
TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES
Trans. Emerging Tel. Tech. 2016; 27:1206–1215

Published online 25 July 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/ett.3084

SPECIAL ISSUE ARTICLE

DevOps for network function virtualisation: an
architectural approach
Holger Karl1, Sevil Dräxler1, Manuel Peuster1, Alex Galis2, Michael Bredel3,
Aurora Ramos4*, Josep Martrat4, Muhammad Shuaib Siddiqui5,
Steven van Rossem6, Wouter Tavernier6 and George Xilouris7

1 Paderborn University, Paderborn, Germany
2 University College London, London, UK
3 NEC Laboratories Europe, Heidelberg, Germany
4 ATOS Spain, Madrid, Spain
5 Fundació i2CAT, Barcelona, Spain
6 Ghent University – iMinds, INTEC, Gehnt, Belgium
7 Institute of Informatics and Telecommunications, NCSR ‘Demokritos’, Greece

ABSTRACT

The Service Programming and Orchestration for Virtualised Software Networks (SONATA) project targets both the flexible
programmability of software networks and the optimisation of their deployments by means of integrating Development
and Operations in order to accelerate industry adoption of software networks and reduce time-to-market for networked
services. SONATA supports network function chaining and orchestration, making service platforms modular and easier to
customise to the needs of different service providers, and introduces a specialised Development and Operations model for
supporting developers. © 2016 The Authors. Transactions on Emerging Telecommunications Technologies published by
John Wiley & Sons, Ltd.

*Correspondence

Aurora Ramos, ATOS Spain, Madrid, Spain.
E-mail: aurora.ramos@atos.net
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits
use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or
adaptations are made.

Received 6 April 2016; Revised 14 June 2016; Accepted 27 June 2016

1. INTRODUCTION

In the ongoing research discussion about the structure
and architecture of 5G networks, a basic trend is evi-
dent: the network will have to be much more flexible
and open to profound changes of its operation to match
evolving demands. These demands will not just evolve
quantitatively but also qualitatively in that traffic with dif-
ferent, yet unforeseeable, characteristics will have to be
supported. An ideal approach to increase flexibility of a
system is to scale software, more precisely, of reconfig-
urable and replaceable software. This is the core notion
of providing conventionally fixed network functions via
software, typically in a virtualised environment: network
function virtualisation (NFV) [1]. It is a transformation that
relies on software-based innovation on top of more generic
telecommunications hardware.

This disruptive architecture is challenging to put into
practice. The value chain of the provisioning and opera-
tion of networks will change and needs to be supported
by a technical environment. This environment will need to
support a decrease in development time and improved net-
work operations, including further overlapping functions.
Opportunity also arises as the role of providing network
functionality taken up by a broader range of actors, no
longer limited to the vendor of network equipment. This
allows a much higher degree of customisation of network
functions for the service developer, empowering them with
a better deployment and greater control of their service.
Conversely, the role of the operator of a network changes
as well: instead of just running a system with essentially
fixed functionality where only parameterisation is neces-
sary, the dynamics provisioning and deploying new func-
tions become daunting. If, in particular, provisioning will
become a frequent action rather than a unique event, it must

1206 © 2016 The Authors. Transactions on Emerging Telecommunications Technologies published by John Wiley & Sons, Ltd.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79531262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

H. Karl et al.

be supported by automation that spans across the devel-
opment and the operational cycle of network functions, as
well as orchestration of needed resources—the technical
role of an ‘orchestration platform’ becomes important and
has received considerable attention.

Taking such a comprehensive view of development and
operation of complex software is indeed a common trend of
modern software engineering; it is commonly referred to as
‘DevOps’ (a contraction of Development and Operations,
to highlight the close integration of these two processes).
It has not, however, taken root in the actual practice of the
telecommunication industry with respect to the operation
of networks in an open fashion. This is the core shortcom-
ing that the SONATA project [2] addresses, providing an
integrated development and operational process for virtu-
alised network functions, along with the necessary support-
ing tools like a service-adaptable and resource-adaptable
orchestration platforms.

Section 2 provides a perspective of previous results
related to SONATA (including research work, stan-
dardisation initiatives and common trends in an initial
generation pre-production open-source and commercial
architectures). Section 3.1 looks into how SONATA’s chal-
lenges would have to be reflected in a broader 5G architec-
tural context. Specific requirements and challenges arising
from various use cases are presented in Section 4. Finally,
Section 5 describes the actual SONATA contribution to
a ‘softwarised’ network architecture. Section 6 concludes
and previews future activities.

2. RELATED WORK

Network function virtualisation [3] is currently on oper-
ators’ road maps for deployment, but at the time of
writing mostly in a proof-of-concept stage of adoption.
However, the arrival of software networks, supported by
software-defined networking [4] and NFV technologies,
is a universally agreed milestone in the evolution of
telecommunications. Several open-source, standardisation
and commercial solutions are being developed for NFV
management and orchestration [5] [‘MANO’, as European
Telecommunications Standards Institute (ETSI) terms it] in
anticipation of its widespread operational use.

2.1. Software development processes and
tools for network function virtualisation

There is surprisingly little material available of soft-
ware development for network functions or resulting ser-
vices, let alone concrete tools to this end. The Unifying
Cloud and Carrier Networks (UNIFY) project [6] deliv-
ers some first insights on how to apply the DevOps
model to NFV. They provide a multicomponent debug-
ging tool called Epoxide [7]. Compared with these tools,
SONATA’s approach is a step forward and combines a
powerful software development kit (SDK) with a flex-
ible service platform to provide end-to-end support for
service developers.

2.2. Orchestration platforms

Simple cloud managers like provide the basic functionality
to deploy and manage single predefined virtual machines
but cannot handle composed services. Other solutions,
like OpenStack Heat [8], Terraform [9] and Application
Deployment Toolkit (ADT) [10], are able to deploy entire
services but do not focus on network function-specific
needs. Projects directly focusing on NFV service orches-
tration can be divided into three categories. The first
consists of research projects, like Network Functions as
a Service over Virtualised Infrastructures (T-NOVA) [11]
and UNIFY [6]. The second category consists of open-
source projects such as OpenMANO [12] or OpenStack
Tacker [13] or open software-defined infrastructure [14].
A third category is an initial generation of commer-
cial solutions put forth by telecommunications vendors
(expanding their platform, software and integration ser-
vices to adapt to the disruptive change in the value chain)
and supporting technology partners (classically in IT,
cloud, etc. but recognising new market opportunities as
telecom infrastructure becomes virtualised and software-
based). Regardless of their origin, they offer similar func-
tionality and characteristics when confined to the ETSI
NFVO specification, and significant differentiation is more
apparent when comparing their larger ecosystems that
extend beyond the scope of orchestration. This is consis-
tent with the business strategy to provide all NFV-related
needs (through their own portfolio or partnerships).

UNIFY’s architecture [6] aims at automated and
dynamic service creation and recursive resource orches-
tration. Its global orchestrator includes optimisation
algorithms for placement of service components; service-
specific actions related to placement and scaling are
deployed as a service component. T-NOVA is capable of
managing services distributed across several data centres
but only provides a simple, rule-based system to control
the scaling and placement of deployed services. It also pro-
vides a marketplace in which predefined services and vir-
tual network functions (VNFs) can be traded. OpenMANO
and OpenStack Tacker aim to be reference implementa-
tions of the MANO layer defined in the ETSI NFV Industry
Specification Group (ISG) architecture [15], but both are
at the beginning of their development. Other orchestration
solutions are Cloud4NFV [16] and vConductor [17].

All presented orchestration tools, to a great extent,
follow the same principle and try to build a single orches-
tration solution for different types of services. This creates
multiple restrictions for service developers as they cannot
influence the orchestration process as such. Some of the
existing platforms allow expressing a limited and pre-
defined set of preferences regarding monitoring, scaling
and so on. within function descriptions. However, actively
influencing service-specific decisions, for example,
placement and scaling of services and their components,
is not fully supported by any of them. This is possible
with SONATA’s service platform using function and

Trans. Emerging Tel. Tech. 27:1206–1215 (2016)
© 2016 The Authors. Transactions on Emerging Telecommunications Technologies published by John Wiley & Sons, Ltd.

1207

DOI: 10.1002/ett

H. Karl et al.

service-specific manager programmes defined by the
service developer.

3. SONATA SCOPE AND AN
OVERALL 5G ARCHITECTURE

3.1. Scope of SONATA functionality

SONATA aims at increasing the flexibility and programma-
bility of 5G networks with a novel Service Development
Kit and a novel modular Service Platform and Service
Orchestrator; it will bridge the gap between telecom busi-
ness needs and operational management systems.

The scope of SONATA is depicted in Figure 1 where
the outcome of the project is represented by the Ser-
vice Development Kit, the Management System and
the Service Platform including a customisable Service
Orchestrator, a Resource Orchestrator, a Service Infor-
mation Base along with various enablers; we use here
the ETSI reference model as a terminological frame-
work. In fact, while ETSI’s division into Service and
Resource Orchestrator can be mapped onto SONATA’s
service platform, SONATA is much more flexible in this
regard and allows not only replacing these orchestra-
tion aspects individually, but even to change the division
of work between these functions if so desired. This is

achieved by SONATA’s microservices-based architecture
(Section 5.1.1); for example, the resource orchestrator cor-
responds by and large to SONATA’s default placement
plug-in.

3.2. 5G multi-service management

SONATA advocates a consistent view of 5G network
and compute functions, encompassing a wide conceptual
range of such functionality. SONATA functionality cov-
ers the multi-service control layer and partially integrated
management and operation layer and the application and
business services layer. SONATA is also capable of incor-
porating widely heterogeneous physical resources: various
access networks (esp., radio), aggregation and core net-
works, software networks, data centre networks and mobile
edge computing clouds.

A multi-service control layer is responsible for the
creation, operation and control of multiple dedicated com-
munication network services running on top of a common
infrastructure. SONATA’s functionality [18] for this layer
includes infrastructure abstraction, infrastructure capabil-
ity discovery, catalogues and repositories, large number
of service and resource orchestration functions as plug-
ins, information management functionality and enablers
for automatic reconfiguration of running services, that is,
part of the integrated management layer.

Figure 1. SONATA scope.

1208 Trans. Emerging Tel. Tech. 27:1206–1215 (2016)
© 2016 The Authors. Transactions on Emerging Telecommunications Technologies published by John Wiley & Sons, Ltd.

DOI: 10.1002/ett

H. Karl et al.

The business function layer maintains 5G application-
related functions, organised in repositories, and DevOps
tools necessary for the creation and deployment of ser-
vices. SONATA’s functionality for this layer includes
DevOps functionality: catalogues, monitoring data
analysis tools, testing tools, packaging tools, editors
and basic functionality for application and service
programmability.

Figure 2 depicts the way in which SONATA manages
various underlying systems. The core idea is to endow
SONATA with several infrastructure abstractions, each of
which is custom-tailored to the particular needs of the
underlying infrastructure. This allows both simple and
complex of Virtual Infrastructure Managers (VIMs) to be
used, as well as entire networks or single, for example,
OpenStack instances to be integrated.

In summary, SONATA’s main contribution to 5G net-
working is efficient integration of service programmability,
domain orchestration functionality and DevOps function-
ality. This will maximise the predictability, efficiency,
security and maintainability of development and opera-
tional processes around virtualised network functions and
chain services.

4. USE-CASE-DRIVEN CHALLENGES
AND REQUIREMENTS

4.1. Use cases and resulting requirements

The use cases facilitate the identification of requirements
of the SONATA framework while highlighting its full
potential for future software networks. SONATA use cases
[19] encompass a wide range of Information and Com-
munication Technologies (ICT) domains and their network
services as follows:

� Internet of Things: demonstrates SONATA’s ability
to monitor, classify and optimise Internet of Things
network traffic as an enabler of Smart City ecosystem.

� Virtual Content Delivery Networks (CDN): manifests
SONATA’s capabilities to enhance a virtual CDN
service with elasticity and programmability.

� Industrial networks: providing guaranteed, resilient
and secure service delivery in vertical industrial net-
works, such as a wind park.

� Virtual Evolved Packet Core: exhibits and assesses
the SONATA’s competence to enhance a virtual
Evolved Packet Core service in an long-term evolu-
tion mobile network.

Trans. Emerging Tel. Tech. 27:1206–1215 (2016)
© 2016 The Authors. Transactions on Emerging Telecommunications Technologies published by John Wiley & Sons, Ltd.

1209

DOI: 10.1002/ett

Figure 2. SONATA’s relationship to heterogeneous underlying infrastructures.

H. Karl et al.

� Personal security service: targets the system’s poten-
tial to offer on-demand network security services to
multiple tenants/users with differentiated policies and
enable secure network access.

� Separate client and hosting service providers:
demonstrates SONATA’s support for internetwork-
ing between a client service provider and a hosting
service provider to accomplish an end-to-end service.

Based on these use cases, we can distil high-level
DevOps requirements for both the overall process of devel-
oping network functions (SDK) as well as the runtime
platform steering the management and life cycle of such
functions in an actual infrastructure/network—commonly
called the orchestrator.

(1) Development model requirements
For the development model, the following require-
ments are elicited:

� Support for arbitrary network functions: Sup-
port for all types of network functions must be
possible, irrespective of the technical domain.
For example, both core networks as well as
wireless fronthaul networks must be supported.
To express the different requirements, suit-
able annotation for network function and ser-
vices must exist. Scenarios that pertain to
both network functions in the narrow sense
as well as generic (mobile) edge/distributed
cloud computing are in the purview of the
SONATA system.

� Network functions form data flow graphs: Indi-
vidual functions will not suffice to address all
needs; it is needed to group functions into
general graphs of functions which then con-
stitute the actual service (i.e network service).
This is in-line with current NFV specifications
(Internet Engineering Task Force (IETF) service
chains [20]; ETSI service graphs).

� Reuse by recursive definitions: Reusing such
service graphs mandates a recursive notion—
a new service can be formed not only by
using primitive network functions but also
by reusing other, simpler services. Hence, a
recursive approach has to prevail in the soft-
ware development concepts and description
techniques.

� Reuse by dynamic composition: Recursive defi-
nitions are the first stepping stone. This concept
becomes really powerful if existing network
functions or service can be dynamically reused
and combined into new services without requir-
ing new deployments (assuming the constituting
network functions is multi-user-capable).

� Policy-driven support for developer’s service:
Each service will not only have its own code
that deals with the actual data flows but also

have additional code that takes care of the
deployment and execution process in a man-
ner tailored to the specific requirements of the
service—we refer to such code here simply as
‘service-specific code’ and make this notion
more concrete in later sections. For example,
scaling or placing a complex service requires
decision logic that is rather specific to the
particular service; similarly, life cycle manage-
ment is highly service-specific (e.g. mandating a
particular order in which virtual machines com-
prising a service have to be booted and ini-
tialised). This is impossible to achieve in a
one-size-fits-all fashion.

As a consequence, we need to support both aspects of
a service’s code: the actual data-oriented code as well
as the caretaking code. This materialises as support-
ing tools for the developer, in specification for what
to ship as a service, and how to be rendered by the
orchestration platform, which must be able to exe-
cute such service-specific code in a proper context
and with proper data.

(2) Orchestration platform requirements
Similarly, for the orchestration platform, we can
identify the following core requirements:

� No one solution fits all: The large variabil-
ity of services to be orchestrated, along with
their own individual caretaking functions, man-
dates that the orchestration platform must be
able to execute service-specific code, but must
ensure proper information hiding and isola-
tion between these code pieces from different
services.

� Design to support for evolution and maintain-
ability: Assuming that an orchestration plat-
form will ever have a stable, final form seems
overly optimistic. Rather, the platform itself
must be able to be extended by additional func-
tionality or to replace existing one. This pre-
cludes a monolithic design of the platform itself.
A microservices-based approach, with indi-
vidual modules executing particular aspects
(together with the individual functions caretak-
ing code) of an orchestration cycle, seems more
promising for adoption by network operators
and their bespoke configuration of the platform.

� Support real-world’s manifold systems: An
orchestration platform should be able to sup-
port a wide range of actual infrastructures on
which services will be deployed. This ranges
from bare-metal over simple hypervisors to full-
fledged OpenStack installations conceived of
a single logical node. A particular example
is sliced infrastructures, where the underlying
infrastructure is divided into isolated ‘slices’,
each of which has its own guaranteed resources
[21]. In the simplest case, SONATA obtains

1210 Trans. Emerging Tel. Tech. 27:1206–1215 (2016)
© 2016 The Authors. Transactions on Emerging Telecommunications Technologies published by John Wiley & Sons, Ltd.

DOI: 10.1002/ett

H. Karl et al.

new slices from an external slicing system (in
the extreme case, one slice per service is con-
ceivable). Alternatively, it might be promising
to integrate slicing functionality directly into
an orchestrator.

� Division and recursion on platform layer: Akin
to the idea of recursion to describe services,
it is promising to conceive infrastructure and
orchestration platform itself in a recursive
way, as well. Sub-orchestrators can then be
in charge of different domains or different
operator networks, working together under the
auspice of a higher-level orchestrator. The chal-
lenge is to have the orchestrator itself expose
an infrastructure-like interface. This recursive
approach should also combine nicely with a
slicing system.

These high-level requirements and associated chal-
lenges are addressed by SONATA—the following sections
show how.

5. SOFTWARE-NETWORK
TECHNOLOGIES

SONATA project’s main goal is to increase the flexi-
bility and programmability of 5G networks in order to
bridge the gap between telecom business needs and oper-
ational management systems. In this chapter, an overview
of the SONATA architecture is provided, including a short
description of the main components. The service program-
ming and orchestration framework consist of the SDK, the
service platform and different catalogues storing artefacts
that can be produced, used and managed by the SONATA
system. Services developed and deployed by this system
run on top of the underlying infrastructure accessible to
the SONATA system via a wide range VIMs; SONATA is
fairly agnostic to the particular VIMs.

SONATA’s system design is based on the DevOps work-
flow, which is supported by the integration between the
SDK and the service platform. This workflow implies
continuous deployment and continuous integration during
service development. The main entity exchanged between
the SDK and the service platform is the service package
to be deployed and runtime information like monitoring
data and performance measurements regarding the service
package, which is provided to the service developer dur-
ing the development phase, as well as the runtime. This
information can be used for optimising, modifying and
debugging the operation and functionality of services.

The main characteristics of the SONATA architecture
are explained in Section 5.1, followed by covering the four
main actor roles in the SONATA platform (Section 5.2).
For a full description of the current state of the SONATA
architecture, please refer to the corresponding deliverable
[18] at the time of this writing, to be updated during the
course of the project.

5.1. Some architectural aspects

(1) A microservices-based orchestration platform
The high-level service deployment procedure is

illustrated in the service platform. Each VIM/WAN
Infrastructure Manager (WIM) provides the con-
trolling service platform a view of the available
resources and capabilities of its underlying infras-
tructure/network. A gatekeeper module in the service
platform is responsible for processing the incoming
requests. The service platform receives the service
packages implemented and created with the help
of SONATA’s SDK and is responsible for placing,
deploying, provisioning, scaling and managing the
services on existing cloud infrastructures. For this
purpose, it has modules for orchestrating and manag-
ing the complete service chain, as well as managing
on the VNF level. All artefacts needed to deploy the
service can be fetched from catalogues and reposito-
ries. The platform can also provide direct feedback
about the deployed services to the SDK, for example,
monitoring data about a service or its components.
SONATA’s service platform is designed with full
customisation possibility, providing flexibility and
control to both operators and developers. The core
mechanism for this is a microservices-based plug-in
architecture (Figure 3): all functionality that is to be
provided by an orchestrator is assigned to specific
plug-ins, all of which are connected to a message
bus that ensures correct delivery semantics of all
control messages between these plug-ins. Some of
these plug-ins implement exactly one function per
orchestrator (e.g. the conflict resolver plug-in, which
ensures that any possible resource conflicts between
services are resolved in a consistent, service-neutral
fashion).

Other plug-ins can be customised by the deployed
service itself with caretaking code: these plug-ins
then act as an executive (akin to Microsoft Window’s
operating system concept) for this service-specific
code.

The service developer can ship the service package
to the service platform together with service-specific
or function-specific caretaking code, expressing and
realising requirements and preferences. Such care-
taking code is referred to in SONATA as service-
specific managers and function-specific managers,
respectively. Service-specific managers and function-
specific managers can influence the service and VNF
life cycle management operations, for example, by
specifying desired placement or scaling behaviour.
This grants the developer increased flexibility, con-
trol and resilience of their service.

By virtue of a modular design in the Management
and Orchestration Framework of the service plat-
form, the service platform operator can customise it,

Trans. Emerging Tel. Tech. 27:1206–1215 (2016)
© 2016 The Authors. Transactions on Emerging Telecommunications Technologies published by John Wiley & Sons, Ltd.

1211

DOI: 10.1002/ett

H. Karl et al.

Figure 3. Main plug-ins into SONATA’s orchestrator.

for example, by replacing the conflict resolution or
information management modules. SONATA’s ser-
vice platform is described in more detail in project
deliverable D2.2 [18]. This could be an operator
replacing modules of the configurable service plat-
form with alternatives to fit their software network
management requirements and preferences.

(2) Recursive orchestration
A recursive structure can be defined as a design,

rule or procedure that is (partially) explained using
a simplified version of itself. In a network ser-
vice context, this recursive structure can either be a
specific part of a network service or a repeated part
of the deployment platform. Although different chal-
lenges can be thought of, the general idea of reusing
existing patterns could reduce complexity and even
add more flexible possibilities for extending the
service [22]. In Figure 4, recursive orchestration is
shown as a SONATA service platform delegating
(part of) the requested service to another instance of
a SONATA platform using a dedicated infrastructure
adaptor.

Reclusiveness also leads to an easier management
of scalability. Monolithic software entities are prone
to performance limitations from a certain workload
onwards. Scaling by delegating parts of the service

to multiple instances of the same software block is
a natural way to handle more complex and larger
workloads or service graphs. If this reclusiveness is
taken into account from the beginning of the devel-
opment, the advantages of this approach will come at
a minimal cost.

(3) An software development kit for network function
virtualisation

The SDK supports service developers by provid-
ing a service programming model and a develop-
ment tool-chain. Figure 5 shows an overview of the
foreseen SDK components. SONATA’s SDK design
allows developers to define and test complex services
consisting of multiple network functions, with tools
that facilitate custom implementations of individual
network functions. The implemented artefacts are
stored in the developer’s private catalogues. More-
over, service components can easily be obtained from
external catalogues using the foreseen interfaces. The
obtained artefacts can be directly used in a service
or after being modified and tested using the SDK
development tools. The service components and all
the information necessary for deployment and execu-
tion of a service are bundled together into a package.
The service package can be handed over to the ser-
vice platform for actual deployment and for testing,
debugging and profiling purposes.

1212 Trans. Emerging Tel. Tech. 27:1206–1215 (2016)
© 2016 The Authors. Transactions on Emerging Telecommunications Technologies published by John Wiley & Sons, Ltd.

DOI: 10.1002/ett

H. Karl et al.

Figure 4. Service deployment using the SONATA framework.

5.2. The main actors in SONATA

(1) End users
It is the entity that consumes the network ser-

vice. Thus, an end user can be a private person or
an enterprise, or even a network service provider
or content provider. In the SONATA ecosystem,
the end user requests the required network services
from the network service developer—Figure 6 only
shows the simpler case. That is, the end user and
the network service developer establish a customer–
provider relationship that is regulated by a service
level agreement.

(2) Service developer
It is the developer of a software artefact, for

example, a VNF or, more specifically, a network ser-

vice, which can be composed of one or more VNFs.
The SONATA SDK shall enable a DevOps envi-
ronment for the development of network services.
The network service developer can use the editor,
debugging and packaging tools in the SONATA SDK
along with VNF catalogues to compose a network
service that can then be moved to the SONATA ser-
vice platform for deployment and execution. That
is, the network service developer interacts with the
end user for providing the network services and also
interacts with the SONATA service platform operator
for the deployment and operation of those network
services. However, in the value chain, the developer
and provider of such a service can of course be
separate entities.

(3) Service platform operator
The service platform operator runs the SONATA

platform that manages the execution of network ser-
vices. The SONATA service platform receives a net-
work service in form of a package that is validated
through a series of quality assurance tests prior to
their storage in the service platform catalogue. In
addition to validation, the service platform opera-
tor also manages the deployment and execution of
network services on virtual resources made avail-
able by an infrastructure operator. As the SONATA
service platform supports reclusiveness, an opera-
tor can manage multiple SONATA service platform
instances, as well. Hence, a responsibility of main-
taining smooth operations for a network service, with
respect to its corresponding service level agreement,
lies on the service platform operator. On one side, the
service platform operator interacts with the SONATA

Trans. Emerging Tel. Tech. 27:1206–1215 (2016)
© 2016 The Authors. Transactions on Emerging Telecommunications Technologies published by John Wiley & Sons, Ltd.

1213

DOI: 10.1002/ett

Figure 5. Main components of SONATAs SDK.

H. Karl et al.

Figure 6. Main components and roles.

SDK for network services reception and, on the other
side, interacts with the infrastructure operator for
their deployment and execution.

(4) Infrastructure operator
It is the entity that actually operates the phys-

ical infrastructure, including computational, com-
munication and storage resources. The SONATA
ecosystem does not distinguish between infrastruc-
ture owner and infrastructure operator and treat
them as the same. This is because the main focus
of SONATA is to reduce time-to-market for net-
work services by accelerating and facilitating service
development, management and orchestration with
DevOps adoption, all while ensuring features such as
multi-tenancy, reclusiveness and virtual network
slices are supported. The infrastructure operator
interacts heavily with the service platform operator
as the network services are actually executed in the
physical infrastructure. This interaction is enabled by
the infrastructure abstraction layer in the SONATA
service platform. It is worth mentioning that in most
scenarios, the infrastructure operator will be the same
as the service platform operator. However, SONATA
also supports a use case where the system is engaged
by separate entities for these roles, supporting more
complex telecom provider business models.

6. CONCLUSIONS AND
FUTURE WORK

The SONATA architecture and resulting system push inno-
vation in the evolving state of the art of NFV MANO and
network service development. From the approach outlined
earlier, we can draw four main conclusions.

Modular and customisable MANO plug-in architec-
ture: the architecture structure provides hitherto unseen

levels of flexibility. Third-party developers are empowered
with control over specific orchestration and management
functionalities pertaining to their own service without
being able to influence other services. Similarly, a network
operator has a wide range of control over how the service
platform should behave. For example, the service platform
effortlessly encompasses ETSI’s separation into resource
and service orchestration, but other orchestration models
are supported as well. This boils down into a new notion
of Orchestration-as-a-Service (OaaS): the orchestration
process itself can be customised on demand by the provider
of a service but stays under the operator’s control.

Interoperable, agnostic framework: the resulting
framework (incorporating both service platform and
developer support) is agnostic along multiple axes: it sup-
ports multiple VIMs, multiple vendors, deployment at
multiple sites. It is also agnostic to whether these functions
are used in different kind of networks (mobile, optical, etc.)
or in the fronthaul or backhaul part. It is agnostic with
respect to whether these services are stateless or stateful.

Efficient network service development and DevOps:
SONATA provides service developers with an SDK for
efficient creation, deployment and management of network
services composed of VNFs along with the required chain-
ing on the platform. The integration of SDK and service
platform links an existing gap between service developers
and operators.

5G integration: SONATA easily embraces current 5G
architecture developments and plays as a good citizen
in the entire ecosystem. For example, slicing is well
supported in various fashions, interacting with external
slicing systems as is bespoke network configuration for
industry verticals. Recursion support allows stacked ten-
ant and wholesale deployments in new software networks
business models.

1214 Trans. Emerging Tel. Tech. 27:1206–1215 (2016)
© 2016 The Authors. Transactions on Emerging Telecommunications Technologies published by John Wiley & Sons, Ltd.

DOI: 10.1002/ett

H. Karl et al.

DevOps prototype: SONATA is an ongoing research
project with its first code release scheduled early July
2016. The consortium plans to demonstrate a first pro-
totype showcasing the complete life cycle of a network
service in the NFV environment with continuous monitor-
ing by end of year 2016 as well as by exercising several
pilot applications that will be chosen among the use cases
described in Section 4. The final prototype with full feature
set is scheduled for end of year 2017. Using this proto-
type with its continuously increasing capabilities, we will
elaborate on the reduction of development time. Using the
SONATA systems, we expect the time to deploy a new
network service to be much faster compare with com-
mon approaches today. Moreover, we expect a significant
reduction of code to write in order to operate network
functions and services compared with existing technolo-
gies. The proposed DevOps approach raises more technical
challenges, for example, related to the update process of
running network functions and service. To this end, we
will investigate different approaches—again looking at the
complete life cycle—and evaluate them in terms of perfor-
mance, service continuity, resiliency and fault tolerance.
Finally, we will compare the SONATA system with exist-
ing solutions with respect to resource efficiency and overall
service performance.

REFERENCES

1. Chiosi M, Clarke D, Willis P, Reid A, et al. Network
functions virtualisation. Technical Report, White paper
at the SDN and OpenFlow World Congress, ETSI, 2012.

2. SONATA project, 2015. Available from: http://
sonata-nfv.eu/ [accessed on April 2016].

3. Mijumbi R, Serrat J, Gorricho J, Bouten N, De Turck
F, Boutaba R. Network function virtualization: state-
of-the-art research challenges. IEEE Communications
Surveys & Tutorials 2016; 18(1): 236–262.

4. McKeown N, Anderson T, Balakrishnan H, Parulkar G,
Peterson L, Rexford J, et al. Openflow: enabling inno-
vation in campus networks. ACM SIGCOMM Computer
Communication Review 2008; 38(2): 69–74.

5. ETSI. NFV MANO. Available from: http://portal.etsi.
org/portal/server.pt/community/NFV/367?tbId$=$79
[accessed on April 2016].

6. Unify project, 2015. Available from: https://www.
fp7-unify.eu/ [accessed on April 2016].

7. Lévai T, Pelle I, Németh F, Gulyás A. EPOXIDE: a mod-
ular prototype for SDN troubleshooting. In ACM Confer-
ence on Special Interest Group on Data Communication,
London, 2015.

8. OpenStack heat, 2015. Available from: https://wiki.
openstack.org/wiki/Heat [accessed on April 2016].

9. Terraform, 2015. Available from: https://www.terraform.
io [accessed on April 2016].

10. Keller M, Peuster M, Robbert C, Karl H. A topology-
aware adaptive deployment framework for elastic appli-
cations. In 17th International Conference on Intelligence
in Next Generation Networks (ICIN), Venice, Italy, 2013.

11. Xilouris G, Trouva E, Lobillo F, Soares JM, Carapinha J,
McGrath M, et al. TNOVA: a marketplace for virtualized
network functions. In European Conference on Networks
and Communications (EuCNC), Bologna, Italy, 2014.

12. OpenMANO, 2015. Available from: https://github.com/
nfvlabs/openmano [accessed on April 2016].

13. OpenStack tacker, 2015. Available from: https://wiki.
openstack.org/wiki/Tacker [accessed on April 2016].

14. Mamatas L, Clayman S, Galis A. A service-aware virtu-
alized software-defined infrastructure. IEEE Communi-
cations Magazine 2015; 53(4): 166–174.

15. ETSI NFV ISG. GS NFV-MAN 001 V1.1.1 network
function virtualisation (NFV); management and orches-
tration, Dec. 2014.

16. Soares J, Dias M, Carapinha J, Parreira B, Sargento
S. Cloud4NFV: a platform for virtual network func-
tions. In IEEE 3rd International Conference on Cloud
Networking (CloudNet), Luxemburg, 2014.

17. Shen W, Yoshida M, Minato K, Imajuku W. Conduc-
tor: an enabler for achieving virtual network integration
as a service. Communications Magazine 2015; 53 (2):
116–124.

18. Architecture design: deliverable D2.2—SONATA pro-
ject. Available from: http://sonata-nfv.eu/sites/default/
files/sonata/public/content-files/pages/SONATAD2.
2ArchitectureandDesign.pdf [accessed on April 2016].

19. Use cases and requirements—deliverable 2.1—SOTATA
project. Available from: http://sonata-nfv.eu/use-cases
[accessed on April 2016].

20. IETF service chaining. Available from: https://
datatracker.ietf.org/wg/sfc/documents/ [accessed on
April 2016].

21. Argyropoulos C, Mastorakis S, Giotis K, Androulidakis
G, Kalogeras D, Maglaris V. Control-plane slicing meth-
ods in multi-tenant software defined networks. In 2015
IFIP/IEEE International Symposium on Integrated Net-
work Management (IM), Ottawa, 2015; 3–4.

22. Szabo R, Kind M, Westphal FJ, Woesner H, Jocha D,
Csaszar A. Elastic network functions: opportunities and
challenges. IEEE Network 2015; 29(3): 15–21.

Trans. Emerging Tel. Tech. 27:1206–1215 (2016)
© 2016 The Authors. Transactions on Emerging Telecommunications Technologies published by John Wiley & Sons, Ltd.

1215

DOI: 10.1002/ett

http://sonata-nfv.eu/
http://sonata-nfv.eu/
http://portal.etsi.org/portal/server.pt/ community/NFV/367?tbId$=$79
http://portal.etsi.org/portal/server.pt/ community/NFV/367?tbId$=$79
https://www.fp7-unify.eu/
https://www.fp7-unify.eu/
https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Heat
https://www.terraform.io
https://www.terraform.io
https://github.com/nfvlabs/openmano
https://github.com/nfvlabs/openmano
https://wiki.openstack.org/wiki/Tacker
https://wiki.openstack.org/wiki/Tacker
http://sonata-nfv.eu/sites/default/files/sonata/public/content-files/pages/SONATAD2.2ArchitectureandDesign.pdf
http://sonata-nfv.eu/sites/default/files/sonata/public/content-files/pages/SONATAD2.2ArchitectureandDesign.pdf
http://sonata-nfv.eu/sites/default/files/sonata/public/content-files/pages/SONATAD2.2ArchitectureandDesign.pdf
http://sonata-nfv.eu/use-cases
https://datatracker.ietf.org/wg/sfc/documents/

	DevOps for network function virtualisation: an architectural approach
	ABSTRACT
	Introduction
	Related Work
	Software development processes and tools for network function virtualisation
	Orchestration platforms

	SONATA Scope and an overall 5G architecture
	Scope of SONATA functionality
	5G multi-service management

	Use-Case-driven Challenges and requirements
	Use cases and resulting requirements

	Software-Network Technologies
	Some architectural aspects
	The main actors in SONATA

	Conclusions and Future Work
	REFERENCES

