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Abstract 

This work focuses on the behavior of the stable Mg and Si isotope compositions of the largest 

Arctic river, the Yenisey River and 28 of its major and minor tributaries during the spring 

flood period. Samples were collected along a 1500 km latitudinal profile covering a wide 

range of permafrost, lithology, and vegetation. Despite significant contrasts in the main 

physico-geographical, climate, and lithological parameters of the watersheds, the isotope 

composition of both dissolved Mg and Si was found to be only weakly influenced by the 

degree of the permafrost coverage, type of vegetation (forest vs. tundra), and lithology 

(granites, basalts, carbonates or terrigenous rocks). This observation is generally consistent 

with the lack of chemical uptake of Mg and Si by soil mineral formation and vegetation 

during the early spring. The radiogenic Sr isotope composition of the Yenisey and its 

tributaries varied within a narrow range (0.708 ≤ 87Sr/86Sr ≤ 0.711) reflecting the dominance 

of Phanerozoic rock weathering and/or atmospheric deposition on these compositions. The 

Mg and Si isotopic compositions of riverine samples reflect two main processes with distinct 

isotopic signatures. First, isotopically heavier Mg (δ26Mg = -1.0 ± 0.2 ‰) and isotopically 

lighter Si (δ30Si = 1.0 ± 0.25 ‰) are added to the waters by river suspended matter dissolution 

and leaching from vegetation biomass/topsoil litter. Second, isotopically lighter Mg (δ26Mg = 

-1.5 to -1.75 ‰) and isotopically heavier Si (δ30Si = 1.75 to 2.0 ‰) are delivered to the 

Yenisey’s tributaries from deep underground water feeding the rivers via taliks. This lighter 

Mg and heavier Si isotopic composition is interpreted to originate from Precambrian dolomite 

dissolution and aluminosilicate dissolution coupled with authigenic mineral precipitation, 

respectively, in deep underground water reservoirs. Taking account of the isotopic 

composition evolution over the course of the year established earlier on mono-lithological 

watersheds of the Yenisey basin, the average annual isotopic signatures of the Yenisey river 

arriving to the Arctic Ocean are estimated to be δ26Mg = -1.58±0.30 ‰ and δ30Si 

=+1.60±0.25 ‰. As the Yenisey is the largest river feeding the Arctic Ocean and as it 
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samples a large variety of environments and lithologies, these values may be reasonable 

estimates for the average Mg and Si isotopic composition of the dissolved riverine flux to the 

Arctic Ocean.
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1. Introduction 

 

Fresh water input to the Arctic Ocean is mainly provided by the riverine systems 

draining Siberia; discharge from the Canadian Arctic shelf contributes less than 15% of the 

total water volume arriving to the Arctic Ocean (Holmes et al., 2012, 2013). Over the past two 

decades, numerous studies of large river systems flowing into the Arctic have examined the 

chemical composition of water samples collected during the summer (July-August) (Huh et 

al., 1998a,b; Huh and Edmond, 1999; Vigier et al., 2001; Pokrovsky and Schott, 2002; 

Gordeev et al., 2004; Millot et al., 2003; Pokrovsky et al., 2005a; Lemarchand and Gaillardet, 

2006; Andersen et al., 2007). These studies provide significant information about the 

processes controlling element transfer to the ocean and have allowed the characterization of 

the major element biogeochemical cycles in boreal regions. Nevertheless, the fresh water 

discharge in Arctic Ocean exhibits strong seasonal variability. Approximately 45 % of the 

annual water discharging into the Arctic occurs during the spring snowmelt (Holmes et al., 

2013). This observation has a major impact on both the quantity of dissolved elements 

transferred to the Arctic Ocean and their isotopic composition. The present study was 

designed to assess the contribution of the spring flood to the chemical and isotope input to the 

Arctic Ocean from the Yenisey river and its main tributaries. 

Studies on small boreal rivers in Sweden and in Alaska (Guo et al., 2004; 2012) 

demonstrated that elemental fluxes in the Arctic region vary seasonally as does water 

discharge. As the Yenisey River is the largest contributor of freshwater to the Arctic Ocean, 

providing 18% of the total annual river discharge (Holmes et al., 2013), evaluation of its 

elemental fluxes, isotopic signatures, and their possible origin is especially significant for 

characterizing weathering processes and the Arctic Ocean chemistry. Moreover, the Yenisey 

is the most important river feeding the Arctic Ocean in terms of silicate weathering and 

carbon drawdown; from 39 to 55% of the silicate weathering and from 45 to 61% of the 
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carbonate weathering of the rivers draining into the Arctic Ocean occurs in the Yenisey 

catchment (Tank et al., 2012). 

Owing to its unique geographic position, sampling a latitudinal transect of the Yenisey 

River allows the detailed study of the influence of numerous factors on river water dissolved 

load as well as its isotopic composition. Roughly 88 percent of the Yenisey river watershed is 

covered with permafrost. Its tributaries drain highly contrasting basins: its left tributaries 

drain western Siberian bogs and peat soils and its right tributaries drain regions of variable 

lithology, from granites/gneisses in the south to carbonate and terrigenous rocks in the 

middle, and basalts and tuffs in the north. The tributaries also have contrasting land cover, 

both in terms of vegetation (evergreen needle-leaf, deciduous broadleaf, and deciduous 

needle-leaf forests) and the relative contribution of wetlands (0-20%), tundra (0-100%), and 

forest (0-100%) (see Tables S1 and S2 of the Electronic Supplementary Material, ESM).  

The major element concentrations and discharge of large Arctic Rivers can be 

constrained using the data summarized by Gordeev et al. (1996) and Holmes et al. (2012, 

2013). For the case of the Yenisey River, the spring flood (May-June) contributes 29.0±1.4 % 

and 38.6 ± 2.3% of the annual flux of Mg and Si, respectively. These values are calculated 

based on mean multi-annual fluxes and concentrations provided in ESM Table S3 and S4. 

This study was designed to quantify the Si and Mg isotopic composition and to constrain the 

processes influencing these compositions during the critical spring flood period.    

Previous studies of small and medium permafrost-affected monolithological 

watersheds covered by monospecific (larch-free) forests developed on Central Siberian 

basalts help to illuminate processes affecting major element dissolved riverine fluxes during 

the spring floods. During the ice break and following massive freshet, radiogenic Sr 

signatures evolve towards the atmospheric value, suggesting a major influence of dust 

dissolution on water chemistry (Bagard et al., 2011, 2013). Stable Si isotope ratios decrease at 

the beginning of the spring flood, suggesting the dissolution of Si-bearing clays present in the 
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river suspended matter (RSM) (Pokrovsky et al., 2013). Another factor influencing the Si 

isotopic composition of Siberian rivers is plant litter leaching, which tends to make the river 

water δ30Si more positive, as plant litter is 1 to 2 ‰ more positive than the clay minerals 

(Opfergelt et al., 2008).  

Numerous earlier studies have used Mg isotope signatures in riverine waters to track 

weathering processes as Mg isotopes exhibit distinct fractionation during weathering (Tipper 

et al., 2008; 2012; Wimpenny et al., 2010; 2014; Pogge von Strandmann et al., 2008; Brenot 

et al., 2008; Oelkers et al., 2015). In particularly, in silicate catchments the Mg isotope 

compositions of riverine waters generally exhibit lighter compositions compared to their host 

rock; this behavior has been attributed to the preferential uptake of heavy Mg during 

secondary silicate mineral formation (Teng et al., 2010; Opfergelt et al., 2012, 2014; Beinlich 

et al., 2014; Pogge von Strandmann et al., 2008).  

The Mg isotope signatures of Siberian rivers have the potential to trace both secondary 

mineral formation in soil and underground horizons, and the contribution of bedrock 

dissolution. As a working hypothesis, we might expect that the effect of rock lithology and 

plant litter leaching / uptake on Yenisey river chemistry will progressively decrease 

northward, given that the mineral soil column and the rooting zones are frozen in continuous 

permafrost. In contrast, silicate RSM dissolution in the river water will be controlled by the 

RSM concentration; as most of the RSM originates from river bank abrasion and its 

contribution to river chemistry will be less sensitive to the degree of permafrost coverage and 

basement lithology. Moreover the composition of the RSM is likely variable throughout the 

year; during the spring flood period, only the upper organic-rich soil layers are unfrozen and 

can deliver particulate material to the river (Pokrovsky et al., 2013, 2015a; Viers et al., 2015). 

The role of these processes will be tested in this study. It is anticipated that by providing 

quantitative constraints on the major element sources it may be possible to better predict the 

effect of future global change on the chemical and isotopic fluxes to the Arctic Ocean. 
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2. Water Sampling and Analytical Procedures 

2.1 Sampling Area 

The river water samples examined in this study were collected during a Yenisey River 

cruise on the river-sea class ship “Sovetskaya Arktika” between the 12th and the 28th of June, 

2012. The cumulative distance covered by the ship was more than 3,000 km. During the 

expedition, samples were collected from the main Yenisey River channel and all of its 

significant tributaries, including 9 draining the western and 16 draining the eastern parts of 

the basin (see Fig. 1 and Table 1). Among these were three major tributaries: the Angara, the 

Podkamennaya Tunguska, and the Nizhnyaya Tunguska, representing 25, 10, and 19%, 

respectively, of the annual Yenisey river discharge to the Kara Sea. Based on the 

Roshydromet network of 15 gauging stations, it is estimated that the sampled tributaries 

contribute ~79% of the annual discharge of Yenisey River to Kara Sea. In addition, 3 

sampling stations were established within the Nizhnyaya Tunguska River basin; these 

tributaries drain both the northern (i.e. the Putorana Plateau) and southern parts of the Central 

Siberian Platform (i.e. the Yerachimo, Severnaya, and Letnyaya Rivers). Note that Yerachimo 

is a tributary of Nizhnyaya Tunguska River and is not directly connected to Yenisey River. 

The sampled tributaries are located along a 1500 km latitudinal transect from S to N 

and sample watersheds of distinct sizes, geomorphology, permafrost extent, lithology, climate 

and vegetation (see Table 1 and ESM Tables S1 and S2). The total watershed area of the 

rivers sampled in this work is about 1.75 million km2, representing 68% of entire Yenisey 

River basin. Permafrost ranges from non-permafrost in south to continuous permafrost in the 

north (Brown et al., 1998). The mean annual air temperatures (MAAT) along the transect 

range from - 0.01 to - 11.30°C (0.5o0.5o grid data, CRU TS3.2 available at Mitchell and 

Jones, 2005). 
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2.2 Sample collection 

Tributary river waters were sampled from motorboats a few kilometers above their 

confluences with the main Yenisey River channel. Water samples were collected in the 

middle stream of the tributaries just beneath the water surface for the smaller rivers or at 

several depths using hand-made pump to obtain depth integrated samples for the larger rivers. 

Yenisey river water was sampled at 8 stations: Maliy Yenisey River headwater samples were 

collected at 2 stations in the middle of the river just beneath the water surface, and the main 

channel of the Yenisey River was collected at 6 stations (from 58o to ~ 70oN) using a D-96 

sampler equipped with Teflon nozzles and Teflon sample collection bags to obtain depth-

integrated and flow-weighted samples. A shipboard laboratory allowed sample filtration (pre-

combusted Whatman glass fiber filters (GFF), 0.7 μm nominal pore size) and sample 

preservation to be performed promptly under clean conditions. Water temperature, pH, 

SpCond, turbidity, and dissolved O2 were measured directly in the rivers using a 

multiparameter sonde YSI-6 (YSI, USA). From 5 to 10 L of river water was collected; these 

samples were immediately filtered, collected in Nalgene high-density polyethylene bottles, 

acidified with ultrapure nitric acid, and stored in a refrigerator prior to analyses. River 

suspended matter (RSM) concentration was measured by filtering 0.5-1.0 L of river water on 

pre-weighted GFF or acetate cellulose filters (< 0.22 µm) with an uncertainty of 10%. A large 

quantity of RSM was collected from the main river and its tributaries by sedimentation in 50-

L PVC barrels, decanted for 1 week, centrifuged, and freeze-dried.  

 

3. Chemical and Isotopic Analyses  

The concentrations of major cations, including Mg, in acidified water samples were 

measured by ICP-MS (Agilent 7500ce) at the GET laboratory (Toulouse, France). Indium and 

rhenium were used as internal standards to correct for instrument drift and potential matrix 

effects. In addition, Mg was analyzed by atomic absorption spectroscopy with an uncertainty 
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of 1% and a detection limit of 10 µg kg-1. A non-acidified water sample was used for: 1) Si 

determination via the ammonium molybdate method using a Bran+Luebbe  AutoAnalyser 3 

with a 2 % uncertainty and a 10 µg kg-1 detection limit, 2) dissolved organic (DOC) and 

inorganic (DIC) carbon analyses by total combustion at 800°C using a SHIMADZU Pt 

catalyser (TOC-VCSN) with a 5 % uncertainty and a detection limit of 0.1 mg kg-1 (see 

Prokushkin et al., 2011); and 3) chloride and sulfate determination via liquid chromatography 

using a DIONEX ICS-2000 with an uncertainty of 2 % and a detection limit of 0.02 mg kg-1. 

The SLRS-5 international river water standard was used to check the accuracy of the Si, Mg, 

Ca, and Sr analyses. The differences between the certified or recommended values and our 

measurements were lower than 10%. The concentration of colloidal (1 kDa – 0.45 µm) and 

dissolved or low molecular weight (LMW, < 1 kDa) forms of Si and Mg were measured by 

on-site dialysis as described by Bagard et al. (2011) and Pokrovsky et al. (2013). 

Water samples were chemically purified prior to Mg isotopic analysis by cation 

exchange chromatography. Separation of the Mg from the matrix elements followed the 

protocol described by Mavromatis et al. (2013) using AG50W-X12 resin eluted with 1.0 M 

HNO3. The yields after chromatographic separation were better than 99 % of the total Mg 

loaded in the columns with the cation/Mg ratio in the sample <0.05 and thereby avoiding 

potential interference and matrix effects in the mass spectrometry analyses. Magnesium 

isotopic ratios were measured using a Thermo-Finnigan ‘Neptune’ Multi Collector 

Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS) at the GET laboratory 

(Toulouse, France) in low-resolution mode. All analyzed fluids were prepared in 0.3 M 

aqueous HNO3 and introduced into the Ar plasma with a standard spray chamber. 

Instrumental mass fractionation effects were corrected by sample-standard bracketing, and all 

results are presented in delta notation relative to the DSM3 reference material as: [δxMg= 

((xMg/24Mg)sample / (
xMg/24Mg)DSM3 -1)×1000)] where x is the Mg mass of interest. All results 

are consistent with mass-dependent fractionation (see Table 2). The reproducibility of the 
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δ26Mg analyses, assessed by replicate analyses of the DSM-3, CAM-1 and OUMg Mg 

reference standards, and the dolomite carbonate standard JDo-1 was better than 0.02‰, 

0.07‰, 0.06‰ and 0.09‰, respectively. This precision is similar to that reported earlier from 

our laboratory (Pearce et al., 2012; Beinlich et al., 2014; Mavromatis et al., 2012; 2013; 

2014a; 2014b; Shirokova et al., 2013; Schott et al., 2016), and fall within the range of values 

reported earlier for these standards by other groups (Li et al., 2012; 2014; Tipper et al., 2006; 

Bolou-Bi et al., 2009; Geske et al., 2015; Immenhauser et al., 2010; Pogge von Strandmann, 

2008; Wombacher et al., 2009, 2011). In addition the column chemistry of the IAPSO 

seawater sample provided results similar to those reported by Wombacher et al., (2011) (see 

Table 2).   

Si was purified from the river water matrix following the protocol described by 

Pokrovsky et al. (2013). Briefly, river water samples were reacted with 2% HNO3 and 1% 

H2O2 to remove as much dissolved organic matter as possible. If necessary the resulting 

solution was concentrated via evaporation to obtain a Si concentration of 3 ppm. The final 

sample was acidified with bidistilled HCl to achieve a 0.05M matrix prior to its loading onto a 

1.6 mL cation exchange resin BioRad 50W-X12, 200 to 400 mesh in H+ form. The isotope 

analyses were carried out using a ‘Neptune’ MC-ICP-MS at the GET laboratory (Toulouse, 

France) in medium resolution mode. At least three replicate samples were measured against 

the NBS-28 standard. The basalt standard BHVO-2 was treated similar to the water samples 

described above and it was measured 18 times during the analyses, resulting in a δ29Si of -

0.16 ±0.02‰ and a δ30Si of -0.29 ±0.04 ‰. 

The 87Sr/86Sr ratios of the water samples were measured using a VG Sector 54 thermal 

ionization mass spectrometer (TIMS). Liquid samples were evaporated, taken up in 3M 

aqueous HNO3 and run through Sr-spec columns. The purified Sr was then loaded onto 

outgassed Ta filaments. The samples were run at 88Sr beam potentials of 2V and 100 ratios 

were collected using a multi-dynamic peak jumping routine. Resulting 87Sr/86Sr ratios were 
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normalized to an 86Sr/88Sr ratio of 0.1194. Six analyses of the NBS987 standard yielded an 

average 87Sr/86Sr of 0.710220±0.000011 (2SD). Individual errors did not exceed ±0.000011 

87Sr/86Sr. Total blanks for Sr were found to be negligible compared to the Sr masses of the 

samples. 

Speciation calculations were conducted using Visual Minteq 3.1 software (Gustafsson, 

1999), version 3.1 (October 2014) for Windows, (see Unsworth et al. (2006) for a vMINTEQ 

application example) in conjunction with the Stockholm Humic Model (SHM), which 

accounts for aqueous Fe and Al complexation with dissolved organic matter. In addition, the 

PHREEQC code, together with its lnll database (Parkhurst and Appelo, 1999), was used for 

calculating the fluid sample saturation states with respect to various clay minerals. Regression 

and power functions were used to examine the relationships between element concentrations, 

isotope ratios, and the main physico-geographical parameters such as MAAT, permafrost 

coverage, watershed size, watershed average latitude, % of wetland versus tundra and forest 

coverage, RSM concentration and proportion of various rock type on the watershed. These 

regressions were performed using the least squares method, Pearson correlation, and a one-

way ANOVA with STATISTICA version 8 software (StatSoft Inc., Tulsa, OK). Correlation 

coefficients were calculated to elucidate the relationships between the dissolved element 

concentrations and ratios (DOC, DIC, Mg, Ca, Si, Al) with the isotopic signatures of the 

Yenisey tributaries. 

 

4. Results 

4.1. The major chemistry and Sr isotope ratio of the Yenisey River and its tributaries during 

the spring flood  

 

The chemical composition of major elements in all river water samples can be found 

in Table S5. A plot of Mg/(Na+K) vs. Ca/(Na+K) concentrations of the sampled river waters 
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is shown in Fig. 2. The linear trend of the data on this plot suggests that they are consistent 

with the mixing of two or more end members such as Precambrian dolomite, basalts, granites 

and larch litter. Similar observations of the chemistry of Siberian rivers were attributed by 

Bochkarev (1959), Alekin (1970), and Pokrovsky et al. (2006) to the mixing of chemical 

inputs from two major sources. The first is the surface organic-rich soil layer together, 

including plant litter, and the second is the dissolution of deep mineral soil horizons and base 

rock occurring in underground water reservoirs that feed the river via taliks (Anisimova, 

1981; Bagard et al., 2011, 2013). The relative contribution from these two pools varies over 

the year, owing to the presence of permafrost. In particular, top soil and plant litter leaching 

dominates during the early spring, whereas the mineral soil horizons are more reactive at the 

end of the summer when the thickness of the thaw layer is at its maximum; the weathering of 

the rock basement is most pronounced during winter baseflow. Finally the annual atmospheric 

input contribution to the Yenisey and its tributaries is below 10% (Pokrovsky et al., 2005), 

which is significantly different from the conditions occurring to the West as the Karelia and 

the Kola regions are located closer to the sea coast.  

The 87Sr/86Sr ratio is an efficient tracer of bedrock weathering especially in 

permafrost-affected zones (Keller et al., 2010; Bagard et al., 2011; 2013). Despite a 

significant variation of Sr concentration in sampled rivers, ranging from 13 to 350 µg kg-1, the 

majority of sampled tributaries (excluding M5 Garevka, see below) exhibit 87Sr/86Sr ratios 

(Fig. ESM-1), ranging from 0.708 to 0.711, with an average value of 0.7087±0.0004. This 

value also coincides with this ratio at the mouth of the Yenisey (0.7088) as well as along the 

main course of the river.  

Plots of Sr isotope ratio as a function of all available physico-geographic parameters 

including watershed size, latitude, MAAT, permafrost coverage, forest, bog, and tundra 

proportion of the watershed, and rock lithology (i.e. carbonates, granites, basalts and 

terrigenous rocks) did not reveal any statistically significant (at p < 0.05) relationship (see 
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ESM Figs. S1-S6). Only a small tributary, the Garevka, exhibited a highly radiogenic 

87Sr/86Sr value, equal to 0.728. This elevated number may stem from a dominance of late 

Archean - early Proterozoic granites in this watershed. Likewise, the plot of the 87Sr/86Sr ratio 

versus the percent of basalt in the watershed, shown in Fig. 3, suggests a mixture of a “young” 

Permo-Triassian basaltic endmember and an “old” basalt-free endmember corresponding to 

late Proterozoic – Cambrian carbonates, granites, and terrigenous rocks.  

The 87Sr/86Sr ratios of the Yenisey River and its tributaries are within the range 

reported for Eastern Siberian rivers (Huh et al., 1998a, b; Huh and Edmond, 1999) and 

slightly lower those of the Yenisey coastal sediments (0.712; Guo et al., 2004), the average 

value of Canadian rivers (0.7111; Wadleigh et al., 1985), and the global river average which 

range from 0.7116 (Pearce et al., 2015) to 0.7119 (Palmer and Edmond, 1989). 

 

4.2 The Mg isotope composition of Yenisey River water 

The Yenisey River tributary water samples exhibit variations of up to 1‰ in δ26Mg 

(see Table 2). The main channel of the Yenisey River water is enriched in heavier Mg by 

about 0.3‰ moving northwards from ~51-52°N to 60°N but remains constant north of 60°N 

(ESM Fig. S7), with a δ26Mg composition of -1.3‰ close its delta. The most 26Mg enriched 

samples were collected from the Yerachimo and the Nizhnyaya Tunguska, both of which 

drain the Central Siberian basalt province, and most northern, tundra-dominated M Kheta 

tributary. Note that the δ26Mg composition of the Nizhnyaya Tunguska mouth water sample is 

identical to that reported by Mavromatis et al. (2014a) for the late spring, high flow waters 

collected during the years 2008 and 2009. The samples most enriched in 24Mg were from the 

Vorogovka, the Miroedikha, and the Letnyaya. 

The Mg isotope signatures were found to be independent of most watershed physico-

geographic parameters including the basin area, MAAT, % of forest, wetland and tundra on 

the watershed, and the lithological composition of the watersheds such as the proportion of 
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granites, basalts, terrigenous, and carbonate rocks as illustrated in ESM Figs. S8-S12 and 

summarized in ESM Table S6; this table also lists of all correlation coefficients. Note that no 

statistically significant variation of Mg isotope composition with DOC concentration was 

observed (p < 0.05). The lack of Mg transport via organic colloids is confirmed by dialysis 

results suggesting that less than 10% of the Mg was present in colloidal (1 kDa – 0.45 µm) 

form. Note also that it was previously shown that no fractionation occurs between Mg 

complexed in DOC and free Mg (Illina et al., 2013). In contrast, the dissolved inorganic 

carbon (DIC) concentration exhibited a clear negative correlation with δ26Mg (p = 0.03, R² = 

0.8) as shown in Fig. 4A. A similar correlation between δ26Mg and total dissolved solids was 

observed previously for the Mackenzie River basin that also drains permafrost regions (Tipper 

et al., 2012). The increase of river suspended matter concentration also exhibits a weak 

relation with the Mg isotopic ratio in the river water (R² = 0.18, p = 0.03). Moreover as 

illustrated in Fig. 4B, δ26Mg exhibits a positive correlation with 1/Mg (R² = 0.7, p > 0.05), 

excluding samples collected from the Garevka and Yerachimo tributaries.  It should be 

emphasized that Garevka is strongly influenced by granites and Yerachimo is not a direct 

tributary of Yenisey River. Note that due to the large spatial scale of this study, the observed 

chemical trends may be affected by some dilution and/or concentration effects. 

 

4.3 Si isotope variations of water samples 

The measured water samples exhibit variations of up to 1.5‰ in δ30Si (see Table 2). 

Similar to the behavior of Mg isotopes, a slight progressive enrichment in 30Si is observed 

northwards along the Yenisey River (ESM Fig. S13), with the δ30Si composition of the most 

northern sampling point equal to 1.3 ‰, which is 0.2‰ heavier than that collected from the 

southernmost station. The water samples collected from the Yenisey River tributaries 

exhibited δ30Si variations, up to 1.4 ‰. The water samples collected from the Komsa, the 

Miroedikha, and the Sukhaya Tunguska tributaries exhibited the largest depletion in 28Si, with 
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δ30Si values of 2.11‰, 2.01‰ and 1.97‰, respectively. The samples most enriched in 28Si 

were collected from the tributaries draining the western Siberia lowland specifically from the 

Sym, the Kas, and the Turukhan with δ30Si values of 0.75 ‰, 0.93 ‰ and 0.92 ‰, 

respectively. 

Similar to Mg, the Si isotope signatures were found to be statistically independent of 

most watershed physico-geographic parameters including the basin area, MAAT, % of forest, 

and tundra, and the watershed lithological composition including the proportion of granites, 

basalts, terrigenous, and carbonate rocks as illustrated in ESM Figs. S14-S18 – see Table S6 

for a list of correlation coefficients. Note however, that a weak correlation (R=0.23, p=0.01) 

can be seen between δ30Si and wetland coverage. The Si isotopic composition, became 

significantly lighter with increasing RSM concentration. According to SEM observations and 

EDX analyses, the mineralogical composition of the RSM in the sampled rivers consists of 

amorphous Al-Si-allophanes rich in organic carbon, illite, chlorite, montmorillonite, quartz, 

feldspars, amphibole, and mica. A significant diatom concentration was observed by SEM in 

the Vorogovka and Bakhta tributaries. Diatoms are known to preferentially uptake light Si 

(De La Rocha et al., 1997). The presence of diatoms, however, was not correlated with any 

measured isotopic signature. 

 

5. Discussion 

5.1. Mg isotopic signals in riverine waters: effect of silicate RSM leaching and deep 

carbonate rock dissolution 

Permafrost extends throughout the Yenisey drainage basin, but ranges from 

continuous in the north to isolated and sporadic in the south (Fig. 1; ESM Table S1). Note that 

only the Kem and Kas river basins, located in the southwestern part of the Yenisey catchment, 

are not affected by permafrost. Despite the contrasting permafrost distribution, no significant 

correlation was observed between the isotopic compositions and permafrost extent, as well as 
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the MAAT (see ESM Figs. S3, S4, S9, S10, S15, S16). As mentioned above, previous studies 

argued that the major chemistry of Siberian Rivers originates from the combination of two 

sources (Bochkarev, 1959; Alekin, 1970; Pokrovsky et al., 2006). The first is the surface 

organic-rich soil layer including plant litter. The second is the dissolution of minerals deep 

within soils and in the base rock fed to the river via taliks (Anisimova, 1981; Bagard et al., 

2011, 2013). The relative contribution from these two pools is variable over the year, owing 

to the presence of permafrost. In particular, top-soil and plant litter leaching occurs mainly 

during the early spring, whereas mineral dissolution is particularly active at the end of the 

summer, when the thickness of the thaw layer maximizes, and rock basement weathering is 

most pronounced during winter baseflow.  

The Mg isotopic composition of two large Central Siberian rivers (the Kochechum and 

the Nizhnyaya Tunguska) was recently measured to illuminate the Mg sources generated by 

basalt weathering under permafrost conditions in a larch deciduous forest (Mavromatis et al., 

2014a). During the winter, the dissolved Mg isotope composition of these rivers was 

significantly lighter than the surface basaltic rocks and the atmospheric deposition, suggesting 

either a deep underground source such as sedimentary carbonate rocks or the non-

conservative transfer of basaltic Mg to the fluid phase. Overall the riverine waters were 0.6-

1.0 ‰ lighter than the unaltered bedrock and deep minerals in the soil horizons. During the 

spring flood and in the summer-fall season, δ26Mg increases by 0.2-0.3 ‰ and approaches the 

Mg isotope composition of the ground vegetation (dwarf shrubs, mosses) and the soil organic 

horizon. It seems likely that during the spring high flow sampling period, the dissolved load 

mainly originated from the soil surface, RSM, and plant litter, as the mineral soil layer is 

entirely frozen. Indeed as it can be seen in Fig. 5A, a correlation (R2=0.5, p<0.05) exists 

between the increasing RSM load between 0 and 15 mg/L and 24Mg depletion in the fluid 

samples. Another correlation, however, is seen between δ26Mg and the dissolved inorganic 

carbon concentration of riverine water samples (Fig. 4A). This trend allows the distinction 
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between Mg originating from silicate and carbonate sources.  Specifically, silicate rocks and 

plant litter will tend to liberate Mg but add little DIC (Mavromatis et al., 2014a),whereas  

Precambrian carbonate rock dissolution will add significant DIC; waters originating from the 

latter source hve been observed to exhibit δ26Mg ranging from -1.5 to -2.2 ‰ (Pokrovsky et 

al., 2011). The linear correlation of δ26Mg and DIC apparent in Fig. 4A suggests a binary 

mixing of two end-members, that can be described by: 

δ26Mg = A × DIC – B, R2=0.78; p=0.03      (1) 

where A = -0.0345, B =  0.9206 and δ26Mg is given in per mil and DIC in ppm.. Solving this 

equation for a DIC concentration of 35 ppm as is reported by Bagard et al. (2011) which 

corresponds to the highest contribution of dolomite rocks to the river water assessed during 

winter baseflow for the Nizhnyaya Tunguska yields a δ26Mg of -2.1‰. This value is 

consistent with the δ26Mg composition of dolomite rocks present in the upper reaches of the 

Nizhnyaya Tunguska river basin (Pokrovsky et al., 2011). During the spring flood, river 

waters are undersaturated with respect to Mg-bearing carbonates (S.I. < -1, ESM Table S6), 

thus the dissolution of the isotopically heavy Mg sources (e.g. surface silicate rocks, soil plant 

litter) may occur without significant isotope fractionation caused by secondary carbonate 

mineral precipitation (Pearce et al., 2012; Mavromatis et al., 2015). This process would 

provide heavy Mg at relatively low DIC, which is typical for spring waters. An acid spring 

pulse, fairly well known in Scandinavian rivers (Buffam et al., 2008) and linked to fast 

leaching of organics from the vegetation, is also responsible for the low DIC in the river water 

during this period. This is most evident for the Yenisey tributaries draining the western 

Siberian bogs and wetlands including the Kas, the Elogyi, the Turukhan, the Sym, and most 

northern Bolshaya Kheta basin areas. These rivers drain primarily peat deposits, where 

surface waters have little contact with soil mineral horizons (Pokrovsky et al., 2015b). This 

binary mixing model is further supported by the correlation of δ26Mg with 1/Mg concentration 
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plots as can be seen in Fig. 4B. Note that the observed binary mixing does not necessarily 

exclude the mixing of several endmembers as previously suggested for the Mackenzie Basin 

(Tipper et al., 2012). As shown by Zakharova et al. (2007) in boreal rivers, the Ca+Mg flux 

increases in the order carbonates > basalts > litter > granites > aerosols, but their 

compositions fall on the same linear trend on δ26Mg versus 1/Mg concentration plots. 

Moreover, the δ26Mg composition of basalts, granites and plant litter is very similar (see 

Mavromatis et al., 2014a). Indeed, it can be seen from the Ca/(Na+K) vs Mg/(Na+K) plot of 

the studied rivers (Fig. 2) that several possible sources of the major cations are aliened along 

the same trend. Therefore, the compositional trends observed during the spring flood do not 

allow discrimination between the organic and mineral pools of Mg feeding the river, and 

measurements during the winter season are necessary to constrain the underground 

(carbonate, silicate) source of riverine Mg. 

Basaltic rocks are generally depleted in 24Mg with an average δ26Mg = - 0.23 ± 0.11‰ 

(Teng et al., 2007; Handler et al., 2009; Bourdon et al., 2010) compared to carbonates that are 

generally enriched in 24Mg. The dolomites from the Patom Paleobasin, drained by the eastern 

Yenisey tributaries (the Nizhnyaya Tunguska and Podkamennaya Tunguska rivers) are as 

light as -2.5‰ (Pokrovsky et al., 2011). This observation shows that the host rock can exert a 

significant effect on the isotopic composition of the dissolved Mg; a strong influence of 

carbonate dissolution has been observed in the Central Siberian river basins at the end of the 

winter season (Mavromatis et al., 2014a). Indeed, the Precambrian dolomites present in the 

southern part of the Siberian platform, provide 30 to 40 ppm of DIC at the end of the winter to 

the Nizhnaya Tunguska River (Bagard et al., 2011; Prokushkin et al., 2011). This feeding of 

the main river occurs via deep taliks, where the interaction of dolomite with basement fluids 

could occur.  
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5.2. The effect of RSM and alumino-silicate mineral precipitation in deep reservoirs on Si 

isotope signatures: 

Heavy Si isotopic compositions are typical for Central Siberian rivers during the 

winter; Si is typically 1 to 1.5‰ lighter during the spring floods. At the discharge maximum, 

which occurs during the spring flood, typically at the beginning of June, the 30Si of the 

Nizhnaya Tunguska and the Kochechum river water approaches that of the particulate 

suspended matter and weathered basalt (i.e. 0.25±0.16 and 0.32±0.13 ‰, respectively, see 

Pokrovsky et al., 2013). The concentrations of dissolved Si in Central Siberian riverine waters 

decrease by a factor of 2.5 to 3 at the beginning of June compared to the winter baseflow, 

whereas the river discharge increases by 2 to 3 orders of magnitude (Pokrovsky et al., 2013). 

Owing to extensive permafrost, most of the soil is still frozen and so little to no subsoil fluid 

contribution to the rivers is expected to occur during the spring flood period. Hence the 

overall Si concentration in riverine waters is dominated by Si-bearing solids present at the soil 

surface, on the river banks, or within the melting snow. Such solids likely include Al-

allophane, smectite, plant debris, and plant litter present in the topsoil horizons. The riverine 

δ30Si values of the Kochechum and Nizhnyaya Tunguska rivers are their lightest at the 

beginning of June, during the late spring flood, when the soil horizons in the watershed 

remain frozen. 

The impact of silicate mineral dissolution and precipitation on the Si isotope ratio in 

sampled river water can be assessed with the aid of Fig. 6. The correlation of low Ca/Al ratios 

with high δ30Si shown in Fig. 6A, suggests clay mineral formation in the deep groundwaters 

of the watersheds. Indeed, secondary clay mineral formation is considered to be a key 

fractionation process controlling the δ30Si composition in natural waters (Georg et al., 2006). 

Clay mineral formation leads to high δ30Si due to the preferential uptake of 28Si by secondary 

Si-bearing phases (Georg et al., 2006). This is reflected in the δ30Si composition of soil 

solution samples from the Nizhnyaya Tunguska basin, which exhibit values of 2.0±0.1‰ 
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(n=3) (Pokrovsky et al., 2013). Moreover, clay precipitation would remove Al relative to Ca 

from aqueous fluids (De la Rocha et al., 2000). We thus hypothesize that the Yenisey 

tributaries exhibiting high Ca/Al and heavier Si (e.g. Miroedikha, Letnyaya, Sukhaya 

Tunguska, Yerachimo) are strongly affected by winter groundwaters that were influenced by 

secondary silicate clay formation. This observed 30Si enrichment is typical for permafrost 

dominated rivers such as the Nizhnyaya Tunguska and the Kochechum during winter 

baseflow, as during this time the deep groundwaters feeding the rivers have longer residence 

times, allowing for a longer interaction with their surrounding rocks leading to clay 

precipitation (Pokrovsky et al., 2013).  

The maximum concentration of Al in the rivers of the Yenisey basin is achieved 

during the spring flood, when it is present in organic colloids (Bagard et al., 2011). Note that 

Al is fully complexed with Dissolved Organic Matter (DOM; Pokrovsky et al., 2015b) in the 

left tributaries of the Yenisey River. Our calculations also demonstrate the dominance (>95%) 

of Al-DOC complexes in surface waters. Aluminium therefore becomes mobile in the surface 

environments due to the presence of DOM. This is not the case for DOM-poor underground 

waters where Al precipitates as secondary clays thus increasing the Ca/Al ratio in the 

remaining fluids.  

The waters of some of the Yenisey tributaries exhibit depleted 30Si isotopic signatures, 

low Ca/Al, Ca/Si and Mg/Si concentration ratios, and high RSM (see Fig 6).  Such 

observations can be attributed to the dissolution of RSM components such as allophones and 

amorphous clays in the river. Such trends are coincident with those of low-RSM winter 

waters and high RSM spring flood waters as observed in Central Siberian rivers (open squares 

and circles, respectively, in Fig. 5B). The rivers exhibiting the highest RSM are those draining 

the western Siberia lowlands, which have clay deposits and minimal amounts of crystalline 

rocks in their watershed (Frey et al., 2007a,b; Pokrovsky et al., 2015a).  
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The residence time of RSM in rivers is comparable to that of the water itself, i.e., days 

in small rivers and weeks in largest rivers. The dissolution of silicates with high surface area 

is rather fast, and that of the plant litter is on the order of hours to days (Fraysse et al., 2010; 

Jeandel and Oelkers, 2015). As such, this dissolution may not induce significant Si isotope 

fractionation. The spring river waters are, however, supersaturated with respect to halloysite, 

imogolite, illite, montmorillonite and kaolinite. Thus secondary Al silicate formation cannot 

be ruled out. Nevertheless, no statistically significant correlation (p > 0.05) was found 

between river water saturation state with respect to these clay minerals and measured Si 

isotope ratios. Moreover, there is no evidence for authigenic mineral formation in the RSM in 

the Nizhnyaya Tunguska River (Pokrovsky et al., 2005), thus the formation of secondary 

minerals in the river waters seems unlikely.  

An additional reason for the low δ30Si composition of rivers draining the western 

Siberian lowlands is that these regions have a significant proportion of wetlands (i.e. >10%). 

These wetlands are still frozen during the sampling period and thus do not uptake any Si in 

vegetation. Instead, they may release isotopically-light Si from vegetation, as there is a weak 

but statistically significant correlation between δ30Si and wetland proportion (R² = 0.23 at p = 

0.01, ESM Fig. S17). The isotopic signature of western Siberia plants is unknown at present. 

The few available data suggest that δ30Si varies significantly among boreal plants; the 

Siberian larch has a δ30Si ranging from +1.2 to +1.5‰ (Pokrovsky et al., 2013), whereas 

Norway spruces and European larches have a δ30Si of +0.2‰ (Engstrom et al., 2008). 

However, birch, willow, dwarf shrubs, moss and lichens from Sweden, plants common in 

western Siberia, exhibit even lighter Si isotopic compositions with δ30Si ranging from -0.15 to 

-0.30 ‰, whereas the humus horizon has a δ30Si = -0.27 ‰ (Engstrom et al., 2008). 

Therefore, it is possible that, in addition to RSM dissolution, plant litter vegetation leaching 

of isotopically-light Si during the spring flood may be a factor contributing to the light Si  

observed in the Kas, Turukhan, and Sym rivers as shown in ESM Fig. 17. Distinguishing 
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between these two sources of the light Si isotopes to the western Siberian tributaries of the 

Yenisey River, however, is not possible at present. 

 

5.3. Evaluation of isotopic fluxes to the Arctic Ocean  

The Yenisey River is largely representative of the rivers draining to the Arctic Ocean, 

due to its highly variable lithology, contrasting permafrost, forest, wetland, and vegetation 

coverage.  As such, the results of this study may provide reasonable estimates of the range of 

dissolved Mg and Si isotope fluxes to the Arctic Ocean. The sample collected from the 

terminal point of the Yenisey River during spring flood has a 30Si = 1.300.07‰. This value 

compares with the average annual discharge-weighted 30Si values of 1.67 and 1.08 ‰ found 

for the Kochechum and the Nizhnyaya Tunguska rivers of the Central Siberian Plateau 

(Pokrovsky et al., 2013). The Yenisey spring flood Si isotopic signature is also close to that 

measured in the boreal permafrost-free Kalix River (+0.7 to +1.5 ‰, Engström et al., 2010) 

and in large tropical rivers (+0.910.09 ‰ in Congo, Hughes et al., 2011; 1.510.19 ‰ in 

Ganges-Brahmaputra system, Georg et al., 2009). In contrast, the 30Si of the Siberian rivers 

are higher than that observed in rivers draining small Iceland catchments (0.630.38‰, Georg 

et al., 2007), and in Swiss rivers (0.840.19‰, Georg et al., 2006). Such differences may 

stem from the significantly lower concentrations of suspended material in Siberian rivers 

compared to the mountainous Iceland and Switzerland rivers, where enhanced runoff 

disfavors clay formation, which together with scarcer vegetation, results in lower river water 

30Si.  

 The δ26Mg is equal to -1.29±0.03‰ at the mouth of the Yenisey River. This value is 

very close to that of the Lena River during its summer low flow with a δ26Mg=-1.28±0.08‰ 

(Tipper et al., 2006). This observation suggests that the Mg isotope compositions of Siberian 

rivers are significantly lighter (i.e. -1.3‰) compared both to seawater (-0.82‰) and to the -
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1.09‰ of mean global river runoff (Tipper et al., 2006). We hypothesize that the Mg 

composition of the Yenisey, as well as the Lena, reflects a significant contribution of 

isotopically-light, highly reactive Precambrian dolomites, which are abundant in the southern 

Siberian Platform. In contrast, it is unlikely that the Ob River, draining mainly Quaternary 

clays and sands covered by peat, will have such a light Mg isotope signature. 

If it can be assumed to a first approximation that the flux weight average annual 

isotopic compositions of Si and Mg can be estimated as the discharge weighted sum of the 

spring, summer, and winter fluxes one can write: 

30Siannual = 30Si spring  0.386 + 30Si summer  0.254 + 30Si winter  0.36 

26Mgannual = 26Mgspring  0.29 + 26Mgsummer  0.265 + 26Mgwinter  0.445 

where the subscripts “spring”, “summer” and “winter” denote the isotopic composition of 

Yenisey River water during the respected time of the year, whereas the fractions of the annual 

fluxes for Mg and Si have been calculated after Holmes et al. (2012) and can be found in 

ESM Table S3. The spring, summer and winter isotopic compositions in this equation are 

estimated as follows. The isotopic compositions during the spring are taken from the results 

described above and are equal to 1.30‰ and -1.29‰ for δ30Si and δ26Mg respectively. During 

the summer period, the composition of the Yenisey river is assumed be similar to that of other 

Central Siberian rivers reported by Pokrovsky et al. (2013) and Mavromatis et al (2014a) and 

equal to -1.5±0.2‰ and +1.5±0.2‰ for 30Si and 26Mg, respectively. The isotopic 

compositions of the river water during the winter is estimated from the annual variations of 

Ninzhaya Tunguska River, the most similar, in terms of lithology, to that of the overall 

Yenisey basin and dominated by Precambrian dolomite dissolution with pronounced 

secondary minerals formation in the deep groundwaters (Pokrovsky et al., 2013; Mavromatis 

et al., 2014a). The resulting mass averaged annual isotope signatures of Si and Mg flux from 

the Yenisey River to the Arctic Ocean are thereby estimated to be 30Siannual = 1.60±0.25‰ 

and 26Mgannual = -1.58±0.30‰. 
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6. Conclusions 

Much of the water and solute flux to the Arctic Ocean from the continents occurs 

during the late spring snow melt. As such the composition of these melt waters have a strong 

influence on the supply and isotopic composition of dissolved elements to the Arctic Ocean. 

In this study we presented the chemical compositions and isotopic signatures of Sr, Mg, and 

Si along Yenisey River and 28 of its large and small tributaries during the late spring flood. 

Despite the large variation in lithology, vegetation and permafrost coverage in the Yenisey 

River watershed, the isotopic composition of both dissolved Mg and Si was found to be only 

weakly influenced by these parameters. These observations suggest that soil mineral 

formation and element uptake by vegetation is negligible during this time of the year, likely 

owing to the frozen soil profile. The observed variations of Mg and Si isotope compositions 

along the Yenisey River can be explained by the mixing of two end-member sources with 

possible fractionation due to mineral dissolution process. Isotopically light Si and isotopically 

heavy Mg are likely provided by the dissolution of suspended matter including clay minerals 

and plant litter leaching. The mobilization of the biogenic and clay pools enrich the river 

water in Si over Mg (Fig. 6C). Isotopically heavy Si and isotopically light Mg appear to be 

added from deep underground waters feed to the river via taliks. This second end-member is 

accompanied by elevated DIC concentrations as well as high Ca/Al, Ca/Si and Mg/Si ratios, 

consistent with the Mg-bearing carbonate dissolution and secondary silicate precipitation in 

the deep underground reservoirs. 

The average annual isotope signal of river water input to the Arctic Ocean from the 

Yenisey River is estimated to be -1.58±0.30 and +1.60±0.25 for δ26Mg and δ30Si, 

respectively. As the Yenisey River is both the largest arriving to the Arctic, and has a 

representative watershed, these isotopic ratios may approximate the overall dissolved riverine 

flux to this ocean.  
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Figure captions 

 

Figure 1: Sampling stations along Yenisey River and its tributaries. The background color 

indicates the extent of permafrost.  

 

Figure 2: Binary molar diagram of Na+K normalized Ca vs. Mg concentrations in river water 

samples. The data in the shaded areas were taken from Pokrovsky et al. (2005). 

Analytical uncertainties are included in the symbol size. 

 

Figure 3: Plot of 87Sr/86Sr ratio versus the percent of basalt in the watershed, as it can be seen 

in ESM Table S1. 

 

Figure 4: A) δ26Mg vs. DIC concentrations in sampled river waters (R2=0.78; p=0.03). B) 

δ26Mg vs. 1/Mg concentrations in sampled river waters (R² = 0.7, p >0.05). The 

encircled sample originates from the Yerachimo River that is a tributary of Nizhnyaya 

Tunguska River. 

 

Figure 5: A) Plot of δ26Mg vs. RSM in river water samples (R2=0.5, p<0.05; 0 ≤ RSM ≤ 15 

mg/L). The circled sample originates from the Yerachimo River. B) Plot of δ30Si vs. 

RSM in river water samples (R2=0.81, p<0.05; 0 ≤ RSM ≤ 15 mg/L). The open 

rectangles and open circles represent values for the Nizhnyaya Tunguska and 

Kochechum rivers at the end of the spring flood reported by Pokrovsky et al. (2013) 
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Figure 6: A) Plot of δ30Si vs. the Ca/Al molar ratio of river water samples. B) Plot of δ30Si vs. 

the Ca/Si molar ratio in river water samples. B) Plot of δ30Si vs. the Mg/Si molar ratio 

in river water samples. 
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Table 1 Sampling station and sampling date and basin area of the river discharge 

Sampling 

station 

Sampling 

Date 

River name Latitude Longitude Basin 

area km2 

Notes 

M20 12.06.2012 Angara 58о04'37.0'' 93о0.5'05.1" 754767  

M37 23.06.2012 Angara 51о53'25.0'' 104о49'37.3"  starting point from 

Baikal lake 

M14 13.06.2012 Kem' 58о31'00.4'' 92о0.5'33.4" 9014  

M23 13.06.2012 Bolshoy Pit 59о02'05.2'' 91о44'02.4" 21598  

M27 14.06.2012 Kas 59о57'17.7'' 90о33'56.6" 11816  

M5 14.06.2012 Garevka 59о50'58.5'' 90о47'45.6" 927  

M12 14.06.2012 Sym 60о15'11.6'' 90о02'28.1" 31327  

M11 15.06.2012 Vorogovka 60о48'25.4'' 89о51'26.1" 3758  

M4 15.06.2012 Dubches 60о55'36.0'' 89о37'11.3" 14661  

M29 17.06.2012 Podkamennaya 

Tunguska 
61о36'51.4'' 90о11'08.8" 238699  

M13 18.06.2012 Bakhta 62о28'36.6'' 89о01'49.1'' 35898  

M26 18.06.2012 Yeloguy 63о11'27.4'' 87о44'53.7'' 25393  

M32 18.06.2012 Komsa 63о15'15.2'' 87о43'40.2'' 1667  

M34 19.06.2012 Sukhaya 

Tunguska 
65о10'00.0'' 87о59'55.2'' 7165  

M9 19.06.2012 Miroedikha 65о36'01.8'' 88о03'20.6'' 552  

M1 20.06.2012 Turukhan 65о54'23.5'' 87о34'52.0'' 35726  

M10 21.06.2012 Nizhnyaya 

Tunguska 
65о34'38.9'' 90о02'18.4'' 441220  

M21 22.06.2012 Kureyka 66о30'07.5'' 87о21'25.2'' 46600  

M28 24.06.2012 Staraya Igarka 67о24'03.6'' 86о27'02.8'' 1662  

M31 25.06.2012 Graviyka 67о30'26.3'' 86о26'51.0'' 323  

M33 25.06.2012 Khantayka 68о06'14.5'' 86о39'47.3'' 32150  

M17 26.06.2012 Fokina 68о39'23.8'' 86о26'14.3'' 343  

M6 26.06.2012 Dudinka 69о23'06.3'' 86о18'26,8'' 5705  

M3 27.06.2012 Malaya Kheta 69о33'51.1'' 84о31'31.6'' 5942  

M16 27.06.2012 Bolshaya Kheta 69о31'52.5'' 84о15'51.6'' 20800  

M19 28.06.2012 Sukhaya 

Dudinka 
69о48'14.8'' 85о12'01.4'' 1903  

       

M2 21.06.2012 Yerachimo 65о38'21.9'' 90о00'51.1'' 8870  

M35 21.06.2012 Severnaya 65о57'13.6'' 89о01'54.3'' 20735  

M7 21.06.2012 Letnyaya 65о55'24.4'' 89о02'34.8'' 4569  

       

M30 06.06.2012 Maliy Yenisey 51o26'  95о37' 52878 Upstream Bolshoy 

Yenisey River -

Headwaters 

M22 05.06.2012 Maliy Yenisey 51o42' 94о38' 6547 Upstream Bolshoy 

Yenisey River- 

Headwaters 

M36 12.06.2012 Yenisey 1 58о01'01.3'' 93о12'03.0'' 304725 Upstream Angara River 

–After dams 

M24 15.06.2012 Yenisey 2 60о54'18.1'' 89о41'35.8" 577987 Upstream P. Tunguska 

M8 18.06.2012 Yenisey 3 63о15'09.7'' 87о41'09.1'' 335023 Downstream of P. 

Tunguska 

M18 20.06.2012 Yenisey 4 65о36'04.6'' 88о04'43.3'' 40770 Upstream N. Tunguska 

M25 23.06.2012 Yenisey 5 66о25'07.41'' 87о18'03.6'' 494304 Downstream of N. 

Tunguska 

M15 27.06.2012 Yenisey 6 69о45'30.6'' 84о00'21.5'' 156933 Downstream of M. 

Kheta – at Delta 
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Table 2 Chemical and isotopic compositions of stable Mg and Si and radiogenic Sr in the analyzed samples. The isotopic composition and standard 1 

deviation of Mg and Si measurements are based on three replicate analyses. IAPSO seawater analyzed as multi-elemental standard and two full 2 

procedural replicates are reported. 3 

Sampling station Mg (μM) δ25Mg (‰) 2σ δ26Mg(‰) 2σ  Si (μM) δ29Si (‰)  2σ δ30Si (‰) 2σ  Sr (μM) 87Sr/86Sr 

M20 180.9 -0.75 0.05 -1.48 0.06  41.05 0.71 0.04 1.35 0.12  2.090 0.708854 

M37 60.4 -0.75 0.02 -1.46 0.08  24.79 0.68 0.04 1.36 0.01  0.600 0.708859 

                

M14 131.2 -0.66 0.07 -1.33 0.06  45.97 0.84 0.05 1.76 0.03  1.386 0.708368 

M23 88.1 -0.75 0.03 -1.46 0.05  73.10 0.63 0.02 1.21 0.03  0.791 0.711712 

M27 125.2 -0.61 0.06 -1.19 0.09  149.54 0.41 0.06 0.83 0.14  0.799 0.709552 

M5 34.3 -0.51 0.05 -1.03 0.01  102.29 0.66 0.04 1.24 0.04  0.144 0.728101 

M12 68.8 -0.50 0.02 -0.99 0.05  133.98 0.40 0.01 0.75 0.01  0.370 0.709473 

M11 220.7 -0.89 0.05 -1.73 0.08  48.17 0.86 0.01 1.61 0.04  0.787 0.709974 

M4 199.8 -0.53 0.05 -1.04 0.06  152.10 0.61 0.04 1.17 0.08  0.496 0.708902 

M29 223.7 -0.78 0.04 -1.54 0.10  87.52 0.56 0.01 1.11 0.08  4.009 0.708926 

M13 199.9 -0.67 0.00 -1.29 0.05  82.82 0.81 0.08 1.58 0.08  1.911 0.708501 

M26 235.9 -0.61 0.04 -1.23 0.03  127.15 0.63 0.05 1.23 0.11  0.661 0.708502 

M32 311.9 -0.71 0.04 -1.41 0.04  49.06 1.12 0.03 2.11 0.09  1.263 0.708649 

M34 195.7 -0.70 0.02 -1.35 0.01  89.97 1.01 0.06 1.97 0.04  1.190 0.708547 

M9 358.3 -0.84 0.01 -1.64 0.02  71.07 1.03 0.01 2.01 0.06  0.530 0.708626 

M1 119.3 -0.55 0.00 -1.09 0.03  61.17 0.48 0.04 0.92 0.06  0.360 0.708875 

M10 69.8 -0.46 0.02 -0.88 0.02  105.92 0.71 0.05 1.40 0.08  0.602 0.708312 

M21 95.7 -0.58 0.01 -1.13 0.05  70.53          0.725 0.708037 

M28 107.3 -0.62 0.01 -1.25 0.04  59.71          0.271 0.708776 

M31 119.5 -0.64 0.01 -1.30 0.01  43.87 0.62 0.04 1.22 0.07  0.331 0.708730 

M33 123.3          47.46          1.777 0.708502 

M17 102.9 -0.71 0.02 -1.37 0.04  47.25 0.72 0.02 1.32 0.05  0.711 0.708394 

M6 95.3 -0.58 0.01 -1.11 0.04  57.86          0.251 0.708370 

M3 86.5 -0.46 0.02 -0.91 0.10  48.35 0.70  1.29    0.157 0.708917 

M16 56.1 -0.59 0.05 -1.15 0.01  44.97 0.66 0.03 1.27 0.02  0.128 0.708776 

M19 55.7 -0.59 0.06 -1.15 0.09  40.48 0.67 0.11 1.29 0.23  0.132 0.708663 

                

M2 162.8 -0.42 0.03 -0.81 0.02  104.46 0.81 0.02 1.60 0.04  1.400 0.708380 

M35 61.8 -0.57 0.06 -1.17 0.04  76.23 0.91 0.06 1.72 0.08  0.404 0.707781 

M7 387.5 -0.80 0.06 -1.62 0.07  92.43 0.95 0.06 1.88 0.10  3.489 0.708772 
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M30 132.5 -0.86 0.01 -1.68 0.01  61.60 0.54 0.11 1.10 0.21  1.251 0.708470 

M22 142.8 -0.77 0.06 -1.49 0.03  66.69 0.63 0.02 1.14 0.03  1.287 0.708404 

M36 119.2 -0.67 0.01 -1.30 0.02  55.76 0.78 0.06 1.49 0.06  1.386 0.708280 

M24 127.8 -0.72 0.01 -1.42 0.01  76.16 0.60 0.03 1.13 0.13  1.162 0.708811 

M8 167.2 -0.65 0.01 -1.28 0.00  66.76 0.74 0.02 1.43 0.03  1.415 0.708890 

M18 141.7 -0.72 0.01 -1.44 0.05  56.54 0.77 0.05 1.47 0.05  1.582 0.708927 

M25 10.5 -0.67 0.02 -1.32 0.03  81.61 0.77 0.04 1.53 0.06  1.062 0.708693 

M15 98.8 -0.65 0.05 -1.29 0.03  58.39 0.67 0.03 1.30 0.07  0.816 0.708763 

               

IAPSO Seawater (1)  -0.42 
0.03 -0.85 0.03 

         

IAPSO Seawater (2)  -0.44 0.04 -0.86 0.04          
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