marginal,

and it can be argued heuristically that the weak dependence between distant data

points justifies taking the product of each conditional likelihood. If some data had

a spatial grid structure as in fig 2.3, for example, and dependencies between points

were only strong between neighbours, then the composite likelihood

LC(θ | Y ) = ∏
i, j

P(Yi, j | N(Yi, j),θ) (2.27)

where N(Yi, j) denotes the horizontal and vertical neighbours of Yi, j, would capture

most of the interactions in the full joint distribution. In situations analogous to this,

the use of a composite conditional likelihood should have relatively good perfor-

mance.

Y1,1 Y1,2 Y1,3 Y1,4

Y2,1 Y2,2 Y2,3 Y2,4

Y3,1 Y3,2 Y3,3 Y3,4

Y4,1 Y4,2 Y4,3 Y4,4

Figure 2.3: A possible graphical model illustrating spatial arrangement of observed data,
where each data point could be modelled to have strong dependencies only on
those data that are adjacent on the grid

In the case of composite marginal likelihood, however, the motivations for its

use are different. Pairwise composite marginal likelihoods, for example:

LC(θ | Y ) =
N−1

∏
i=1

N

∏
j=i+1

P(Yi,Y j | θ) (2.28)

can be appropriate if the full likelihood is difficult to compute and higher order cor-
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relations are not of particular interest. In general, composite marginal likelihoods

can be appropriate surrogate functions when the information contained in each sub-

set of data regarding correlations is sufficient for the objective of the research. This

perspective can be particularly pertinent if the true likelihood contains nuisance pa-

rameters that complicate estimation of the parameters of interest.

It is important to note that factors in a composite likelihood function need not

themselves be tractable. Approximation method methods might be required for

the calculation of the factors themselves. As described below, using a composite

likelihood will increase the variance of an estimator. If data is segmented into n

equal sized blocks then the variance inflation due to using a composite likelihood of

parameters will diminish as the size of the blocks goes to the size of the dataset and

the number n of blocks goes to 1. This statement is made more precisely below, but

heuristically it implies an incentive to use larger factors in the composite likelihood.

Any approximation method used for each factor will likely be less accurate or more

computationally expensive for large factors though, and these considerations will

affect the decision on how large the factors should be.

As each factor in the composite likelihood is a marginal or conditional density,

the resulting estimating equation ∇θ logLC(θ | Y ) = ∇θ `C(θ | Y ) is unbiased, i.e.

E[∇θ `C(θ | Y )] = 0 (2.29)

so subject to mild regularity conditions, notably among them that the data in each

component is sufficient to make an estimate of each parameter in θ , maximum

composite likelihood estimators will, in the limit of infinite data, converge to the

true value of θ , i.,e. they are consistent. Additionally, the use of a composite

likelihood can be considered equivalent to using a misspecified model, and from

this perspective it can be shown that the variance of maximum composite likelihood

estimators will be higher than for maximum likelihood estimators.

In particular, if data is segmented into n equal sized blocks and the blocks are

modelled as i.i.d replicates of each other then a central limit theorem can be stated,

see Varin et al. (2011) sec 2.3. If u(θ | Y ) = ∇θ `C(θ | Y ) is the gradient of the
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composite log-likelihood, and defining

H(θ) = E[−∇θ u(θ | Y )] (2.30)

and

J(θ) = var[u(θ | Y )] (2.31)

then the maximum composite likelihood estimator θ̂cl has an asymptotically normal

distribution:

√
n(θ̂cl−θ)→d N(0,G−1(θ)) (2.32)

where G(θ) is the Godambe information matrix (Godambe, 1960):

G(θ) = H(θ)J−1(θ)H(θ) (2.33)

In the case where the true likelihood is used, producing the mle as the estima-

tor, then H(θ) = J(θ) = I(θ) is the Fisher information matrix, and the estimator

asymptotically achieves the Cramér-Rao lower bound. As all estimator variances

are greater than or equal to the Cramér-Rao lower bound, the asymptotic variance

in the general composite likelihood case will, therefore, be greater than that of the

mle.

In practice this means that a composite likelihood function that contains many

‘small’ factors, i.e. with each factor containing only a small subset of the total num-

ber of random variables, could easily produce an estimator with much higher vari-

ance than the mle. Computational concerns provide an incentive to use a composite

likelihood that is easy to evaluate, but which may also suffer from high estimator

variance. It is in this way that using composite likelihood forces a trade-off between

computational complexity and variance.

Tests of alternative hypotheses analogous to likelihood ratio, Wald, and score

tests that use maximum likelihood are available for use with composite likelihoods.
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Molenberghs and Verbeke (2005) describe analogues to Wald and score tests. Vari-

ous options have been proposed as analogues to the likelihood ratio test. The direct

analogue:

W = 2[`C(θ̂H1)− `C(θ̂H0)] (2.34)

where `C(θ̂H0) and `C(θ̂H1) refer to the values of the log composite likelihood us-

ing the minimal and augmented parameter vectors respectively, has a non-standard

asymptotic distribution, which can make computation difficult (Kent, 1982). Al-

ternatives which have various approximate χ2 distributions have been proposed by

Geys et al. (1999); Rotnitzky and Jewell (1990); Varin (2008) amongst others.

Model comparisons can also be made using composite likelihood. Analogues

of both the AIC and BIC have been derived, and they correspond very closely

to their standard likelihood counterparts. In both cases, the number of param-

eters is replaced with the number of ‘effective’ parameters, defined as dimθ =

trace(H(θ)G(θ)−1) with G(θ) and H(θ) as defined above. Derivations of these

criteria can be found in Varin and Vidoni (2005) and Gao and Song (2010) for the

AIC and BIC respectively.

A large amount of research has been performed investigating composite likeli-

hood approaches, including the use of the AIC and BIC analogues for model aver-

aging (Claeskens and Hjort, 2008). The interested reader is referred to Varin et al.

(2011) for a detailed review.

2.3.1 Specialised models and applications

An early example of composite likelihood being used in practice is Besag (1974).

In this paper, the author analyses spatial models with variables in the model lying

on a lattice. Particular examples of such models include infection or yield studies

of plants, with each plant placed in the lattice structure. Conditional likelihoods

for each variable given its nearest neighbours were used to construct the surrogate

objective function, as in the example (2.27) and fig 2.3, to avoid the computational

challenges of constructing the full joint likelihood.
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An example of a marginal composite likelihood being used in practice is

Jöreskog and Moustaki (2001). Factor analysis is extended to the case of ordinal re-

sponse variables, with each value given a probability of occurrence conditioned on

the jointly normally distributed latent variables. One of their proposals is to replace

the data likelihood with the product of all univariate and bivariate marginal likeli-

hoods. These marginals are calculated using quadrature to integrate out the latent

factors, and the computational cost of doing this is the motivation for not using the

full data likelihood.

A more recent example is Vasdeskis et al. (2012), in which a random effects

model for ordinal longitudinal data is modelled to include latent variables for each

person / time point combination. They model data Y which can be indexed by

person, item, and time, i.e. Y = {Yj,i,t | j = 1, . . . ,n, i = 1, . . . , p, t = 1, . . . ,T}. To

reduce the computational complexity of inference they replace the full likelihood

with the product of all bivariate (over items and times) likelihoods, similarly to in

the example (2.28):

LC(θ | Y ) = ∏
( j,i,t),( j,i′,t ′)

P(Yj,i,t ,Yj,i′,t ′ | θ) (2.35)

One feature of composite likelihoods that can negatively affect their compu-

tational profiles is the number of components that they contain. The number of

bivariate marginals, for example, is quadratic in the size of the dataset. By choos-

ing which components are used in a controlled probabilistic manner, a trade-off

between computation time and statistical efficiency can be made. This idea is ex-

plored in Dillon and Lebanon (2010), and is discussed further in sec 2.6.2.2.

Remark Time series models offer an obvious method of defining the events {Ai |

i = 1, . . . ,k}. As the data in a time series model is by definition ordered by time,

it can easily be broken up over time. Breaking up the full data {Yj | j = 1, . . . ,T}

into sub-intervals Ai = {YIi| i = 1, . . . ,k} and taking the product of their likelihoods

as the composite likelihood provides a surrogate for the full likelihood that can, for
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models with other approximation methods available, be compared against bench-

mark methods.

Remark Papers in which composite likelihood and EM type methods are combined

are not uncommon, and include Liang and Yu (2003); Varin et al. (2005); Gao and

Song (2011). In Gao and Song (2011), the authors show that using EM in a com-

posite likelihood produces an algorithm that shares the convergence properties of

standard EM algorithms whilst having the reduced computational complexity of a

composite likelihood.

It should be noted that if any latent variable appears in more than one compo-

nent, then its expectation will differ in each component. The expectations in each

component are conditioned on the data in that component only, and as such the

optimal q∗ distributions will not be equal.

It should also be noted that without some form of conditional independence

structure between latent and observed variables, all latent variables would gener-

ally appear in all components. This can significantly increase the computational

complexity of evaluating each component likelihood. By introducing a Markov

structure to a model, where conditional independences allow most latent variables

to be trivially integrated out of each component likelihood, this problem is avoided.

Any remaining latent variables in each component can be integrated out via, for

example, taking expectations as in EM type algorithms or, if the dimension of the

latent variable is low in each component, as in Jöreskog and Moustaki (2001), then

quadrature is also an option. If the latent variables are modelled to have a Markov

structure then the problem reduces to integrating out only the parents for each com-

ponent likelihood. If each observed variable is modelled to have only few latent

parents, whose marginals are known or easy to calculate, then the computational

cost of evaluating the component likelihoods can be minimised.

In state space models (see sec 2.4.2 and chapter 3 sec 3.1), for example, if the
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latent process is modelled as a stationary Gaussian process then calculations will

be simplified massively. The marginal distribution of only the latent parents in a

component factor can be easily calculated analytically in this case, and used in the

calculation of each component likelihood.

2.4 Monte Carlo
Monte Carlo approximations are amongst the most widespread numerical integra-

tion techniques in current use, as they are generally easy to construct and can be

applied in almost all contexts. Furthermore, their approximation error goes to zero

as the number of samples use in the approximation increases, so given enough com-

puting resources and/or time to run they can be used to approximate almost any

quantity of interest. A thorough treatment of Monte Carlo methods can be found in

Rubinstein and Kroese (2011), and a condensed course covering most of the same

material is available in Kroese (2011).

As the running theme of the current thesis makes clear, computational con-

straints are often relevant in an applied context. This prevents Monte Carlo meth-

ods from being a panacea, as some intractable model structures can require a pro-

hibitive number of samples to achieve an acceptable approximation error. In such

cases Monte Carlo algorithms may not provide an optimal trade-off between com-

putational costs and statistical efficiency.

A Monte Carlo approximation is an estimate of the expected value of a function

of a random variable with a given distribution:

Monte Carlo approximation A Monte Carlo approximation to Eθ [ f (X)], the ex-

pected value of a function f of a random variable X distributed as P(X | θ), is the

sample mean of function values drawn either from P(X | θ) or from a sampling
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distribution q(X) that approximates P(X | θ):

Eθ [ f (X)]≈Êθ [ f ]

=
1
N

N

∑
i=1

f (X (i)) X (i) ∼ q(X), q(X)≈ P(X | θ) (2.36)

(2.37)

with approximations converging in distribution as the number of samples increases:

P̃N(X)→d P(X | θ) as N → ∞. When samples are drawn from the true dis-

tribution P(X | θ) then Êθ [ f ] is unbiased. The approximations are consistent:

Êθ [ f ]→ Eθ [ f (X)] as N → ∞. The variance of the approximation is var(Êθ [ f ]) =
1
N var( f (X)).

As f can be taken to be f = 1X (i)≤x, the distribution function Fθ (x) =

P(X ≤ x | θ) of one dimensional distributions and multi-dimensional generalisa-

tions Fθ (A) = P(X ∈ A | θ) can be estimated. The density function can therefore

be approximated by a weighted sum of Dirac delta functions centred at each sample:

f (x) =
d

dx
Fθ (x)≈

1
N

N

∑
i=1

δ (x−X (i)) (2.38)

Ideally the samples X (i) will be drawn from the distribution of interest, but

in general this cannot be guaranteed. Some common strategies for overcoming this

challenge are discussed in the following sections, but the topic of variance reduction

deserves a mention beforehand.

Variance reduction techniques are, as the name suggests, methods of reducing

the variance of Êθ [ f ]. Two commonly used methods are antithetic sampling and

control sampling (Kroese, 2011). Antithetic sampling is a method available for any

one dimensional distribution that is sampled using its inverse distribution function,
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i.e.

X (i) = F−1(U (i)) U (i) ∼ U(0,1) (2.39)

and simply involves taking both U (i,1) = U (i) and U (i,2) = 1−U (i) as samples for

each i. Both of the corresponding samples X (i,1),X (i,2) will have the same marginal

distribution but they will be negatively correlated, and if f is monotonic then so

will f (X (i,1)), f (X (i,2)). If each U (i) is drawn i.i.d from U(0,1) then the variance

of Êθ [ f ] (approximated from M = N
2 draws for comparative purposes) therefore

becomes:

var(Êθ [ f ]) =var

(
1
N

M

∑
i=1

(
f (X (i,1))+ f (X (i,2))

))
=

1
N

(
var( f (X))+ cov

(
f (X (i,1)), f (X (i,2))

))
≤ 1

N
var( f (X)) (2.40)

where the last line is in reference to the variance of the original Monte Carlo esti-

mate noted in the definition above. Antithetic sampling can be extended to elliptical

multivariate distributions with known mean vector µ by defining the antithetic sam-

ple to be X (i,2) = µ−X (i,1).

Control sampling is a related method to antithetic sampling, in that an extra

term correlated to only one sample is added to the sum of sampled function values,

but it can only be used in the restricted context of there being an additional func-

tion g(X) with known expected value and non-zero correlation with f (X). In this

context, the following estimator can be defined:

Êθ [ f ]∗ = αEθ [g(X)]+
1
N

N

∑
i=1

(
f (X (i))−αg(X (i))

)
(2.41)

and is trivially shown to have the expected value of interest. The variance of Êθ [ f ]∗
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is:

var(Êθ [ f ]∗) =
1
N

(
var( f (X))+α

2 var(g(X))−2α cov( f (X),g(X))
)

(2.42)

which can be minimised with respect to α:

α
∗ = argmin

α

var(E[ f ∗]) =
cov( f (X),g(X))

var(g(X))
(2.43)

giving an optimised variance of:

var(Êθ [ f ]∗) =
1
N

(
1−ρ

2 var( f (X))
)

(2.44)

where ρ = corr( f (X),g(X)) ∈ [−1,1].

If the values of cov( f (X),g(X)),var(g(X)) are not known then they can be

estimated from the samples. This method obviously relies heavily on the existence

of a function g with known mean and non-negligible correlation ccorr( f (X),g(X)),

so its utility cannot be universally exploited.

Where possible, either or both of antithetic sampling and control sampling

can be used in conjunction with the methods described below, particularly with

importance sampling. The following sections describe various methods for making

Monte Carlo estimates when the distribution of interest cannot be sampled from

directly.

The following sections refer to both a function whose expected value is of

interest and to the density function dP
dX . Conventional notation commonly denotes

both of these functions as f ; for clarity they will subsequently be denoted as:

• h(x): the function whose expected value Eθ [h(X)] is of interest.

• fθ (x): the density function fθ (x) of a distribution P(X | θ)

2.4.1 Importance Sampling

Importance sampling (Kroese, 2011) can be summarised as the use of samples from

a distribution other than the one of interest in a weighted sum that produces a consis-
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tent estimator. When the distribution of interest can be sampled from directly then,

if an appropriate importance distribution can be found, it is a method of variance

reduction.

It can also be used when the distribution of interest cannot be sampled from,

and it is in this context that is has relevance to the current thesis. All that is re-

quired to make consistent Monte Carlo estimates Êθ [h] ≈ Eθ [h(X)] using impor-

tance sampling is a) knowledge, up to a proportional constant, of the density func-

tion fθ (x) ∝ g(x) and b) an importance distribution that can be sampled from with

a known, up to a proportional constant, density function p(x) ∝ q(x), and whose

support contains that of fθ (x): fθ (x)> 0⇒ p(x)> 0 .

Approximating expectations under one distribution using samples drawn from

another rests on the following identity:

Eθ [h(X)] =
∫

fθ (x)h(x)dx

=
∫

p(x)
fθ (x)
p(x)

h(x)dx

=Ep

[
fθ (X)

p(X)
h(X)

]
≈ 1

N

N

∑
i=1

wih(X (i)) X (i) i.i.d.∼ p(X) (2.45)

where wi =
fθ (X (i))

p(X (i))
are known as importance weights.

If either or both of fθ (x), p(x) are only known up to a proportional constant,

i.e. fθ (x) ∝ g(x) or p(x) ∝ q(x), which is a common situation in practice, then using

normalised importance weights produces a biased but consistent estimator:

zi =
g(xi)

q(xi)

z̃i =
zi

∑i zi

=
wi

∑i wi
= w̃i

N

∑
i=1

w̃ih(X (i)) →
N→∞

1
N

N

∑
i=1

wih(X (i)) (2.46)
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Whilst the derivations (2.45), (2.46) are theoretically valid, in practice the re-

sults of using importance sampling can be varied. If the proposal distribution p(X)

does not share areas of high density with fθ then the importance weights can have

high variance. In an extreme example, if an area of supp p = {x : p(x) > 0} has

very low density under p but very high density under fθ then any finite sample

could possibly contain some (but probably not many) samples from this area, and

the weights of these samples would dominate the approximation Êθ [h].

This concept can be formalised with the notion of the effective sample size

associated with a given set of normalised importance weights wi. Defined as:

Neff =
1

∑i w2
i

(2.47)

we have Neff = N for the equal weighting wi = w j∀i, j and Neff→ 1 as the number

of negligible weights increases. The effect on the variance of Êθ [h] of a low Neff

can be illustrated with an (unrealistic) example where the importance weights are

fixed and such that Neff = M < N:

var(Êθ [h]) =varp

(
N

∑
i=1

wih(X (i))

)

=
N

∑
i=1

w2
i varp(h(X (i)))

=
1
M

varp(h(X)) (2.48)

which clearly increases as Neff ↓ 1. True normalised importance weights would

obviously co-vary with h(X) so (2.48) would not strictly hold, but it still serves an

illustrative purpose.

2.4.2 Particle filters

Particle filters are a form of Monte Carlo approximation to the posterior distribution

of latent variables in a state space model. State space models are described in

more detail in sec 4, but they can be quickly described as time series models with

a Markov latent process {Xt}T
t=1 and observations {Yt}T

t=1 at each time that are
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conditionally independent given the latent process:

X1 ∼P(X1 | θ)

Xt | X1:t−1 ∼ Xt | Xt−1 ∼P(Xt | Xt−1,θ) t ∈ 2, . . . ,T

Yt | X1:T ∼ Yt | Xt ∼P(Yt | Xt ,θ)

(Yt1 ⊥ Yt2) | X1:T 1≤ t1, t2 ≤ T (2.49)

where the colon in subscripts t1 : t2 indicates the interval of time periods t1, . . . , t2.

The latent process takes values in some space X, and observations take values in

some space Y. All distributions in (2.49) are assumed to have density functions

fθ (x1), fθ (xt | xt−1) , fθ (yt | xt).

Common objects of inferential interest in the state space model are the se-

quence of filtered distributions:

P(Xt | Y1:t ,θ) t ∈ 1, . . . ,T (2.50)

and the smoothed distributions:

P(Xt | Y1:T ,θ) t ∈ 1, . . . ,T (2.51)

and estimating either of these has computational complexity that, without the mod-

elled Markov property of the latent process, increases exponentially with T , the

number of observations.

The Markov property of the latent process allows the filtered distributions

P(Xt | Y1:t) for t ∈ 1, . . . ,T to be estimated with a cost that is linear in T . This

can be seen from the graphical representation of the state space model, shown in fig

2.4. The graph, when moralised (see sec 2.5.1.2 for a definition), is clearly a tree, so

message passing algorithms to calculate both the filtered and smoothed distributions

can be constructed.

Calculating the filtered distributions can be achieved via a two-stage recursive
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X1

Y1

X2

Y2

X3

Y3

XT

YT

Figure 2.4: The directed graph of the state space model. Observed variables are shaded
grey, dashed line indicates repeated pattern until t = T .

procedure, which is composed of a prediction step:

fθ (xt | Y1:t−1) =
∫

fθ (xt−1 | Y1:t−1) fθ (xt | xt−1)dxt−1 (2.52)

that makes use of the filtered distribution at the previous time point. After this there

is an update step:

fθ (xt | Y1:t) =
fθ (xt | Y1:t−1) fθ (Yt | xt)∫

fθ (xt | Y1:t−1) fθ (Yt | xt)dxt

=
fθ (xt | Y1:t−1) fθ (Yt | xt)

fθ (Yt | Y1:t−1)
(2.53)

Furthermore, if the quantities in the denominator of the right hand side of (2.53) are

stored then the data likelihood can also be calculated:

L(θ | Y1:T ) = fθ (Y1)
T

∏
t=2

fθ (Yt | Y1:t−1) (2.54)

where

fθ (Y1) =
∫

fθ (x1) fθ (Y1 | x1)dx1 (2.55)

The smoothed distributions are calculated by passing messages back again

from time T to the beginning. Similarly to how the conditioning on previous obser-

vations can be passed through messages to later variables, passing the conditioning

on all data is achieved via another two-stage process. Giving the same names to the

two steps as for the filtering procedure for purposes of analogy, we first define the
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‘predict‘ step:

fθ (xt | Y1:t ,xt+1) =
fθ (xt | Y1:t) fθ (xt+1 | xt)∫

fθ (xt | Y1:t) fθ (xt+1 | xt)dxt
(2.56)

which further conditions Xt on Xt+1. Next the ‘update’ step:

fθ (xt | Y1:T ) =
∫

fθ (xt | Y1:t ,xt+1) fθ (xt+1 | Y1:T )dxt+1 (2.57)

passes on the conditioning on all data from Xt+1 to Xt .

When all variables are continuous, the predict and update steps in both the

filtering and smoothing procedures can only be calculated analytically if all dis-

tributions in (2.49) are linear-Gaussian. In this context they are known together

as the Kalman filter and smoother. Deterministic approximations, for example the

extended Kalman filter (EKF) (Jazwinski, 1970) and the unscented Kalman filter

(UKF) (Julier and Uhlmann, 2004), can be made in other state space models but

they are not particularly effective for models that are highly non-linear and/or non-

Gaussian.

A more general framework for filtering and smoothing makes use of a sam-

pling construct known as a particle. A particle is a sample that propagates stochas-

tically according to the dynamics of a state space model, and represents a single

trajectory through the state space. Early particle based methods developed in a va-

riety of fields, including computational physics, molecular chemistry, and genetics.

Their statistical foundations were not researched until relatively recently though,

beginning with Del Moral (1996). Further foundational research into methodology

and the theoretical properties particle methods followed quickly after, for example

Crisan and Lyons (1997, 1999); Del Moral and Guionnet (1999b, 2001, 1999a).

Research into theoretical properties and methodological practices has con-

tinued ever since. Developing methodologies include adaptive particle filters

(Del Moral et al., 2012), backward methods (Del Moral et al., 2010a), and island

type methods (Vergé et al., 2015).

A particle filter conditions particles on each new observation as they propagate,
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and approximates the sequence of filtered distributions {Xt | Y1:t}T
t=1. Smoothed

distributions can also be approximated using particle methods, a detailed description

of some algorithms follows in sec 2.4.2.3. When the dimension of the state space

is low, as discussed in sec 2.4.2.4, then particle methods can be effective at applied

filtering and smoothing tasks. They are used in a variety of applied fields, including

target tracking and positioning (Zhou et al., 2004; Gustafsson et al., 2002; Zhang

et al., 2013), data fusion (Khaleghi et al., 2013; Castanedo, 2013), and finance (Chib

et al., 2006; Aihara et al., 2009).

2.4.2.1 Sequential importance sampling

In general the conditional distributions X1 | Y1,θ and Xt | Xt−1,Yt ,θ for t ∈ 2, . . . ,T

cannot be sampled from directly, and a common method of overcoming this is to use

a recursive form of importance sampling known as sequential importance sampling.

Sequential importance sampling makes use of proposal distributions and nor-

malised importance weights, similarly to regular importance sampling. The pro-

posal distributions q(Xt | Xt−1,Yt) can be considered to represent, in some heuristic

sense, the prediction step of the filtering procedure, and calculating the importance

weights similarly represents the updating step. The importance weights are calcu-

lated recursively such that estimated quantities are asymptotically unbiased:

w(i)
t ∝

∏
t
τ=1 fθ (X

(i)
τ | X

(i)
1:τ−1,Y1:τ)

∏
t
τ=1 q(X (i)

τ | X
(i)
τ−1,Yτ)

=
∏

t
τ=1 fθ (X

(i)
τ | X

(i)
τ−1,Yτ)

∏
t
τ=1 q(X (i)

τ | X
(i)
τ−1,Yτ)

∝ w(i)
t−1

fθ (X
(i)
t | X

(i)
t−1) fθ (Yt | X (i)

t )

q(X (i)
t | X

(i)
t−1,Yt)

(2.58)

If the prior transition distribution is used as the proposal distribution, q(Xt |X (i)
t−1,Yt)=

P(Xt | X (i)
t−1,θ), then recursive update simplifies to:

w(i)
t ∝ w(i)

t−1 fθ (Yt | X (i)
t ) (2.59)
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2.4.2.2 Sequential importance resampling

Though the prior will generally be relatively easy to sample from, and is indeed a

popular choice of proposal distribution, it will not necessarily be an effective choice.

A poor proposal distribution will produce samples with a low effective number of

particles Neff, see sec 2.4.1 for details, and a correspondingly high variance. A

common method (Del Moral et al., 2012) of overcoming this is to re-sample the

particles at time t according to the importance weights whenever Neff falls below a

given threshold Nmin:

Neff < Nmin⇒X∗(i)t
i.i.d.∼ Rt

X (i)
t ←X∗(i)t (2.60)

where Rt is a distribution over the collection of original particles {X (i)
t }N

i=1, giving

re-sampling probability mass equal to the weights w(i)
t :

P
(

X∗(i)t = X ( j)
t

)
=w( j)

t

(2.61)

and after re-sampling, each importance weight is reset such that they are all equal:

w(i)
t ←

1
N

∀i (2.62)

The method described above is summarised in algorithm 2.3. If, after running

a particle filter using this method, particles are persistently being re-sampled then

the utility of the chosen proposal distribution should be questioned.

Some authors recommend an enforced re-sampling regime, where re-sampling

is performed at every time step and the entire particle paths up to time t are re-
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Algorithm 2.3 Particle filter with sequential importance re-sampling

1. Sample N particle values X (i)
1 for t = 1 from a proposal distribution q(X1)

and calculate importance weights:

w(i)
1 ∝

fθ (X
(i)
1 | Y1)

q(X (i)
1 )

(2.63)

For each t ∈ 2, . . . ,T :

{

2. Sample each particle value X (i)
t from a proposal distribution

q(Xt | X (i)
t−1,Yt) and calculate importance weights:

w(i)
t ∝ w(i)

t−1
fθ (X

(i)
t | X

(i)
t−1) fθ (Yt | X (i)

t )

q(X (i)
t | X

(i)
t−1,Yt)

(2.64)

3. Calculate the effective number of particles:

Neff =
1

∑i w(i)2
t

(2.65)

4. If Neff is below the threshold Nmin then re-sample particles according to
their importance weights, and reset the weights:

Neff < Nmin⇒X∗(i)t
i.i.d.∼ Rt

X (i)
t ←X∗(i)t

w(i)
t ←

1
N

(2.66)

}
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sampled according to Rt :

Neff < Nmin⇒X∗(i)1:t
i.i.d.∼ Rt

X (i)
1:t ←X∗(i)1:t

w(i)
t ←

1
N

(2.67)

Such a regime implements a smoothing of the approximate distributions of previous

time points on all currently available data, i.e. after re-sampling at time t, the par-

ticle values {X (i)
τ }N

i=1 for τ < t approximate the smoothed distributions P(Xτ |Y1:t).

This would be desirable, except that the re-sampling at each time point compounds

on itself and results in a phenomenon known as particle degeneracy. This is where

the particle approximations to the smoothed distributions Xτ | Y1:t for all but the

most recent times τ have only one unique value. An example of particle degeneracy

is shown in fig 2.5.

Figure 2.5: An illustrative example of particle degeneracy. Each line represents a particle
path when the whole path of each particle is re-sampled at each time point. The
repeated re-sampling results in approximate distributions containing only one
unique value for all but the most recent time points.
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2.4.2.3 Smoothing

Alternative methods of particle based smoothing that don’t suffer from degener-

acy have been developed in recent years. A popular family of these are known as

forward-backward methods, which proceed through the filtering process as above

and then use various approximations to the smoothing messages described previ-

ously in sec 2.4.2.

Two of the more popular variants will be described here, illustrating the trade-

off between estimator variance and computing complexity. The first is known as

forward-filtering backward-sampling (Godsill et al., 2004; Douc et al., 2009), and

produces a new set of particle paths {X̃ (i)
1:T}N

i=1 which approximate the smoothed

distribution X1:T | Y1:T ,θ . The new paths are produced in backward time, and are

generated by re-sampling from the filtered distributions at each time t according to

probabilities conditioned on the new particle’s value at time t +1.

As particles are re-sampled at all time points, all weights are equal; w(i)
t1 =

w( j)
t2 = 1

N ∀i, j ∈ 1, . . . ,N and t1, t2 ∈ 1, . . . ,T . For each smoothed particle X̃ (i)
t+1 at

time t + 1, its particle value at time t is sampled from the set of filtered particles

at time t with probabilities that approximate the conditional structure of the true

smoothed distributions:

P(Xt:t+1 | Y1:T ,θ) = P(Xt | Y1:t ,Xt+1,θ)P(Xt+1 | Y1:T ,θ) (2.68)

by approximately sampling from

P(Xt | Y1:t ,Xt+1,θ) =
P(Xt | Y1:t ,θ)P(Xt+1 | Xt ,θ)∫
P(Xt | Y1:t ,θ)P(Xt+1 | Xt ,θ)dXt

(2.69)

as per (2.56). This approximate sampling is achieved by using the particle approxi-

mations to the distributions in (2.69):

P
(

X̃ (i)
t = X ( j)

t | X̃ (i)
t+1

)
=

w( j)
t fθ

(
X̃ (i)

t+1 | X
( j)
t

)
∑

N
k=1 w(k)

t fθ

(
X̃ (i)

t+1 | X
(k)
t

) (2.70)

This procedure of sampling the value of each particle path in backward time
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Algorithm 2.4 Forward-filtering backward-sampling

1. Produce a sequence of particle approximations {X (i)
t ,w(i)

t }T
t=1 to

P(Xt | Y1:t ,θ)) as per algorithm 2.3.

2. Re-sample X̃ (i)
T from X (i)

T ∼i.i.d.RT and reset w(i)
T ←

1
N ∀i.

For each t ∈ T −1, . . . ,1:

3. For each particle X̃ (i)
t+1, sample its value at time t from {X ( j)}N

j=1 with
probabilities as per (2.70):

P(X̃ (i)
t = X ( j)

t | X̃ (i)
t+1) =

w( j)
t fθ

(
X̃ (i)

t+1 | X
( j)
t

)
∑

N
k=1 w(k)

t fθ

(
X̃ (i)

t+1 | X
(k)
t

) (2.71)

and reset w(i)
t ← 1

N ∀i.

by conditioning on its next value in forward time produces, after sampling the par-

ticle values for t = 1, a set of N particle paths that approximate the joint smoothed

posterior P(X1:T | Y1:T ,θ). The computational cost is O(N2T ), i.e. it increases

quadratically with the number of particles. If all particles are re-sampled in the fil-

tering procedure then this can be reduced to O(NT ), but as this itself costs O(N)

per time step the total cost grows similarly either way.

One alternative, but related, method is forward-filtering backward-smoothing

(Doucet et al., 2000), which produces a sequence of approximate smoothed

marginals {P(Xt | Y1:T ,θ)}T
t=1. Rather than re-sampling from the filtered particles

at time t, particles are re-weighted using the updated weights of all particles at time

t +1. The cost of such re-weighting is O(N2T ).

By using all particles at time t+1 to re-weight every particle at time t, the vari-

ance of estimated quantities is reduced as compared to forward-filtering backward-

sampling. This variance improvement comes at the cost of losing estimates of

P(X1:T | Y1:T ,θ), the joint distribution over all time of the smoothed distributions.

Prior to each re-weighting, the pairwise approximate smoothed marginals P(Xt:t+1 |

Y1:T ,θ) are available, so expectations of time-pairwise functions E[h(Xt ,Xt+1)] can
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be calculated. Expectations of functions of latent variables with greater time lags

cannot though.

To illustrate the principles of forward-filtering backward-smoothing, first as-

sume that X (i)
t+1∼approx.P(Xt+1 | Y1:T ,θ) has already been re-weighted with weights

w̃(i)
t+1. Note that X (i)

T ∼approx.P(XT | Y1:T ,θ) by construction of the filtering proce-

dure so we set

w̃(i)
T ←w(i)

T (2.72)

The re-weighting of the particles at time t is constructed such that the particles

at each time approximate the marginal posterior P(Xt | Y1:T ,θ) defined recursively

as per (2.57) by:

fθ (xt | Y1:T ) =
∫

fθ (xt | Y1:t ,xt+1) fθ (xt+1 | Y1:T )dxt+1

≈
N

∑
j=1

fθ

(
xt | Y1:t ,X

( j)
t+1

)
w̃( j)

t+1 (2.73)

where the conditional densities in (2.73) are for the distributions (2.69) in the

forward-filtering backward-sampling procedure described above. The approach

taken to approximating to P(Xt | Y1:t ,Xt+1,θ) by the forward-filtering backward-

smoothing procedure differs here though; rather than re-sampling using the approx-

imate probabilities in (2.70) and resetting their weights, the particles and weights

from the filtering procedure are substituted into the right hand side of (2.69):

fθ

(
xt | Y1:t ,X

( j)
t+1

)
=

fθ (xt | Y1:t) fθ

(
X ( j)

t+1 | xt

)
∫

fθ (xt | Y1:t) fθ

(
X ( j)

t+1 | xt

)
dxt

≈
N

∑
i=1

 w(i)
t fθ

(
X ( j)

t+1 | X
(i)
t

)
∑

N
k=1 w(k)

t fθ

(
X ( j)

t+1 | X
(k)
t

)
δ (xt−X (i)

t ) (2.74)
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Inserting (2.74) into (2.73) gives:

fθ (xt | Y1:T )≈
N

∑
i=1

N

∑
j=1

 w(i)
t fθ

(
X ( j)

t+1 | X
(i)
t

)
w̃( j)

t+1

∑
N
k=1 w(k)

t fθ

(
X ( j)

t+1 | X
(k)
t

)
δ (xt−X (i)

t ) (2.75)

which implies the following update rule for weights w(i)
t :

w̃(i)
t ←

N

∑
j=1

 w(i)
t fθ

(
X ( j)

t+1 | X
(i)
t

)
w̃( j)

t+1

∑
N
k=1 w(k)

t fθ

(
X ( j)

t+1 | X
(k)
t

)
 (2.76)

Algorithm 2.5 Forward-filtering backward-smoothing

1. Produce a sequence of particle approximations {X (i)
t ,w(i)

t }T
t=1 to

P(Xt | Y1:t ,θ)) as per algorithm 2.3.

2. Set w̃(i)
T ← w(i)

T ∀i.

For each t ∈ T −1, . . . ,1:

3. Re-weight the filtered particles {X (i)
t }N

i=1 according to (2.76):

w̃(i)
t ←

N

∑
j=1

 w(i)
t fθ

(
X ( j)

t+1 | X
(i)
t

)
w̃( j)

t+1

∑
N
k=1 w(k)

t fθ

(
X ( j)

t+1 | X
(k)
t

)
 (2.77)

Other particle based smoothing algorithms have been developed (Briers et al.,

2010; Fearnhead et al., 2010), in particular generalised two-filter approaches. These

algorithms have similar computational costs to forward-backward methods and can

sometimes produce estimates Êh with superior variance properties, but are also

generally more challenging to derive.

2.4.2.4 Convergence

Asymptotic results for the particle filtering and smoothing procedures described

above have been published (see Crisan and Doucet (2002); Del Moral (2004); Poyi-

adjis et al. (2011) among others). For particle approximations to the filtered distri-

butions, convergence of Êθ [h] for bounded test functions h : XT → [−1,1] is with
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√
N:

E
[∥∥∥∥∫ h(x1:T )

(
fθ (x1:T | Y1:T )− f̂θ (x1:T | Y1:T )

)
dx1:T

∥∥∥∥p] 1
p

≤
Aθ ,T,p

N
1
2

(2.78)

where f̂θ (x1:T |Y1:T ) is the particle approximation to fθ (x1:T | Y1:T ) and Aθ ,T,p < ∞

is a constant with respect to N parametrised by its indices. For both of the smoothing

procedures presented here, it can be shown (Del Moral et al., 2010a,b; Douc et al.,

2009) that the variance of estimated smooth additive functionals

Ê[ST ]≈
∫

ST (x1:T ) fθ (x1:T | Y1:T )dx1:T (2.79)

where

ST (x1:T ) =
T−1

∑
t=1

st(xt:t+1) (2.80)

is bounded:

var(Ê[ST ])≤ Bθ

T
N

(2.81)

for some Bθ < ∞.

It is unfortunately the case that both of the constants Aθ ,T,p,Bθ explode with

the dimension of X, which leaves particle methods currently restricted to state space

models with low dimensional state spaces.

2.4.3 Markov chain Monte Carlo

Possibly the most widespread of all Monte Carlo methods is known as Markov

chain Monte Carlo (MCMC). MCMC algorithms can be used when the distribution

of interest has known (up to a proportionality constant) density function, but cannot

be sampled from directly. Instead, samples are drawn from a Markov chain designed

to have the distribution of interest as its stationary distribution. As more samples

are drawn from the chain, their distributions approximate the distribution of interest

ever more closely, and estimates Êθ [h] converge to their true values.
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A (time-homogeneous) Markov chain is a sequence of distributions defined on

a space X with the (first order) Markov property:

P(Xt+1 | X1:t) = P(Xt+1 | Xt) (2.82)

such that P(Xt1+1 | Xt1) = P(Xt2+1 | Xt2) ∀ t1, t2 is constant over time. Under certain

conditions a Markov chain can have a stationary distribution π(X), such that if

X1 = π(X) then all marginal distributions Xt will share the distribution:

f1(x1) = π(x1)⇒ ft(xt) =
∫

ft−1(xt−1) f (xt | xt−1)dxt−1

=
∫

π(xt−1) f (xt | xt−1)dxt−1

=π(xt) (2.83)

A sufficient condition for a Markov chain to have a stationary distribution is for

it to be reversible, which means that finite dimensional distributions do not depend

on the direction of time. Formally:

Reversible Markov chain A Markov chain in equilibrium is reversible if, for all

n, t1, . . . , tn,τ:

P(Xt1, . . . ,Xtn) = P(Xτ−t1, . . . ,Xτ−tn) (2.84)

and this property can be equivalently expressed in the form of detailed balance

equations:

π(x) f (x′ | x) = π(x′) f (x | x′) x,x′ ∈ X (2.85)

thus being in equilibrium is equivalent to the marginal distribution at all times being

equal to π . Any distribution π that solves the detailed balance equations will be a
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stationary distribution for the Markov chain in question.

A Markov chain is ergodic if all states are aperiodic and positive recurrent;

expected return times are finite for all states. If the Markov chain is ergodic then it

has a unique stationary distribution π(X), and from an arbitrary initial distribution

P(X1), the marginal distributions P(Xt) converge to π(X):

ft(x) =
∫

ft−1(xt−1) f (x | xt−1)dxt−1

→dπ(x) as t→ ∞ (2.86)

By constructing an ergodic Markov chain with the distribution of interest as

its stationary distribution, samples drawn from each conditional distribution in the

chain will approximate samples drawn from the distribution of interest ever more

closely.

The well known and popular Metropolis-Hastings (Metropolis et al., 1953;

Hastings, 1970; Rubinstein and Kroese, 2011) algorithm draws samples condition-

ally from distributions conditioned on the last sample, and accepts them with prob-

ability constructed to conform to detailed balance equations:

X̃t+1 ∼q(X̃t+1 | Xt)

Xt+1 =

 X̃t+1 : P(Xt+1 = X̃t+1) = min
(

1, π(X̃t+1)q(Xt |X̃t+1)
π(Xt)q(X̃t+1|Xt)

)
Xt : P(Xt+1 = Xt) = 1−P(Xt+1 = X̃t+1)

(2.87)

where π(X) is the distribution of interest. The resulting Markov chain is ergodic, so

the distribution of samples at each step converges to π(X). As π appears in both the

numerator and denominator of the acceptance probability in (2.87), it only needs

to be known up to a constant of proportionality. This can be particularly useful if

samples from a conditional distribution P(X | Y ) are required, but only the joint

distribution P(X ,Y ) is known.

In practice, the first n samples are often discarded, as convergence to π cannot

be observed and drawing X1 from a region of high π density cannot be assumed.

These n samples are known as the burn in, and n is often chosen heuristically or
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arbitrarily.

As the samples {Xt} are clearly correlated, it could be argued that the variance

over estimates Êθ [h] might become significantly inflated if all samples are used.

This has been shown (Geyer, 1992; MacEachern and Berliner, 1994) to be a spu-

rious argument, however. Some authors do recommend the use of sub-sampling in

the case of making variance estimates though. This involves using only every ith

sample, where the lag i empirical auto-correlation ρ̂i is negligible:

X∗j =Xn+i j j = 1, . . . , Ñ =

⌊
N−n

i

⌋
Êθ [h] =

1
Ñ

Ñ

∑
j=1

h(X∗j ) (2.88)

Algorithm 2.6 Metropolis-Hastings

1. Draw X1 ∼ q1(X1) with supp(q1) = supp(π).

2. For t ∈ 2, . . . ,n+1:

(a) Draw X̃t+1 ∼ q(X̃t+1 | Xt) and accept with probability as in (2.87):

Xt+1 =

{
X̃t+1 : P(Xt+1 = X̃t+1) = min

(
1, π(X̃t+1)q(Xt |X̃t+1)

π(Xt)q(X̃t+1|Xt)

)
Xt : P(Xt+1 = Xt) = 1−P(Xt+1 = X̃t+1)

(2.89)

3. Discard {Xt}n
t=1. Restart time index: X1← Xn+1

4. For t ∈ 2, . . . ,N:

(a) Draw X̃t+1 ∼ q(X̃t+1 | Xt) and randomly accept as in step 2a.

The Metropolis-Hastings algorithm is summarised in algorithm 2.6. In theory,

any conditional distribution q(x | x′) with supp(q(x | x′)) = supp(π(x)) can be used

as a proposal distribution, but if most proposed new samples X̃t+1 are rejected then

samples will both be highly correlated and move slowly through the sample space.

Many samples would therefore be needed for estimates Êθ [h] to have low variance.

Even if most proposed new samples are accepted, if they are always very close to
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their conditioning sample then they will still move slowly through the sample space,

and many samples would be needed for estimates to have low variance. Markov

chains constructed as above suffering from this pathology are said to be slow mixing.

Optimising the proposal distributions with respect to mixing speed is a current

area of active academic research. Innovations such as Langevin adjusted MCMC

(Roberts and Tweedie, 1996; Atchadé, 2006), Hamiltonian MCMC (Duane et al.,

1987; Neal, 1993; Livingstone et al., 2016), and Riemannian MCMC (Girolami and

Calderhead, 2011; Fraccaro et al., 2016) are very promising. The performance of

MCMC algorithms, in particular in high dimensional settings, is improving rapidly.

A particular form of Metropolis-Hastings MCMC known as Gibbs sampling

(Geman and Geman, 1984) has acceptance probability 1, and draws a sample from

each dimension i of the m dimensional target distribution in turn from their condi-

tional distributions

Xn+1,i ∼ πi|\i(Xn+1,i | Xn+1,1, . . .Xn+1,i−1,Xn,i+1, . . . ,Xn,m) (2.90)

where

πi|\i(Xi | X\i) =
π(X)∫

π(X)dxi
(2.91)

is the conditional distribution Xi | X\i implied by the target distribution π(X).

Approximating distributions using MCMC is a general method that can be

widely applied and can be arbitrarily accurate. Furthermore, research providing im-

provements to the computational costs does not appear to be tailing off. Whilst the

progress made on improving MCMC algorithms is both exciting and fruitful, cur-

rent algorithms can suffer slow run and/or development times, and are still some-

what vulnerable to the curse of dimensionality. Alternative methods of approximat-

ing inference, including those investigated in the current thesis, remain essential

components of computational statistics as a whole.
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2.5 Message passing in graphical models

This section is going to describe the graphical model approach to model description,

message passing on trees and approximate extensions to graphs with cycles. The

example of belief propagation is used to illustrate the principles of message passing.

Belief propagation on trees, defined in sec 2.5.1.1 below, can produce exact infer-

ence when the prescribed sums or integrals are tractable. As such is not directly

relevant to the current thesis, but the approximation methods used for graphs with

cycles are most easily described after having described the tree based method first.

Message passing is a general method for reducing the computational burden

of inference on models whose variables have a known conditional independence

structure. It is a concept that is exploited throughout the current thesis, particularly

so in chapter 3. Many calculations of interest in statistical inference require the

joint distribution over all variables to be summed or integrated over many of those

variables, as required for latent variable models for instance. This is a task that, if

performed naively, clearly has exponentially increasing computational complexity

in the size of the variable set.

In general, the focus of the current thesis is on models with continuous random

variables. The current section will focus on models with discrete variables, as that

is the context in which much of the content developed. The concepts can transferred

to the continuous setting by simply replacing sums with integrals, assuming that the

integrals in question can be calculated.

Conditional independences can significantly reduce the computational burden

though. They allow quantities that are notionally a function of all variables to be

decomposed as a product of component functions. As such, sums or integrals over

many variables can be decomposed into components of much lower dimension. The

way these components interact with each other can be determined by the application

in question, and in general this will be through the value of auxiliary functions

known as messages.

Message passing is any iterative procedure that updates the value of these mes-

sage as a function of the current value of the other messages, until all messages have
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converged to a stationary point. In its classic formulation for exact computations,

e.g. Pearl (1988), it is essentially a type of dynamic programming. Either these

converged messages themselves, or easily computable functions of them, will re-

turn the quantities of inferential interest. In general these messages will require

significantly less computation time than a naive attempt at summing or integrating

out the unneeded variables.

To clarify the above description, it is necessary to employ a formalism for

describing the conditional independence structure of a statistical model. A common

and effective choice of formalism is the graphical model. It is first useful though,

to quickly define what is meant by conditional independence:

Conditional independence Two sets of variables, X and Y , are conditionally in-

dependent given a third set of variables, Z, if their joint conditional probability

factorises between them:

P(X ,Y | Z) = P(X | Z)P(Y | Z) (2.92)

or, equivalently,

P(X | Y,Z) = P(X | Z) (2.93)

and is denoted

(X ⊥ Y ) | Z (2.94)

This definition extends to multiple sets of variables. Suppose, for example, that
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a joint distribution over the sets of variables A,B,C,D can be factorised as follows:

P(A,B,C,D) =P(A)P(B | A)P(C | A,B)P(D | A,B,C)

=P(A)P(B | A)P(C | A)P(D |C) (2.95)

then the following conditional independence relationships are implied:

(B⊥C) | A

(A⊥ D) |C

(B⊥ D) |C

(B⊥ D) | A (2.96)

More generally, a joint distribution may be factorised into factors that are not

necessarily conditional distributions, for example the distribution of a collection V

of variables might be factorised:

P(V =V ′) =
1
Z

C

∏
i=1

fi(Si = S′i) Si ⊂V, i = 1, . . . ,C (2.97)

where the fi are non-negative functions and Z is a normalisation constant enforcing

the constraint ∑V=V ′P(V ′) = 1. Such a factorisation still encodes the conditional

independences of the distribution, which can be decoded with a graphical model.

2.5.1 Graphical models

A powerful method of describing conditional independences between variables with

a given joint distribution is to use graphs. Graphs are mathematical objects that

encode pairwise relations between a discrete set of objects. Formally, a (undirected)

graph is defined as:

Undirected graph An undirected graph G is an ordered pair (V,E) of a set of

nodes v ∈ V and edges (u,v) ∈ E ⇒ u,v ∈ V between them. A sub-graph G′ =

(V ′ ⊂V,E ′ ⊂ E) s.t. (u,v) ∈ E ′⇒ u,v ∈V ′ is a subset of the nodes in G with some
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of their edges from G. An induced sub-graph G′ = (V ′ ⊂ V,E ′ ⊂ E) s.t. u,v ∈

V ′,(u,v) ∈ E⇒ (u,v) ∈ E ′ is a subset of nodes in G with all of their edges from G.

If two nodes share an edge then they are said to be neighbours, and the set of

neighbours of a given node v is denoted N(v):

u ∈ N(v)⇔ (u,v) ∈ E (2.98)

An undirected graphical model represents the factorisation structure of a joint

distribution in the form of an undirected graph:

Undirected graphical model An undirected graphical model of a joint distribu-

tion P(V ) over variables v∈V is a graph G = (V,E) where an edge (u,v)∈ E exists

between variables u and v if and only if they share a factor in P. For clarity, it is as-

sumed that factors cannot be further factorised. Equivalently, if a joint distribution

P(V ) can be maximally factorised as:

P(V ) =
C

∏
i=1

fi(Si) Si ⊂V, i = 1, . . . ,C (2.99)

where a maximal factorisation is such that it cannot be further factorised:

@{ fi, j(Si, j)}Ci
j=1 : fi(Si) =

Ci

∏
j=1

fi, j(Si, j) Si, j ⊂ Si, i = 1, . . .C, j = 1, . . . ,Ci

(2.100)

then (Lauritzen, 1996)

(u,v) ∈ E⇔∃ 1≤ i≤C : u,v ∈ Si (2.101)
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If a subset S ⊂V of variables is fully connected, i.e. all of them have an edge

with all of the others, then S is known as a clique. If S is not properly contained in

any other clique then it is known as a maximal clique. The maximal cliques of a

graph imply a minimal factorisation; the joint distribution will factorise according

to the maximal cliques, and those factors may themselves factorise further.

It is common to represent a graph G = (V,E) graphically, with nodes v ∈ V

placed inside circles and an edge drawn between nodes u and v if (u,v) ∈ E. The

graphical model representing the conditional independences in (2.95) is shown in

fig 2.6.

A

B

C

D

Figure 2.6: Graphical representation of the conditional independences in (2.95)

A valuable feature of graphical models is that they can clarify if any additional

conditional independence statements are implied by a given set of conditional inde-

pendences. First define a path from node u to node v as a sequence of edges, each

of which shares a node with adjacent edges in the sequence, that starts at node u and

ends at node v, for example

(u,x)→ (x,y)→ (y,z)→ (z,v) (2.102)

would be a path from u to v that goes through nodes x,y,z. Two (sets of) nodes A,B

are conditionally independent given another (set of) node(s) C if no path between

A and B exists that does not go through C. From the graphical model in fig 2.6

therefore, it is easily seen that the factorisation (2.95) implies (B⊥D) |A in addition

to the conditional independences in (2.96). Graphical models provide a powerful

method for determining all of the conditional independences implied by a given

factorisation.
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2.5.1.1 Trees

If a given undirected graph G has the property that for all nodes v ∈V , no path that

starts and ends at v exists that has no repeated edges, then G is known as a tree. The

nodes on a tree that are connected to only one other node are known as leaves.

Tree A graph G is a tree if all paths that start and end at the same node contain at

least one repeated edge.

A graph that is not a tree is known as a graph with cycles. Trees have various unique

properties, one of which is the fact that any two nodes are connected by precisely

one path. A related property is that if any one edge is removed from a tree then

there will be two disconnected components, both of which are trees.

These properties in particular are very useful in message passing algorithms,

and allow their results to be exact. Message passing can still be conducted on graphs

with cycles, see sec 2.5.3 below, but any algorithm that uses it will only produce

approximate results.

2.5.1.2 Directed graphs

A directed graph G = (V,D) is a graph whose edges (u→ v) ∈D are directed from

one of their nodes to the other. The source of the arrow is known as the parent

and its target is known as the child. Directed graphs can be used in the context

of graphical models in the form of a Directed Acyclic Graph, or DAG. A directed

graph is acyclic if no directed path, i.e. a path that always travels in the direction of

its component edges, exists that starts and stops at the same node.

A given factorisation of a joint distribution can be represented as a DAG when

each factor contains only a node and its parents. A joint distribution that is rep-

resented by an undirected graph is commonly known as a Markov Random Field

(MRF), and one represented by a DAG is commonly known as a Bayesian network.

Fig 2.7 shows the directed graph of (2.95). Determining the conditional inde-

pendence relationships in a joint distribution from a DAG is slightly more compli-



2.5. Message passing in graphical models 73

A

B

C

D

Figure 2.7: Directed graphical representation of the conditional independences in (2.95)

cated than from an undirected graph, as the directions of each edge in a path need to

be taken into account, but a given DAG has an equivalent undirected graph. A given

DAG G = (V,D) can be converted into its equivalent undirected graph G′ = (V,E)

by moralising it. Moralising is achieved by converting all directed edges into undi-

rected ones, and adding an undirected edge between each pair of parents that share

a common child, i.e. G′ = (V,E), where

(u→ w) ∈ D⇒ (u,w) ∈ E

(u→ w),(v→ w) ∈ D⇒ (u,v) ∈ E (2.103)

As every DAG has an equivalent undirected graph, it is simpler for the following

exposition to exclusively focus on undirected graphs.

2.5.2 Belief propagation

Given a graphical model G = (V,E) of a joint distribution P(V ), it is a common

task to try and find the marginal distribution of some subset S ⊂ V of variables. If

all variables are discrete then this task can naively be completed by summing out

the other variables:

P(S = S′) = ∑
V ′ :S=S′

P(V =V ′) (2.104)

where S′,V ′ are vector-valued realisations of the variable vectors S,V respectively.

For the case of continuous variables sums can simply be replaced by integrals.

This operation clearly has exponential computational complexity in the number

of nodes, so it is not a practical foundation for finding marginal distributions for

tree structured models. A popular framework with linear complexity in the number
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of nodes that uses message passing to find the marginals of tree structured joint

distributions is known as belief propagation. For ease of exposition, the following

description focusses on the case of finding the marginal distribution of a single

variable but it is trivially expanded to the case of more than one variable.

Belief propagation exploits the factorisation of P(V ) and its properties as a tree

to reduce the computational complexity of its execution. As G is a tree, all of its

cliques contain at most 2 nodes:

P(V =V ′) ∝ ∏
v∈V

fv(v′) ∏
(u,v)∈E

fu,v(u′,v′) (2.105)

where u,v refer to specific nodes and u′,v′ refer to their particular values. This

notational convention will be maintained throughout this section, whereby z′ refers

to a specific value of variable z. The marginal distribution of a single variable x ∈V

is therefore a specific sum of products:

P(x = x′) ∝ ∑
V ′ :x=x′

P(V =V ′)

= ∑
V ′ :x=x′

∏
v∈V

fv(v′) ∏
(u,v)∈E

fu,v(u′,v′) (2.106)

The tree structure of G allows this sum to be decomposed in a powerful way.

As mentioned in sec 2.5.1.1, if any single edge is removed from a tree then there will

be two disconnected components, both of which will be trees. If the edge between

x and any of its neighbours u is removed, therefore, the disconnected component

containing u will be a tree, hereafter denoted Tx(u), u ∈ N(x). This is equivalent

to saying that among the factors fu,v(u,v) in (2.106), there is precisely one that

contains precisely one node from Tx(u) and that factor is fx,u(x,u).

The sum of products in (2.106) can therefore be decomposed and rearranged
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as a product of sums:

P(x = x′) ∝ ∑
V ′ :x=x′

fx(x′) ∏
u∈N(x)

fx,u(x′,u′) ∏
v∈V (Tx(u))

fv(v′) ∏
(v,w)∈E(Tx(u))

fv,w(v′,w′)

= fx(x′) ∏
u∈N(x)

∑
V (Tx(u))′

fx,u(x′,u′) ∏
v∈V (Tx(u))

(v′) ∏
(v,w)∈E(Tx(u))

fv,w(v′,w′)

∝ fx(x′) ∏
u∈N(x)

Mx,u(x′) (2.107)

where

Mx,u(x′) =
1
Z ∑

V (Tx(u))′
fx,u(x′,u′) ∏

v∈V (Tx(u))
fv(v′) ∏

(v,w)∈E(Tx(u))
fv,w(v′,w′) (2.108)

with Z enforcing the constraint ∑x′Mx,u(x′) = 1, and V (Tx(u)),E(Tx(u)) refer to the

nodes and edges of Tx(u) respectively, and each term in the product of the final line

of (2.107) is called a message from u to x.

It is here that the message passing structure of belief propagation becomes

clear. As Tx(u) is itself a tree, each of the |N(x)| sums of products in (2.107) can

themselves be decomposed into further products of sums, each of which is a mes-

sage of the same form:

P(x = x′) ∝ fx(x′) ∏
u∈N(x)

Mx,u(x′)

= fx(x′) ∏
u∈N(x)

∑
u′

fx,u(x′,u′) fu(u′) ∑
(Vx,u\u)′

∏
v∈Vx,u\u

fv(v′) ∏
(v,w)∈Ex,u

fv,w(v,w)

∝ fx(x′) ∏
u∈N(x)

∑
u′

fx,u(x′,u′) fu(u′) ∏
v∈N(u)\x

Mu,v(u′) (2.109)

where Vx,u,Ex,u is shorthand for V (Tx(u)),E(Tx(u)).

All marginal distributions can therefore be calculated easily given knowledge

of all messages. All messages {Ma,b(a′),Mb,a(b′) : (a,b) ∈ E} can be calculated

together iteratively from an arbitrary initialisation, with the updates determined by
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their implied stationary point in (2.109):

M(k+1)
a,b (a′) =

1
Z ∑

b′
fa,b(a′,b′) fb(b′) ∏

c∈N(b)\a
M(k)

b,c (b
′) (2.110)

It can be shown (Pearl, 1988) that by using the updates in (2.110), the messages

M(k)
a,b(a

′) will converge to the true messages Ma,b(a′) in a finite number of iterations.

Optimal scheduling (Yedidia et al., 2003) can be employed to minimise the number

of updates required for convergence, and is described in algorithm 2.7.

Algorithm 2.7 Belief propagation

1. Initialise messages M(0)
a,b(a

′),M(0)
b,a(b

′) for all (a,b) ∈ E.

2. Designate one node as the root of the tree.

3. Repeat until convergence:

(a) Update the message from each leaf node l, i.e. the nodes with only
one neighbour, to their neighbour a according to (2.110):

M(k+1)
a,l (a′) =

1
Z ∑

l′
fa,l(a′, l′) fl(l′) ∏

c∈N(l)\a
M(k)

l,c (l
′) (2.111)

with N(l)\a = /0.

(b) Update the messages from the neighbour of each leaf to their non-
leaf neighbours

(c) Update messages along each path from a leaf towards the root ac-
cording to (2.110). Where paths join, wait until the messages from
all paths have been updated before updating messages along joined
path.

(d) Update all messages again, only in the reverse order.

4. Calculate any marginal distribution by normalising (2.107):

P(x = x′) ∝ fx(x′) ∏
u∈N(x)

Mx,u(x′), ∑
x′
P(x = x′) = 1 (2.112)

The procedure is known as belief propagation as beliefs regarding the distribu-

tion at each node are propagated through the graph to update beliefs in other nodes.

It is an exact procedure when the graph is a tree, due to the unique paths between
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nodes. The message from one node to another can only be passed through one path,

so it is received only once per iteration. If the graph contains cycles though, mes-

sages between some nodes will be received through more than one path, and this

duplicity of information prevents the procedure from being exact.

2.5.3 Belief propagation in graphs with cycles

While the message updates in (2.110) are derived on the assumption that the graph

of P(V ) is a tree, the assumption is not necessary to implement them. As such,

belief propagation algorithms can be implemented on graphs with cycles, though

the resulting marginals will not be exact. Naively implementing belief propagation

on a graph with cycles is commonly known as loopy belief propagation.

Much research has been conducted into and using loopy belief propagation,

for example Frey et al. (2001); Weiss (2000); Ihler et al. (2005); Freeman et al.

(2000); McEliece et al. (1998). In Freeman et al. (2000), a study on computer vision

analysis, high level information known as the scene is inferred from low level data

contained in an image. For example, the details of a 3D shape might be inferred

from its 2D image. To do this, the scene and its image are modelled in patches, with

each patch corresponding to a node on a graph.

Edges are modelled between each scene patch and its corresponding image

patch, and between neighbouring scene patches. The edges between scene patches

form cycles, so belief propagation becomes loopy. The quality of the approximate

marginals found using loopy belief propagation on this graph in Freeman et al.

(2000) was sufficient for their purposes.

Another interesting application was in coding theory (McEliece et al., 1998),

and in particular an algorithm known as turbo decoding. Turbo decoding had been

introduced to information theorists in 1993 and was known for its impressive per-

formance, but there was little understanding as to why it performed so well. The

authors showed in McEliece et al. (1998) that it was an implementation of loopy be-

lief propagation, which provided scope for a deeper understanding of its theoretical

properties.

Loopy belief propagation can also be modified by introducing weights to each
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of the edges. These weights adjust the strength each node has in the message updat-

ing formula (2.110), which can reduce bias while keeping computational complex-

ity low. A particular example is tree re-weighted belief propagation (Wainwright

et al., 2003), where the weights are determined by spanning trees.

A spanning tree is a sub-graph of a graph with cycles that contains all nodes

but not all edges, such that it is a tree. A given graph has a finite number of spanning

trees, and the weights in Wainwright et al. (2003) are proportional to the number of

spanning trees in which they appear. More details on re-weighted belief propagation

can be found in Roosta et al. (2008).

2.6 Trade-offs in Computational Statistics

Choices between different approximation methods are influenced by both theoret-

ical and practical concerns. The need to even make a choice highlights the funda-

mentally pragmatic approach that must be taken, but choosing between comparable

methods is aided significantly with a profile of both their theoretical properties and

their implementation requirements.

As the current chapter has detailed, there is a large variety of approximation

methods available in modern statistics. To provide some detail as to how different

methods relate to each other, the briefly described delineation between surrogate

quantities and numerical approximations in sec 2.1.2 is expanded on now. This

delineation is useful in that it determines which methods ‘compete’ with each other

as options for an approximate inference solution.

In short, approximate inference can be performed by making choices regard-

ing what quantity is being evaluated, and/or by making choices regarding how it is

evaluated. Any complete approximate inference algorithm has to address both of

these questions; numerical approximations compete amongst each other as meth-

ods for evaluating a given (surrogate) quantity, and (surrogate) quantities - with full

consideration given to their evaluation - compete amongst each other as alternative

quantities of interest. The word ‘surrogate’ has been placed in parentheses to em-

phasise that one or more of the alternatives might be the original quantity of interest,
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e.g. the full data likelihood, evaluated with a particular numerical approximation.

The methods whose implementations are explored in the current thesis are

composite likelihoods, variational approximations, and, being viewed as a surro-

gate quantity, the method of moments. Under the dichotomy of surrogate quantities

and numerical approximations, variational approximations lie separate to the other

two in the numerical approximations side of the division. As such they do not di-

rectly ‘compete’ with the other two as a choice to be made; once a decision has

been made on what the target quantity is to be, variational methods might be one of

the options available to approximately estimate it.

Surrogate quantities are therefore approximations of a more abstract nature

than numerical approximations. They represent the choice of what to compute,

whereas numerical approximations represent choices of how to compute. The two

decisions are not independent of each other, as pragmatic concerns regard only their

compound effects. A particular composite likelihood might have components too

small to capture correlations of interest, for example, whereas a variational approx-

imation to the full data log-likelihood might capture them but only approximately.

In between these two extremes, perhaps a range of component sizes that can be

approximated with varying accuracy could be considered for undertaking any infer-

ence. This particular choice is investigated in chapter 3.

Having articulated which approximation methods might compete with each

other as choices in a given application, it is pertinent to describe the features they

have that should influence any decisions regarding their use. The profile of an ap-

proximation method includes both statistical and computational characteristics, and

while computational costs might seem a frustrating presence they are undeniably

relevant from a pragmatic perspective. The following sections detail the kind of

trade-offs that are made when using approximate inference, and as such should pro-

vide some perspective for the investigations and discussions in subsequent chapters.

2.6.1 Statistical trade-offs

Possibly the most well known example of a trade-off between the theoretical prop-

erties of statistical estimators is between bias and variance. If the inherent variance
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of an estimator (the variance due to variance in the data) is high then inference is

subject to the risk of over-fitting; significantly more data than is available would be

needed to confidently return accurate estimates. It is sometimes possible to instead

estimate a surrogate quantity with less variance, but such a choice will often have

to be paid for in the form of bias.

An example of this is the well known LASSO model (Tibshirani, 1996; Hastie

et al., 2009), which in its original formulation is a restricted form of linear regres-

sion. Estimated parameter vectors are constrained to have bounded L1 norm:

β̂ = argmin
β :‖β‖1≤c

N

∑
i=1

(Yi−x′iβ )
2 (2.113)

which naturally reduces their variance. The resulting estimates are also biased, but

if the bias is small then the trade-off could be judged worthwhile.

Trade-offs of this variety are often, as in the example of the LASSO model,

not being made due to computational considerations; they are purely statistical. In

the LASSO example, if a particular linear regression model is highly parametrised

and/or only few observations are available for model fitting, then parameter es-

timates can have high variance. In particular, some of the estimated regression

coefficients can have an absolute value far larger than would be in the case of in-

finite data. Computing the standard maximum likelihood estimates is not difficult

computationally, but a surrogate quantity is chosen for estimation because the bias-

variance trade-off is deemed more optimal than the unbiased-high variance alterna-

tive.

That being said, computational concerns are not irrelevant in many instances of

bias-variance trade-offs being made. In the case of approximating component like-

lihoods of various sizes, a trade-off between bias and variance is also being made.

The reasons for the bias and variance in this example are fundamentally compu-

tational though, as it can be assumed that with unlimited computing resources a

numerical approximation the maximum likelihood estimate with arbitrary accuracy

could be made. Such an estimate would be consistent and have optimal variance,
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thus outperforming a composite likelihood estimator with components of any size.

It is only when computational constraints demand that inexact numerical ap-

proximations to (component) likelihoods be made, and when their bias increases

with component size, that a bias-variance trade-off comes into being. For some

trade-offs that are between statistical qualities of estimators, therefore, the motiva-

tion for the trade-off is driven by computational constraints.

The subject matter of the current thesis is trade-offs that are driven by compu-

tational constraints, whether explicit or not. Where the computational challenges

are explicit in the trade-off, for example when choosing between numerical approx-

imations whose bias decreases with algorithm run-time, then the optimal choice is

generally determined by the availability of computing resources. When implicit

though, the exact nature of the trade-off can be subtle yet significant.

2.6.2 Computational trade-offs

The challenges of computing a quantity of interest introduces an extra dimension

to the trade-offs that can be made when an approximation is necessary. Storage

and run-time requirements can mean particular algorithms are particularly compute

expensive, or they can scale such that an algorithm is only of practical use in a

small-scale setting.

The particle methods described in chapter 2, sec 2.4.2 are a good example of

this challenges of scaling. Convergence results are such that the number of particles

needed to make estimates with a certain variance must, for example, grow linearly

with the length of the chain. This can naively be expressed as var(Êh) = O(T ),

but after noting that there is exponential explosion with the dimension of the latent

space X it can be written more accurately as varX(Êh) = O(T exp(dim(X)).

There can be applied settings where these asymptotic results are not relevant,

as sufficient computing resources exist to achieve the task in hand, for example a

state space model with sufficiently few latent dimensions for particle methods to be

viable. They must always be a consideration when looking for a general solution to

an inference problem though, and when deciding which approximations are suitable

at different scales.
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The asymptotic computational complexity of a given approximation is there-

fore a matter of relevance to modern statisticians. This relevance has led to the

development of learnability theory. Beginning with Valiant (1984), the idea that the

solution to a problem can be learnable has gained traction amongst academics and

is now well established. Given a metric that can quantify the error
∥∥θ − θ̂

∥∥ of an

approximation to the quantity θ , then the following definition can be made:

PAC Learnability An inference problem is PAC learnable if an algorithm exists

that, given δ ,ε > 0 and sufficient data, can return with probability 1−δ an approx-

imate solution with error at most ε , i.e.

P(
∥∥θ − θ̂

∥∥≤ ε) = 1−δ (2.114)

If the amount of data required is polynomial in 1
δ
, 1

ε
then the problem is effi-

ciently PAC learnable. An upper bound on the amount of data required is known as

the sample complexity of the algorithm.

Whilst the concept of learnability is relatively abstract, its underlying principle

is powerful and intuitive. If the sample complexity of an algorithm, or a class of

algorithms, can be given then a basis for comparing algorithms can be made. Choos-

ing between algorithms, or within a class of algorithms, can thus be formalised with

a view to making optimal choices.

The sample complexity of an algorithm provides a convenient method for ar-

ticulating the statistical and computational trade-offs inherent to the algorithm, and

also a method of comparing alternative algorithms. Knowing how much the data

requirements scale with increasing precision, along with the scaling costs of pro-

cessing the data, gives an insight into its practicality in a given application, and/or

its quality relative to an alternative method.
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2.6.2.1 Method of moments

One method that can be presented in the context of learnability is the method of

moments. When parameters can be expressed as known functions of theoretical

moments of data, estimators can be constructed by substituting sample moments

for their theoretical counterparts in these functions. The law of large numbers can

be used to justify this; sample moments converge to their theoretical values as the

amount of data increases.

The implied consistency of method of moments estimators shows that in this

context the task of parameter estimation is learnable. The cost of storing / process-

ing data samples may become a significant concern though. In this case, there is a

trade-off between the accuracy of an estimator and the costs of estimation. If sam-

ple complexity bounds can be derived for a particular algorithm, then the trade-off

can be articulated precisely and an informed decision can be made regarding how

much data to collect / process.

An example of this is in Anandkumar et al. (2014). Low order sample moments

are used to estimate the parameters in exchangeable latent variable models. The

models considered are assumed to have low order moment tensors with low rank

decompositions, with decomposition analogous to the eigenvalue decompositions

of symmetric matrices, i.e. for second and third order moments they assume the

decompositions:

E[X⊗X ] =
k

∑
i=1

wi · vi⊗ vi

E[X⊗X⊗X ] =
k

∑
i=1

w̃i · ṽi⊗ ṽi⊗ ṽi (2.115)

where ⊗ denotes the outer product, wi, w̃i > 0, and vi, ṽi ∈ Rn are eigenvectors that

comprise the ground truth moments.

In Anandkumar et al., the authors further assume that model parameters are

a function of the eigenvalues and eigenvectors for the second and third order mo-
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ments:

θ = f (w,v, w̃, ṽ) (2.116)

with for some function f , thus motivating their algorithm for estimating the decom-

position structure from sample moments.

The authors present an algorithm for estimating the decompositions from sam-

ple moments using a power method, where multiple randomly initialised unit vec-

tors v̂(0)i , i = 1, . . . ,L are iterated through the tensor and re-normalised:

v̂(k+1)
i =

T v̂(k)i∥∥∥T v̂(k)i

∥∥∥
∝ ∑

j2,..., jp

Tj2,..., jp v̂(k)i, j2 · · · v̂
(k)
i, jp

(2.117)

that approximately finds the largest eigenvalue ŵ and associated eigenvector v̂.

These are then ‘deflated’ from the sample moment tensor:

T̃ = T − ŵ · v̂⊗ v̂⊗ v̂ (2.118)

and the process is repeated to estimate the modelled k eigenvalues and eigenvectors.

Sample complexity bounds are calculated on the accuracy of the algorithm,

by which the authors showed the task is efficiently PAC learnable. The bounds

are too complicated to be both complete and concisely described but, subject to

constraints on ε and the number L of random initialisations in (2.117), the amount

of data needed for an estimated decomposition to have error that shrinks with ε is

O
(

logk+ log log
(

λmax
ε

))
.

In addition to the sample complexity being calculated, analysis of the com-

putational complexity showed the cost of the algorithm to be O(k5+δ (log(k) +

log log(1
ε
))). This shows that the size the dataset is asymptotically not a domi-

nating concern, but rather the modelled rank k of the tensor decomposition is, and

this is partly due to the L random initialisations in (2.117). The trade-offs for this
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algorithm are therefore related to number of modelled eigenvalues and the precision

with which they are estimated.

2.6.2.2 Stochastic composite likelihood

As mentioned in sec 2.3.1, the research in Dillon and Lebanon (2010) explores the

use of randomly selecting which of the possible components in a composite likeli-

hood are actually used for parameter estimation. The authors describe a procedure

they call stochastic composite likelihood to select the components in composite like-

lihoods composed of low dimensional conditional distributions. The distributions

studied are Markov random fields with graphical structure such that the full data

likelihood is intractable. For i.i.d. observations from such a distribution, the authors

propose a composite likelihood surrogate composed of conditional distributions:

`C(θ | Y ) =
1
n

n

∑
i=1

k

∑
j=1

w j logP(Y (i)
A j
| Y (i)

B j
,θ) (2.119)

where w j > 0, and A j,B j are subsets of the variables V , and A j ∩B j = /0, and A j 6=

/0. The sizes of each A j,B j determine the computational complexity of calculating

each likelihood object in (2.119). The stochastic element of stochastic composite

likelihood is introduced with a random binary k vector for each data point:

`SC(θ | Y,w,λ ) =
1
n

n

∑
i=1

k

∑
j=1

w jZ
(i)
j logP(Y (i)

A j
| Y (i)

B j
,θ)

Z(i) i.i.d∼ P(Z | λ ), λ j = E[Z j]> 0 (2.120)

Furthermore, the joint distribution of the elements of Z(i) can also be defined. This

allows, for example, the probability of including a component logP(Y (i)
A j
| Y (i)

B j
,θ)

to be reduced if a component logP(Y (i)
Al
| Y (i)

Bl
,θ) with A j ⊂ Al had already been

included in `SC for data point i.

By controlling the weights w j and the distribution of inclusion vectors Z(i),

the asymptotic statistical efficiency and computational costs of the (asymptotically
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unbiased) maximum stochastic likelihood estimator

θ̂mscl = argmax
θ

`SC(θ | Y,w,λ ) (2.121)

can be controlled continuously. In the asymptotic analysis of the estimators, the de-

pendency of the estimates on particular realisations of the component inclusion vec-

tors Z(i) can be ignored in favour of the inclusion probabilities λ j. As the trade-offs

being examined in the paper are between computational costs and statistical effi-

ciencies, and as computational costs are independent of the weights w j, the authors

propose making a pragmatic choice for λ with respect to the available computing

resources, and optimising the estimator with respect to the w j iteratively:

θ̂
(k)
mscl = argmax

θ

`SC(θ | Y,w(k),λ )

w(k+1) = argmin
w
− log |ĤĴ−1Ĥ|= log |Ĵ|−2log |Ĥ| (2.122)

where (ĤĴ−1Ĥ)−1 is the finite sample estimate of the asymptotic estimator covari-

ance matrix. The authors approximate these terms using the product of diagonal

elements as a proxy for determinants:

log |Ĥ| ≈
p

∑
r=1

log
k

∑
j=1

w jλ jK
( j, j)
r,r

log |Ĵ| ≈
p

∑
r=1

log
k

∑
j=1

k

∑
l=1

w jwlλ jλlK
( j,l)
r,r (2.123)

where

K( j,l) = covθ (∇θ logP(YA j | YB j ,θ),∇θ logP(YAl | YBl ,θ)) (2.124)

with elements K( j,l)
s,t . The efficiency of the estimator is therefore maximised with

respect to the available computing resources. Fitting maximum stochastic compos-

ite likelihood (mcsl) estimators to models with both synthetic and real data showed

the trade-off to be controlled effectively. Furthermore, in real data that was poorly



2.6. Trade-offs in Computational Statistics 87

modelled by the Markov random field in question, mcsl estimators were found to,

in effect, ‘self-regularise’; the full data maximum likelihood estimator would have

poorer predictive performance for some datasets than the mscl estimators. This

was hypothesised to be due to empirical inconsistencies between the data and the

modelled conditional independence structure of the model in question being ‘over-

looked’ by components that had |A j|<< |V |.

2.6.2.3 Convex relaxations

On a different scale of comparison is Chandrasekaran and Jordan (2013). Here, an

entire class of algorithms has its profile examined with a view to choosing between

members in any given application. Specifically, the de-noising of a sequence of

observations Yi ∈ Rp modelled as

Yi = x∗+σzi, zi
i.i.d∼ Np(0,1) (2.125)

where Np(0,1) is the standard p-dimensional Gaussian and x∗ ∈ S ⊂ Rp for a

known subset S of Rp. It is assumed that p is large. The task of inference is to

estimate x∗.

An intuitive estimator could be the projection of the sample mean onto S, but

this is computationally challenging for arbitrary S. The general inference procedure

they suggest is to project the sample mean onto a convex set C⊃ S:

x̂n(C) = argmin
x∈C

∥∥Ȳ−x
∥∥ (2.126)

where the estimator is subscripted with the number of samples n. If the convex set

C is itself defined as the intersection of tractable convex sets, then the complexity of

the minimisation in (2.126) increases with the number of these tractable sets in the

intersection. The intersection of many sets can approximate an arbitrary set S more

closely, but is more expensive to minimise over.

The authors show that for an estimator to have a mean squared error
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E
[
‖x∗− x̂n(C)‖2

]
≤ 1 then a sample complexity of

n≥ σ
2g(TC(x∗∩Bp)) (2.127)

is required, where

g(Z) = Ev

[
sup
a∈Z
〈a,v〉2

]
v∼N(0, Ip) (2.128)

is the squared Gaussian complexity of the set Z ∈ Rp, with Ip the p× p identity

matrix, Bp is the unit ball, and TC(x∗) is the tangent cone at x∗ relative to C:

TC(x∗) = cone{b−x∗ : b ∈ C} (2.129)

where the cone of a convex set is its closure under positive linear combinations.

This result formalises the intuition that for C j ⊃ Ck ⊃ S:

E
[∥∥x∗− x̂n(C j)

∥∥2
]
≥ E

[
‖x∗− x̂n(Ck)‖2

]
(2.130)

The result (2.127) motivates the authors to suggest that in cases where the amount

of data exceeds the sample complexity bound of (2.127) for a simple convex set C,

then the computational benefits of using the estimator x̂n(C) come at an acceptable

cost. Here a simple convex set is defined as the intersection of only few tractable

convex sets.

2.6.2.4 Conclusions

As all of the examples above show, if statistical efficiency and computational com-

plexity can be expressed for a given algorithm, then optimising an algorithm with

regards to trade-offs can be formally justified. Whilst these complexities are not

always tractable, even establishing learnability can be a positive grounding for a

proposed algorithm. Furthermore, any complexity rates that are calculated can give

insight into when an algorithm becomes impractical or impossible to implement.

Even when complexities are calculated though, they might not be perfectly
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illustrative of an algorithms statistical or computational profile. Rates of change are

valuable for informing choices as data or parametrised modelling assumptions go

towards infinity, but in real world applications limiting behaviour might not have

come to dominate an algorithm’s performance.





Chapter 3

Composite Likelihood Estimators in

State Space Models

This chapter is an investigation into the trade-off between different component sizes

in approximate composite likelihood inference in state space models. A specific

model with a linear-Gaussian state space and Student-t observations is chosen to

represent the challenges involved in such approximate inference. Posterior distri-

butions of the latent variables in this model are intractable, and when the latent

dimensionality is too high Monte Carlo methods of approximation are impractical.

Deterministic approximations provide a natural alternative.

The deterministic approximation made here is the variational approximation.

Variational approximations are detailed in chapter 2, sec 2.2, but to summarise

quickly they place lower bounds on data likelihood evaluations. Inference is per-

formed using the lower bound as a proxy for evaluations of the likelihood.

The lower bounds are made in latent variable models by taking the expectation

of the full log-likelihood with respect to a methodically chosen tractable distribu-

tion. The closer this distribution is to the true latent posterior, where proximity here

has a specific meaning outlined below, the tighter the corresponding lower bound

will be. When data are correlated, as in state space and other time series models,

the tightness of the lower bound will generally loosen as more data are observed.

In particular, it is shown in the derivations below that updates to the variational ap-

proximations are equivalent to Gibbs type updates that have no uncertainty in the
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value of the conditioning latent variables. This implicitly fails to propagate uncer-

tainty, see Turner and Sahani (2008) for a detailed discussion of the issue. There

could consequently be significant bias introduced into variational approximations,

as the impact of failing to propagate uncertainty could be uneven over time and/or

over iterations. As stated in Turner and Sahani, it is not so much the tightness of

variational lower bounds that is important but the consistency of their tightness over

different parameter settings that affects their bias.

The use of composite likelihoods is made in an effort to counter this effect. By

using a composite likelihood whose components are the marginals of fixed length

subsets of the data, the quality of the variational approximations will no longer

decline with increasing amounts of observed data. Unfortunately, this comes at the

cost of estimator variance that increases as the component lengths get shorter.

A composite likelihood with shorter components, therefore, benefits from more

accurate variational approximations to each component likelihood, but suffers from

increased estimator variance. The trade-off between these two concerns, regarding

both the quality of estimations and their computational costs, is now investigated.

3.1 The state space model

State space models are an actively used class of models in signal processing, fi-

nance, and robotics amongst other applied disciplines, and are actively researched

within the statistics community. The model consists of an autoregressive latent state

process which propagates through time, and the conditional distributions of obser-

vations given the state process.

The state space model of T sequential observations, also defined in chapter 2

section 2.4.2 but repeated here for clarity, consists of a latent state process {Xt}T
t=1

taking values in some space X, and observations {Yt}T
t=1 taking values in some space

Y. The state process is first order Markov and the observations are conditionally
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independent given the state process:

X1 ∼P(X1 | θ)

Xt | X1:t−1 ∼ Xt | Xt−1 ∼P(Xt | Xt−1,θ) t ∈ 2, . . . ,T

Yt | X1:T ∼ Yt | Xt ∼P(Yt | Xt ,θ) (3.1)

(3.2)

where the colon in subscripts t1 : t2 indicates the interval of time periods t1, . . . , t2.

The distributions in (3.2) are assumed to have densities fθ (x1), fθ (xt | xt−1) , fθ (yt | xt).

The directed graph of the state space model is shown in fig 3.1.

X1

Y1

X2

Y2

X3

Y3

XT

YT

Figure 3.1: The directed graph of the state space model. Observed variables are shaded
grey, dashed line indicates repeated pattern until t = T .

Inference in state space models exploits the tree structure illustrated in fig 3.1

with the use of message passing algorithms, and is usually directed towards one of:

Filtering: Producing a sequence of estimated latent posterior distributions condi-

tioned on all currently available observations

P(Xt | Y1:t ,θ) t ∈ 1, . . . ,T (3.3)

For t = 1 this is achieved by conditioning X1 | Y1:

fθ (x1 | Y1) =
fθ (x1) fθ (Y1 | x1)∫

fθ (x1) fθ (Y1 | x1)dx1
(3.4)

For t = 2, . . . ,T this is achieved by calculating, either exactly or approxi-

mately, the following two-step recursion with each new observation:
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1. Predict:

fθ (xt+1 | Y1:t) =
∫

fθ (xt | Y1:t) fθ (xt+1 | xt)dxt (3.5)

2. Update:

fθ (xt+1 | Y1:t+1) =
fθ (xt+1 | Y1:t) fθ (Yt+1 | xt+1)∫

fθ (xt+1 | Y1:t) fθ (Yt+1 | xt+1)dxt+1

=
fθ (xt+1 | Y1:t) fθ (Yt+1 | xt+1)

fθ (yt+1 | y1:t)
(3.6)

Smoothing: Producing a sequence of estimated latent posterior distributions condi-

tioned on all observations

P(Xt | Y1:T ,θ) t ∈ 1, . . . ,T (3.7)

This procedure is completed in backward time. For t = T the smoothed dis-

tribution equals the filtered distribution by construction. For t = T −1, . . . ,1

this is achieved by calculating, either exactly or approximately, another two-

step recursion, with each step given the names of their filtering equivalent for

purposes of analogy:

1. ‘Predict’:

fθ (xt | Y1:t ,xt+1) =
fθ (xt | Y1:t) fθ (xt+1 | xt)∫

fθ (xt | Y1:t) fθ (xt+1 | xt)dxt
(3.8)

2. ‘Update’:

fθ (xt | Y1:T ) =
∫

fθ (xt | Y1:t ,xt+1) fθ (xt+1 | Y1:T )dxt+1 (3.9)

Prediction: Producing a sequence of predictive distributions of as yet unseen ob-

servations

P(Yt+n | Y1:t ,θ) t ∈ 1, . . . ,T (3.10)
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This is also achieved by, after completing the filtering procedure for time t,

calculating either exactly or approximately another two-stage process:

1. Perform n compositions of the filtering predict step:

fθ (xt+n | Y1:t) =
∫

fθ (xt | Y1:t)
n

∏
i=1

fθ (xt+i | xt+i−1)dxt:t+n−1 (3.11)

2. Data prediction:

fθ (yt+n | Y1:t) =
∫

fθ (xt+n | Y1:t) fθ (yt+n | xt+n)dxt+n (3.12)

3.1.1 Approximate inference

All of the calculations described in (3.5) - (3.12) can only be calculated

analytically if (assuming continuous latent variables) all of the densities

fθ (x1), fθ (xt | xt−1) , fθ (yt | xt) are linear Gaussian, i.e. if

X1 ∼N(X1 | µ1,Σ1)

Xt | Xt−1 ∼N(Xt | AtXt−1,Vt)

Yt | Xt ∼N(Yt |CtXt ,Wt) (3.13)

with At ,Ct linear mappings At : X→X : Xt−1 7→AtXt−1, Ct : X→Y : Xt 7→CtXt . The

filtering and smoothing algorithms in this instance are known as Kalman filtering /

smoothing (Kalman, 1960; Kalman and Bucy, 1961; Rauch et al., 1965), and return

the exact (Gaussian) filtered and smoothed distributions.

In all other state space models approximations have to be made. When the

dimension of X is low then particle methods are commonly used, but the estimates

they produce require the number of particles to grow with the number of observa-

tions, and they also suffer variance explosion with increasing X dimensionality. For

long chains of data observations and/or high dimensioned X therefore, alternative

methods are necessary.

Other Monte Carlo techniques can be substituted in many contexts, but these
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will all generally suffer the curse of dimensionality; the variance of estimates will

explode exponentially with the length of the observation chain. This is somewhat

mitigated with MCMC algorithms, whose samples converge on the regions of pos-

terior high density, but the run time / computational cost of a low variance MCMC

estimate can still be prohibitively high.

Deterministic methods are an alternative with relatively untapped potential.

For models with only mild non-linearities and Gaussian noise the well known ex-

tended Kalman filter (EKF) (Jazwinski, 1970) and unscented Kalman filter (UKF)

(Julier and Uhlmann, 2004) provide accurate and computationally cheap approx-

imations to the filtered distributions (3.3). They are both used in Gaussian state

space models with conditional distributions of the form:

Xt | Xt−1 ∼N(Xt | gX(Xt−1),Vt)

Yt | Xt ∼N(Yt | gY (Xt),Wt) (3.14)

with gX ,gY non-linear functions of the state process. The EKF approximates these

functions by taking first order Taylor expansions around the filtered mean:

gX(Xt)≈ gX(E[Xt | Y1:t ])+GX(Xt−E[Xt | Y1:t ])

gY (Xt)≈ gY (E[Xt | Y1:t ])+GY (Xt−E[Xt | Y1:t ]) (3.15)

where GX = dgX
dX

∣∣∣
X=E[Xt |Y1:t ]

, GY = dgY
dX

∣∣∣
X=E[Xt |Y1:t ]

are the Jacobian matrices of par-

tial derivatives evaluated at X = E[Xt | Y1:t ]. The UKF takes a different approach

to the approximation, and produces the unscented transform of the filtered mean

E[Xt | Y1:t ], which is a deterministic set of points that are propagated through the

functions fX , fY . These propagated points are then used to estimate the mean and

variance of the distributions in (3.5) and (3.6).

Both the EKF and UKF are useful and effective approximations in the re-

stricted model class (3.14), but the EKF performs badly when the functions gX ,gY

are highly non-linear and they can both suffer from numerical stability issues. An

alternative deterministic approximation framework is the method of variational ap-
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proximations.

In the current context, a variational approximation to a posterior distribution of

interest, i.e. (3.3), (3.7), (3.10), is simply an optimally chosen distribution q∗ over

XT from a restricted class Q of tractable distributions. Optimally chosen here means

that q∗ minimises the Kullback-Leibler divergence from q ∈ Q to the posterior:

KL [q || p(x | Y )] =
∫

q(x) log
q(x)

p(x | Y )
dx (3.16)

i.e.

q∗ = argmin
q∈Q

KL [q(X) || p(X | Y )] (3.17)

for observed data Y . More details on variational approximations can be found in

chapter 2, sec 2.2.

3.1.2 Gaussian state space, Student-t observations

The specific state space model investigated in this chapter is time-homogeneous,

has a Gaussian state space with linear transitions, and has Student-t observations:

X1 ∼N(X1 | µ1,Σ1)

Xt | Xt−1 ∼N(Xt | AXt−1 +b,V )

Yt | Xt ∼S(Yt | ν ,CXt +d,W ) (3.18)

where dimX= k, dimY= p

It is convenient here to make use of the formulation of the Student-t distribution

as an infinite mixture of Gaussians:

Z ∼ S(Z | ν ,µ,Σ)⇔ fθ (z) =
∫

∞

0
N

(
z
∣∣∣∣µ, 1

u
Σ

)
G
(

u
∣∣∣ ν

2
,
ν

2

)
du (3.19)

and its implied conditional form:

Z ∼ S(Z | ν ,µ,Σ)⇔ Z |U ∼N

(
Z
∣∣∣∣µ, 1

U
Σ

)
, U ∼ G

(
U
∣∣∣ ν

2
,
ν

2

)
(3.20)



98 Chapter 3. Composite Likelihood Estimators in State Space Models

where G(· | α,β ) is the Gamma distribution with shape parameter α and rate pa-

rameter β , to give an alternative formulation of the model (3.18):

X1 ∼N(X1 | µ1,Σ1)

Xt | Xt−1 ∼N(Xt | AXt−1 +b,V )

Ut ∼G
(

Ut

∣∣∣ ν

2
,
ν

2

)
Yt | Xt ,Ut ∼N

(
Yt

∣∣∣∣CXt +d,
1

Ut
W
)

(3.21)

X1

Y1

U1

X2

Y2

U2

X3

Y3

U3

XT

YT

UT

Figure 3.2: The directed graph of the Gaussian-Student state space model with alternative
representation (3.21). Observed variables are shaded grey, dashed line indicates
repeated pattern until t = T .

Student-t distributed variables have a density that is superficially similar to a

Gaussian density, but it has heavier tails. This places more probability mass in

the tails, and as such the Student-t distribution can be a more appropriate modelling

assumption than a Gaussian in many applied fields. Financial time-series modelling,

for example, is well known for the empirical heavy tails of modelled data. An

effective use of approximation methods in the implementation of (3.21) therefore

has benefit to practitioners as well as providing insight into approximation methods

generally.

3.1.3 Further model assumptions

To construct a parameter estimation algorithm for the above model, the following

further assumptions are made on the model: a) the k×T dimensional latent pro-

cess X1:T is composed of k independent T dimensional stationary latent processes
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X i
1:T , i = 1, . . . ,k, each with the common marginal distribution X i

t ∼ N(0,1), t =

1, . . . ,T , but with unique auto-correlation parameters corr(X i
t ,X

i
t+1) = ρi; and

b) each element Y j
t , j ∈ 1, . . . , p of the observed data Yt is conditionally independent

of all other elements given the latent variables Xt ,Ut .

The stationarity assumption on X1:T , which implies that Xt ∼ N(µ,Σ) at all

times t, is a common assumption in practice as it restricts the size of the parameter

vector. It can be justified if the data itself appear to be stationary. As the latent

precision scaling variables U1:T are i.i.d., assuming stationarity of X1:T is equivalent

to assuming stationarity of Y1:T . The additional assumption, implied above, that

Xt ∼ N(0, Ik) at each time t, where Ik is the k× k identity matrix, is also made.

Furthermore, it is made without loss of generality. Regarding the zero mean, any

mean vector µ can be absorbed into the intercept vector d:

Xt = X̃t +µ X̃t ∼N(0,Σ)

⇒CXt +d =C(X̃t +µ)+d

⇒ d̃ =d+Cµ (3.22)

This also implies the latent intercept vector b = 0. Regarding the unit covariance

matrix, this can be assumed without loss of generality as the linear transformation

of a standard normal that gives Σ as a covariance matrix can be absorbed into C:

Xt = LX̃t X̃t ∼N(0, Ik)

⇒CXt =CLX̃t

⇒ C̃ =CL (3.23)

where L is any matrix such that LL′ = Σ, which holds for example if L defines the

Cholesky decomposition of Σ.

Modelling the latent process as k independent processes has the implication

that the transition matrix A is diagonal. As each dimension is assumed to have

unit variance at each time, the parameters on the diagonal of A equal the temporal
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correlations for each dimension:

A = diag(ρ) ρ = (ρ1, . . . ,ρk)
′

ρi = corr(X i
t ,X

i
t+1) (3.24)

where the superscript i denotes the element of the process at each time t. This allows

the joint distribution of X i
t:t+1 to be parametrised by the single parameter ρ i:

X i
t:t+1 ∼N(X i

t:t+1 | ρ i)

⇔ X i
t:t+1 ∼N(X i

t:t+1 | 0,Σi) Σ
i =

 1 ρ i

ρ i 1

 (3.25)

and implies a diagonal conditional covariance matrix V :

V = Ik−diag(ρ2)

ρ
2 = (ρ2

1 , . . . ,ρ
2
k )
′ (3.26)

As noted above, in addition to the structure assumed of X1:T , each element Y j
t , j =

1, . . . , p of Yt is assumed to be conditionally independent given the latent variables.

This implies that the conditional covariance matrix of the conditionally Gaussian

data Yt is diagonal:

W = diag(w), w = (w1, . . . ,wp)
′ (3.27)

This assumption was made for ease of exposition, though removing the restriction

and allowing a general conditional covariance matrix is not a challenging extension.

After making all of the above assumptions, the model therefore becomes:

X1 ∼N(X1 | 0, Ik)

Xt+1 | Xt ∼N(Xt+1 | diag(ρ)Xt , Ik−diag(ρ2))

Yt | Xt ∼ S(Yt | ν ,CXt +d,diag(w)) (3.28)
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and the parameters of the model are:

ρ = (ρi ∈ (−1,1) : i = 1, . . . ,k)

ν > 0

C = (ci, j ∈ R : i = 1, . . . , p, j = 1, . . . ,k)

d = (di ∈ R : i = 1, . . . , p)

w = (wi > 0: i = 1, . . . , p) (3.29)

These assumptions on X1:T thus make the model (3.21) comparable to the fac-

torial hidden Markov model of Ghahramani and Jordan (1997), discussed in chapter

2, sec 2.2.2. Whereas the approximations to the posterior in Ghahramani and Jordan

(1997) factorise over latent Markov chains, the only factorisation considered here

is between X1:T and U1:T .

Remark As composite likelihood estimators are to be approximated, the latent

variables indexed by time points not in each component tc : tc + n− 1 (see sec 3.2

below) must be integrated out before variational approximations to posterior dis-

tributions can be made. This is most easily achieved by exploiting the stationarity

assumption on (and the Gaussianity of) X1:T :

P(Xtc:tc+n−1) =N(Xtc | 0, Ik)
tc+n−1

∏
t=tc+1

N(Xt | AXt−1,V ) (3.30)

for all components of size n. As the latent process X1:T is composed of k indepen-

dent processes X i
1:T , this distribution is equal to the product of k Gaussian vectors

of length n:

P(Xtc:tc+n−1 | θ) =
k

∏
i=1

N(X i
1:n | 0,Λ−1

i ) (3.31)
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where

Λi =
1

1−ρ2
i



1 −ρi 0 · · · 0

−ρi 1+ρ2
i

. . . . . . ...

0 . . . . . . . . . 0
... . . . . . . 1+ρ2

i −ρi

0 · · · 0 −ρi 1


(3.32)

The determinant |Λi| of each precision matrix Λi is required for the estimation of

the corresponding correlation parameter ρi. The tri-diagonal form of each Λi allows

its determinant to be calculated analytically and gives it a concise closed form:

|Λi|= (1−ρ
2
i )
−(n−1) (3.33)

3.2 Composite likelihoods

The following is a brief section defining notation particular to composite likeli-

hoods. Each component in a composite likelihood will be a marginal likelihood

of n contiguous data observations. For a given component size n, two different

structures will be considered: a) every possible such component being included:

Ln,∪
C (θ) =

T−n+1

∏
tc=1

P(Ytc:tc+n−1 | θ) (3.34)

where the superscript n indicates the size of each component, and b) only disjoint

components being included:

Ln,
•
∪

C (θ) =
b T

n c
∏
tc=1

P(Y(tc−1)n+1:tcn | θ) (3.35)
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When the component structure is not pertinent to the discussion the superscripts

will be dropped, and the index set of the data belonging to the cth component will

be denoted Mc. For example,

YMc = {Yt : t ∈Mc} (3.36)

denotes the observed data belonging to the cth component.

3.3 Variational approximations

Maximum likelihood estimation of the model (3.21) is intractable, due to the non-

Gaussian conditional distributions P(Yt | Xt ,Ut). Variational approximations are

chosen as a numerical approximation to the likelihood, with an investigation into

the effect on the bias of the size of the composite likelihood blocks. Approxima-

tions to maximum composite likelihood estimators are proposed as surrogate quan-

tities, with the effect of having M components of size n on the bias and variance of

estimators being investigated:

LC(θ) =
C

∏
c=1

fθ (YMc) (3.37)

A variational approximation to the smoothed latent joint distribution

P(XMc ,UMc | YMc) is now derived, with a view to placing a lower bound on the com-

posite log-likelihood as a sum of lower bounds on each component log-likelihood.

To keep indices cleaner, the t th time point in the interval Mc associated to component

c will be denoted with the subscript (c, t).

As described in detail in chapter 2, sec 2.2, variational approximations in latent

variable models make use of a tractable class Q of distributions. A common choice

for Q, and the choice made here, is for Q to consist of all distributions that factorise

over some subsets of latent dimensions.

The choice of factorising subsets made here follows that of Svensén and Bishop

(2005), and keeps the Gaussian dimensions in one factor and the Gamma dimen-
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sions in another:

Q = {q(XMc,UMc) : q(XMc ,UMc) = qX(XMc)qU(UMc)} (3.38)

This is equivalent to defining Q as the class of distributions derived from (3.21)

whose undirected graphs have had the edges (Xt ,Ut) removed, see fig 3.3. As de-

Xc,1

Yc,1

Uc,1

Xc,1

Yc,1

Uc,1

Xc,2

Yc,2

Uc,2

Xc,2

Yc,2

Uc,2

Xc,n

Yc,n

Uc,n

Xc,n

Yc,n

Uc,n

Figure 3.3: The moralised graph of the Gaussian-Student state space model with alternative
representation (3.21) (left), and the graph of distributions with the factorisation
defined in (3.38) (right). Observed variables are shaded grey, dashed line indi-
cates repeated pattern until t = (c,n).

scribed in chapter 2, sec 2.2, the q∗ = argminq∈Q KL [q ||P(XMc ,UMc | YMc)] that

minimises the KL divergence between q ∈ Q and P(XMc,UMc | YMc) is found using

the following coupled equations:

logq∗X(XMc) =Eq∗U [logP(XMc,UMc,YMc)]+ constant

logq∗U(UMc) =Eq∗X [logP(XMc ,UMc,YMc)]+ constant (3.39)

and as the prior distributions XMc ,UMc are both conjugate to YMc | XMc ,UMc , the

optimal q∗X ,q
∗
U in (3.39) will belong to the same parametrised families as the priors,

i.e.

q∗X =N(µ∗,Σ∗)

q∗U = G(α∗,β ∗) (3.40)

for some parameters µ∗,Σ∗,α∗,β ∗. The full component log-likelihood logP(XMc ,UMc ,YMc)
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is:

logP(XMc ,UMc ,YMc) = logP(XMc)P(UMc)P(YMc | XMc ,UMc)

= logP(XMc)+ logP(UMc)+ logP(YMc | XMc,UMc) (3.41)

3.3.1 Estimation algorithm

The parameter estimation algorithm returns a variational approximation to the maxi-

mum composite likelihood estimator for a given set of components. This is achieved

through an iterative procedure of repeatedly a) optimising the lower bound on each

component log-likelihood logL(θ | YMc) given the current parameter estimate θ̂ (k):

q∗c = argmin
q∈Q

KL
[
q ||P(XMc,UMc | YMc, θ̂

(k))
]

(3.42)

and b) updating the parameter estimate by maximising the lower bound:

θ̂
(k+1) = argmax

θ

C

∑
c=1

Eq∗c [logP(XMc ,UMc ,YMc | θ)] (3.43)

until parameter estimates have converged.

3.3.1.1 Optimising the lower bound

The lower bound on the (component) log-likelihood of the data covering the time

interval Mc = tc, . . . tc +n−1 given by

logL(θ | YMc)≥ EqX ,qU [logP(XMc ,UMc ,YMc | θ)] (3.44)

is optimised by initialising qX ,qU to some q(0)X ,q(0)U and updating each of them iter-

atively according to the coupled equations (3.39):

logq(k+1)
X (XMc) = E

q(k)U
[logP(XMc ,UMc,YMc | θ)]+ constant

logq(k+1)
U (UMc) = E

q(k+1)
X

[logP(XMc ,UMc ,YMc | θ)]+ constant (3.45)
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and as P(XMc | θ) ,P(UMc | θ) are both conjugate to P(YMc | XMc,UMc,θ), the form

of q(k)X ,q(k)U will stay constant across iterations. This implies that one of qX ,qU

should be initialised to some member of their prior family:

q(0)X (XMc) =N(XMc | µ(0),Σ(0)) or

q(0)U (UMc) = ∏
t∈Mc

G(Ut | α(0)
t ,β

(0)
t ) (3.46)

By taking the expectations in (3.45) and matching terms, the parameters identifying

the updated distributions q(k+1)
X ,q(k+1)

U can be determined analytically.

As the model (3.21) is a tree, its graphical structure can be exploited to reduce

message passing in the context of updating variational distributions as per (3.45).

Variational message passing (Winn and Bishop, 2005) updates the expected suffi-

cient statistics needed to compute (3.45) in a recursive procedure that is similar to

Kalman smoothing type algorithms.

In the linear-Gaussian context, a Kalman smoother algorithm is a two stage

algorithm composed of a) a forward running filter that alternates between a predict

step and an update step to compute the (exact) filtered distributions P(Xt | Y1:t ,θ),

and b) a backward running smoother that computes the exact smoothed distributions

P(Xt:t+1 | Y1:T ,θ). When updating the variational distributions q(k)X according to

(3.45), the procedure is essentially equivalent to running a Kalman smoother on a

model whose conditional data distributions are not time homogeneous:

Yt | Xt ,Eq(k)U
[Ut ],θ ∼N

Yt |CXt +d,
1

E
q(k)U

[Ut ]
diag(w)

 (3.47)

For fixed q(k)U this is a closed form message passing algorithm with a forward

running filter and backward running smoother, both of which are completed analyt-

ically. To run the filter for times t ∈Mc = tc, . . . , tc +n−1, the filtered distribution



3.3. Variational approximations 107

at time tc is first required:

q̃(k+1)
X (Xtc) =N

(
Xtc | m̃tc , S̃tc

)
m̃tc = S̃tc(C

′W−1
tc (Ytc−d))

S̃tc = (I +C′W−1
tc C)−1 (3.48)

where the shorthand

Wt =
1

E
q(k)U

[Ut ]
diag(w) (3.49)

will be used from here on. The filtering procedure is then completed by alternating

between the predict step:

˜̃q(k+1)
X (Xtc+i+1) =N

(
Xtc+i+1 | ˜̃mtc+i+1,

˜̃Stc+i+1

)
˜̃mtc+i+1 = Am̃tc+i

˜̃Stc+i+1 =V +AS̃tc+iA′ (3.50)

and the update step:

q̃(k+1)
X (Xtc+i+1) =N

(
Xtc+i+1 | m̃tc+i+1, S̃tc+i+1

)
m̃tc+i+1 = S̃tc+i+1

(
C′W−1

tc+i+1(Ytc+i+1−d)+ ˜̃S−1
tc+i+1

˜̃mtc+i+1

)
S̃tc+i+1 =

(
˜̃S−1
tc+i+1 +C′W−1

tc+i+1C
)−1

(3.51)

for i = 1, . . . ,n− 1. The smoothing procedure (going backward through time) is

completed by alternating between the backward predict and backward update steps.

For clarity it should be noted that the smoothed distribution at time tc + n− 1 is

equivalent to the filtered distribution at that time. The smoothing procedure can be
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implemented by calculating the auxiliary parameters

Ãtc+i =
(

S̃−1
tc+i−1 +A′V−1A

)−1
A′V−1

b̃tc+i =
(

S̃−1
tc+i−1 +A′V−1A

)−1
S̃−1

tc+i−1m̃tc+i−1 (3.52)

for i = n−1, . . . ,1 and using them to obtain both of a) the variational marginals:

q(k+1)
X (Xtc+i−1) =N(Xtc+i−1 |mtc+i−1,Stc+i−1)

mtc+i−1 = Ãtc+imtc+i + b̃tc+i

Stc+i−1 = (S̃−1
tc+i−1 +A′V−1A)−1 + Ãtc+iStc+iÃ′tc+i (3.53)

and b) the cross-time covariances:

cov
q(k+1)

X
(Xtc+i−1,X ′tc+i) = Ãtc+iStc+i (3.54)

where

cov
q(k+1)

X
(Xtc+i−1,X ′tc+i)a,b = E

q(k+1)
X

[Xa
tc+i−1Xb

tc+i]−mtc+i−1,amtc+i,b (3.55)

is the covariance between the ath dimension of Xtc+i−1 and the bth dimension of

Xtc+i with respect to q(k+1)
X .

Once the updated distribution q(k+1)
X has been calculated, the update to q(k)U can

be expressed far more concisely:

α
(k+1)
c,t =

ν

2
+

p
2

β
(k+1)
c,t =

ν

2
+

1
2
E

q(k+1)
X

[
(Yc,t−CXc,t−d)′W−1(Yc,t−CXc,t−d)

]
(3.56)

These updates are applied iteratively until the distributions have converged, with

convergence considered to have occurred when the change in parameter vector

φ (k) =

(
vec
(

m(k)
tc:tc+n−1

)′
,vec

(
S(k)tc:tc+n−1

)′
,α

(k)
tc:tc+n−1

′
,β

(k)
tc:tc+n−1

′
)′M

tc=1
falls below



3.3. Variational approximations 109

a pre-specified level:

∥∥∥φ
(k+1)−φ

(k)
∥∥∥< δ (3.57)

for some small δ > 0.

3.3.1.2 Updating parameter estimates

Maximising the lower bound to the composite log-likelihood with respect to C,d,W

can be completed analytically. Unlike when optimising the variational distributions

qX ,qU , it is convenient to represent X ,Y in matrix form. It is also convenient to aug-

ment C with an extra column containing d, and augment Xt with an extra dimension

fixed at the value 1:

C+ = (d,C)

X+
t = (1,X ′t )

′

⇒CXt +d =C+X+
t (3.58)

which gives updated estimates of C+,W as:

C+(k+1) = (Y ′E[diag(U)X+])(E[X+′ diag(U)X+])−1 (3.59)

where expectations are with respect to variational distributions q∗ optimised with

respect to parameter estimates θ̂ (k), and Y,X+,U depend on the structure of the
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composite likelihood being used:

Y =



Y 1
1,1 · · · Y p

1,1
...

Y 1
1,n · · · Y p

1,n
...

Y 1
M,1 · · · Y p

M,1
...

Y 1
M,n · · · Y p

M,n


X+ =



1 X1
1,1 · · · Xk

1,1
...

1 X1
1,n · · · Xk

1,n
...

1 X1
M,1 · · · Xk

M,1
...

1 X1
M,n · · · Xk

M,n


U =



U1,1
...

U1,n
...

UM,1
...

UM,n


(3.60)

The updated estimate of W is:

Ŵ (k+1) = diag
(

1
Mn

E
[(

Y −X+Ĉ+(k+1)′
)′

diag(U)
(

Y −X+Ĉ+(k+1)′
)])

(3.61)

where the diag operator acting on a square matrix Z returns a column vector contain-

ing the diagonal elements of Z, and expectations are again with respect to variational

distributions optimised with respect to parameter estimates θ̂ (k).

Estimates of correlation parameters ρi and the Student-t degrees of freedom

parameter ν cannot be updated analytically. As each dimension of the latent pro-

cess X1:T is independent in the prior distribution P(X1:T | θ), each estimate ρ̂
(k)
i is

updated independently as, recalling the form of |Λi| given in equation (3.33), the

(numerical) maximiser:

ρ̂
(k+1)
i = argmax

ρi∈(−1,1)

(
M(n−1) log(1−ρ

2
i )+

M

∑
c=1

E
[
X i

c:c+n−1
′
ΛiX i

c:c+n−1

])
(3.62)

The updated estimate of ν is the (numerical) maximiser:

ν̂
(k+1) = argmax

ν>0
Mn
(

ν

2
log
(

ν

2

)
− log

(
Γ

(
ν

2

)))
+

M

∑
c=1

c+n−1

∑
t=c

(
ν

2
−1
)
E[log(Uc,t)]−

ν

2
E[Uc,t ] (3.63)
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Remark As has been found elsewhere, see Liu and Rubin (1995); Fernández and

Steel (1999) for example, estimation of the degrees of freedom parameter ν has

been challenging in the current thesis. Though the update equation (3.63) is correct,

it was found in practice that ν̂(k+1) > ν̂(k) at every update iteration, without conver-

gence. Such a feature clearly forces the estimation algorithm to become unstable

and non-viable. As an undesirable, but unavoidable, pragmatic solution to this prob-

lem, estimates of ν were randomly initialised but not updated in subsequent update

iterations, i.e. ν̂(k) = ν̂(0) for all k. It should be noted that issues along these lines

were not mentioned in the discussions of Svensén and Bishop (2005).

Parameter estimates should be updated iteratively until convergence,

which can be declared when the change in the parameter vector θ̂ (k) =

(vec(Ĉ+(k))′,Ŵ (k)′, ρ̂(k)′)′ is less than some pre-specified level:

∥∥∥θ̂
(k+1)− θ̂

(k)
∥∥∥< δ (3.64)

for some small δ > 0. The variational EM algorithm is summarised in algorithm

3.1.

3.4 Stochastic EM

To provide a benchmark against which the bias introduced by using variational ap-

proximations for parameter estimation can be compared, estimates are also made

using the stochastic EM algorithm. This algorithm makes an unbiased approxima-

tion to the log composite likelihood at each iteration by using MCMC to approx-

imate taking the posterior expectation. Gibbs sampling is used to draw samples
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Algorithm 3.1 Variational EM for maximum composite likelihood estimators

1. Initialise parameter estimates θ̂ (0).

2. Repeat until convergence of parameter estimates θ̂ (k):

(a) Optimise lower bound by finding q∗X ,U(XMc ,UMc) =
q∗X(XMc)q

∗
U(UMc) for each Mc in the composite likelihood:

i. Initialise qU(UMc) = ∏
n
t=1G(Uc,t | α(0)

c,t ,β
(0)
c,t ).

ii. Repeat until convergence of µ
(k)
c ,Σ

(k)
c ,α

(k)
c,t ,β

(k)
c,t :

A. Update qX according to the filtering / smoothing proce-
dure for each component described in equations (3.48) and
(3.50) - (3.53).

B. Update qU according to (3.56).

(b) Update parameter estimate θ̂ (k) according to (3.59), (3.61), (3.62):

C+(k+1) = (Y ′E[diag(U)X ]+)(E[X+′ diag(U)X+])−1

Ŵ (k+1) = diag
(

1
Mn

E
[(

Y −X+Ĉ+(k+1)′
)′

diag(U)
(

Y −X+Ĉ+(k+1)′
)])

ρ̂
(k+1)
i = argmax

ρi∈(−1,1)

(
M(n−1) log(1−ρ

2
i )+

M

∑
c=1

E
[
X i

c:c+n−1
′
ΛiX i

c:c+n−1

])
(3.65)

where Ĉ+ is the estimate of C+ = (d,C), and X+ is the augmented
latent X variable arranged according to (3.60).

approximately from P
(

XMc ,UMc | YMc , θ̂
(k)
)

:

X (k+1)
Mc

∼ P
(

XMc | YMc ,U
(k)
Mc

, θ̂ ( j)
)

U (k+1)
Mc

∼ P
(

UMc | YMc ,X
(k+1)
Mc

, θ̂ ( j)
)

(3.66)

with posterior conditional distributions derived almost identically to the q distribu-

tion updates in sec 3.3.1.1. Indeed they are equivalent to those updates only with

sampled values taking the place of the expectations in (3.48) and (3.50) - (3.53) and

(3.56). As mentioned in the introduction to the current chapter, and as discussed

in Turner and Sahani (2008), the equivalent formulation of the variational update
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effectively means that the uncertainty in U1:T is not propagated to X1:T during vari-

ational update iterations, and vice versa.

When the X (k)
Mc

samples are being drawn according to (3.66), a procedure sim-

ilar to that for updating the lower bound in sec 3.3.1.1 can be constructed. This

procedure is essentially a particle filter with only one sample being drawn and no

need for any resampling, as the target distributions can be drawn from directly. In

the following exposition, the shorthand Wt is redefined to become:

W (k)
t =

1

U (k)
t

diag(w) (3.67)

giving the filtered distribution at time tc:

P
(

X̃ (k+1)
tc | Ytc,U

(k)
tc , θ̂ ( j)

)
=N

(
X̃ (k+1)

tc | m̃tc , S̃tc

)
m̃tc = S̃tc(C

′ ·W (k)−1
tc (Ytc−d))

S̃tc = (I +C′ ·W (k)−1
tc ·C)−1 (3.68)

the filtered distribution at time tc + i:

P
(

X̃ (k+1)
tc+i | X̃

(k+1)
tc+i−1,Ytc+i,U

(k)
tc+i, θ̂

( j)
)
=N

(
X̃ (k+1)

tc+i | m̃tc+i, S̃tc+i

)
m̃tc+i = S̃tc+i

(
C′ ·W (k)−1

tc+i (Ytc+i−d)

+ V−1AX̃ (k+1)
tc+i−1

)
S̃tc+i =

(
V−1 +C′ ·W (k)−1

tc+i ·C
)−1

(3.69)

for i = 1, . . . ,n−1, and the smoothed distribution at time tc + i−1:

P
(

X (k+1)
tc+i−1 | Ytc:tc+i−1,U

(k)
tc+i−1,X

(k+1)
tc+i , θ̂ ( j)

)
=N

(
X (k+1)

tc+i−1 | Ãtc+iX
(k+1)
tc+i + b̃tc+i,Stc+i−1

)
Ãtc+i = Stc+i−1 ·A′ ·V−1

b̃tc+i = Stc+i−1 · S̃−1
tc+i−1m̃tc+i−1

Stc+i−1 =
(

S̃−1
tc+i−1 +A′ ·V−1 ·A

)−1
(3.70)
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for i = n−1, . . . ,1, noting that the smoothed distribution X (k+1)
tc+n−1 at time tc +n−1

equals the filtered distribution X̃ (k+1)
tc+n−1. The U (k+1)

Mc
samples are drawn conditioned

on X (k+1)
Mc

:

P
(

U (k+1)
Mc

| YMc ,X
(k+1)
Mc

, θ̂ ( j)
)
=

n

∏
t=1

G
(

U (k+1)
c,t | α(k+1)

c,t ,β
(k+1)
c,t

)
α
(k+1)
c,t =

ν

2
+

p
2

β
(k+1)
c,t =

ν

2
+

1
2

(
Yc,t−CX (k+1)

c,t −d
)′

W−1
(

Yc,t−CX (k+1)
c,t −d

)
(3.71)

All moments required for parameter estimate updates are estimated using the sample

moments from the Gibbs sampling procedure (3.66). After the burn in samples have

been discarded, samples drawn using (3.68) - (3.71) are used to make Monte Carlo

estimates of EX ,U |Y

[
logP

(
XMc,UMc,YMc | θ̂ ( j)

)]
:

EX ,U |Y

[
logP

(
XMc,UMc,YMc | θ̂ ( j)

)]
≈ 1

N

N

∑
i=1

logP
(

X (i)
Mc
,U (i)

Mc
,YMc | θ̂ ( j)

)
(3.72)

Apart from this alternative form of approximate expectation taking, the stochas-

tic EM algorithm is identical to algorithm 3.1. The sample moments replace the

variational expectations in (3.59) - (3.63) used for VEM parameter updates to form

essentially identical update equation equations. The stochastic EM algorithm is

summarised in algorithm 3.2.

3.4.1 Estimating smoothed distributions

After parameters estimates θ̂ have been made by either variational EM via algorithm

3.1 or stochastic EM via algorithm 3.2, they can be used to estimate the smoothed

distributions P(X1:T ,U1:T | Y1:T , θ̂). The method is identical to that used to obtain

the MCMC samples for the expectation step of stochastic EM. Instead of using

the samples to estimate the expected sufficient statistics needed to maximise log

composite likelihood, however, the samples are used as a direct approximation to

the smoothed posterior distribution of the latent variables.
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Algorithm 3.2 Stochastic EM for maximum composite likelihood estimators

1. Initialise parameter estimates θ̂ (0).

2. Repeat until convergence of parameter estimates θ̂ (k):

(a) Approximate the expected log composite likelihood

∑
M
c=1EX ,U |Y log

(
P
(

XMc ,UMc ,YMc | θ̂ (k)
))

using Gibbs sampling:

i. Initialise U (0)
Mc

, c = 1, . . . ,M.
ii. Repeat N times:

A. Sample X (k+1)
Mc

| YMc,U
(k)
Mc

according to (3.68) - (3.70).

B. Sample U (k+1)
Mc

| YMc ,X
(k+1)
Mc

according to (3.71).
iii. Discard the first Nburn−in samples.

(b) Update parameter estimate θ̂ (k) according to:

Ĉ+(k+1) =
(

Y ′diag(U)X+
)(

X+′ diag(U)X+
)−1

Ŵ (k+1) = diag
(

1
Mn

(
Y −X+Ĉ+(k+1)′

)′ diag(U)
(
Y −X+Ĉ+(k+1)′

))
ρ̂
(k+1)
i = argmax

ρi∈(−1,1)

(
M(n−1) log(1−ρ

2
i )+

M

∑
c=1

X i
c:c+n−1

′
ΛiX i

c:c+n−1

)
(3.73)

where over-lines indicate sample moments, Ĉ+ is the estimate of
C+ = (d,C), and X+ is the augmented latent X variable arranged
according to (3.60).

3.5 Prediction

Performing n-step ahead prediction is completed with parameter estimates θ̂ by us-

ing a particle filter algorithm similar to that used in the expectation step of stochastic

EM, described in sec 3.4. Gibbs sampling is used to obtain samples {X (k)
t ,U (k)

t }N
k=1,

drawn approximately from the filtered distributions P(Xt ,Ut | Xt−1,Yt , θ̂). Predic-

tions are made via auxiliary particles ˜̃Xt that are generated at each time t. These

auxiliary particles are propagated forward n times according to the dynamics of the
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model:

˜̃X (k)
t = X (k)

t

˜̃X (k)
t+i | ˜̃X (k)

t+i−1,Yt , θ̂ ∼N
(

˜̃X (k)
t+i | Â ˜̃X (k)

t+i−1,V̂
)
, i = 1, . . . ,n (3.74)

Each auxiliary particle ˜̃X (k)
t+n makes a prediction Ŷ (k)

t+n |Y1:t , θ̂ =E[Yt+n | ˜̃X (k)
t+n,U

(k)
t+n, θ̂ ]

for Yt+n. The collection {Ŷ (k)
t+n | Y1:t , θ̂}N

k=1 of particle predictions together make up

the (distributional) prediction Ŷt+n | Y1:t , θ̂ .

The Gibbs sampling procedure used to obtain the samples {X (k)
1 ,U (k)

1 }N
k=1 for

the first time step differs from other times, as the samples are not conditioned on any

previous particles. Conditional distributions are used to alternately draw samples

X (k+1)
1 | Y1,U

(k)
1 , θ̂ and U (k+1)

1 | Y1,X
(k+1)
1 , θ̂ as per equations (3.68) and (3.71):

P
(

X (k+1)
1 | Y1,U

(k)
1 , θ̂ ( j)

)
=N

(
X (k+1)

1 |m1,S1

)
m1 = S1(C′ ·W

(k)−1
1 (Y1−d))

S1 = (I +C′ ·W (k)−1
1 ·C)−1

P
(

U (k+1)
1 | Y1,X

(k+1)
1 , θ̂ ( j)

)
= G

(
U (k+1)

1 | α(k+1)
1 ,β

(k+1)
1

)
α
(k+1)
1 =

ν̂

2
+

p
2

β
(k+1)
1 =

ν̂

2
+

1
2

(
Y1−CX (k+1)

1 −d
)′

W−1
(

Y1−CX (k+1)
1 −d

)
(3.75)

to obtain Ñ samples. After the burn-in samples are discarded, the N remaining

samples constitute the filtered particle set at t = 1.

The prediction procedure then goes through the iterative process of a) predict-

ing the observation Yt+n and b) propagating the particles forward one time step and

conditioning them on Yt+1. As described above, predictions are made by first propa-

gating each filtered particle X (k)
t | X (k)

t−1,Yt , θ̂ forward n times, with each propagation
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following the dynamics of the fitted model:

˜̃X (k)
t = X (k)

t

˜̃X (k)
t+i | ˜̃X (k)

t+i−1,Yt , θ̂ ∼N
(

˜̃X (k)
t+i | Â ˜̃X (k)

t+i−1,V̂
)
, i = 1, . . . ,n (3.76)

After all auxiliary particles ˜̃X (k)
t+n have been drawn, particle predictions are made as

the conditional means E[Yt+n | ˜̃X (k)
t+n,U

(k)
t+n, θ̂ ]:

Ŷ (k)
t+n | Y1:t , θ̂ = Ĉ ˜̃X (k)

t+n + d̂ (3.77)

noting that these quantities are independent of U (k)
t+n. The distributional prediction

Ŷt+n | Y1:t , θ̂ is the collection of these particle predictions:

Ŷt+n = {Ŷ (k)
t+n | Y1:t , θ̂}N

k=1 (3.78)

After each prediction has been made, the auxiliary particles drawn as per (3.76)

are discarded. The filtered particles X (k)
t are then propagated forward once and,

particle by particle, conditioned via Gibbs sampling on the next observation. This

is achieved via sampling another set of auxiliary particles {X̃ (k,l)
t+1 ,U (k,l)

t+1 }
Nburn−in+1
l=1

for each particle X (k)
t :

P
(

X̃ (k,l+1)
t+1 | X (k)

t ,Yt+1,U
(k,l)
t+1 , θ̂

)
=N

(
X̃ (k,l+1)

t+1 |mt+1,St+1

)
mt+1 = St+1

(
Ĉ′ ·W (k,l)−1

t+1 (Yt+1− d̂)

+ V̂−1ÂX (k)
t

)
St+1 =

(
V̂−1 +Ĉ′ ·W (k,l)−1

t+1 ·Ĉ
)−1

P
(

U (k,l+1)
t+1 | Yt+1, X̃

(k,l+1)
t+1 , θ̂

)
= G

(
U (k,l+1)

t+1 | α(k,l+1)
t+1 ,β

(k,l+1)
t+1

)
α
(k,l+1)
t+1 =

ν̂

2
+

p
2

β
(k,l+1)
t+1 =

ν̂

2
+

1
2

(
Yt+1−Y (k,l+1)

t+1

)′
Ŵ−1

(
Yt+1−Y (k,l+1)

t+1

)
Y (k,l+1)

t+1 = ĈX̃ (k,l+1)
t+1 +d (3.79)
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with Ũ (k,0)
t+1 randomly initialised. Only Nburn−in +1 samples are drawn in this fash-

ion, and the last one is kept as the filtered particle X (k)
t+1:

X (k)
t+1 = X̃ (k,Nburn−in+1) (3.80)

As the predictions Ŷt+n | Y1:t , θ̂ do not depend on U (k)
t , the particles U (k)

t are not

kept. The prediction algorithm is summarised in algorithm 3.3.

Algorithm 3.3 n-step ahead prediction

1. Obtain N particles X (k)
1 | Y1, θ̂ as per (3.75).

2. For each t ∈ 1, . . . ,T −n:

(a) Propagate the auxiliary particles ˜̃X (k)
t forward n times as per (3.76).

(b) Predict Yt+n as the distribution of conditional means E[Yt+n |
˜̃X (k)
t+n,U

(k)
t+n, θ̂ ]

Ŷt+n | Y1:t , θ̂ = {Ŷ (k)
t+n | Y1:t , θ̂}N

k=1

Ŷ (k)
t+n | Y1:t , θ̂ = ĈX (k)

t+n + d̂ (3.81)

(c) Propagate the particles X (k)
t forward one time step and condition on

Yt+1 by generating the auxiliary particle set {X̃ (k,l)
t+1 }

Nburn−in+1
l=1 as per

(3.79) and (3.80), taking X (k)
t+1 = X̃ (k,Nburn−in+1)

t+1 .

3.6 Synthetic data
Each of the 100 samples of synthetic data drawn will contain T = 500 observations,

each with p= 25 dimensions. They will be drawn from the generative model (3.21),

using a latent Gaussian process with k = 10 dimensions. The Gaussian process cor-

relation parameters ρi are each drawn independently from U(−1,1), the degrees of

freedom parameter is drawn from an exponential distribution E(5), and the individ-

ual elements of the emission parameters C,d are each drawn i.i.d. from standard

Gaussians N(0,1). After parameters are drawn they are kept constant across all

draws of synthetic data. The composite likelihood structures used in experiments
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have component sizes 2,10,50,500.

3.7 Experiments
Synthetic data is used to test the results of fitting parameters via VEM (algorithm

3.1) and SEM (algorithm 3.2) for a variety of composite likelihood structures. Ex-

periments investigating the effects on bias and variance are made, as well as on the

quality of smoothing estimates and prediction. From here on, to ease descriptions

all estimators that approximately maximise composite likelihoods by making varia-

tional approximations are referred to as VEM estimators. Similarly, estimators that

use stochastic approximations to maximise composite likelihoods are referred to as

SEM estimators.

Disjoint components: The first experiment to be conducted examines the effect of

including all possible component in a composite likelihood, as compared to

only disjoint components. The experiment is conducted for components of

size n = 2 on the bias of estimators. Estimators that maximise

L2,∪
C (θ) =

499

∏
tc=1

P(Ytc:tc+1 | θ) (3.82)

and

L2,
•
∪

C (θ) =
250

∏
tc=1

P(Y2tc−1:2tcn | θ) (3.83)

are computed and compared.

Other effects are investigated on disjoint composite structures only. The

composite structures being compared have disjoint components of sizes n ∈

2,10,50,500. For clarity it should be noted that the composite likelihood estimator

with component size n = T = 500 is equivalent to the standard maximum likelihood

estimator. The other experiments conducted are on:

Bias: To examine the effect of variational approximations and component size on

the bias of estimators, the model (3.21) will be fit via both VEM and SEM
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for all component sizes n to one common set of synthetic data. Each set

of fitted parameters will be compared, along with the time taken to fit each

of them. The bias from using the particular component structure is separated

from the effect of making a variational approximation by observing the differ-

ence between the two estimators. The behaviour of estimates as component

size changes will be observed. The values

δ
VEM
m,n =

∥∥θ̂
VEM
m − θ̂

VEM
n

∥∥ , m,n ∈ 2,10,50,500

δ
SEM
m,n =

∥∥θ̂
SEM
m − θ̂

SEM
n

∥∥ , m,n ∈ 2,10,50,500

δ
VEM/SEM
m,n =

∥∥θ̂
SEM
m − θ̂

VEM
n

∥∥ , m,n ∈ 2,10,50,500 (3.84)

where superscripts indicate the approximate EM method used, and subscripts

indicate the component size of the estimator, will be recorded and analysed.

Variance: The effect of choosing different composite structures on the variance of

VEM parameter estimates will also be examined. The model will be fitted

to multiple, independent draws of synthetic data, all drawn from the same

distribution, via VEM for each component size n. There will be 100 i.i.d.

samples of synthetic data. The variances of estimators approximated with

VEM for all component sizes n are observed. The values

var
(
θ̂

V EM
n,i

)
, n ∈ 2,10,50,500, i ∈ 1, . . . , |θ | (3.85)

where the second subscript indicates the element of θ̂ whose variance is being

recorded, will be compared to each other.

Smoothing: Smoothing is undertaken for a set of estimated parameters by taking

MCMC samples to approximate the latent posterior as per sec 3.4.1. All pa-

rameter estimates made in the bias experiments above are used to generate

approximate smoothed distributions. Estimates of both in-sample and out-of-

sample smoothed distributions are made. In-sample smoothing estimates the

smoothed distribution of the latent variables for the dataset to which param-
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eters were fitted. Out-of-sample smoothing estimates the smoothed distribu-

tion for one dataset other than the one to which estimated parameters were

fitted, but generated using the same parameters. Two different root mean

squared error (RMSE) loss functions are used to measure performance. The

first loss function is:

L(1), j
n =

√√√√ 1
T (k+1)

T

∑
t=1

(
k

∑
k′=1

(
Xt,k′− X̂

n, j
t,k′

)2

+

(
Ut−Û

n, j
t

)2
)

n ∈ 2,10,50,500, j ∈ {VEM,SEM} (3.86)

where X̂
n, j
t,k′ and Û

n, j
t are the means of the smoothing estimates for each di-

mension of the latent space at each time:

X̂
n, j
t,k′ =

1
N

N

∑
i=1

X̂ (i),n, j
t,k′

Û
n, j
t =

1
N

N

∑
i=1

Û (i),n, j
t (3.87)

This loss function measures how close the mean of each smoothing estimate is

to the true value of its corresponding latent variable. The second loss function

is:

L(2), j
n =

√√√√ 1
NT (k+1)

N

∑
i=1

T

∑
t=1

(
k

∑
k′=1

(
Xt,k′− X̂ (i),n, j

t,k′

)2
+
(

Ut−Û (i),n, j
t

)2
)

n ∈ 2,10,50,500, j ∈ {VEM,SEM} (3.88)

This loss function measures how close the individuals particles in the smooth-

ing estimates are to the true value of their corresponding latent variables. The

two loss functions are related:

L(2), j
n =

√√√√(L(1), j
n

)2
+

1
T (k+1)

T

∑
t=1

(
k

∑
k′=1

var(X̂n, j
t,k′ )+var(Ûn, j

t )

)
(3.89)



122 Chapter 3. Composite Likelihood Estimators in State Space Models

where var(X̂n, j
t,k′ ) and var(Ûn, j

t ) are the variances of the smoothing estimates

for each dimension of the latent variable at each time. This illustrates how

L(2), j
n measures the spread of particles in addition to the accuracy of the par-

ticle means at each time. It also implies that L(2), j
n ≥ L(1), j

n ∀n, j.

Prediction: One step ahead prediction as per (3.10), i.e. with n = 1, is undertaken.

Similarly to the smoothing experiment, two different RMSE loss functions

are used to measure performance. The first loss function is:

L(1), j
n =

√√√√ 1
(T −1)p

T

∑
t=2

p

∑
p′=1

(
Yt,p′− Ŷ

n, j
t,p′

)2

n ∈ 2,10,50,500, j ∈ {VEM,SEM} (3.90)

where Ŷ
n, j
t,p′ is dimension p′ of the mean prediction of Yt made using θ̂

j
n :

Ŷ
n, j
t,p′ =

1
N

N

∑
i=1

Ŷ (i),n, j
t,p′ (3.91)

This loss function measures how close the mean particle predictions for each

time are to the data. The second loss function is:

L(2), j
n =

√√√√ 1
N(T −1)p

N

∑
i=1

T

∑
t=2

p

∑
p′=1

(
Yt,p′− Ŷ (i),n, j

t,p′

)2

n ∈ 2,10,50,500, j ∈ {VEM,SEM} (3.92)

where Ŷ (i),n, j
t,p′ is dimension p′ of the prediction of Yt made using θ̂

j
n by particle

i of N. This loss function measures how close individual particle predictions

for each time are to the data. The two loss functions are related:

L(2), j
n =

√√√√(L(1), j
n

)2
+

1
(T −1)p

T

∑
t=2

p

∑
p′=1

var(Ŷ n, j
t,p′) (3.93)

where var(Ŷ n, j
t,p′) is the variance of the distributional prediction Ŷ n, j

t,p′ . This im-
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Table 3.1: Running times for approximate parameter estimation algorithm for estimators
using VEM and SEM, and with various composite likelihood structures. Times
are in seconds, and are rounded to the nearest second.

θ̂
Non-overlapping blocks

Overlapping
blocks

VEM SEM VEM SEM
n 2 10 50 500 2 10 50 500 2 2

Seconds 116 128 131 133 9,496 9,383 9,467 9,574 216 19,219

plies that L(2), j
n ≥ L(1), j

n ∀n, j.

Predictions are made using the procedure described in algorithm 3.3. Both

in-sample prediction and out-of-sample predictions are made for each set of

parameter estimates. The same dataset used for the out-of-sample smoothing

test is used for the out-of-sample prediction. For reference, predictions using

the true parameters that generated the synthetic data are also made for both

the in-sample and out-of-sample data, and both loss functions are computed

for each of these predictions also.

All experiments are written and performed in MATLAB.

3.8 Results
The running times for performing parameter estimation using variational and

stochastic approximations to expected sufficient statistics are shown in table 3.1.

The time taken to calculate estimators with all possible components of size n = 2

scales with the total number M = n(T −n+1) of processed observations.

The difference in estimating parameters using a composite likelihood Ln,∪
C (θ |

Y ) constructed from all possible components of size n, and a composite likelihood

Ln,
•
∪

C (θ | Y ) is investigated for the component size n = 2. Parameters are fitted to

the same dataset using each composite structure, making approximations with both

VEM and SEM. The differences in these estimators are shown in table 3.2.

As can be seen from these tables, the composite structure (either all possible

components or only disjoint components) has a negligible effect on the estimates.

The method of approximating expected sufficient statistics is far more significant.
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This result is taken to support the use of disjoint components in further experiments.

Table 3.2: Differences in maximum composite likelihood parameter estimates made using
all possible components of size 2 (∪) and only disjoint components of size 2

(
•
∪), and with expectations approximated via VEM and SEM. Differences in

norm are in left table, maximum per-element differences are in right table. The
full parameter vector θ contains 310 elements.

(a)
∥∥∥θ̂ i

2− θ̂
j

2

∥∥∥
VEM ∪ SEM ∪

VEM
•
∪ 1.48 8.85

SEM
•
∪ 8.98 2.29

(b) max
(

abs
(

θ̂ i
2,k− θ̂

j
2,k

))
VEM ∪ SEM ∪

VEM
•
∪ 0.41 2.61

SEM
•
∪ 2.56 0.55

3.8.1 Bias experiment

The differences in parameter estimates made using disjoint components of sizes

n∈ 2,10,50,500 and via VEM and SEM are shown in table 3.3. The results in table

3.3 show all pairwise differences in estimated parameter vectors. Each quadrant

of table 3.3 highlights different features of the bias experiment. The top left and

bottom right quadrants record the differences between estimators within each of the

VEM and SEM classes respectively as component size changes. The bottom left

and top right quadrants record the differences between estimators across the two

classes. As θ̂ SEM
500 is equivalent to the maximum likelihood estimator for the dataset,

it can be considered to be the ‘gold standard’ among the estimators being compared.

The differences between θ̂ SEM
500 and all other estimators (rightmost column of table

3.3) are therefore particularly relevant.

Within both the VEM and SEM classes of estimators, the norms of the differ-

ences go to 0 as the component sizes n approaches T . For example, δ VEM
2,10 > δ VEM

10,50

and δ VEM
10,50 > δ VEM

50,500. This suggests that estimators within each class will converge

as component size increases, subject to sufficient data being available for such com-

ponent sizes to exist.

The error in SEM estimators appears to increase more rapidly as component

size decreases than that of the VEM estimators. This suggests that the choice of

component size is less significant when using VEM estimators than when using
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SEM estimators. Each of the columns in the top right quadrant of table 3.3, and

the rightmost column in particular, support this suggestion, as each SEM estima-

tor is almost equally far from all VEM estimators. The (entire) rightmost column

shows the distances of all estimators from θ̂ SEM
500 . It shows all VEM estimators being

similarly far from the gold standard θ̂ SEM
500 , while the SEM estimators converge on

the gold standard as the component size increases. The bias introduced with the

variational approximations therefore seems to dominate any effect from making a

particular choice of component size.

Table 3.3: Results of bias experiment. All pairwise differences in parameter estimates as
(disjoint) component size n changes, with n∈ 2,10,50,500, for VEM estimators
and SEM estimators.

VEM SEM

n
2 10 50 500 2 10 50 500

VEM

2 0 4.83 5.54 5.77 8.90 21.25 31.47 38.47
10 4.83 0 1.18 1.34 10.46 21.04 31.36 38.38
50 5.54 1.18 0 0.39 10.81 20.94 31.28 38.31

500 5.77 1.34 0.39 0 10.95 20.92 31.27 38.30

SEM

2 8.90 10.46 10.81 10.95 0 17.69 28.16 35.24
10 21.25 21.04 20.94 20.92 17.69 0 15.49 24.40
50 31.47 31.36 31.28 31.27 28.16 15.49 0 9.63

500 38.47 38.38 38.31 38.30 35.24 24.40 9.63 0

3.8.2 Variance experiment

The results of the variance experiment are shown in fig 3.4 (p. 125), and sum-

marised in table 3.4 (p. 124). Recall that only VEM estimators are computed in this

experiment, as it is the interaction effect of variational approximations and com-

posite likelihoods being explored. There is no clear pattern across all parameters.

Elements of ρ̂ and d̂ tend have lower variance with smaller component sizes. Ele-

ments of ŵ do not have a particularly strong pattern but the trend is generally in the

opposite direction; variances are lower with larger component sizes. Elements of Ĉ

have no discernible pattern, indeed there is very little difference in their variances as

component size changes. Table 3.4 shows the average variance for each parameter

ρ̂ , ŵ, Ĉ, d̂ for each component size, to illustrate the relative differences in variances
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across parameters.

Table 3.4: Average variance of elements from each parameter across changing component
size n.

n 2 10 50 500
θ̂

ρ̂ 0.057 0.072 0.077 0.078
ŵ 0.054 0.046 0.043 0.043
Ĉ 2.316 2.301 2.320 2.332
d̂ 1.063 1.648 1.951 2.045

3.8.3 Smoothing experiment

The results are shown in table 3.5. Several patterns can be seen, showing differ-

ences between VEM and SEM estimators, and between performance as measured

by the two loss functions described in equations (3.86) and (3.88). All SEM es-

timators θ̂ SEM
n perform better than the corresponding VEM estimator θ̂ VEM

n . For

other patterns, it is easiest to discuss the behaviour of VEM and SEM estimators

separately.

For VEM estimators, losses as measured by both loss functions increase as

component size n increases. The difference L(2), j
n − L(1), j

n stays roughly constant

though. This indicates that the spread of particles stays the same while the particle

means become less accurate.

For SEM estimators, the two loss functions L(2), j
n and L(1), j

n move in opposite

directions as the component size n increases: L1 loss goes down and L2 loss goes

up. The difference between them therefore increases with n. This indicates that the

accuracy of the particle means improves while the spread of the particles widens.

Smoothing estimates made using the true parameters are significantly more

accurate than those made using any of the different estimators. The spread of parti-

cles, as measured by the difference L(2), j
n −L(1), j

n , is larger than any of the spreads

of VEM estimators but smaller than any of the spreads of SEM estimators. All

observed patterns hold for both in-sample and out-of-sample data.
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Figure 3.4: Heat maps of the normalised per-element variances of the elements in each pa-
rameter ρ̂ , ŵ, Ĉ, d̂. Estimates are made using VEM, and each of the 4 columns
in each plot corresponds to the variance vector of parameters estimated using a
composite likelihood with component sizes n∈ 2,10,50,500. Each row of each
plot is normalised by the largest variance in the row. Darker colours correspond
to lower values.

(a) ρ̂ (b) ŵ

(c) Ĉ (d) d̂

Table 3.5: Root mean squared error (RMSE) of smoothing estimates made using estimated
parameters and true parameters, on in-sample (first three rows) and out-of-
sample (last three rows) data. Rows labelled L1 use the first loss function L(1), j

n

described in sec 3.7, equation (3.86). Rows labelled L2 use the second loss
function L(2), j

n described in sec 3.7, equation (3.88). Rows labelled Diff show
the difference L(2), j

n − L(1), j
n between the two loss functions for each estimator

θ̂
j

n and dataset (In/Out). The RMSE of smoothing estimates made using the true
parameters are shown in the right-most column for reference.

VEM SEM
θ true

n 2 10 50 500 2 10 50 500
In
L1 1.717 1.755 1.768 1.771 1.088 1.034 1.005 1.002 0.181
L2 1.727 1.765 1.778 1.780 1.120 1.334 1.384 1.381 0.256

Diff 0.010 0.010 0.010 0.010 0.111 0.299 0.380 0.379 0.075
Out
L1 1.762 1.780 1.812 1.815 1.146 1.061 1.011 1.009 0.175
L2 1.771 1.808 1.820 1.823 1.251 1.356 1.382 1.387 0.251

Diff 0.008 0.009 0.009 0.009 0.105 0.295 0.371 0.378 0.077
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3.8.4 Prediction experiment

The results are shown in table 3.6. As with the smoothing experiment, several pat-

terns can be seen. Differences can be observed between VEM and SEM estimators,

and between performance as measured by the two loss functions described in equa-

tions (3.90) and (3.92).

Predictions made using VEM estimators θ̂ VEM
n outperform their corresponding

SEM estimators θ̂ SEM
n when performance is measured by L1 loss. The opposite is

true when using L2 loss though. For both VEM and SEM estimators, performance

improves as component size n increases. This pattern holds for both loss functions.

For other patterns, it is again easiest to discuss the behaviour of VEM and SEM

estimators separately.

For VEM estimators, the spread of particles as measured by the difference

L(2), j
n −L(1), j

n stays almost constant as component size n changes. There is in fact a

consistent decrease with increasing n, but the effect is only slight. The improvement

in L2 performance with increasing n can largely be explained by the corresponding

improvement in L1 performance.

For SEM estimators, the spread of particles decreases rapidly with increasing

component size n. The spreads of particles in predictions made using θ̂ SEM
50 and

θ̂ SEM
500 are negligible; performance as measured by L1 and L2 losses are almost iden-

tical.

Predictions made using the true parameters have the best performance as mea-

sured by L1 loss, but the worst performance as measured by L2 loss. The spreads of

particles in these predictions are therefore larger than those for any estimator. The

mean prediction of particles is more accurate than for any estimator, but individual

particle predictions are more widely spread than for any estimator. All patterns hold

for both in-sample and out-of-sample data.

3.9 Discussion
The first notable result from the experiments is the small difference between com-

plete composite likelihood estimators θ̂∪ and disjoint-component-only estimators
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Table 3.6: Root mean squared error (RMSE) of one-step-ahead predictions made using es-
timated parameters and true parameters, on in-sample (first three rows) and out-
of-sample (last three rows) data. The rows labelled L1 use the first loss function
L(1), j

n described in sec 3.7, equation (3.90). The rows labelled L2 use the sec-
ond loss function L(2), j

n described in sec 3.7, equation (3.92). Rows labelled Diff
show the difference L(2), j

n −L(1), j
n between the two loss functions for each esti-

mator θ̂
j

n and dataset (In/Out). The RMSE of predictions made using the true
parameters are shown in the right-most column for reference.

VEM SEM
θ true

n 2 10 50 500 2 10 50 500
In
L1 5.934 5.880 5.867 5.864 6.494 6.334 6.333 6.333 5.357
L2 7.314 7.228 7.197 7.188 6.919 6.459 6.333 6.333 7.442

Diff 1.380 1.348 1.330 1.324 0.425 0.125 0.001 0.000 2.085
Out
L1 5.936 5.907 5.895 5.891 6.670 6.470 6.489 6.489 5.366
L2 7.316 7.251 7.212 7.210 7.083 6.593 6.489 6.489 7.449

Diff 1.380 1.343 1.325 1.319 0.414 0.123 0.001 0.000 2.083

θ̂
•
∪. This is a particularly useful result, as in general the complete composite like-

lihood is much more expensive to maximise. Indeed, the times taken to compute

each of these estimators for component size n = 2, shown in table 3.1, indicate a

linear scaling with the number of processed observations M = n(T −n+1).

This number M is quadratic in n, and peaks at n = 250 with M = 62,750

processed observations. With regard to the experiments of the current chapter,

component sizes of n = 2,10,50,500 would each have M = 998,4910,22,550,500

processed observations respectively. Such an increase in processing requirements

would almost certainly translate into significantly increased compute times for the

component sizes n = 10,50 in the subsequent experiments. Being able to exper-

imentally justify the use of disjoint-only composite likelihoods allows a massive

reduction in the run time of experiments.

For both the VEM and SEM algorithms, as they exploit message passing tech-

niques the computational complexity of approximating expectations for one com-

ponent is linear in its size n. When disjoint-only composite likelihoods are used,

therefore, the running time of each algorithm will be roughly constant across com-

ponent sizes, i.e. the only significant differences in run time are between the VEM
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and the SEM estimators. Table 3.1 shows that computing SEM estimators increases

computational cost by a factor of just over 70. For applications that don’t require

the improved accuracy that is achieved with SEM estimators, this extra cost is very

difficult to justify.

The results of the bias experiment provide some interesting insight into the

bias effect of variational approximations on estimators. The initial hypothesis of

the current chapter would predict that a larger block size in a composite likelihood

would result in a larger bias from making a variational approximation. This was

not shown to hold in the bias experiment. Instead, the bias of VEM estimators

remains almost constant across block sizes, and actually reduces slightly as bock

size increases.

One possible explanation for this is that the cost of making increasingly bad

approximations to posteriors is balanced by the benefit of conditioning on increas-

ing amounts of data. If this is the case, then it is quite remarkable how well balanced

these two effects are. Regardless of the cause though, the consequence of making

variational approximations in a composite likelihood context seems to be a bias to

estimators that does not change with block size.

The results of the smoothing and prediction experiments illustrate the relevance

of the application for which inference is being performed. In prediction tasks, if

only a point prediction is required, VEM estimators produce better predictions than

SEM estimators. If a predictive distribution is required, or any form of smoothing

estimate, then SEM estimators will have better performance in these tasks.

Regarding smoothing estimates, in both the in-sample and out-of-sample tests

all VEM smoothing estimates had high L1 loss and consistently tight distributions

of particles around their means. Furthermore, the L1 loss increased slightly with

increasing component size n. This is in contrast to the bias experiment, which

showed estimators θ̂ VEM
n getting slightly closer to the gold standard θ̂ SEM

500 with

increasing n. The potential explanation for this offered above was that the cost of

using increasingly bad approximations to posteriors was balanced pretty well by the

benefit of having more data in each of the posteriors being approximated.
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This could also be the explanation here, only with the net effect in smoothing

estimates going in the opposite direction, i.e. their quality gets slightly worse as n

increases. Perhaps the different contexts of bias estimation and smoothing produce

different patterns of net effect, while the underlying balance of costs and benefits to

changing component size largely holds true.

The pattern of results for SEM smoothing estimates was markedly different to

that for VEM smoothing estimates. L1 loss decreased with increasing n, while L2

loss increased; the accuracy of mean particles increased with increasing component

size but particles also became more widely distributed. This is a curious result,

particularly when considering the performance of the true parameters as well. The

L1 loss for SEM estimators gets increasingly close to that for θ̂ true as n increases,

but the L2 loss gets increasingly far.

In the prediction experiment, the results are slightly more difficult to inter-

pret. The two loss functions lead to opposite conclusions regarding the relative

performance of VEM and SEM estimators. Predictions made via VEM estima-

tors have lower L1 loss than those made via SEM estimators, but higher L2 loss.

The mean particles of VEM predictions were more accurate than their correspond-

ing SEM predictions, but the predictive distributions were also significantly more

widely spread.

The spread of particles in VEM predictions, as measured by the difference be-

tween L2 and L1 losses, decreased slowly with increasing n. L1 loss also decreased

slowly with increasing n, and at a similarly slow rate to the decrease in spread. The

spread of particles in SEM predictions, however, rapidly goes to zero with increas-

ing n. For component sizes n = 50 and n = 500, the spread is negligible; individual

particle predictions are very close to each other.

The effect of changing component size n on the performance of VEM estima-

tors in this experiment is not very pronounced, similarly to the bias and smooth-

ing experiments. In this experiment, the net effect of increasing component size

on predictive performance is slightly positive; using larger components to estimate

parameters appears to both improve the predictive quality of particle means, and
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narrow the spread of particles around their means.

It is strange that SEM estimators have consistently better performance than

VEM estimators at smoothing, without this also being the case for making predic-

tions. In particular the mean predictions of particles from SEM estimators have

less predictive power than their VEM counterparts. SEM estimators make unbiased

approximations to posteriors, so it should be expected that they would show better

performance than VEM estimators at all tasks.

It is possible that the prediction task for this data is particularly hard. Even

using the true parameters does not produce unambiguously superior predictions.

Predictions made using θ true have the lowest L1 loss of all predictive distributions,

but the highest L2 loss. The performance of SEM predictions seems particularly

difficult to explain when compared to the performance of the true parameters.

Looking at the smoothing and prediction experiments together, it seems that

particle based approximate distributions can have multiple features to their profiles

as component size n changes. The accuracy of the particle means can improve or

get worse with increasing n, and the spread of particles can get tighter, less tight,

or stay roughly constant. VEM and SEM estimators do not share many features in

either experiment. The only trend that holds for both types of estimator is in the

prediction experiment, where the predictive power of estimators improved when

component size is increased: L(i), j
n1 < L(i), j

n2 for n1 > n2 and both of i = 1 and i = 2

and both of j = VEM and j = SEM.

VEM estimators produce smoothing estimates with very tight spreads of par-

ticles, but predictive distributions with loose spreads. SEM estimators produce

smoothing estimates whose particles have increasing spreads with increasing com-

ponent size n, but predictive distributions whose particles have spreads that vanish

with increasing n. The accuracy of particle means for VEM smoothing estimates

gets worse increasing n, but it improves for predictive distributions. With SEM

estimators, the accuracy of particle means for both the smoothing estimates and

the predictive distributions they produce follow the same trend. In both cases the

accuracy improves with increasing n.
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These results make it difficult to assess whether the hypothesis of this chapter

regarding variational approximations holds true or not. The application in question

clearly affects the efficacy of the different estimators in the experiments. The bias,

smoothing, and prediction experiments suggest there might be two opposing effects

to increasing component size on variational approximations: a benefit from having

more data in each component, and a cost from using increasingly poor approxima-

tions to posteriors. If this is the case then the two effects are pretty well balanced in

all experiments, but with the stronger effect of the two depending on the experiment

in question.

The results of the experiments cannot prove such a conclusion, though they

do provide supportive evidence. The net effect of changing component size on

VEM estimators is small in all applications that were experimented with. Why the

net effect shows opposite trends in smoothing to those of the bias and prediction

experiments is an interesting question. Perhaps the natures of the tasks themselves

have a structural impact on the measured quality of estimators.

If the results of the current chapter are to be used for deciding when variational

approximations would be appropriate, then the recommendations are clear. In the

specific context of making point predictions, VEM estimators produce better predic-

tions than SEM estimators. In all other contexts, SEM estimators outperform their

VEM counterparts. Whether the performance improvement is worth the significant

increase in computation costs will depend on the specific context in question.





Chapter 4

Integrating Composite Likelihood

and Non-Likelihood Based Methods

As the content of chapter 3 illustrated, one of the most computationally challenging

aspects of developing an algorithm for making approximate composite likelihood

parameter estimates in state space models is the (approximate) evaluation of the log

composite likelihood. Assuming the dimensionality of Y is too large for quadrature

to be undertaken, either a deterministic approximation or a Monte Carlo estimate

has to be made.

When the latent process is not modelled to be stationary there is the further

problem of calculating the latent marginals for each component of the composite

likelihood. For a linear Gaussian latent process they can be calculated analytically,

but maximising the log composite likelihood with respect to parameters will be

challenging. Furthermore, the functional dependence of each component likelihood

on the parameters becomes increasingly complex with time.

The use of surrogate marginals, estimated via the method of moments, is pro-

posed in the current chapter to overcome this challenge. These surrogates will be

used to find tractable approximations to the latent posterior for each component

in the composite likelihood. Evaluating log composite likelihoods in this way is

practical and computationally feasible, and the cost of estimating the surrogates is

negligible.

In addition, the use of Gaussian distributions as tractable approximations to
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latent posteriors is also investigated. The classes Q of tractable distributions used

in variational approximations are often chosen to be distributions that factorise over

subsets of the latent variables. For general state space models, factorisations that

produce tractable approximations to the latent posterior do not necessarily exist.

By instead choosing Q to be a parametric family of distributions, their existence is

obviously guaranteed.

Once the closest Gaussians to the (composite) latent posterior are found, the

statistical benefits of their use is investigated. They are used to make variational

approximations to log composite likelihoods, and are also used as importance dis-

tributions for Monte Carlo estimates using importance sampling. The bias of esti-

mated parameters, and the quality of predictions made using those parameters, will

be weighed against the computational costs of their estimation.

4.1 Problem outline
The specific problem this chapter aims to investigate is the estimation of component

likelihoods of a state space model, for use in the approximation of maximum com-

posite likelihood parameter estimation. A Gaussian-Poisson state space model will

be the subject of inference, as it has both simple and complex features. Its com-

putational challenges are sufficient for an approximate inference regime of some

description to be necessary, while some necessary calculations remain analytically

tractable. The investigations of this chapter therefore have an illustrative context for

inference that is not weighed down with excessive complications.

The state space model is extended to allow multiple i.i.d. realisations of data,

implying that each component in the composite likelihood now comprises a product

over the realisations:

LC(θ | Y ) =
C

∏
c=1

D

∏
d=1

P(YMc,:,d | θ) (4.1)

where Yt,s,d denotes the sth element of the data at time t in the dth i.i.d. realisation,

and the colon operator denotes the vector valued index comprising all possible index

values. Each component c in (4.1) is the product of D marginal data likelihoods,
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each of which comprises n contiguous data observations from the same time interval

but in different realisations d. The vector valued index Mc = tc, . . . , tc + n− 1 for

some tc ∈ 1, . . . ,T − n+ 1 denotes the common time interval for these contiguous

data.

Each component log likelihood will be estimated by variational approxima-

tions and also by Monte Carlo estimates. As mentioned above, factorised distribu-

tions will not form the classes of tractable distributions in the current chapter. In-

stead, variational approximations will be implemented using two different Gaussian

classes as tractable distributions; a) the class of general Gaussians of appropriate di-

mension:

QN = {N(µ,Σ) : dim µ = dimXn} (4.2)

where n is the number of observations in each component of the composite like-

lihood, and b) the class of Gaussians of appropriate dimension having a diagonal

covariance matrix:

Q∏N = {N(µ,Σ) : dim µ = dimXn,Σ = diag(σ2
1 , . . . ,σ

2
dimXn)} (4.3)

Variational EM estimates will be made by using these closest Gaussians as varia-

tional distributions. Stochastic EM estimates will be made by using them as im-

portance distributions for Monte Carlo estimates made using importance sampling.

The trade-off between the costs of performing each KL divergence minimisation

and the resulting impact on the quality of the lower bound will be investigated for

both forms of parameter estimate.

The effects of increasing dimX will also be investigated. Inference will be

performed on synthetic data of varying latent dimension. The computational cost

of finding the closest Gaussians in QN,Q∏N for each dimX will be observed, along

with the quality of parameter estimates, and of predictions made using them.
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4.2 Gaussian-Poisson state space model

The state space model that is to be the subject of inference is a particular Gaussian-

Poisson model. The model is an extension of the previously defined state space

model of chapter 3, in that it allows for multiple i.i.d. realisations of data sharing a

common structure:

P(X1,:,d | θ) =N(X1,:,d | µ1,Σ1), d ∈ 1, . . . ,D

P(Xt+1,:,d | Xt,:,d,θ) =N(Xt+1,:,d | AtXt,:,d +bt ,Vt), t ∈ 1, . . . ,T −1

P(Yt,:,d | xt,:,d,θ) =
S

∏
s=1

P(Yt,s,d | Xt,s,d)

=
S

∏
s=1

PO(Yt,s,d | exp(Xt,s,d)) (4.4)

where dimX = dimY = S, and subscripts are as described in each 4.1 above. For

each time t, and each data realisation d, therefore, both Xt,:,d and Yt,:,d are S di-

mensioned variables. When in the following discourse the colon operator is used

with bounds in a subscript, i.e. a : b, this is meant to denote the interval of index

values a, . . . ,b. Note that different parameters control the transitions at each time

point, so the latent process is not time-homogeneous and therefore non-stationary.

It should also be noted that no parameters control the conditional data distributions

given the latent variable. All parametric flexibility in the model is achieved through

controlling the dynamics of the latent process.

A model such as this could be used to model neural spiking activity, as in

for example Buesing et al. (2012); Byron et al. (2009); Smith and Brown (2003);

Kulkarni and Paninski (2007); Byron et al. (2005). Similar models to (4.4) are used

in these examples, though the latent process is often modelled to be stationary. An

example application where non-stationarity has to be explicitly modelled is the exit

counts for subway stations over the course of a day. For data like this, it is reason-

able to expect some temporal dynamics to be operating, and for those dynamics to

change throughout the day. A dataset of this kind is used in the content of chapter

5, and is described in more detail in that chapter.
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As mentioned above, the latent marginals P(XMc,:,d | θ) need to be calculated

to evaluate each component ∑
D
d=1 logP(YMc,:,d | θ) of the log composite likelihood.

The latent process in (4.4) is linear Gaussian so they can be calculated analytically,

but the non-stationarity adds a complication. Calculating the functional dependence

on θ of each component in the composite likelihood becomes non-trivial. Further-

more, the functional dependence gets increasingly complex for components that are

further forward in time.

Surrogate marginals P̃(Xt,:,d) = N(Xt,:,d | µ̃t , Σ̃t) can be used to overcome this

problem. If the parameters µ̃t , Σ̃t are set to the method of moments estimators of

the true parameters µt ,Σt (derived in sec 4.3), then by the law of large numbers they

will converge to the true marginals as the amount of data increases:

(µ̃t , Σ̃t) = (µ̂m.m.
t , Σ̂m.m.

t )

⇒ P̃(Xt,:,d)→dist.P(Xt,:,d | µt ,Σt) as D→ ∞ (4.5)

where (µ̂m.m.
t , Σ̂m.m.

t ) are the method of moments estimators of (µ̃t , Σ̃t). Using such

surrogate marginals is the approach taken here; multiple data realisations allow the

latent marginals P
(
Xt,:,d | θ

)
to be approximated and thus keep the functional de-

pendence of component log likelihoods ∑
D
d=1 logP(YMc,:,d | θ) on parameters θ con-

stant across components.

Synthetic data will be used in experiments to explore the quality of estimators

computed using surrogate marginals, and to compare the trade-offs with each choice

of tractable distribution class. As the data are synthetically generated, the computa-

tional complexity of finding optimal distributions from QN,Q∏N can be controlled

by choosing either or both of S and n. As such, the component size n will be kept

fixed at n = 2, and S will be varied in experiments.

4.2.1 Exploiting surrogate marginals

If a composite likelihood approach is used to estimate the parameters in (4.4), then

each of the components in the composite likelihood will have a functional depen-
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dence on the parameters of all previous transitions:

P(Yt:t+1,:,: | θ) = P(Yt:t+1,:,: | θ1:t) (4.6)

where θt = (At ,bt ,Vt) denotes the parameters governing the t th transition. This

functional dependence can cause difficulties in both the expectation and maximi-

sation steps of an approximate EM algorithm. Using surrogate marginals P̃(Xt,:,d)

breaks these dependencies in the latent process:

P̃(Xt:t+1,:,d | θ) = P̃(Xt,:,d)N(Xt+1,:,d | AtXt,:,d +bt ,Vt)

= P̃(Xt:t+1,:,d | θt) (4.7)

and consequently the dependencies in the components of the (approximate) com-

posite likelihood:

P̃(Yt:t+1,:,: | θ) =
D

∏
d=1

∫
P̃(Xt:t+1,:,d | θt)

S

∏
s=1

P(Yt:t+1,s,d | Xt:t+1,s,d,θt)dXt:t+1,:,d

= P̃(Yt:t+1,:,: | θt) (4.8)

The surrogate marginals therefore use exogenously provided parameter estimates

to disconnect pieces of a model, in order to facilitate further parameter estimation.

This idea has been suggested recently in Halpern and Sontag (2013), who use the

general concept in the context of noisy-OR models. In the current context, their use

can overcome difficulties otherwise encountered in both steps of an approximate

EM algorithm.

In the expectation step, the closest Gaussians from each of the classes QN ,Q∏N

are used to approximate the latent posteriors P(Xt,t+1,:,d|Yt,t+1,:,d,θ). A first step of

this procedure is to compute the latent priors P(Xt,t+1,:,d | θ). The Markov property

of the latent process determines that the dependence on previous parameters θ1:t−1

is encoded in the latent marginal P(Xt,:,d | θ), and as the latent process is linear-

Gaussian, calculating P(Xt,:,d | θ) is a tractable operation.

Particularly in the early iterations of an approximate EM algorithm, though,
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current estimates of previous parameters θ1:t−1 might be significantly inaccurate.

The latent marginals P(Xt,:,d | θ) derived from these parameters would inherit such

inaccuracies, which could slow down the improvements to estimates θ̂t at each EM

iteration. This effect would increase for parameters θt as t increases.

The surrogate marginals P̃(Xt,:,d) do not have any functional dependence on

previous parameters θ1:t−1, so they will not suffer from this pathology. If the surro-

gates are unbiased estimates of the true marginals, then substituting them in place

of the current ‘true’ marginals P(Xt,:,d | θ) can be justified and should bring a faster

convergence rate to the estimation algorithm.

In the maximisation step, the functional dependence of component likelihoods

on previous parameters brings a computational challenge. As all components are

functionally dependent on θ1, all but one of the components dependent on θ2 etc.,

the computational cost of each maximisation step is quadratic in the number of

components in the composite likelihood:

θ̂t = argmax
θt

D

∑
d=1

T

∑
τ=t

logP(Yτ:τ+1,:,d | θ1:τ) (4.9)

By breaking the functional dependencies of each component on previous parame-

ters, this cost is reduced to linear:

θ̂t = argmax
θt

D

∑
d=1

log P̃(Yt:t+1,:,d | θt) (4.10)

4.3 Surrogate marginals

In this section the surrogate marginals P(Xt,:,d) = N(Xt,s,d | µ̃t , Σ̃t) will be derived.

Parameter thresholding is part of the procedure for their determination, but the naive

form of their derivation is first described and the thresholding discussed subse-

quently. The derivation presented here largely follows that of Buesing et al. (2012),

though the details of parameter thresholding differ slightly.

As discussed in sec 4.2, the surrogate parameters are the method of moments

estimators of the true parameters. Their derivation is therefore based on the moment
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equations:

E[Yt,s,d] = exp
(

µt,s +
1
2

σ
2
t,s

)
(4.11)

E[Y 2
t,s,d−Yt,s,d] = exp(2µt,s +2σ

2
t,s) (4.12)

E[Yt,s1,dYt,s2,d] = E[Yt,s1,d]E[Yt,s2,d]exp(σ(t,s1),(t,s2)), s1 6= s2 (4.13)

where σ(t,s1),(t,s2) = cov(Xt,s1,d,Xt,s2,d) is the covariance between two different di-

mensions of the latent process at time t, and σ2
t,s = σ(t,s),(t,s) is the variance of di-

mension s at time t.

Assuming the moments of Yt,:,d were known exactly then equations (4.11 -

4.13) could be used to exactly infer the moments of Xt,:,d . The covariance σ(t,s1),(t,s2)

between two different dimension is trivially read from (4.13):

σ(t,s1),(t,s2) = log
(

E[Yt,s1,dYt,s2,d]

E[Yt,s1,d]E[Yt,s2,d]

)
(4.14)

and for the calculation of the means µt,s and variances σ2
t,s it is convenient to first

define the quantities

z1(t,s) = log(E[Yt,s,d])

z2(t,s) = log(E[Y 2
t,s,d−Yt,s,d]) (4.15)

which clarify the calculations for the mean and variance of each dimension Xt,s,d:

µt,s = 2z1(t,s)−
1
2

z2(t,s)

σ
2
t,s = z2(t,s)−2z1(t,s) (4.16)

The naive method of moments estimators of µt,s,σ
2
t,s,Σ(t,s1),(t,s2) are made by
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replacing the expected values in (4.14), (4.16) with sample moments from the data:

µ̃t,s = 2z̃1(t,s)−
1
2

z̃2(t,s)

σ̃
2
t,s = z̃2(t,s)−2z̃1(t,s)

σ̃(t,s1),(t,s2) = log
(

Yt,s1Yt,s2

Y t,s1Y t,s2

)
(4.17)

where

z̃1(t,s) = log(Y t,s)

z̃2(t,s) = log(Y 2t,s−Y t,s) (4.18)

and over-lines indicate sample means. The naive surrogate covariance matrix is

constructed from the variance and covariance parameters:

Σ̃t = {σ̃t,s1,s2}=

 σ̃2
t,s s1 = s2 = s

σ̃(t,s1),(t,s2) s1 6= s2

(4.19)

As the linear-Gaussianity of the auto-regression in (4.4) implies that all latent

marginals are Gaussian, using Gaussians with parameters as in (4.17) as surrogate

marginals will ensure that the surrogates converge to the true marginals as D→ ∞.

4.3.1 Thresholding

Though defining surrogate parameters as in (4.17) ensures convergence of the surro-

gates to the true marginals, there are still practical considerations when calculating

the parameters in practice. As the data are conditionally Poisson, there is a non-zero

probability that some or all of z1(t,s),z2(t,s),Yt,s1Yt,s2 at any time t are 0. As log(0)

is undefined, this would cause any algorithm using such parameters to fail. Further-

more, the positive definiteness of Σ̃t is not guaranteed when using sample means

in place of expected values, so the estimated covariance matrix for each surrogate

must be projected onto the space of positive definite matrices.
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The first of these problems is avoided by thresholding the sample means:

Ŷ t,s = max(Y t,s, δ )

Ŷt,s1Yt,s2 = max(Yt,s1Yt,s2, δ ) (4.20)

for some small δ > 0, and then observing that the requirement

σ̃
2
t,s > 0⇒ log(Y 2t,s−Y t,s)> 2log(Y t,s) (4.21)

can be enforced similarly:

Ŷ 2t,s = max(Y 2t,s, Ŷ t,s + Ŷ
2
t,s +δ ) (4.22)

for some small δ > 0.

These thresholded sample means are used in place of the true sample means:

̂̃µ t,s = 2̂z̃1(t,s)−
1
2
̂̃z2(t,s)

̂̃σ2
t,s = ̂̃z2(t,s)− 2̂z̃1(t,s)

̂̃σ (t,s1),(t,s2) = log

(
Ŷt,s1Yt,s2

Ŷ t,s1Ŷ t,s2

)

Ŝt = {̂̃σ t,s1,s2}=

 ̂̃σ2
t,s s1 = s2 = ŝ̃σ (t,s1),(t,s2) s1 6= s2

(4.23)

where ̂̃z1(t,s),̂̃z2(t,s) are the thresholded equivalents to z̃1(t,s), z̃2(t,s).

As mentioned above, even after this thresholding, the positive definiteness of

Σ̃t is not guaranteed. A projection onto the space of positive definite matrices of

appropriate dimension is therefore required. Following Buesing et al. (2012), the

projection is chosen to minimise the Frobenius norm of the difference between Σ̃t

and its projection. This is achieved by thresholding the eigenvalues of Σ̃t :

̂̃St =V ·diag(D̃) ·V ′ (4.24)
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where

Ŝt =V ·diag(D) ·V ′ (4.25)

is the eigenvalue decomposition of Ŝt , and

D̃s = max(Ds, δ ) (4.26)

for some small δ > 0.

This projection will in general modify all entries of Ŝt , which is not necessarily

desirable. When applied in the experiments of the current chapter, the modifications

to the variance parameters σ2
t,s after projection were found in practice to be causing

unacceptable numerical errors in subsequent inference. To counteract this issue, a

rescaling of the projection is performed, such that the resulting diagonal equals the

diagonal of the original Ŝt :

̂̃
Σt = diag(R) ·V ·diag(D̃) ·V ′ ·diag(R)

Rs =

√√√√ ̂̃σ2
t,ŝ̃St,s,s

(4.27)

where ̂̃St,s,s are the elements of the diagonal of ̂̃St . The thresholded parameterŝ̃µ t =
̂̃µ t,:,

̂̃
Σt are used as the parameters for the surrogate marginals,:

P̃(Xt,:,d) =N
(

Xt,:,d | ̂̃µ t ,
̂̃
Σt

)
(4.28)

as detailed in algorithm 4.1.

4.4 Estimating maximum composite likelihood pa-

rameters

The surrogate marginals derived in sec 4.3 are used to develop approximations to

maximum composite likelihood parameter estimates. As discussed in sec 4.1, the



146Chapter 4. Integrating Composite Likelihood and Non-Likelihood Based Methods

Algorithm 4.1 Calculating the surrogate marginals

1. Calculate thresholded sample moments for each time t, as per (4.20),
(4.22):

Ŷ t,s = max(Y t,s, δ )

Ŷt,s1Yt,s2 = max(Yt,s1Yt,s2, δ )

Ŷ 2t,s = max(Y 2t,s, Ŷ t,s + Ŷ
2
t,s +δ ) δ > 0 (4.29)

2. Construct mean-thresholded parameters as per (4.23):

̂̃µ t,s = 2̂z̃1(t,s)−
1
2
̂̃z2(t,s)̂̃σ2

t,s = ̂̃z2(t,s)− 2̂z̃1(t,s)

̂̃σ (t,s1),(t,s2) = log

(
Ŷt,s1Yt,s2

Ŷ t,s1Ŷ t,s2

)

Ŝt = {̂̃σ t,s1,s2}=

{ ̂̃σ2
t,s s1 = s2 = ŝ̃σ (t,s1),(t,s2) s1 6= s2

(4.30)

3. Threshold the eigenvalues of Ŝt , and rescale resulting positive definite
matrix such that its diagonal equals that of Ŝt , as per (4.27):

̂̃
Σt = diag(R) ·V ·diag(D̃) ·V ′ ·diag(R)

Rs =

√√√√ ̂̃σ2
t,ŝ̃St,s,s

(4.31)

4. Use ̂̃µ t =
̂̃µ t,:,

̂̃
Σt as parameters for surrogate marginals:

P̃(Xt,:,d) =N
(

Xt,:,d | ̂̃µ t ,
̂̃
Σt

)
(4.32)
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closest Gaussians to the latent posteriors from

QN = {N(µ,Σ) : dim µ = dimXn}

Q∏N = {N(µ,Σ) : dim µ = dimXn,Σ = diag(σ2
1 , . . . ,σ

2
dimXn)} (4.33)

with n= 2 kept fixed, will be used as both variational approximations for variational

EM estimators, and importance distributions for stochastic EM estimators. For clar-

ity it should be noted that the independence between the different realisations of

data Y:,:,d implies that the posterior distribution of all latent variables factorises over

realisations, and as such there are D(T − 1) independent component posteriors of

dimension 2S being independently approximated by Gaussians in QN,Q∏N
.

As described in sec 4.2.1, the surrogate marginals P̃(Xt,:,d) are exploited in both

the expectation steps and the maximisation steps of the approximate EM algorithms

described above. Expectations are made by first finding the closest Gaussians to the

approximate posteriors

P̃(Xt:t+1,:,d | Yt:t+1,:,d, θ̂
(k))

approx.
∝ P̃(Xt,:,d)N

(
Xt+1,:,d | Â

(k)
t Xt,:,d + b̂(k)

t ,V̂ (k)
t

)
×

t+1

∏
τ=t

S

∏
s=1

PO(Yτ,s,d | exp(Xτ,s,d)) (4.34)

The maximisation step exploits the break of functional dependence of each compo-

nent in the log composite likelihood. Each component depends only on the param-

eters associated to the same time step, as per (4.10).

4.4.1 Expectation step

The expectation of each component

D

∑
d=1

logP(Xt:,t+1,:,d,Yt:t+1,d | θ) (4.35)

in the full log composite likelihood is taken with respect to a different approxima-

tion to the latent posterior for each approximation method. Underlying each of these
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approximate distributions is the closest Gaussian to the latent posterior:

q∗(Xt:t+1,:,d) = argmin
q∈Q

KL
[
q(Xt:t+1,:,d) ||P(Xt:t+1,:,d | Yt:t+1,:,d,θ)

]
(Q = QN)∨ (Q = Q∏N) (4.36)

which is in turn approximated by substituting the true latent posterior with an ap-

proximation P̃(Xt:t+1,d | θ) based on the surrogate marginal P̃(Xt,:,d):

P
(

Xt:t+1,:,d | Yt:t+1,:,d, θ̂
(k)
) approx.

∝ P̃(Xt,:,d)N
(

Xt+1,:,d | Â
(k)
t Xt,:,d + b̂(k)

t ,V̂ (k)
t

)
×

t+1

∏
τ=t

S

∏
s=1

PO(Yτ,s,d | exp(Xτ,s,d))

= P̃(Xt:t+1,d | θ) (4.37)

Variational approximations use these closest Gaussians directly as approximating

distributions. Stochastic approximations use them as importance distributions.

4.4.1.1 Closest Gaussians

The procedure for finding the closest Gaussians in QN,Q∏N to the latent posterior

will now be described. It should be emphasised that by using QN,Q∏N as classes

of tractable distributions, rather than product distributions as in chapter 3, the pro-

cedure for finding the optimal variational distributions changes substantially.

When product distributions are used as classes Q, the optimal q ∈ Q:

q∗ = argmin
q∈Q

KL [q || p] (4.38)

is found by iteratively taking expectations of the total log composite likelihood with

respect to each factor. When Q is a parametric class of distributions, the KL diver-

gence is minimised with respect to the parameters directly.

In the current context, the parameters corresponding to the optimal Gaussians

in QN,Q∏N cannot be found analytically. A gradient based numerical minimiser

is used, which takes the KL divergence (as a function of the variational Gaussian
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parameters) and its first and second partial derivatives as inputs. The parameters

that numerically minimise the KL divergence are returned.

The following derivation is therefore not analytical but rather numerical. The

procedure description develops a re-parametrisation of the Gaussians in QN,Q∏N

that accepts unbounded parameter values. This re-parametrisation allows deriva-

tives to be taken analytically. The derivatives themselves are listed in appendices

4.A - 4.D.

Taking the minimisation over QN first, the KL divergence from q ∈ QN to the

latent posterior takes the form:

KL [q || p]≈ EN(µq,Σq)

[
log
(
N(Xt:t+1,:,d | µq,Σq)

P̃(Xt:t+1,d | θ)

)]
+ constant (4.39)

where p = P(Xt:t+1,:,d | Yt:t+1,:,d,θ) is shorthand for purposes of brevity, and

θ =

(̂̃µ ′t ,vec
(̂̃

Σt

)′
,vec(At)

′,b′t ,vec(Vt)
′
)′

(4.40)

is the parameter vector containing the surrogate marginal derived in sec 4.3 and

the auto-regression parameters for time t. To ease exposition, these parameters are

combined using standard results for Gaussian distributions into a joint mean vector

and joint covariance matrix:

Xt:t+1,:,d ∼N
(

Xt:t+1,:,d | µ̂p, Σ̂p

)
µ̂p =

 ̂̃µ t

At ̂̃µ t +bt


Σ̂p =

 ̂̃
Σt

̂̃
Σt ·A′t

At · ̂̃Σt Vt +At · ̂̃Σt ·A′t

 (4.41)
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The definition in (4.39) can then be expanded further:

KL [q || p] =−1
2

log(|Σq|)+
1
2

(
trace(Σq · Σ̂−1

p )+µ
′
qΣ̂
−1
p µq−2µ

′
qΣ̂
−1
p µ̂p

)
−µ

′
q vec(Yt:t+1,:,d)+

t+1

∑
τ=t

S

∑
s=1

exp
(

µq,(τ,s)+
1
2

σ
2
q,(τ,s)

)
+ constant

(4.42)

where the index (τ,s) in the exponential terms denotes the elements of µq and the

diagonal of Σq corresponding to the dimension of the latent variable associated with

Yτ,s,d . The notation µq,i where i = (τ−1)S+ s is also used in this section when the

values of τ,s are clear.

At this stage a particular re-parametrisation of Σq is employed, which can make

the numerical minimisation of (4.42) less cumbersome. The positive definite con-

straint on Σq is generally non-trivial to enforce in a numerical minimiser, but en-

forcement becomes implicit when expressing Σq as a function of the elements of its

Cholesky factorisation:

Σq = Lq ·LT
q (4.43)

where Lq is a lower triangular matrix with strictly positive numbers on the diago-

nal, and the transpose of Lq is denoted LT
q to avoid confusion with the matrix of

derivatives L′q = { f ′a,b(la,b)} in appendices 4.A - 4.D.

The positive definite constraint on Σq can be enforced simply by substituting

Σq with Lq ·LT
q in (4.42). Care must be taken though, to ensure the diagonal of Lq

contains only positive numbers. This can be achieved with the following parametri-

sation:

Lq,i, j =

 fi, j(li, j) j ≤ i

0 j > i
(4.44)
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where Lq,i, j is the (i, j)th element of Lq, and

fi, j(li, j) =

 exp(li, j) i = j

li, j j < i
(4.45)

Formulating Lq as in (4.44) allows numerical minimisation routines to search the

space of unbounded parameters li, j ∈ R. This re-parametrisation gives the alternate

formulation of (4.42):

KL [q || p] = c−
2S

∑
i=1

li,i +
1
2

(
trace(Lq ·LT

q · Σ̂−1
p )+µ

′
qΣ̂
−1
p µq−2µ

′
qΣ̂
−1
p µ̂p

)
−µ

′
q vec(Yt:t+1,:,d)+

t+1

∑
τ=t

S

∑
s=1

exp

(
µq,i +

1
2

i

∑
j=1

fi, j(li, j)2

)
(4.46)

where i = (τ−1)S+ s is the index of µq corresponding to time τ and dimension s.

The numerical minimisation routines used here to minimise (4.46) are gradient

based methods that require as inputs the grad vector of first order partial derivatives

and the Hessian matrix of second order partial derivatives, along with the function

to be minimised. These partial derivatives are listed in appendices 4.A - 4.B.

Plugging the function (4.46) into a gradient based minimiser along with the

partial derivatives (4.72), (4.73), (4.76), (4.77), and (4.78) returns the numerical

estimate of the closest Gaussian in QN to the latent posterior.

Finding the closest Gaussian in Q∏N to the posterior is an essentially identical

process, only with the off-diagonal elements of Lq set to 0:

Lq,i, j =

 fi, j(li, j) i = j

0 i 6= j
(4.47)

with non-zero elements li,i now only needing to be referenced with one index, i.e.

li,i ≡ li, and

fi(li) = exp(li) (4.48)



152Chapter 4. Integrating Composite Likelihood and Non-Likelihood Based Methods

resulting in the simpler equation:

KL [q || p] = c+
2S

∑
i=1

li +
1
2

(
2S

∑
i=1

exp(2li)Σ̂−1
p,i,i +µ

′
qΣ̂
−1
p µq−2µ

′
qΣ̂
−1
p µ̂p

)

−µ
′
q vec(Yt:t+1,:,d)+

t+1

∑
τ=t

S

∑
s=1

exp
(

µq,i +
1
2

exp(2li)
)

(4.49)

The partial derivatives of (4.49) are listed in appendices 4.C - 4.D. Plugging

the function (4.49) into a gradient based minimiser along with the partial derivatives

(4.81), (4.82), (4.83), (4.84), and (4.85) returns the numerical estimate of the closest

Gaussian in Q∏N to the latent posterior. When the dimension of the Gaussians in

QN,Q∏N is small then both the first and second order partial derivatives can be

used in Newton’s method of optimisation. Computation of the Hessian is relatively

slow though. As the latent dimensionality increases, therefore, its calculation will

become impractical. In this case, L-BFGS can be used instead of Newton’s method,

which requires only first order partial derivatives. The procedure for finding the

closest Gaussian in QN,Q∏N is summarised in algorithm 4.2.

4.4.1.2 Approximating distributions

Parameter estimates made using variational EM follow algorithm 4.3 using the clos-

est Gaussians

q∗t,d(Xt:t+1,:,d) = argmin
q∈Q

KL
[
q ||P(Xt:t+1,:,d | Yt:t+1,:,d, θ̂

(k))
]

(4.53)

to directly calculate the expected sufficient statistics in (4.58). Parameter estimates

made using stochastic EM follow algorithm 4.3 using importance distributions to

approximate sampling from the posterior:

Eq∗t,d

[
f (Xt:t+1,:,d)

]
=

N

∑
i=1

wi f
(

X (i)
t:t+1,:,d

)
, X (i)

t:t+1,:,d
i.i.d∼ q̃∗t,d (4.54)
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Algorithm 4.2 Finding the closest Gaussian in QN,Q∏N to the latent posterior

1. For current parameter estimates θ̂ (k) and surrogate marginals
P̃(Xt,:,d), construct the parameters of the surrogate pairwise marginals
P̃(Xt,:,d)N(Xt+1,:,d | Xt,:,d, θ̂

(k)) as per (4.41):

µ̂p =

( ̂̃µ t

Â(k)
t
̂̃µ t + b̂(k)

t

)

Σ̂p =

( ̂̃
Σt

̂̃
Σt · Â(k)′

t

Â(k)
t · ̂̃Σt V̂ (k)

t + Â(k)
t · ̂̃Σt · Â(k)′

t

)
(4.50)

2. Minimise the KL divergence

KL [q || p] = c−
2S

∑
i=1

li,i +
1
2

(
trace(Lq ·L′q · Σ̂−1

p )+µ
′
qΣ̂
−1
p µq−2µ

′
qΣ̂
−1
p µ̂p

)
−µ

′
q vec(Yt:t+1,:,d)+

t+1

∑
τ=t

S

∑
s=1

exp

(
µq,i +

1
2

i

∑
j=1

fi, j(li, j)2

)
(4.51)

for q ∈ QN and

KL [q || p] = c+
2S

∑
i=1

li +
1
2

(
2S

∑
i=1

exp(2li)Σ̂−1
p,i,i +µ

′
qΣ̂
−1
p µq−2µ

′
qΣ̂
−1
p µ̂p

)

−µ
′
q vec(Yt:t+1,:,d)+

t+1

∑
τ=t

S

∑
s=1

exp
(

µq,i +
1
2

exp(2li)
)

(4.52)

for q ∈ Q∏N using a gradient based minimiser, for example Newton’s
method or L-BFGS. For q ∈ QN the grad vector is determined by (4.72),
(4.73) and the Hessian matrix is determined by (4.76), (4.77), (4.78). For
q∈Q∏N, the grad vector is determined by (4.81), (4.82), and the Hessian
matrix is determined by (4.83), (4.84), and (4.85).
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where Eq∗t,d

[
f (Xt:t+1,:,d)

]
represents one of the expected sufficient statistics in

(4.58), and

wi ∝
P̃(X (i)

t:t+1,:,d)PO(Yt:t+1,:,d | X
(i)
t:t+1,:,d, θ̂

(k))

q̃∗t,d(X
(i)
t:t+1,:,d

,
N

∑
i=1

wi = 1 (4.55)

and the importance distributions q̃∗t,d are the closest Gaussians from QN,Q∏N to the

posterior.

4.4.2 Maximisation step

For each approximation method, once the approximation to the latent posterior has

been made, it can be used to take the expectation of the total log composite likeli-

hood and obtain a lower bound to the data log composite likelihood. As noted in

sec 4.2.1, using the surrogate marginals P̃(Xt,:,d) breaks the functional dependence

of each component logP(Yt:t+1,:,dθ) on parameters associated to time steps prior to

t. The maximisation step, therefore, depends only on expected sufficient statistics

relating to the log transitions. The parameter estimates that maximise the lower

bound are:

Â+
t =

(
D

∑
d=1

Eq∗t,d

[
Xt+1,:,dX+

t,:,d
′
])( D

∑
d=1

Eq∗t,d

[
X+

t,:,dX+
t,:,d
′
])−1

V̂t =
1
D

D

∑
d=1

(
Eq∗t,d

[
Xt+1,:,dX ′t+1,:,d

]
− Â+

t Eq∗t,d

[
X+

t,:,dXt+1,:,d

]
− Eq∗t,d

[
Xt+1,:,dX+

t,:,d
′
]

Â+′
t + Â+

t Eq∗t,d

[
X+

t,:,dX+
t,:,d
′
]

Â+′
t

)
(4.56)

where

X+
t,:,d =

 Xt,:,d

1


A+

t = (At bt) (4.57)
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are augmented so as to include the intercept vector bt into At . The output required

from the expectation step is therefore calculation of the expected sufficient statistics

Eq∗t,d

[
Xt:t+1,:,d

]
Eq∗t,d

[
vec
(
Xt:t+1,:,d

)
vec
(
Xt:t+1,:,d

)′] (4.58)

The approximate EM procedures are summarised together in algorithm 4.3.

4.5 Method of moments parameter estimates

Parameter estimates θ̂ (0) can also be made via the method of moments. These

estimates can be used directly in, for example, prediction or smoothing tasks, or

they can be used to initialise approximate EM algorithms as per step 2 of algorithm

4.3.

The method of sec 4.3 is trivially extended to estimate pairwise surrogate

marginals P̃(Xt:t+1,:,d). Parameter estimates can be calculated in closed form from

these pairwise marginals. The pairwise surrogates are estimated simply by aug-

menting the sample moments of sec 4.3 with the cross-time moments

σ (t,s1),(t+1,s2), s1,s2 ∈ 1, . . . ,S (4.61)

and constructing estimated pairwise covariance matrices

̂̃St:t+1 =

 ̂̃St
̂̃St,t+1̂̃St+1,t
̂̃St+1:t+1

 (4.62)

via the thresholding and rescaling procedure described in sec 4.3.1. The method of
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Algorithm 4.3 Approximate EM

1. Determine the parameters for the surrogate marginals P̃(Xt,:,d) as per al-
gorithm 4.1.

2. Initialise parameter estimates θ̂ (0).

3. Repeat until convergence of θ̂ (k):

(a) Use the surrogate marginals and current parameter estimates θ̂ (k) to
find the closest Gaussians q∗ ∈ Q to the latent posteriors for either
Q = QN or Q = Q∏N as per algorithm 4.2.

(b) Evaluate the expected sufficient statistics (4.58):

Eq∗t,d

[
Xt:t+1,:,d

]
Eq∗t,d

[
vec
(
Xt:t+1,:,d

)
vec
(
Xt:t+1,:,d

)′] (4.59)

for the lower bound on the data log composite likelihood. Expecta-
tions are taken with respect to the particular approximate distribu-
tion being employed:

• Variational EM: Closest Gaussians found using algorithm 4.2
are used directly.

• Stochastic EM: Closest Gaussians found using algorithm 4.2
are used as importance distributions to approximate the poste-
rior.

(c) Maximise the lower bound with respect to the parameters as per
(4.56):

Â+
t =

(
D

∑
d=1

Eq∗t,d

[
Xt+1,:,dX+

t,:,d
′
])( D

∑
d=1

Eq∗t,d

[
X+

t,:,dX+
t,:,d
′
])−1

V̂t =
1
D

D

∑
d=1

(
Eq∗t,d

[
Xt+1,:,dX ′t+1,:,d

]
− Â+

t Eq∗t,d

[
X+

t,:,dXt+1,:,d

]
− Eq∗t,d

[
Xt+1,:,dX+

t,:,d
′
]

Â+′
t + Â+

t Eq∗t,d

[
X+

t,:,dX+
t,:,d
′
]

Â+′
t

)
(4.60)
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moments parameter estimates are made as:

P(Xt:t+1,:,d) =N(Xt:t+1,:,d | ̂̃µ t:t1,
̂̃
Σt:t+1)

⇒ Ât =
̂̃
Σt+1,t · ̂̃Σ−1

t

b̂t = ̂̃µ t+1− Ât ̂̃µ t

V̂t =
̂̃
Σt+1− ̂̃Σt+1,t · ̂̃Σ−1

t · ̂̃Σt,t+1 (4.63)

4.6 Experiments
Synthetic data drawn as per sec 4.6.1 is used to investigate the results of fitting pa-

rameters via each approximation method described in algorithm 4.3. The trade-offs

between compute time and the statistical qualities of the estimators are examined.

The dimension S of the data varies across synthetic data sets to observe its effect on

the trade-offs.

For each dataset, parameters fitted by each method are compared and the dif-

ferences

δi, j =
∥∥θ̂

i− θ̂
j∥∥

i, j ∈
{

VEM(QN),VEM(Q∏N),SEM(QN),SEM(Q∏N),MM
}

(4.64)

are computed, where VEM,SEM indicate approximate EM method, QN,Q∏N in-

dicate the class of Gaussians underlying the approximations, and MM indicates

parameters estimated directly via the method of moments estimates of the pairwise

marginals P(Xt:t+1) as per sec 4.5. The time taken to compute each estimate is also

recorded.

After all parameters have been fitted they are used in smoothing and predic-

tion tests to compare their utility. Comparable experiments to the smoothing and

predictions experiments in chapter 4 are performed. Particle methods are used to

produce approximate smoothed distributions and predictions for each set of param-

eter estimates. In-sample estimates are made for 5 different realisations of data that

were part of the model fitting dataset. Out-of-sample estimates are made for 5 dif-
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ferent realisations of data that were not part of the model fitting dataset. The closest

Gaussians q∗ ∈ QN are used as proposal distributions for the particle algorithms.

Once particle approximations to smoothed distributions have been made, the

loss functions

L(1), j =

√√√√ 1
T SD

T

∑
t=1

S

∑
s=1

D

∑
d=1

(
Xt,s,d− X̂

j
t,s,d

)2

j ∈ {VEM(QN),VEM(Q∏N),SEM(QN),SEM(Q∏N),MM} (4.65)

where X̂
j
t,s,d are the means of the smoothing estimates for each dimension s of the

latent space at each time t and replicate d:

X̂
j
t,s,d =

1
N

N

∑
i=1

X̂ (i), j
t,s,d (4.66)

and

L(2), j =

√√√√ 1
NT SD

N

∑
i=1

T

∑
t=1

S

∑
s=1

D

∑
d=1

(
Xt,s,d− X̂ (i), j

t,s,d

)2
(4.67)

with j as in (4.65) will be computed. As with the corresponding loss functions in

chapter 3, L(1), j measures the accuracy of particle means and L(2), j measures the

accuracy of individual particles. The difference L(2), j−L(1), j measures the spread

of particles in the smoothing estimates.

One step ahead prediction using particle filters is performed, with the corre-

sponding loss functions to (4.65):

L(1), j =

√√√√ 1
(T −1)SD

T

∑
t=2

S

∑
s=1

D

∑
d=1

(
Yt,s,d− Ŷ

j
t,s,d

)2

(4.68)

where Ŷ
j
t,s,d are the means of the predictions for each dimension s and replicate d at

time t, with the mean taken with respect to importance weights wt−1
i for the filtered
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particles at time t−1:

Ŷ
j
t,s,d =

N

∑
i=1

wt−1
i Ŷ j

t,s,d (4.69)

and to (4.67):

L(2), j =

√√√√ 1
(T −1)SD

N

∑
i=1

T

∑
t=2

S

∑
s=1

D

∑
d=1

wt−1
i

(
Yt,s,d− Ŷ (i), j

t,s,d

)2
(4.70)

being computed, both with j as in (4.65).

All experiments are written and performed in MATLAB.

4.6.1 Synthetic data

Synthetic data are drawn using randomly generated parameters and generative mod-

els (4.4) with T = 10, D = 200, and dimX= dimY= S ∈ 5,10,15,20. One draw of

data is sampled for each value of S. For each value of S, each transition matrix At

is generated by first randomly selecting S eigenvalues λi∼i.i.dU(−1.5,1.5). These

eigenvalues then replace the eigenvalues of a random positive definite matrix:

Ãt ∼W(IS,S)

Ãt =V ·diag({εi}S
i=1) ·V ′

At =V ·diag({λi}S
i=1) ·V ′ (4.71)

where W(V,ν) is the Wishart distribution with scale matrix V and ν degrees of

freedom, IS is the S× S identity matrix, and V · diag({εi}S
i=1) ·V ′ is the eigen-

decomposition of Ãt . By selecting λi∼i.i.dU(−1.5,1.5), the non-stationarity of Y

is emphasised; fitting a model to Y that assumed stationarity would not produce

a good fit. The benefits of approximating the latent marginals P(Xt,:,d) with their

surrogates are thus brought into focus.

The latent intercept vectors mt are randomly drawn mt∼i.i.d.N(0,0.5IS). The

conditional covariance matrices are randomly drawn Vt∼i.i.d.W(0.2IS,S).
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4.7 Results
The times taken to calculate each set of approximate estimators is listed in table

4.1. Finding the closest general Gaussians in QN has quadratic cost in S, which is

borne out in the rapidly increasing compute times for the VEM(QN) and SEM(QN)

estimators. For the dataset where S = 5, the cost of drawing the samples and cal-

culating importance weights can be seen to be a significant portion of the cost of

computing the SEM estimators, as they take a notable amount more time to run than

their variational equivalents.

As S increases though, the cost of finding the closest Gaussians becomes the

dominant cost in computation. For the general Gaussian this effect is almost imme-

diate; compute times for VEM(QN) and SEM(QN) estimators are very similar for

the datasets with S = 10,15,20. The SEM(QN) estimator actually takes less time

to compute for S = 20 than the VEM(QN) estimator does. This could possibly be

explained by more accurate parameter updates at each EM iteration. The method of

moments estimators take a negligible amount of time to compute.

Table 4.1: Times taken to compute each set of parameter estimates, for datasets with latent
dimension S = 5,10,15,20. Times are in min:sec, except for the last column, for
which times are in seconds.

VEM SEM
MM

QN Q∏N QN Q∏N

S
5 30:51 16:40 65:42 28:00 0.002s

10 90:01 29:21 92:39 38:16 0.004s
15 104:19 33:40 107:46 36:18 0.006s
20 244:06 46:57 201:30 45:11 0.008s

The differences in estimators resulting from using different approximation

methods are shown in table 4.2. When the latent dimensionality is low, at S = 5, us-

ing factorised Gaussians as variational approximations has little effect on parameter

estimates. This does not hold for VEM estimators as the latent dimensionality in-

creases though. For all other tested dimensions S = 10,15,20, VEM(Q∏N) estima-

tors differ significantly from the other likelihood estimators. Both VEM(QN) and

SEM(Q∏N) estimators diverge from SEM(QN) estimators as S increases, though
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at different rates. For VEM(QN) estimators the rate is significantly faster than

for SEM(Q∏N) estimators. The method of moments estimators differ significantly

from all likelihood estimators for all values of S.

The results of the smoothing experiment are shown in table 4.3. The most

immediate observation to be made is the poor quality of smoothed distributions

approximated using method of moments parameter estimates. In all cases, these

smoothing estimates are of a lower quality than all other estimates. Secondly,

smoothing estimates made using the true parameters perform worse than all like-

lihood based estimators at all sizes of the latent dimension S. Both the method of

moments and the true parameters smoothing estimates consistently have either a

negligible spread of particles, or no spread at all.

Smoothed distributions made using other parameter estimates are not signifi-

cantly different in quality to each other. Some patterns can be observed, across both

estimators and latent dimension sizes. In general, there is a pattern of decreasing

quality with increasing latent dimension S. This observation holds for true param-

eter smoothing estimates too, but not those from the method of moments. For the

case when S = 5, smoothing estimates made using the VEM(Q∏N) estimator per-

form slightly better than the other likelihood based estimators, but this pattern is

reversed for all other dimension sizes.

The other three likelihood based estimators perform very similarly at all dimen-

sion sizes. The VEM(QN) estimates are generally of a slightly worse quality, but

the difference is not significant. For dimension sizes S = 5 and S = 10, SEM(QN)

estimates are slightly better than those for SEM(Q∏N). For dimension sizes S = 15

and S = 20 though, they are slightly worse.

There is a fairly consistent difference in the quality of in-sample and out-of-

sample smoothed distributions. For dimension sizes S = 5, S = 10, and S = 15,

out-of-sample smoothing estimates have a lower L1 and L2 loss for all likelihood

based estimators. For S = 20, the difference in performance is negligible for each

estimator.

The results of the prediction experiment are shown in table 4.4. As with the
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smoothing experiment, predictions made using method of moments estimators are

worse than all others. In this experiment though, they are not merely poor but

pathologically bad. Also in line with the results of the smoothing experiment, the

true parameter predictions are worse than the predictions of nearly all likelihood

based estimators. The particle spreads of true parameter predictions are similar to

those for the likelihood based estimators, but the L1 losses are much worse.

There is a significant exception to the above observation: VEM(Q∏N) predic-

tions. Predictions made using these estimators do not have a consistent trend across

latent dimension sizes. For S = 5, they are comparable to the other likelihood based

estimators; L1 losses are better than for all other estimators, and L2 losses are bet-

ter than VEM(QN) for both in-sample and out-of-sample data. For S = 10 and

S = 15, both loss functions show pathologically bad performance. In these cases,

the performance is comparable to the method of moments predictions. For S = 20,

the picture is less clear. Performance is still much worse than the other likelihood

based estimators, but only the L2 loss for in-sample data is pathologically bad.

The predictions made using the other likelihood based estimators are generally

similar to each other. Differences appear as the latent dimension increases, but

there does not appear to be any observable pattern to them. For in-sample data with

S = 15, both of the SEM estimators have higher L1 and L2 loss than VEM(QN), and

larger particle spreads too. The performances on out-of-sample data are all similar

to each other though. For S = 20, L1 losses are similar for all three estimators,

but L2 losses are much higher for VEM(QN). This holds for both in-sample and

out-of-sample data.

Predictions for the two SEM estimators are almost indistinguishable from each

other in performance. Both L1 and L2 losses get worse with increasing S for both

estimators, but for SEM(Q∏N) it is at a slower rate than for SEM(QN).

The true parameter predictions are much better for S = 20 than for the other

latent dimension sizes. In this case, in contrast to all other dimension sizes S, they

are similar to the SEM estimators. The L1 losses for the true parameters are a bit

higher and the L2 losses are lower, but both loss functions are broadly in line with
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the SEM estimators.

4.8 Discussion

The conclusions that can be drawn from the experiments in the current chapter seem

to be quite clear: a) the method of moments parameter estimates have practically

no utility, b) the efficacy of using Gaussian proposals in particle filters is highly

sensitive to parameter settings, c) VEM estimators do not perform well when the

tractable class of approximating distributions is Q∏N, d) the performance of SEM

estimators is not significantly affected by the choice of Q, and e) using surrogate

marginals to approximate latent marginals at each time does introduce significant

errors.

The effect of increasing the latent dimension S can be seen in all experiments.

The accuracy of smoothed distributions and predictions goes down, but not uni-

formly across estimators. It is seen much more dramatically in the VEM estima-

tors, particularly the VEM Q∏N. The performance of SEM estimators are similar

to each other in all experiments, and are increasingly better than both VEM esti-

mators as S increases. The benefits of stochastically approximating expectations

become increasingly clear to see as S increases.

The poor performance of the VEM(Q∏N) estimators in the smoothing and pre-

diction experiments for all latent dimensions other than S = 5 is quite informative.

VEM(QN) estimators have quite similar performance to the SEM estimators, so

variational approximations per se are not necessarily a poor choice for approximat-

ing expectations. Additionally restricting the class of tractable distributions to be

factorised Gaussians seems to have critically negative consequences.

When approximate expectations are stochastic though, the factorised Gaussian

restriction does not seem to be significant. The performance of SEM(QN) and

SEM(Q∏N) estimators are similar in both experiments. The use of importance

sampling with either class of Gaussians as proposal distributions must mitigate the

effect of which class the proposals belong to.

Another clear result of increasing the latent dimension was the increasing dis-
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parity between compute times for the approximations. Finding the closest Gaussian

in QN to the posteriors has a cost that is quadratic in S. As SEM(QN) do not per-

form better than SEM(Q∏N) estimators the experiments, there is no evidence that

justifies such a computational cost.

A more surprising result also became apparent through the experiments. The

performance of both the method of moments parameters and the true parameters

show how sensitive the particle filter is to parameter settings. In the smoothing

experiment, both these parameters had negligible spreads to their particles and in-

curred losses greater than for the likelihood based estimators. In the prediction

experiment, their performances were significantly worse than for all other estima-

tors excluding VEM(Q∏N). These results are particularly surprising for the true

parameters, as it is reasonable to expect their performance to at least equal that of

any estimator.

The pathologically bad performance of the method of moments and

VEM(Q∏N) estimators in the prediction experiment also deserves mention. Such

large losses as shown by these estimators in table 4.4 suggest that the particle filter

can only make reasonable predictions if parameters lie in some sensible range. As

shown in the bias experiment, the VEM(Q∏N) estimators were generally at least as

far from the other likelihood based estimators as the method of moments estimators

were. This distance from the other estimators is very likely to be the cause of the

pathologically bad predictions.

Such pathological predictions, and the under-performance of the true parame-

ters, suggest that the particle filter is not producing high quality approximations to

posteriors. Using Gaussians as proposal distributions is the likely cause, which pos-

sibly leads to an interesting consequence. The likelihood based estimators (with the

exception of VEM(Q∏N)) consistently outperformed the true parameters at both

smoothing and prediction, and also did not produce any pathological output. When

plugged into the particle filter these estimators are more effective at reproducing

features of the data, both in-sample and out-of-sample, than the true parameters.

Perhaps the parameters are implicitly learning to generate effective Gaussian ap-
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proximations to posteriors, rather than learning the data generating mechanism.

This conclusion appears to hold for the SEM parameters as well as VEM(QN).

Even though importance sampling approximates the true posterior, if the Gaussian

proposals are inadequate then there seems to be a limit to the benefit of approximat-

ing expectations stochastically rather than variationally.

If this speculation is true, then using QN and Q∏N as tractable classes can-

not be considered to be an effective choice. Having made the choice, however,

using importance sampling to approximate expectations stochastically appears to

be more effective than using the variational approximations directly. As this holds

for SEM(Q∏N) when compared to VEM(QN), and considering the relative costs of

finding closest Gaussians in QN and Q∏N, a clear recommendation can be made.

If Gaussians are to be used as variational approximations to posteriors then using

factorised Gaussians, and then using importance sampling to estimate expectations,

optimises the trade-offs between computational cost and statistical efficacy.

In addition to the analysis above, the utility of using the surrogate marginals in

the parameter estimation algorithm can be indirectly assessed. If the use of surro-

gate marginals introduced a significant bias to estimators, then it should be expected

that the effect of the biases would accumulate over time. Propagating particles in

a particle filter, for example, should compound the bias effects from the parame-

ters at each time point. The losses in the smoothing and prediction experiments

would consequently be expected to increase over time. By examining the accuracy

of smoothing estimates and/or predictions over time, any cumulative effects from

the use of surrogate marginals would be observable.

Fig 4.1 shows the per-time L1 loss for each of the smoothing estimates at each

latent dimension size S. As described above, these plots should reveal any signifi-

cant biases introduced via the use of surrogate marginals. If the biases were signifi-

cant, it would be expected that propagating particles according to these parameters

would introduce errors that accumulated, i.e. that the accuracy of smoothing esti-

mates would decrease with time.

The plots in fig 4.1 show that this is not the case. There is only one instance
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Figure 4.1: Plots showing the per-time L1 loss for in-sample smoothing estimates for each
set of parameter estimates at each latent dimension size S = 5 (top left), S = 10
(top right), S = 15 (bottom left), and S = 20 (bottom right).

where losses increase over time, and that is for the method of moments estimator at

S = 20. These estimators use the (pairwise) marginals implied by the method of mo-

ments to estimate parameters, so this result suggests larger datasets could improve

the efficacy of surrogate marginals derived in this manner. None of the likelihood

based estimators show any evidence of decreasing accuracy over time though. Sim-

ilar plots for the prediction experiment are not presented here as the pathological

results for some estimators meant that not all plots could show all results. There is a

similarly positive result in regards to the use of surrogate marginals though. These

experiments therefore support the recommendation of their use in the contexts of

smoothing and prediction.
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Table 4.2: Differences in estimators across approximation methods, for each latent dimen-
sion dimX= dimY= S.

VEM SEM
MM

QN Q∏N QN Q∏N

S Method

5

VEM
QN 0 0.1206 2.1261 2.2837 22.3368

Q∏N 0.1206 0 2.0943 2.2472 22.3053

SEM
QN 2.1261 2.0943 0 1.0650 22.1644

Q∏N 2.2837 2.2472 1.0650 0 21.9792
MM 22.3368 22.3053 22.1644 21.9792 0

10

VEM
QN 0 57.166 6.577 6.763 32.497

Q∏N 57.166 0 58.169 58.115 67.104

SEM
QN 6.577 58.169 0 3.097 31.927

Q∏N 6.763 58.115 3.097 0 31.887
MM 32.497 67.104 31.927 31.887 0

15

VEM
QN 0 41.569 10.922 11.959 32.469

Q∏N 41.569 0 41.070 41.282 52.277

SEM
QN 10.922 41.070 0 6.593 30.529

Q∏N 11.959 41.282 6.593 0 29.987
MM 32.469 52.277 30.529 29.987 0

20

VEM
QN 0 34.904 24.397 24.331 45.922

Q∏N 34.904 0 37.176 35.509 54.136

SEM
QN 24.397 37.176 0 15.197 40.145

Q∏N 24.331 35.509 15.197 0 40.204
MM 45.922 54.136 40.145 40.204 0
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Table 4.3: Root mean squared error (RMSE) of smoothing estimates made using estimated
parameters and true parameters. Rows labelled L1 use the first loss function
L(1), j described in sec 4.6, equation (4.65). Rows labelled L2 use the second
loss function described in sec 4.6, equation (4.67). Rows labelled Diff show the
difference L(2), j − L(1), j between the two loss functions for each estimator θ̂ j

and dataset (In/Out). The RMSE of smoothing estimates made using the true
parameters are shown in the right-most column for reference.

VEM SEM
MM θ true

QN Q∏N QN Q∏N

S Y L

5

In
L1 0.907 0.784 0.816 0.887 2.078 1.074
L2 1.057 0.952 0.979 1.010 2.078 1.078

Diff 0.150 0.168 0.164 0.123 0.000 0.004

Out
L1 0.632 0.625 0.726 0.865 2.605 1.177
L2 0.841 0.852 0.903 1.012 2.607 1.177

Diff 0.209 0.226 0.178 0.145 0.001 0.000

10

In
L1 0.992 1.465 0.974 0.981 2.518 1.537
L2 1.090 1.535 1.079 1.071 2.518 1.537

Diff 0.098 0.070 0.105 0.090 0.000 0.000

Out
L1 0.967 1.335 0.843 0.886 2.548 1.428
L2 1.064 1.408 0.945 0.998 2.548 1.428

Diff 0.096 0.073 0.102 0.112 0.000 0.000

15

In
L1 1.045 1.357 0.992 1.041 1.805 1.513
L2 1.086 1.401 1.049 1.102 1.805 1.513

Diff 0.041 0.044 0.057 0.062 0.001 0.000

Out
L1 0.882 1.151 0.964 0.884 2.194 1.472
L2 0.923 1.215 1.028 0.963 2.194 1.472

Diff 0.042 0.063 0.064 0.079 0.000 0.000

20

In
L1 1.359 1.611 1.159 1.064 6.692 1.535
L2 1.376 1.623 1.180 1.120 6.692 1.535

Diff 0.017 0.013 0.021 0.057 0.000 0.000

Out
L1 1.484 1.715 1.244 1.104 2.014 1.450
L2 1.503 1.728 1.255 1.144 2.015 1.450

Diff 0.019 0.014 0.011 0.039 0.002 0.000
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Table 4.4: Root mean squared error (RMSE) of 1-step-ahead predictions made using esti-
mated parameters and true parameters. Rows labelled L1 use the first loss func-
tion L(1), j described in sec 4.6, equation (4.68). Rows labelled L2 use the second
loss function described in sec 4.6, equation (4.70). Rows labelled Diff show the
difference L(2), j − L(1), j between the two loss functions for each estimator θ̂ j

and dataset (In/Out). The RMSE of predictions made using the true parameters
are shown in the right-most column for reference.

VEM SEM
MM θ true

QN Q∏N QN Q∏N

S Y L

5

In
L1 2.220 1.760 1.916 1.935 1e18 66.532
L2 7.247 6.108 5.391 5.553 1e18 71.500

Diff 5.026 4.348 3.475 3.618 8e16 4.968

Out
L1 2.780 2.729 3.096 2.823 6e5 61.529
L2 7.067 7.004 7.097 6.534 1e6 66.243

Diff 4.287 4.274 4.001 3.711 6e5 4.714

10

In
L1 3.200 2e3 2.805 3.101 9e22 22.506
L2 8.295 3e5 8.438 7.897 1e23 25.383

Diff 5.096 3e5 5.633 4.796 1e22 2.877

Out
L1 2.809 3e4 2.790 2.730 3e13 18.513
L2 8.188 9e6 7.900 6.972 4e13 21.426

Diff 5.380 9e6 5.110 4.242 4e12 2.913

15

In
L1 5.707 7e4 7.668 6.631 3e6 51.007
L2 13.175 4e7 17.074 14.927 3e6 60.736

Diff 7.469 4e7 9.406 8.296 3e5 9.729

Out
L1 2.661 3e6 2.790 3.092 3e7 202.185
L2 10.188 1e9 9.901 10.895 3e7 242.841

Diff 7.527 1e9 7.112 7.803 2e6 40.656

20

In
L1 21.920 58.896 20.091 18.839 1e48 24.869
L2 384.037 4e3 36.574 33.200 1e48 28.217

Diff 362.118 4e3 16.483 14.361 2e47 3.348

Out
L1 39.962 47.227 35.100 31.085 3e13 39.420
L2 144.999 879.308 49.956 43.115 4e13 42.213

Diff 105.037 832.081 14.856 12.030 5e12 2.793





Appendix

4.A Grad vector for KL divergence from q ∈ QN

The entries of the grad vector of first order partial derivatives of the KL divergence

(4.46) has entries are listed according to the parameters within θ to which they are

associated. First, the case ∂/∂θi when θi = µq,a :

∂ KL [q || p]
∂ µq,a

= (Σ̂−1
p (µq− µ̂p))a−vec(Yt:t+1,:,d)a + exp

(
µq,a +

1
2

a

∑
j=1

fa, j(la, j)2

)
(4.72)

where (Σ̂−1
p (µq − µ̂p))a,vec(Yt:t+1,:,d)a denote the ath element of the vectorised

forms of (Σ̂−1
p (µq− µ̂p))a,Yt:t+1,:,d respectively. Next, the case when θi = la,b :

∂ KL [q || p]
∂ la,b

=−δa,b +
(
(Σ̂−1

p ·Lq)◦L′q
)

a,b

+ fa,b(la,b) f ′a,b(la,b)exp

(
µq,a +

1
2

a

∑
j=1

fa, j(la, j)2

)
(4.73)

where δa,b = 1 if a = b and 0 otherwise is the Kronecker delta, and ◦ denotes the

element-wise product, and

L′q,i, j =

 f ′i, j(li, j) j ≤ i

0 j > i
(4.74)
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with

f ′i, j(li, j) =

 exp(li, j) i = j

1 j < i
(4.75)

4.B Hessian matrix for KL divergence from q ∈ QN

The entries of the Hessian matrix H of second order partial derivatives of the KL

divergence (4.46) has entries are listed according to the parameters within θ to

which they are associated. First the case ∂ 2/∂θi∂θ j when θi = µq,a,θ j = µq,b :

∂ 2 KL [q || p]
∂ µq,a∂ µq,b

= Σ̂
−1
p,a,b +δa,b

{
exp

(
µq,a +

1
2

a

∑
j=1

fa, j(la, j)2

)}
(4.76)

where δa,b = 1 if a = b and 0 otherwise is the Kronecker delta. Next, the case when

θi = µq,a,θ j = lb,c :

∂ 2 KL [q || p]
∂ µq,a∂ lb,c

= δa,b

{
fa,c(la,c) f ′a,c(la,c)exp

(
µq,a +

1
2

a

∑
j=1

fa, j(la, j)2

)}
(4.77)

Finally, the case when θi = la,b,θ j = lc,d :

∂ 2 KL [q || p]
∂ la,b∂ lc,d

= δb,d

{
Σ̂
−1
p,a,c f ′c,b(lc,b) f ′a,b(la,b)

}
+δa,c

{
fa,d(la,d) f ′a,d(la,d) fa,b(la,b) f ′a,b(la,b)

×exp

(
µq,a +

1
2

a

∑
j=1

fa, j(la, j)2

)}

δa,cδb,d

{((
Σ̂
−1
p ·L

)
◦L′′

)
a,b

+
(

f ′a,b(la,b)
2 + fa,b(la,b) f ′′a,b(la,b)

)
× exp

(
µq,a +

1
2

a

∑
j=1

fa, j(la, j)2

)}
(4.78)
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where

L′′q,i, j =

 f ′′i, j(li, j) j ≤ i

0 j > 0
(4.79)

with

f ′′i, j(li, j) =

 exp(li, j) i = j

0 j < i
(4.80)

4.C Grad vector for KL divergence from q ∈ Q∏N

The entries of the grad vector of first order partial derivatives of the KL divergence

(4.49) has entries are listed according to the parameters within θ to which they are

associated. First, the case ∂/∂θi when θi = µq,a :

∂ KL [q || p]
∂ µq,a

= (Σ̂−1
p (µq− µ̂p))a−vec(Yt:t+1,:,d)a + exp

(
µq,a +

1
2

exp(2la)
)

(4.81)

Next, the case when θi = la :

∂ KL [q || p]
∂ la

=−1+
(
(Σ̂−1

p ·Lq)◦Lq

)
a
+ exp

(
µq,a +2la +

1
2

exp(2la)
)

(4.82)

4.D Hessian matrix for KL divergence from q ∈Q∏N

The entries of the Hessian matrix H of second order partial derivatives of the KL

divergence (4.49) has entries are listed according to the parameters within θ to

which they are associated. First the case ∂ 2/∂θi∂θ j when θi = µq,a,θ j = µq,b :

∂ 2 KL [q || p]
∂ µq,a∂ µq,b

= Σ̂
−1
p,a,b +δa,b

{
exp
(

µq,a +
1
2

exp(2la)
)}

(4.83)
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Next, the case when θi = µq,a, θ j = lb :

∂ 2 KL [q || p]
∂ µq,a∂ lb

= δa,b

(
exp
(

µq,a +2la +
1
2

exp(2la)
))

(4.84)

Finally, the case where θi = la, θ j = lb :

∂ 2 KL [q || p]
∂ la∂ lb

= δa,b

(
2Σ̂
−1
p,a,a exp(2la)+ exp

(
µq,a +4la +

1
2

exp(2la)
)

+ 2exp
(

µq,a +2la +
1
2

exp(2la)
))

(4.85)



Chapter 5

Applying the method of moments in

hierarchical clustering

The current chapter is an investigation into an efficient method of model based

hierarchical clustering. Finding an optimal clustering can be computationally ex-

pensive, and hierarchical clustering is a popular method that aims to find a sequence

of ‘good’ clusterings. In its traditional form (Duda et al., 1973), cluster dissimilari-

ties are computed from pairwise distances between elements, without regard to any

probabilistic considerations. This can be a considerable shortcoming in a statisti-

cal context; model based hierarchical clustering methods (Heller and Ghahramani,

2005; Stolcke and Omohundro, 1993) have consequently been developed that use

probabilistic dissimilarities instead.

A hierarchical clustering algorithm can be quickly summarised as a sequence

of optimal cluster mergers. Starting form the trivial clustering k(s) = s, at each iter-

ation of the procedure a pair of clusters are merged to produce the next clustering in

the sequence. All possible pairwise cluster mergers are considered, and optimality

is based on a pre-specified measure of dissimilarity d(A,B) between each pair. Tra-

ditional algorithms compute cluster dissimilarities as some function of a distance

metric between elements of the clusters. To incorporate statistical considerations,

model based cluster dissimilarities can be used instead, and are often likelihood

based.

Such likelihood based dissimilarities can be expensive to compute, and often
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employ approximations to probabilistic quantities, e.g. Harmeling and Williams

(2011). A model based measure of cluster dissimilarity is proposed here that is

cheaper to compute than likelihood based quantities. The state space model of

chapter 4 is extended to incorporate clusterings within the observed data, and the

method of moments estimators developed previously are adapted to produce esti-

mates of cluster dissimilarity.

The proposed method is appropriate for high dimensional functional data that

consists of multiple i.i.d replicates. Many such datasets can be modelled with non-

stationary state space models, such as the Gaussian-Poisson model used in chapter

4. The examples detailed in chapter 4 are equally relevant in this context.

In particular, the example mentioned previously of exit counts at sub-

way stations is to be used in the algorithm developed in the current chap-

ter. The dataset used is available from Transport for London (TfL), the or-

ganisation that operates the London Underground Tube network. A sam-

ple of 10 days of entrance and exit counts at each of the 374 stations

across London, aggregated over 30 minute intervals, is available through a

link on the TfL web site at http://blog.tfl.gov.uk/2015/12/09/

is-customer-flow-data-useful-to-developers/.

Figure 5.1: Graph showing the average exit counts, averaged over 10 days, at Tube stations
throughout the day, aggregated over 30 minute intervals. Each line represents
a Tube station.

http://blog.tfl.gov.uk/2015/12/09/is-customer-flow-data-useful-to-developers/
http://blog.tfl.gov.uk/2015/12/09/is-customer-flow-data-useful-to-developers/
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Fig 5.1 shows the average exit count over time for each of the 374 stations

in the dataset, averaged over the 10 days. It is clear from the figure that there is

structure among stations regarding exit count behaviour. The question of cluster-

ing stations on the basis of this shared behaviour is a natural line of enquiry. Such

a clustering could provide insight into passenger flows around London and facil-

itate the prediction of various events, including for example the impact of station

closures.

It is likely that the shared properties of stations sharing a cluster would be

statistical in nature, therefore justifying a probabilistic hierarchical clustering ap-

proach. A plausible model for the data is an adapted version of the Gaussian-

Poisson state space model of chapter 4, described in sec 5.1. As the results of

chapter 4 demonstrated, a likelihood based measure of cluster dissimilarity using

such a model would be expensive to compute. Even if parameters were fitted by

some other means, just evaluating the likelihood is a non-trivial computation.

Particularly in the early stages of the hierarchical clustering procedure, the di-

mension of the latent space will be very high. As seen in chapter 4, using Gaussian

proposals with importance sampling for EM style likelihood evaluation had limited

efficacy even in much smaller latent spaces. In addition, the total number of like-

lihood evaluations throughout the clustering procedure is quadratic in the number

of dimensions. The cost of finding closest Gaussians will be prohibitive when the

number of likelihood evaluations required is considered.

By using a moment based dissimilarity measure, the cost of evaluating like-

lihoods for each potential cluster merger is avoided. This reduces the cost of the

procedure significantly. The resulting sequence of clusterings is still derived from

modelling criteria, and thus retains theoretical integrity, but it can be computed more

quickly than likelihood based model measures.

A short-listing procedure is also introduced here that limits the merger search

at each iteration to a subset of all possibilities. Searching all possible cluster pairs

for the optimal merger has quadratic cost in the number of clusters at each iteration.

The short-lists are linear in the number of clusters, and as such they overcome the
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quadratic computation costs that are otherwise unavoidable.

The proposed dissimilarity measure is based on the reconstruction error of

modelled moments in a dataset. Parameters are fitted using estimating equations

derived from moment equations. The parameter estimates imply specific values for

the moments of the data, and errors in these reconstructed moments are used in the

construction of the dissimilarity measure.

The following exposition first derives the parameter estimates, and then con-

structs the dissimilarity measure. Short-lists are introduced subsequently, followed

by implementations of the algorithm on both real and synthetic datasets.

5.1 Parameter estimation

As discussed above, the state space model for which parameters will be estimated

using the method of moments is a generalisation of the Gaussian-Poisson model of

chapter 4:

P(X1,:,d | θ) =N(X1,:,d | µ1,Σ1), d ∈ 1, . . . ,D

P(Xt+1,:,d | Xt,:,d,θ) =N(Xt+1,:,d | AtXt,:,d +bt ,Vt), t ∈ 1, . . . ,T −1

P(Yt,:,d | xt,:,d,θ) =
S

∏
s=1

P(Yt,s,d | Xt,k(s),d)

= PO(Yt,s,d | exp(β0,s +β1,sXt,k(s),d)), s ∈ 1, . . . ,S (5.1)

where dimX = M,dimY = S, and Xt,i,d,Yt,i,d denote the ith dimension of the latent

and observed variable X ,Y at time t in realisation d. At each time t, and for each

realisation d, Xt,:,d is the M dimensioned latent variable for that time point, and Yt,:,d

is the S dimensioned observed variable. The dimensionality of the latent space X

is reduced through a clustering k : s 7→ k(s) of the dimensions s ∈ 1, . . . ,S of the

observed data:

k(s) ∈ 1, . . . ,M, M ≤ S

Yt,s,d | X:,:,d ∼ Yt,s,d | Xt,k(s),d (5.2)
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The fully dimensioned model with dimX = dimY = S can be recovered from

(5.1) by using the trivial clustering k(s) = s and setting β0,s = 0,β1,s = 1 for all

s ∈ 1, . . . ,S. Parameter estimates for the model (5.1) are derived from the moment

equations

E[Yt,s,d] = exp
(

β0,s +β1,sµt,k(s)+
1
2

β
2
1,sσ

2
t,k(s)

)
E[Y 2

t,s,d−Yt,s,d] = exp(2β0,s +2β1,sµt,k(s)+2β
2
1,sσ

2
t,k(s))

E[Yt1,s1,dYt2,s2,d] = E[Yt1,s1,d]E[Yt2,s2,d]exp
(
β1,s1β1,s2σ(t1,k(s1)),(t2,k(s2))

)
(s1 6= s2)∨ (t1 6= t2) (5.3)

As the latent process has linear Gaussian transitions, its transition parameters

At ,bt ,Vt can be estimated from the approximate prior marginals for adjacent time

point pairs:

Xt:t+1,:,d ∼N(Xt:t+1,:,d | µt:t1,Σt:t+1)

⇒ At = Σt+1,t ·Σ−1
t

bt = µt+1−At µt

Vt = Σt+1−Σt+1,t ·Σ−1
t ·Σt,t+1 (5.4)

where

Σt:t+1 =

 Σt Σt,t+1

Σt+1,t Σt+1

 (5.5)

is the covariance matrix for the latent process over two adjacent time points. All

transition parameters will be estimated from such time-adjacent pairwise marginals,

i.e. only the within-time and time-adjacent latent covariances

σ(t,s′1),(t
′,s′2)

s′1,s
′
2 ∈ 1, . . . ,M t ′ ∈ t, t +1 (t 6= t ′)∨ (s′1 6= s′2) (5.6)
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will be estimated from data. As with calculating the surrogate marginals in chapter

4, to derive parameter estimates from the moment equations (5.3) it is convenient to

first define the quantities

z1(t,s) = log(E[Yt,s,d])

z2(t,s) = log(E[Y 2
t,s,d−Yt,s,d]) (5.7)

Using these quantities, the moment equations (5.3) imply the following param-

eter estimating equations:

β0,s +β1,sµt,k(s) = 2z1(t,s)−
1
2

z2(t,s)

β
2
1,sσ

2
t,k(s) = z2(t,s)−2z1(t,s)

β1,s1β1,s2σ(t,k(s1)),(t ′,k(s2)) = log
(

E[Yt,s1,dYt ′,s2,d]

E[Yt,s1,d]E[Yt ′,s2,d]

)
t ′ ∈ t, t +1, (t 6= t ′)∨ (s1 6= s2) (5.8)

Unfortunately, when estimating all parameters simultaneously these estimating

equations are under-determined. One way of overcoming this is to first estimate

the parameters of the latent process separately, and then plug those estimates into

(5.8). The estimating equations will then be over-determined for the unknown β

parameters, and can be solved by a least squares minimisation.

5.1.1 Fitting the latent process

It is clear that the under-determination of the estimating equations (5.8) is a direct

result of reducing the dimensionality of X via the clustering function k. By pro-

jecting the data Y:,k−1(s′),: for each cluster s′ onto a single dimension of an auxiliary

data object Ỹ:,s′,: ∈ NT×1×D, the latent process could be fitted to the auxiliary data
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without encountering this problem:

Ỹt,s′,d = fs′(Yt,k−1(s′),d), s′ ∈ 1, . . . ,M

⇒ µ̃t,s′ = 2z̃1(t,s′)−
1
2

z̃2(t,s′)

σ̃
2
t,s′ = z̃2(t,s′)−2z̃1(t,s′)

σ̃(t,s′1),(t
′,s′2)

= log

(
E[Ỹt,s′1,d

Ỹt ′,s′2,d
]

E[Ỹt,s′1,d
]E[Ỹt ′,s′2,d

]

)
t ′ ∈ t, t +1, (t 6= t ′)∨ (s′1 6= s′2) (5.9)

where the fs′ are some functions and

z̃1(t,s′) = log(E[Ỹt,s′,d])

z̃2(t,s′) = log(E[Ỹ 2
t,s′,d− Ỹt,s′,d]) (5.10)

are analogous to z1(t,s),z2(t,s).

In terms of both interpretability and computational convenience, restricting fs′

to be a linear function of its arguments can be easily justified, and this approach is

taken here. Several choices of function are available in this regard, including cluster

averages:

fs′(Yt,k−1(s′),d) =
1

|k−1(s′)| ∑
s∈k−1(s′)

Yt,s,d (5.11)

principal component projections:

fs′(Yt,k−1(s′),d) = PPCA
Y:,k−1(s′),d

Yt,k−1(s′),d or

fs′(Yt,k−1(s′),d) = PPCA
Yt,k−1(s′),:

Yt,k−1(s′),d (5.12)

and a ‘representative dimension’ projection:

fs′(Yt,k−1(s′),d) = Yt,s′∗,d, s′∗ ∈ k−1(s′) (5.13)
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After a preliminary investigation into these choices it was found that choosing be-

tween them did not have a significant effect on subsequent inference. For reasons

of interpretability it was decided to use the representative dimension approach of

(5.13). For this approach, one dimension in each cluster is chosen to represent the

cluster. The representative dimension s′∗ was chosen to be the dimension s∈ k−1(s′)

whose average data over replicates 1
D ∑

D
d=1Y:,s,d was closest in norm to the average

data over replicates and over cluster dimensions 1
D|k−1(s′)|∑

D
d=1 ∑s′′∈k−1(s′)Y:,s′′,d:

s′∗ = argmin
s∈k−1(s′)

∥∥∥∥∥∥ 1
D

D

∑
d=1

Y:,s,d−
1

D|k−1(s′)|

D

∑
d=1

∑
s′′∈k−1(s′)

Y:,s′′,d

∥∥∥∥∥∥ (5.14)

and if more than one dimension in k−1(s′) minimises the norm in (5.14) then one

of them can be chosen arbitrarily. Once a representative dimension for each cluster

s′ ∈ 1, . . . ,M has been chosen, sample moments from the data can be used to approx-

imate the expected values in (5.9) and estimate the parameters of the latent process.

As with the surrogate marginals derived in chapter 4, sample means are thresholded

to be above zero, and estimated covariance matrices are eigenvalue thresholded and

rescaled:

̂̃µ t,s′ = 2̂z̃1(t,s′)−
1
2
̂̃z2(t,s′)

̂̃σ2
t,s′ = ̂̃z2(t,s′)− 2̂z̃1(t,s′)

̂̃σ (t,s′1),(t
′,s′2)

= log

 ̂Ỹt,s′1
∗,dỸt ′,s′2

∗,d̂̃
Y t,s′1

∗,d
̂̃
Y t ′,s′2

∗,d

 , t ′ ∈ t, t +1, (t 6= t ′)∨ (s1 6= s2)

Σ̂t:t+1 = diag(R) ·V ·diag(D̃) ·V ′ ·R (5.15)
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where

Ŷ t,s′∗ = max
(
Y t,s′∗,δ

)
Ŷ 2

t,s′∗ = max
(

Ŷ t,s′∗+ Ŷ
2
t,s′∗ ,δ

)
̂Yt,s1Yt ′,s2 = max

(
Yt,s1Yt ′,s2,δ

)
, t ′ ∈ t, t +1, (t 6= t ′)∨ (s1 6= s2)̂̃z1(t,s′) = log

(
Ŷ t,s′∗

)
̂̃z2(t,s′) = log

(
Ŷ 2

t,s′∗,−Ŷ t,s′∗

)
(5.16)

for some small δ > 0, and R,V,diag(D̃) are the rescaling, eigenvector, and eigen-

value matrices for Σ̂t:t+1. See chapter 4 sec 4.3.1 for details of the eigenvalue thresh-

olding and rescaling of estimated covariance matrices.

5.1.2 Fitting the β parameters

Once the latent process has been estimated, its parameters can be plugged into the

estimating equations (5.8). The equations can then be used to form a squared error

objective function to estimate the β parameters:

β̂ = argmin
β∈R2S

T

∑
t=1

(
S

∑
s=1

(
e1(t,s)2 + e2(t,s)2)+ S−1

∑
s1=1

S

∑
s2=s1+1

e3(t,s1, t,s2)
2

)

+
T−1

∑
t=1

S

∑
s1,s2=1

e3(t,s1, t +1,s2)
2

e1(t,s) = β0,s +β1,s ̂̃µ t,k(s)−
(

2ẑ1(t,s)−
1
2

ẑ2(t,s)
)

e2(t,s) = β1,s ̂̃σ t,k(s)−
√

ẑ2(t,s)−2ẑ1(t,s)

e3(t1,s1, t2,s2) = β1,s1β1,s2
̂̃σ (t1,k(s1)),(t2,k(s2))− log

 ̂Yt1,s1,dYt2,s2,d

Ŷ t1,s1,dŶ t2,s2,d

 (5.17)

where

ẑ1(t,s) = log
(

Ŷ t,s

)
ẑ2(t,s) = log

(
Ŷ 2t,s− Ŷ t,s

)
(5.18)
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and hatted over-lines indicate thresholded sample means as per (5.16). Though

estimates β̂ made by minimising the objective function in (5.17) are valid method

of moments parameter estimates, they can be improved upon. In the real world case

of finite data sizes, parameters estimated via (5.17) do not necessarily minimise the

errors of the reconstructed data moments

Ŷ t,s(θ̂) = exp
(

β̂0,s + β̂1,s ̂̃µ t,k(s)+
1
2

β̂
2
1,s
̂̃σ2

t,k(s)

)
Ŷ 2t,s(θ̂) = exp

(
β̂0,s + β̂1,s ̂̃µ t,k(s)+

1
2

β̂
2
1,s
̂̃σ2

t,k(s)

)
+ exp

(
2β̂0,s +2β̂1,s ̂̃µ t,k(s)+2β̂

2
1,s
̂̃σ2

t,k(s)

)
̂Yt,s1Yt ′,s2(θ̂) = Ŷ t,s1Ŷ t ′,s2 exp

(
β̂1,s1 β̂1,s2

̂̃σ (t,k(s1)),(t ′,k(s2))

)
t ′ ∈ t, t +1, (t 6= t ′)∨ (s1 6= s2) (5.19)

To minimise the errors of the reconstructed moments simultaneously, they need to

be summed in an analogous fashion to the sum of squared errors in (5.17). As the

second and third reconstructed moments in (5.19) are in squared units, they need to

be square-rooted before they can all be added together. This provides the alternative

objective function to minimise:

β̂ = argmin
β∈R2S

T

∑
t=1

{
S

∑
s=1

(
Y t,s− Ŷ t,s(θ̂)

)2
+

(√
Y 2t,s−

√
Ŷ 2t,s(θ̂)

)2

+
S−1

∑
s1=1

S

∑
s2=s1+1

(√
Yt,s1Yt,s2−

√
Ŷt,s1Yt,s2(θ̂)

)2
}

+
T−1

∑
t=1

S

∑
s1,s2=1

(√
Yt,s1Yt+1,s2−

√
̂Yt,s1Yt+1,s2(θ̂)

)2

(5.20)

Minimising the objective function in (5.20) using a gradient based minimiser can

be challenging, as the gradients when starting from a poorly chosen initial estimate

can be so steep as to cause numerical issues. This problem is due to the exponential

functions in the reconstructed moments, and is not present when estimating the β

parameters using the objective function in (5.17). If provisional estimates are made

using (5.17) and then plugged in as initial estimates into (5.20), they were found
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in practice to be close enough to the final estimates not to suffer from excessively

steep gradients. The complete parameter estimation procedure is summarised in

algorithm 5.1.

Algorithm 5.1 Parameter estimation

1. Identify which dimension s′∗ in each cluster s′ is to be the representative
dimension, according to (5.14):

s′∗ = argmin
s∈k−1(s′)

∥∥∥∥∥∥ 1
D

D

∑
d=1

Y:,s,d−
1

D|k−1(s′)|

D

∑
d=1

∑
s′′∈k−1(s′)

Y:,s′′,d

∥∥∥∥∥∥ (5.21)

2. Fit the latent process to the auxiliary data object Ỹ:,s′,: = Y:,s′∗,:, s′ ∈
1, . . . ,M according to (5.15):

̂̃µ t,s′ = 2̂z̃1(t,s′)−
1
2
̂̃z2(t,s′)̂̃σ2

t,s′ = ̂̃z2(t,s′)− 2̂z̃1(t,s′)

̂̃σ (t,s′1),(t
′,s′2)

= log

 ̂Ỹt,s′1
∗,dỸt ′,s′2

∗,d̂̃
Y t,s′1

∗,d
̂̃
Y t ′,s′2

∗,d

 , t ′ ∈ t, t +1, (t 6= t ′)∨ (s1 6= s2)

Σ̂t:t+1 = diag(R) ·V ·diag(D̃) ·V ′ ·R (5.22)

3. Fit the β parameters to the data and fitted latent process according to
(5.20):

β̂ = argmin
β∈R2S

T

∑
t=1

{
S

∑
s=1

(
Y t,s− Ŷ t,s(θ̂)

)2
+

(√
Y 2t,s−

√
Ŷ 2t,s(θ̂)

)2

+
S−1

∑
s1=1

S

∑
s2=s1+1

(√
Yt,s1Yt,s2−

√
Ŷt,s1Yt,s2(θ̂)

)2
}

+
T−1

∑
t=1

S

∑
s1,s2=1

(√
Yt,s1Yt+1,s2−

√
̂Yt,s1Yt+1,s2(θ̂)

)2

(5.23)

5.2 Hierarchical clustering
For a given clustering, estimating the model parameters via algorithm 5.1 provides

a method for performing further inference such as prediction and outlier detection.



186 Chapter 5. Applying the method of moments in hierarchical clustering

Unless an exogenous clustering function is provided though, a specific clustering

will have to be chosen upon before any further inference can be performed. In

general this requires choosing the number of clusters as well as the assignment of

each dimension to a cluster. When the dimensionality dimY= S is large, searching

the space of clusterings naively is practically impossible.

A common method of circumventing this problem, and the method used n

the current thesis, is known as hierarchical clustering. This method produces

a sequences of clusterings {ki}S
i=1 starting at the trivial clustering k1(s) = s ∀s,

and each subsequent member of the sequence is formed by merging two clusters

(A∗,B∗) 7→ A∗∪B∗ from the previous member:

ki+1(s) =

 A∗∪B∗ s : (ki(s) = A∗)∨ (ki(s) = B∗)

ki(s) s : (ki(s) 6= A∗)∧ (ki(s) 6= B∗)
(5.24)

where A∗,B∗ ∈ Ci and A∗ ∪ B∗ ∈ Ci+1 are cluster labels in the mappings

ki : 1, . . . ,S→ Ci and ki+1 : 1, . . . ,S→ Ci+1 respectively. The clusters to be merged

at each iteration are chosen to be the minimisers of a given dissimilarity function d:

(A∗,B∗) = argmin
(A,B)∈C2

i

d(A,B) (5.25)

where d is a measure of how dissimilar clusters are to each other. This method

ensures that each merger is between the two most similar clusters under d. The

sequence {ki}S
i=1 of clusterings has the hierarchical quality

∃ i,s1,s2 ∈ 1, . . . ,S : ki(s1) = ki(s2)

⇒ k j(s1) = k j(s2) ∀ j ∈ i+1, . . . ,S (5.26)

In the current context of parameter estimation via the method of moments, the

following probabilistic measure of cluster dissimilarity is used:

d(A,B) = Rki+1(A∪B, θ̂ki+1)−
(
Rki(A, θ̂ki)+Rki(B, θ̂ki)

)
(5.27)
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where ki+1 is the proposed clustering such that (A,B) 7→ A∪B and θ̂k are the pa-

rameters fitted to the data under clustering k, and

Rk(C, θ̂) =
1
Z

 T

∑
t=1

 ∑
s∈k−1(C)

∣∣∣Y t,s− Ŷ t,s(θ̂)
∣∣∣+ ∣∣∣∣√Y 2t,s−

√
Ŷ 2t,s(θ̂)

∣∣∣∣
+ ∑

s1∈k−1(C)
∑

s2∈k−1(C)\s1

∣∣∣∣√Yt,s1Yt,s2−
√

Ŷt,s1Yt,s2(θ̂)

∣∣∣∣


+
T−1

∑
t=1

∑
s1,s2∈k−1(C)

∣∣∣∣√Yt,s1Yt+1,s2−
√

̂Yt,s1Yt+1,s2(θ̂)

∣∣∣∣
 (5.28)

is the mean absolute error of all reconstructed moments internal to cluster C under

clustering k using fitted parameters θ̂ , and

Z = T
(

2|k−1(C)|+ 1
2
|k−1(C)|(|k−1(C)|−1)

)
+(T −1)|k−1(C)|2 (5.29)

is the total number of summands in (5.28).

This dissimilarity measure conforms to the intuition that the optimal cluster

merger has the least cost (amongst potential mergers) in terms of representing the

data. Here, ‘representing data’ is implicitly defined to be the ability to reproduce

the low order moments of the data using the fitted parameters. Using this condition

instead of a likelihood based one has a benefit in terms of computing costs; eval-

uating the moments of a fitted model is significantly cheaper than evaluating the

likelihood.

As chapter 4 showed, using an SEM style approach to approximate log com-

posite likelihoods is not cheap, even when the latent dimensionality is relatively

low. Furthermore, the results of the experiments in chapter 4 suggest that accu-

racy of such approximations cannot be relied upon with great confidence either.

And using Monte Carlo samples drawn from the fitted prior to integrate out the la-

tent variables will be computationally expensive when the latent dimension is large.

Avoiding such computational costs would be a very desirable property for any al-

ternative model based dissimilarity measure.
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The focus of the current chapter is, therefore, an exploration of the utility of

using (5.27) as a cluster dissimilarity measure. As it is a model based measure, it

is reasonable to assume it will capture some of the statistical information in each

potential cluster merger. Whether it captures enough information to be useful will

be explored by implementing a hierarchical clustering algorithm and analysing the

resulting sequence of clusterings.

Before the algorithm is implemented though, a further issue requires consid-

eration. Searching the space of possible cluster mergers naively has quadratic cost

in the number of clusters |Ci|. It should be noted that each evaluation of (5.27) re-

quires a refitting of parameters for the potential cluster pair to be merged. As such,

the unit cost of each evaluation is not insignificant. A method for reducing this to a

linear cost is proposed in sec 5.2.1. To ease the exposition of the proposed method,

the hierarchical clustering procedure that naively searches the whole merger space

is summarised in algorithm 5.2.

5.2.1 Short-lists

Searching for the optimal cluster pair to merge in step 2a of algorithm 5.2 has a

computational cost that is quadratic in the number of clusters |Ci| for each iteration

i. As noted above, the unit cost of each evaluation of (5.27) is non-negligible. As the

context of the current chapter has S = dimY large, algorithm 5.2 can be expensive

to run, particularly in its early iterations.

The following proposed method mitigates this expense by reducing the cost to

be linear in |Ci|. The underlying principle is the use of short-lists k∗i ⊂ C2
i gener-

ated by an alternative, cheap to evaluate dissimilarity measure d2. The alternative

measure could simply be a cheap proxy for (5.27), or it could be used to impose

exogenous constraints on clusters. The current exposition focusses on the case

where exogenous constraints are being imposed. Suppose, for example, that the

dimensions s ∈ 1, . . . ,S had an associated geographical location in the real world. If

d2(A,B) was the mean of the geographical distances dgeo(s1,s2) between locations



5.2. Hierarchical clustering 189

Algorithm 5.2 Naive hierarchical clustering

1. Set k1 to be the trivial clustering k1(s) = s ∀s ∈ 1, . . . ,S.

2. for i ∈ 1, . . .S−1:

(a) Find the least dissimilar cluster pair (A∗,B∗) ∈ C2
i according to dis-

similarity measure (5.27):

(A∗,B∗) = argmin
(A,B)∈C2

i

Rki+1(A∪B, θ̂ki+1)−
(
Rki(A, θ̂ki)+Rki(B, θ̂ki)

)
(5.30)

where

Rk(C, θ̂) =
1
Z

 T

∑
t=1

 ∑
s∈k−1(C)

∣∣∣Y t,s− Ŷ t,s(θ̂)
∣∣∣+ ∣∣∣∣√Y 2t,s−

√
Ŷ 2t,s(θ̂)

∣∣∣∣
+ ∑

s1∈k−1(C)
∑

s2∈k−1(C)\s1

∣∣∣∣√Yt,s1Yt,s2−
√

Ŷt,s1Yt,s2(θ̂)

∣∣∣∣


+
T−1

∑
t=1

∑
s1,s2∈k−1(C)

∣∣∣∣√Yt,s1Yt+1,s2−
√

̂Yt,s1Yt+1,s2(θ̂)

∣∣∣∣

(5.31)

and

Z = T
(

2|k−1(C)|+ 1
2
|k−1(C)|(|k−1(C)|−1)

)
+(T −1)|k−1(C)|2

(5.32)

(b) Construct the next clustering in the sequence by merging cluster pair
(A∗,B∗) 7→ A∗∪B∗:

ki+1(s) =
{

A∗∪B∗ s : (ki(s) = A∗)∨ (ki(s) = B∗)
ki(s) s : (ki(s) 6= A∗)∧ (ki(s) 6= B∗) (5.33)
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associated to s1 ∈ k−1(A),s2 ∈ k−1(B):

d2(A,B) =
1

|k−1(A)| · |k−1(B)| ∑
s1∈k−1(A)

∑
s2∈k−1(B)

dgeo(s1,s2) (5.34)

then constructing short-lists using (5.34) could represent some constraint regarding

the geographical interpretation of each dimension in a cluster.

The short-lists proposed here are constructed such that, for each cluster A ∈ Ci,

the cluster pairs containing itself and its n least dissimilar clusters are included in

the short-list:

(A,B) ∈ k∗i ⇔ |{(A,C) : d2(A,C)< d2(A,B)}|< n A,B,C ∈ Ci (5.35)

which clearly has a maximum size of |Ci|n. Such a short-list could represent the

heuristic constraint that geographically distant clusters should not be considered for

merging. By restricting the search for optimal cluster pairs for merging to only

include pairs in the short-list:

(A∗,B∗) = argmin
(A,B)∈k∗i

Rki+1(A∪B, θ̂ki+1)−
(
Rki(A, θ̂ki)+Rki(B, θ̂ki)

)
(5.36)

the cost of finding the cluster pair to merge at each iteration will be linear in |Ci|. The

procedure for hierarchical clustering using short-lists is summarised in algorithm

5.3.

5.2.2 Analysis of clustering sequence

If the dimensions s of Y represent or relate to objects in the real world, then each

clustering k of them represents some equivalence relation on them. A sequence

of clusterings {ki}S
i=1 computed via either of algorithms 5.2 or 5.3 can be used as a

basis for inference on such relations. Pairs (s1,s2) of dimensions that share a cluster

from early in the sequence, for example, could be supposed to share an equivalence

with more confidence than pairs whose only common cluster is the universal cluster
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Algorithm 5.3 Hierarchical clustering using short-lists

1. Set k1 to be the trivial clustering k1(s) = s ∀s ∈ 1, . . . ,S.

2. for i ∈ 1, . . .S−1:

(a) Construct the short-list k∗i according to (5.35):

(A,B) ∈ k∗i ⇔ |{(A,C) : d2(A,C)< d2(A,B)}|< n A,B,C ∈ Ci
(5.37)

(b) Find the least dissimilar cluster pair (A∗,B∗) ∈ k∗i according to dis-
similarity measure (5.27):

(A∗,B∗) = argmin
(A,B)∈k∗i

Rki+1(A∪B, θ̂ki+1)−
(
Rki(A, θ̂ki)+Rki(B, θ̂ki)

)
(5.38)

where

Rk(C, θ̂) =
1
Z

 T

∑
t=1

 ∑
s∈k−1(C)

∣∣∣Y t,s− Ŷ t,s(θ̂)
∣∣∣+ ∣∣∣∣√Y 2t,s−

√
Ŷ 2t,s(θ̂)

∣∣∣∣
+ ∑

s1∈k−1(C)
∑

s2∈k−1(C)\s1

∣∣∣∣√Yt,s1Yt,s2−
√

Ŷt,s1Yt,s2(θ̂)

∣∣∣∣


+
T−1

∑
t=1

∑
s1,s2∈k−1(C)

∣∣∣∣√Yt,s1Yt+1,s2−
√

̂Yt,s1Yt+1,s2(θ̂)

∣∣∣∣

(5.39)

and

Z = T
(

2|k−1(C)|+ 1
2
|k−1(C)|(|k−1(C)|−1)

)
+(T −1)|k−1(C)|2

(5.40)

(c) Construct the next clustering in the sequence by merging cluster pair
(A∗,B∗) 7→ A∗∪B∗:

ki+1(s) =
{

A∗∪B∗ s : (ki(s) = A∗)∨ (ki(s) = B∗)
ki(s) s : (ki(s) 6= A∗)∧ (ki(s) 6= B∗) (5.41)
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k(s) = k∀s. Defining

b(s1,s2) = S− max
i∈1,...,S

ki : ki(s1) 6= ki(s2) (5.42)

as the strength of the implied relation between s1,s2, these strengths could be used to

inform decisions regarding activity involving the real world objects. Similarly, the

duration of the sequence for which each dimension remains in its initial singleton

cluster

u(s) = max
i∈1,...,S

ki : |ki(s)|= 1 (5.43)

could be used as an ordinal measure of the extent to which the real world object

associated to the dimension requires individual treatment.

5.3 Experimental data
Experiments are performed on synthetically generated data, and also on a real world

dataset of exit counts at tube stations on the London Underground network. The

synthetic data is not designed to be directly comparable to the real world data, but

rather to have a known clustering structure and to have enough replicates to ensure

the quality of the parameter estimates is reasonably high.

Hierarchical clustering sequences will be computed for both the synthetic and

the real world data. Short-lists for finding each optimal cluster merger will use the

inclusion criteria (5.35), with n = 5, and their cheap cluster dissimilarity measures

will be as per (5.34). Elements ki of each sequence with sufficiently low |Ci| will be

used to run prediction tests using particle filters. Additionally, the known clustering

structure of the synthetic data will be compared to the clustering in its hierarchical

sequence with the same number of clusters.

5.3.1 Synthetic data

Synthetic data will be generated with T = 10, S = 200, D = 100, and a

random clustering k such that |C| = 25. Parameters At ,mt ,Vt will be gen-

erated in the same manner as in chapter 4. β parameters will be drawn
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β0,s∼i.i.d.N
(
0, 1

4

)
,β1,s∼i.i.d.N

(
1, 1

16

)
.

The clustering is generated by randomly sampling S points in (0,1)2 and per-

forming a k-means clustering for 25 clusters starting from a random initialisation.

The Euclidean distances between the points will be used as the basis for the cheap

cluster dissimilarity measure d2.

5.3.2 TfL data

The real data is a set of exit counts for tube stations on the London Underground

network, obtained from Transport for London (TfL). Counts are aggregated over

disjoint 30 minute intervals throughout the opening hours of 4:00AM to 01:00AM

every day. This gives 42 time points per day. Data for 10 different week days

are available, which are assumed to meet the modelling assumption of being i.i.d.

replicates of each other.

The dataset contains exit counts for each of 374 stations, but the data for many

of these stations is mostly zeros. A large number of zeros in the dataset will strongly

corrupt the results, so these pathological stations were removed. The removal cri-

teria was a threshold of 90% of the data for any station being zero. All stations

that exceeded the threshold were removed. This procedure resulted in the removal

of 108 stations from the dataset, and leaving 266 stations in it. The final dataset

therefore is of size T ×S×D = 42×266×10.

Meta-data for the dataset includes the longitude λi and latitude φi of each sta-

tion si, allowing geographical distances between stations to be approximated via the

haversine formula:

dgeo(s1,s2) = 2r arcsin

(√
sin2

(
φ2−φ1

2

)
+ cos(φ1)cos(φ2)sin2

(
λ2−λ1

2

))
(5.44)

where r = 6,371,000 is the approximate radius of the Earth in metres, and a spher-

ical approximation is made to its true shape.
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5.4 Experiments

Hierarchical clustering sequences will be constructed for both the synthetic and

TfL datasets. For each sequence, the behaviour of the mean absolute reconstruction

errors will be recorded:

Rk(θ̂) =
1
Z

[
T

∑
t=1

{
S

∑
s=1

∣∣∣Y t,s− Ŷ t,s(θ̂)
∣∣∣+ ∣∣∣∣√Y 2t,s−

√
Ŷ 2t,s(θ̂)

∣∣∣∣
+

S−1

∑
s1=1

S

∑
s2=s1+1

∣∣∣∣√Yt,s1Yt,s2−
√

Ŷt,s1Yt,s2(θ̂)

∣∣∣∣
}

+
T−1

∑
t=1

S

∑
s1,s2=1

∣∣∣∣√Yt,s1Yt+1,s2−
√

̂Yt,s1Yt+1,s2(θ̂)

∣∣∣∣
]

(5.45)

where

Z = 2T S+
1
2

T S(S−1)+(T −1)S2 (5.46)

For the synthetic dataset, the clustering ki in the sequence with |Ci| = 25 will

be compared to the true clustering. The proportion of dimensions allocated to the

correct cluster will be recorded:

γ =
1
S

S

∑
s=1

1ki(s)=ktrue(s) i : |Ci|= 25 (5.47)

The short-list parameter n, which controls the maximum size of each short-list k∗i

via the inequality |k∗i | ≤ |Ci|n is set to n = 5.

The modelled values of isolated duration u(s) and pairwise bond strength

b(s1,s2) that result from the sequences are recorded. As the pairwise bonds are

difficult to analyse, or even visualise, the number of pairwise bonds that exist at

each iteration of the sequence is also recorded. When normalised by the total num-

ber of possible pairwise that exist, this gives the proportion of all station pairs that

currently share a cluster at each iteration.

All experiments are written and performed in MATLAB.
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5.5 Results
The mean absolute reconstruction errors (5.45) for the hierarchical clustering pro-

cedures are shown in fig 5.1. The procedure for the synthetic data took 59:27

(min:sec), and the procedure for the TfL data took 174:41 to run. For the syn-

thetic data, the clustering in the hierarchical sequence with 25 clusters, ki : Ci = 25,

was compared to the true clustering that generated the data. Only 5 elements were

correctly clustered out of 200, giving the proportion γ = 0.025.

Figure 5.1: Mean absolute reconstruction errors for the hierarchical clustering sequences
computed for synthetic data (left) and the TfL data (right).

The plots in fig 5.2 show for how much of the TfL clustering sequence did

each station remain in a singleton cluster, and how quickly large clustered formed.

Stations that remain isolated appear as small circles in the left plot. The majority of

the smallest circles are centrally located. In the right plot, large jumps in the curve

indicate mergers of large clusters. As the number of station pairs (s1,s2) that share

each cluster is quadratic in the cluster size, mergers of two large clusters are easily

identifiable. Equivalent plots for the synthetic data clustering are shown below them

in the same figure.

5.6 Discussion
From the graphs in fig 5.1, the increase in reconstruction error as clusters are merged

together is clearly seen. As every cluster merger restricts the freedom of the model

to be fitted to each data dimension, this result is inevitable. The two plots are not

identical in this respect though, which is possibly enlightening.



196 Chapter 5. Applying the method of moments in hierarchical clustering

In the plot for the synthetic data, the increase is fairly shallow for most of

the sequence, but undergoes a sharp acceleration towards the end. It is in fact just

around the point in the sequence where modelled clusterings have approximately

the true number of clusters in them. This indicates that, as the number of modelled

clusters approaches the true number, the clustering sequence could perhaps be cap-

turing some of the correlations induced by the true clustering. Once the sequence

passes this point then it could be that the statistical cost of modelling fewer clusters

is no longer balanced with any gain from representing the underlying truth.

Of course such a conclusion cannot be held with any strong confidence, though

it does have circumstantial support. All that can be said with certainty is that the

plots do not demonstrate any pathological behaviour. There are no indications that

the hierarchical clustering algorithm is failing to capture any statistical information

with its cluster mergers.

Knowing the names and locations of the TfL stations that are being clustered

allows for a deeper analysis of the clusterings of the TfL data. The plots in fig 5.2

indicate some interesting possible conclusions. It appears from the left plot that

the stations that remain in isolated clusters for the longest time are all in the city

centre. When the role played by peripheral stations in transporting commuters is

considered, this result is perhaps quite intuitive. Regular daily transport taken by

the many workers who live in the outer city will clearly induce correlated behaviour

among commuter stations. Central stations, however, have much more variety to

their passengers and the routes they take. From this perspective it seems natural to

cluster the commuter stations together more frequently than those in the city centre.

The upper right plot of figure 5.2 is also interesting. By showing the number of

cluster pairs in shared clusters, which is quadratic in the size of each cluster, the plot

visualises the development of large clusters throughout the sequence. From about

halfway through the sequence, mergers of large clusters can be identified. Noting

that these mergers must be taking place while the central stations are remaining

isolated, these large merges must be of groups in the periphery of the city.

Heuristically speaking, it could be argued that the cluster dissimilarity measure
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(5.27) should tend to favour smaller clusters over larger ones. Merging clusters will

generally increase the reconstruction error made by the model for those stations,

and this effect can be attenuated by only merging small clusters. This heuristic is

supported by the lower right plot in fig 5.2, which shows the synthetic data cluster-

ing conforming to such an intuition. For large clusters of TfL stations to be forming

outside of the city centre, instead of central stations merging together in smaller

clusters, is somewhat surprising.

In contrast to the TfL data clustering, the synthetic data clustered in a much

more regular fashion. Fig 5.2 shows equivalent plots to those just discussed for

the TfL data. No pattern can be discerned from the plot of durations as singleton

clusters. Such artefacts are almost certainly due to real datasets containing features

not included in the model being used; they would not be expected in a synthetic

dataset.

Additionally, the right plot of fig 5.2 shows a smooth curve of increasing cluster

size as the sequence progresses. This closely fits the heuristic argument made above,

that the dissimilarity measure should prefer the merging of small clusters over larger

ones. For this pattern to be so notably absent in the TfL clustering, particularly when

it is so strongly evident in the synthetic data, suggests there may be a structural

difference between the behaviour of exit counts in central stations and in peripheral

stations.

It should be noted that this implementation of the hierarchical clustering pro-

cedure is chiefly a proof of concept. The TfL dataset contains data for only 10 days,

which is particularly insubstantial when the number of parameters in the fully di-

mensioned model is considered. Ideally, a much larger dataset would be used to

produce the clustering sequence. In spite of this, the sequence produced had an

interesting structure and was amenable to intuition. Furthermore, the running times

of about 1 hour for the synthetic data, and 3 hours for the TfL data are very reason-

able in comparison to likelihood based alternatives. As such, it seems likely that

the algorithm proposed here could provide value as a cheap alternative to likelihood

based hierarchical clustering algorithms.
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Figure 5.2: Plots illustrating some characteristics of the TfL hierarchical clustering (above)
and the synthetic data clustering (below). The left plots shows the number
of iterations of the hierarchical sequence for which each station / dimension
remained in an isolated cluster. Smaller circles indicate a longer time until first
merger. The right plots shows the proportion of station / dimension pairs in
shared clusters as the sequences of clusterings progress. The rightmost bars
corresponds to the trivial clusterings with all stations / dimensions in the same
cluster.
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General Conclusions

The investigations of this thesis have proved informative and enlightening. By ex-

ploring and establishing the effect of making variational approximation to compos-

ite likelihoods, some clarity has been provided on when either of the frameworks are

appropriate for performing inference. In addition, the use of non-likelihood based

methods in both parameter estimation and hierarchical clustering has been shown to

provide a positive trade-off. The computational cost of inference was significantly

reduced within frameworks that remain effective in practice.

The findings of each chapter are now summarised in turn, before a general

discussion of results.

The most significant result of the experiments conducted in chapter 3 concerns

the initial hypothesis of the chapter. It is unclear a priori how variational parameter

estimates would be affected by changing the block size of composite likelihoods.

Larger block sizes would be conditioned on more data, which suggests they would

become more accurate. Variational approximations would become less tight though,

which could negatively affect their accuracy. In the chapter, it was hypothesised that

increasing block size would result in less accurate estimators. The experiments of

the chapter were able to shed some light on how the effects interacted with each

other.

In regard to this question, there was a notable difference in outcomes across

the difference experiments. For the bias experiment, the two effects appeared to

be quite well balanced; VEM estimators stayed close to each other as block size
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increased, while the corresponding SEM estimators moved increasingly towards

the gold standard θ̂ SEM
500 .

There was also evidence for a balance of effects from the smoothing and pre-

diction experiments, but with differing net effects for the two experiments. The

prediction experiment agreed with the bias experiment, in that both L1 and L2 loss

improved with increasing block size. For the smoothing experiment though, the net

effect was in the opposite direction. Both L1 and L2 losses for variational smoothing

estimates increased slightly with increasing block size. It seems that the net effect

of the interaction between positive and negative impacts depends on the application

in question.

It is also apparent that the trade-off between and cost and accuracy made when

choosing between VEM and SEM estimators is also application dependent. For

most of the contexts explored in the experiments, the SEM estimators proved more

accurate than the VEM estimators. This accuracy comes at a large increase in com-

putation cost though, so the question of choosing one method or the other will

depend on the complete context of a given application. Only for point estimates in

prediction tasks was a more certain recommendation available. As VEM estimators

produced predictions with lower L1 cost than SEM estimators, the trade-offs in this

case point to their use in such tasks.

In chapter 4, the results of the experiments showed the expediency of using fac-

torised Gaussians as variational approximations. The VEM estimators themselves

were not shown to provide a positive trade-off between accuracy and computation

cost, but when used in the computation of SEM(Q∏N), the trade-off was strongly

positive. This was increasingly true as the latent dimensionality increased. Find-

ing the closest general Gaussians to posteriors has a quadratic cost in the latent

dimensionality S, while for factorised Gaussians it is only linear. This explains the

observation that the added cost of drawing importance samples was not a significant

proportion of the total cost of parameter estimation.

SEM(Q∏N) estimators, i.e. SEM estimators computed using Gaussians in

Q∏N as proposal distributions, performed as well as SEM(QN) estimators in
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smoothing and prediction tasks. They were generally indistinguishable in terms

of performance, and sometimes even outperformed the SEM(QN) estimators. Con-

sidering the significant cost reduction from using Q∏N as the class of tractable dis-

tributions for variational approximations, the trade-off between cost and accuracy

clearly favours SEM(Q∏N) estimators.

The results of the experiments also show that the use of Gaussians as vari-

ational approximations to the posteriors of the model (4.4) may not be well jus-

tified. In both the smoothing and the prediction experiments, the true parame-

ters performed significantly worse than the likelihood based estimators (excluding

VEM(Q∏N) in some instances). This suggests that the likelihood based estima-

tors were learning parameter values under the constraint that they produced good

Gaussian approximations to posteriors. Additionally, the scale at which the true

parameters were outperformed suggests that Gaussian approximations are not nec-

essarily appropriate as proposal distributions in particle filters. A further experi-

ment, exploring the performance of the VEM and SEM estimators using a variety

of proposal distributions in particle filters would shed further light on their utility.

Crucial to the inference conducted during both experiments was the introduc-

tion of the surrogate marginals P̃(X). These approximations to the latent prior at

each time point break the functional dependencies on parameters associated to pre-

vious time steps. Each component in a composite likelihood would otherwise have

extremely complex dependencies on all previous parameters. Observing new data

would require new derivations of parameter updates.

The per-time results of the smoothing experiment in chapter 4, as shown in

fig 4.1, support the recommendation of using the surrogate marginals in parameter

estimation. The plots in the figure show that smoothing estimates do not have de-

creasing accuracy with time, suggesting the biases introduced via the surrogates are

not significant. By choosing method of moments estimates of the priors to be the

surrogates, the law of large numbers ensures convergence to their true values with

increasing data. As such, their integration into inference algorithms can be justified

theoretically, and the empirical evidence of accurate predictions justifies their use
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post-hoc.

In chapter 5, the proposed hierarchical clustering algorithm allowed model

based cluster dissimilarities to be computed without having to perform expensive

likelihood function evaluations. When implemented on both real and synthetic

datasets, the resulting clustering sequences were computed quickly. Though not

formally recorded in any experiments, the current author’s personal experience with

likelihood based hierarchical clustering algorithms has found them to take signifi-

cantly longer to run.

The results of applying the clustering algorithm to both datasets were also en-

couraging. The synthetically generated data produced a clustering sequence that

seemed to systematically avoid choosing large clusters to merge. If this was the case

for all implementations then the algorithm would only have limited utility, but the

TfL clustering showed that it is not a persistent feature of the algorithm itself. The

underlying characteristics of the TfL data dominated the merger selection proce-

dure, producing a clustering sequence that appears unique to the data. Furthermore,

its idiosyncrasies can possibly be explained with context driven intuition regarding

the nature of different TfL stations. The contrast between the two clustering se-

quences shows that the algorithm has a reasonable preference for small clusters, but

this preference does not exclusively dominate the cluster merging procedure.

The algorithm itself still can be improved upon. The decision to construct

the cluster dissimilarity (5.27) as the un-weighted sum of reconstructed error mo-

ments (5.28), for example, was somewhat arbitrary. Favouring some elements of

the sum in (5.28) over others could produce superior results. Further research into

improving the algorithm would provide insight into its utility, and also improve its

performance.

In general, the use of non-likelihood based methods seems a promising avenue

of research. They can be used to complement, facilitate, or substitute for likeli-

hood based methods. Any data that is produced in i.i.d. replicates can potentially

have method of moments approximations incorporated into inference frameworks

for them. The positive results of the current thesis suggest such strategies could
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provide beneficial trade-offs that significantly reduce the computational costs of in-

ference.

A note of caution is also appropriate though. The varied quality of inference

made using variational approximations illustrates that trade-offs can be complex.

The choice of tractable class Q when making variational approximations can be

significant, and what works for one model might not translate to others. Some good

advice for any practitioners would be to verify the positive trade-offs in every novel

application of an approximation method.

To summarise the results of the current thesis, it could be said that approximate

inference in latent variable models has a lot of potential for introducing computa-

tional savings. Many approximations prove to be positive trade-offs with minimal

statistical cost. Of course, any particular approximation in a given context needs its

statistical efficacy to be established prior to its use. This point is exemplified by the

poor performance of the true parameters in the smoothing and prediction tasks of

chapter 4. When trade-offs do favour a cheap approximation though, the benefits

can be significant.
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