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Abstract 38 

We have performed morphological and crystallographic studies of B. bigelowii using 39 

various light and electron microscopy techniques. LM study revealed that B. bigelowii 40 

has a haptonema, and uses it for adhesion to external substrates. TEM study of 41 

pentaliths indicates that the well-known lamina substructure is formed in turn of 42 

consistently oriented elongated grains of fine-scale calcite having perfectly identical 43 

crystallographic orientation. Cytological study shows that the pentaliths of B. bigelowii 44 

are surrounded by organic structure consists of a pentalith-substrate and thin layers. The 45 

pentalith-substrate underlies the proximal surface of the pentaliths and extends between 46 

the sides of the individual pentaliths, it also extends between the five segments forming 47 

a pentalith. Thin organic layers, which apparently originate from ridges of 48 

pentalith-substrate, cover the distal surface of the trapezoidal segments. The close 49 

association between the pentalith-substrate, organic layers, and pentaliths lead us to the 50 

hypothesis that the B. bigelowii calcifies their pentaliths extracellularly, between the 51 



pentalith-substrate and organic layers. Relatively high Mg contents observed from 52 

pentaliths supports our hypothesis of extracellular calcification of B. bigelowii. 53 
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 59 

1. Introduction ver. 1: started with explanation of Braarudosphaera. 60 

The family Braarudosphaeraceae comprises unicellular coastal phytoplankton and 61 

belongs to the Class Prymnesiophyceae, Division Haptophyta (Takano et al., 2006). 62 

They are characterized by very distinctive calcareous scales called pentaliths which 63 

have pentameral symmetry and are formed of 5 segments with a laminar sub-structure, 64 

(e.g. Perch-Nielsen, 1985a, b). The family first appeared in the Early Cretaceous, and 65 

Braarudosphaera bigelowii, the extant type species of the family, appeared in the Late 66 

Cretaceous (e.g. Bown, 1998). Fossils of B. bigelowii were usually very rare or absent 67 



in marine sediments, however, exceptionally became dominant in specific 68 

time-intervals; in the early Danian immediately after the K/Pg mass extinction that 69 

eliminated ca. 90% of calcareous nannofossils, and in the Oligocene diversity minimum 70 

(e.g. Bown et al., 2004). Thus, B. bigelowii is an important species for understanding 71 

the calcareous nannofossil assemblages after the extinction events. Extant B. bigelowii 72 

has not been successfully cultured yet, and its ecological preferences are still unclear. 73 

However, progresses of various studies on living B. bigelowii as well as that of 74 

members of the class Prymnesiophyceae (Division Haptophyta) that includes the family 75 

Braarudosphaeraceae in the last decade have unveiled the nature of the 76 

Braarudosphaeraceae, as below. 77 

The Division Haptophyta is predominantly marine unicellular phytoplankton, 78 

characterized by a thread-like organelle, the haptonema, with a unique microtubular 79 

cytoskeletal structure, which is inserted between two flagella (e.g. Green and 80 

Leadbeater, 1994). The Haptophyta consists of two classes Pavlovophyceae and 81 

Prymnesiophyceae. Members of the Pavlovophyceae have two unequal flagella and a 82 

non-coiling rudimentary haptonema, while the members of the Prymnesiophyceae have 83 



two equal/subequal flagella and a variably developed haptonema (e.g. Edvardsen et al., 84 

2011; Green and Hori, 1994). In the class Prymnesiophyceae, Chrysochlomulina 85 

possesses coiling haptonema (e.g. Edvardsen et al., 2011), and some Chrysochromulina 86 

species use the haptonema for adhesion to external substrates (Inouye and Kawachi, 87 

1994) and for handling of food (Kawachi et al., 1991). 88 

Members of the Prymnesiophyceae have organic and/or mineralized scales on their cell 89 

surface, and those which  which produce calcareous scales, are called 90 

coccolithophores . (de Vargas et al., 2007) proposed the subclass Calcihaptophycidae 91 

for coccolithophores, although it has not yet been confirmed whether the lineages with 92 

calcified scales have a monophyletic origin, since the position of the Family 93 

Braarudosphaeraceae in the Prymnesiophyceae changes dependant on the analyses 94 

(Hagino et al., 2013; Takano et al., 2006). 95 

Calcified scales of coccolithophores are roughly classified into three groups; 96 

heterococcolith, holococcolith, and nannolith, based on their morphology. 97 

Heterococcoliths are formed of a radial array of complex crystal units, while 98 

holococcoliths are formed of numerous minute euhedral crystals. Calcareous scales, 99 



which do not clearly conform to either the heterococcolith or holococcolith pattern are 100 

referred to as nannoliths, with the understanding that this is likely to be a very mixed 101 

group (Young et al., 1999; Young et al., 2003). Pentaliths of the Braarudosphaeraceae 102 

consists of five segments each of which behaves optically as a single crystal unit but 103 

which have a distinctive laminar sub-structure (e.g. Bown, 1998) . The pentaliths do not 104 

conform to either the heterococcolith and holococcolith calcification mode, and so are 105 

included in the nannolith group (e.g. Young et al., 1999; Young et al., 2003).  106 

Haptophytes, including coccolithophores, reproduce asexually by binary fission in both 107 

the diploid and haploid phases. Morphology of coccolith drastically changes in their life 108 

cycle (e.g. Young et al., 2003). Members of the Coccolithales, Syracosphaerales, and 109 

Zygodiscales produce heterococcoliths and holococcoliths in their diploid and haploid 110 

phases, respectively. Members of the Noëlaerhabdaceae (Isochrysidales) produce 111 

heterococcoliths in the diploid phase, but do not calcify in the haploid phases (e.g. 112 

Houdan et al., 2004; Young et al., 2003). Morphological change of B. bigelowii 113 

accompanying with alternation of life cycle has been partly revealed by molecular 114 

phylogenetic study. A sequence from a non-calcifying motile cell culture strain, which 115 



was originally identified as Chrysochomulina parkeae (Medlin et al., 2008), fell within 116 

the B. bigelowii clade in a molecular phylogenetic tree based on 18S rDNA sequences 117 

(Hagino et al., 2013; Thompson et al., 2012). As a result and following cytological 118 

study, C. parkeae was determined to be an alternate life-cycle phase of B. bigelowii, and 119 

B. bigelowii has priority over C. parkeae in taxonomy (Hagino et al., 2013). 120 

Previous studies have revealed that the sites for calcification of heterococcoliths and 121 

holococcoliths differ from each other. Calcification of heterococcoliths occurs 122 

intracellularly, in the Golgi cisternae or in a special vacuolar system of the endoplasmic 123 

reticulum directly connected to the nuclear membrane, and subsequently extruded onto 124 

the cell surface (e.g. Drescher et al., 2012; Westbroek et al., 1989). The mechanism of 125 

calcification of holococcoliths has not been determined enough yet, although it is 126 

thought that calcification occurs extracellularly, and the outermost membrane or 127 

‘envelope’ plays some role in calcification (Rowson et al., 1986). The morphology of 128 

pentaliths greatly differs from that of both heterococcoliths and holococcoliths, 129 

therefore, it is difficult to infer the site and mechanism of calcification of pentalith from 130 

its morphology. Indeed the site and mechanism of calcification of pentaliths is an 131 



interesting unsolved question, in particular it is unknown whether the pentaliths form 132 

intracelluarly and are transported to the cell-surface or whether they form in situ, and so 133 

extracellularly. 134 

A possible approach to this is to use coccolith chemistry.  (Cros et al., 2013) compared 135 

the elemental composition of heterococcoliths and holococcoliths using energy 136 

dispersive spectroscopy (EDS) equipped to secondary electron microscope (SEM). 137 

They showed that holococcoliths differ from heterococcoliths in their Mg/Ca ratio, and 138 

suggested that this is likely caused by the difference in calcification mechanism. At this 139 

moment, there is no information on elemental compositions of pentaliths of the 140 

Braarudosphaeraceae.  141 

We have not successfully grown B. bigelowii in culture yet, and have not observed 142 

process of calcification of pentaliths in laboratory. However, we have undertaken SEM 143 

and transmission electron microscope (TEM) studies, which reveal a unique cell surface 144 

structure on B. bigelowii that is likely related to calcification of pentaliths. In this study, 145 

we will discuss the formation of pentaliths of B. bigelowii based on the cell surface 146 



structure morphology, crystallographic texture and elemental composition of the 147 

pentaliths.  148 

 149 

1. Introduction ver. 2; started with explanation of the Haptophytes. 150 

The Division Haptophyta is predominantly marine unicellular phytoplankton, 151 

characterized by a thread-like organelle, the haptonema, with a unique microtubular 152 

cytoskeletal structure, which is inserted between two flagella (e.g. Green and 153 

Leadbeater, 1994). The Haptophyta consists of two classes Pavlovophyceae and 154 

Prymnesiophyceae. Members of the Pavlovophyceae have two unequal flagella and a 155 

non-coiling rudimentary haptonema, while the members of the Prymnesiophyceae have 156 

two equal/subequal flagella and a variably developed haptonema (e.g. Edvardsen et al., 157 

2011; Green and Hori, 1994). In the class Prymnesiophyceae, Chrysochlomulina 158 

possesses coiling haptonema (e.g. Edvardsen et al., 2011), and some Chrysochromulina 159 

species use the haptonema for adhesion to external substrates (Inouye and Kawachi, 160 

1994) and for handling of food (Kawachi et al., 1991). 161 



Members of the Prymnesiophyceae have organic and/or mineralized scales on their cell 162 

surface. Some lineages of the Prymnesiophyceae, which produce calcareous scales, are 163 

called as coccolithophores collectively. (de Vargas et al., 2007) proposed the subclass 164 

Calcihaptophycidae for coccolithophores, although it has not yet been confirmed 165 

whether the lineages with calcified scales are monophyletic origin or not, since the 166 

position of the Family Braarudosphaeraceae in the Prymnesiophyceae changes 167 

dependant on the analyses (Hagino et al., 2013; Takano et al., 2006).  168 

Calcified scales of coccolithophores are roughly classified into three groups; 169 

heterococcolith, holococcolith, and nannolith, based on their morphology. 170 

Heterococcoliths are formed of a radial array of complex crystal units, while 171 

holococcoliths are formed of numerous minute euhedral crystals. Calcareous scales, 172 

which do not clearly conform to either the heterococcolith or holococcolith pattern are 173 

referred to as nannoliths, with the understanding that this is likely to be a very mixed 174 

group (Young et al., 1999; Young et al., 2003).  175 

Haptophytes, including coccolithophores, reproduce asexually by binary fission in both 176 

the diploid and haploid phases. Morphology of coccolith drastically changes in their life 177 



cycle (e.g. Young et al., 2003). Members of the Coccolithales, Syracosphaerales, and 178 

Zygodiscales produce heterococcoliths and holococcoliths in their diploid and haploid 179 

phases, respectively. Members of the Noëlaerhabdaceae (Isochrysidales) produce 180 

heterococcoliths in the diploid phase, but do not calcify in the haploid phases (e.g. 181 

Houdan et al., 2004; Young et al., 2003).  182 

Previous studies revealed that the sites for calcification of heterococcolith and 183 

holococcoliths differ from each other. Calcification of heterococcoliths occurs 184 

intracellularly, in the Golgi cisternae or in a special vacuolar system of the endoplasmic 185 

reticulum directly connected to the nuclear membrane, and subsequently extruded onto 186 

the cell surface (e.g. Drescher et al., 2012; Westbroek et al., 1989). The mechanism of 187 

calcification of holococcoliths has not been determined enough yet, although it is 188 

thought that calcification occurs extracellularly, and the outermost membrane or 189 

‘envelope’ plays some role in calcification (Rowson et al., 1986). (Cros et al., 2013) 190 

compared the elemental composition of heterococcoliths and holococcoliths using 191 

energy dispersive spectroscopy (EDS) equipped to secondary electron microscope 192 

(SEM). They showed that holococcoliths differ from heterococcoliths in their Mg/Ca 193 



ratio, and suggested that this is likely caused by the difference in calcification 194 

mechanism.  195 

The family Braarudosphaeraceae is a unicellular coastal phytoplankton and belongs to 196 

the Class Prymnesiophyceae, Division Haptophyta (Takano et al., 2006). They are 197 

characterized by five-fold symmetric calcareous scales with laminar structure called 198 

pentalith (e.g. Perch-Nielsen, 1985a, b). Pentaliths of the Braarudosphaeraceae consists 199 

of five segments each of which behaves optically as a single crystal unit but which have 200 

a distinctive laminar sub-structure (e.g. Bown, 1998) . The pentaliths do not conform to 201 

either the heterococcolith and holococcolith in structure, and so are included in the 202 

nannolith group (e.g. Young et al., 1999; Young et al., 2003).  203 

Extant Braarudosphaera bigelowii, the type species of the family, have twelve regular 204 

pentagonal pentalith each consisting of five trapezoidal segments on their cell surface 205 

(Fig. 1). B. bigelowii have never been maintained in culture despite many attempts, but 206 

its morphological change accompanying with alternation of life cycle has been partly 207 

revealed by molecular phylogenetic study. A sequence from a non-calcifying motile cell 208 

culture strain, which was originally identified as Chrysochomulina parkeae (Medlin et 209 



al., 2008), fell within the B. bigelowii clade in a molecular phylogenetic tree based on 210 

18S rDNA sequences (Hagino et al., 2013; Thompson et al., 2012). As a result and 211 

following cytological study, C. parkeae was determined to be an alternate life-cycle 212 

phase of B. bigelowii, and B. bigelowii has priority over C. parkeae in taxonomy 213 

(Hagino et al., 2013).  214 

Morphology of pentalith greatly differs from that of heterococcoliths and holococcoliths, 215 

therefore, it is difficult to assume the site and mechanism of calcification of pentalith 216 

from its morphology. Mechanism of calcification of pentalith is an interesting unsolved 217 

question. We have not successfully grown B. bigelowii in culture yet, and not observed 218 

process of calcification of pentaliths in laboratory. However, we have undertaken SEM 219 

and transmission electron microscope (TEM) studies, which reveal a unique cell surface 220 

structure on B. bigelowii that is likely related to calcification of pentaliths. In this study, 221 

we will discuss the formation of pentaliths of B. bigelowii based on the cell surface 222 

structure morphology, crystallographic texture and elemental composition of the 223 

pentaliths. 224 

 225 



2. Materials and Methods 226 

2-1. Morphological studies 227 

Sea surface water samples were collected from Tomari Port and offshore Tomari Port, 228 

Tottori Prefecture, Japan, on 232 occasions during studies on living coccolithophores 229 

from July 2008 through June 2014 (Fig. 1). Detailed information on the samples was 230 

given in (Hagino et al., 2015). One or two litre sea-surface water samples were collected 231 

using a bucket , prefiltered through a 50-µm plankton net (Sefar Inc. Din-110), and 232 

filtered onto Millipore HAWP04700 and/or Whatman 7060– 4710 filters. Twelve filter 233 

samples, which were known to contain common Braarudosphaera bigelowii from 234 

previous study (Hagino et al., 2015), were selected for morphological studies on 235 

pentaliths of B. bigelowii (Table 1). Small pieces of each filter sample were cut out, and 236 

fixed onto an SEM stub using double-sided carbon tape. Samples were coated with gold 237 

(Sanyu SC701 MKII), and then examined with an SEM (JEOL JSM 7001F). 238 

Three cells of B. bigelowii; US15.2-sc11, Furu-sc2, and Furu-SEM1, which were 239 

collected from Usuka and Furue Bays, Nagasaki Prefecture, Japan during previous 240 

molecular phylogenetic study (Hagino et al., 2009), were used for light and scanning 241 



electron microscopic observations of B. bigelowii in this study (Table 2). Sea surface 242 

water samples were concentrated using a plankton net with 5 µm openings. The cells 243 

were isolated using a capillary micropipette in an inverted light microscope (Olympus 244 

CKX41), and then photographed by a camera (Olympus DP50) equipped to an upright 245 

microscope (Olympus BX50). The side length of pentalith of each isolate was measured 246 

on LM images to allow classification of morphotypes of B. bigelowii. 247 

After the LM study, the specimen Furu-SEM1 was fixed with 4% osmium tetroxide for 248 

1 minute, and adhered to poly-L-lysine-coated glass plates, according to the procedure 249 

of (Tsutsui et al., 1976). The cell was rinsed with ion-exchanged water for three times, 250 

kept in ion-exchanged water for two days, dehydrated in an ethanol series (30, 50, 70, 251 

90, 95 and 100%), and then dried using a critical point dryer (Hitachi HCP-2). The cell 252 

was coated with gold (Sanyu SC701 MKII), and was examined with SEM (JEOL JSM 253 

7001F). 254 

The specimen of B. bigelowii used for study of the cell surface by TEM was originally 255 

collected for studies on molecular phylogeny and morphology B. bigelowii (Hagino et 256 

al. 2013) from Tomari Port, Tottori, Japan on June 18, 2011 (Table 1). The specimen 257 



was found from the same seawater sample that yielded the specimen examined in Fig. 3 258 

of (Hagino et al., 2013), and the specimens were prepared for TEM observation together. 259 

The methods of preparation for TEM study were fully described in (Hagino et al., 260 

2013).  261 

 262 

2-2. Crystallographic and elemental analysis of pentaliths. 263 

Two filter samples collected from offshore of Tomari Port prepared with Whatman 264 

7060– 4710 filters, which were known to contain sufficient B. bigelowii from previous 265 

study (Hagino et al., 2015), were selected for the crystallographic and elemental 266 

analyses of pentaliths (Table 1). Plankton preserved on surface of filter samples were 267 

transferred onto one of two sides of carbon double-sided tapes, and the double-sided 268 

tapes with plankton were placed on brass stubs for TEM and SEM-EDS analyses. The 269 

samples for crystallographic analyses were coated with gold (Vacuum Device VS-10), 270 

and the samples for elemental analyses were coated with platinum (Sanyu SC701 MC), 271 

respectively.  272 



A specimen of B. bigelowii with a complete exotheca of twelve pentaliths, and with no 273 

evidence of secondary dissolution or falling off of outer layers, was selected for 274 

crystallographic analysis under a focused-ion beam (FIB) apparatus (Hitachi SMI4050) 275 

(Appendix 1a). A thin-foil section of the pentalith for TEM observation was prepared 276 

by FIB after tungsten coating to avoid Ga-ion damage (Appendix 1b). The interlayers 277 

between proximal and distal layers of pentalith were thinned to be ca 180 nm in 278 

thickness (Appendix 1c). The thin-foil section was not parallel to the plane of pentalith 279 

of B. bigelowii due to technical difficulty. Under TEM observation (JEOL 280 

JEM-ARM200F), micro-morphology of the calcite grains consisting a segment of 281 

pentalith was examined by bright field transmission electron image and high-angle 282 

annular dark field scanning transmission electron image (HAADF-STEM), and their 283 

crystallographic orientations were examined by selected-area electron diffraction 284 

(SAED). 285 

Elemental compositions of pentaliths of B. bigelowii, coccoliths of G. oceanica, E. 286 

huxleyi, and T. adriatica encountered under an SEM (Hitachi SU1510) was examined 287 

using energy-dispersive spectrometer (EDS) (Horiba EMAX X-act) attached to the 288 



SEM. X-ray spectra were acquired at an accelerating voltage of 15 kV for 120 seconds 289 

for pentaliths of B. bigelowii and heterococcoliths of G. oceanica and T. adriatica, and 290 

for 240 seconds for heterococcoliths of E. huxleyi, with 3-8 % of dead time. X-ray 291 

intensities in counts of Mg-Kα and Ca-Kα lines in respective spectra were analyzed 292 

using the software Horiba EMAX 1.0.  293 

 294 

3. Results 295 

3-1. Morphological studies of pentaliths 296 

A total of 57 specimens of B. bigelowii were photographed from 12 samples from 297 

Tomari Port or offshore Tomari in SEM (Table 1). Side length of pentaliths observed in 298 

this study ranged from 5.5-8.0µm, which corresponds to the size range of Intermediate 299 

form-B of Hagino et al. (2009). The outermost lamina of each intact pentalith has a 300 

smooth surface (topmost pentalith of the Fig. 2a). The inner laminae, which were 301 

exposed by detachment of distal laminae, always have fine grooves (Figs 2a and 2b). 302 

Direction of the grooves is almost perfectly consistent, as indicated by double-headed 303 

arrows on Figs. 2a and 2b. The fine grooves appear to run parallel to the 304 



crystallographic c-axis of the calcite crystal units as estimated by previous study 305 

(Appendix 2, Kameo and Furukawa, 2007).  306 

The intensity of calcification of the different pentaliths covering a single cell was 307 

consistent on all the observed cells, but varied between cells even from the same 308 

seawater sample. Pentaliths of lightly calcified specimens are often concave (Figs 2c-d). 309 

A pentalith with incomplete layers was found in the sample collected from st. 1 of 310 

Tomari Port in June 20, 2010 (Fig. 2e). In this pentalith, calcification mainly occurred 311 

around the outline of the pentalith and along the contact surfaces between the segments 312 

(= pentalith-substrate, which is defined in the section 3-3). The central part of four of 313 

the five segments was hollow. Each segment was composed of multiple incomplete 314 

layers (arrow on Fig. 2e). A specimen without any calcareous pentaliths but with 315 

pentagonal impressions on its cell surface (Fig. 2f) was found in a sample (st.1, June 21, 316 

2010), which yielded many well-calcified specimens.  317 

 318 

3-2. Light microscopic studies of living B. bigelowii 319 



Side length of the pentalith of the isolates Furu-SEM1 (Figs 3a-b), US15.2-sc11 (Fig. 320 

3c), and Furu-sc2 (Figs 3d-e) were c.a. 8.1, 6.5, and 5.5 µm, respectively. Hence, 321 

specimen Furu-SEM1 belongs to the large form, whilst the specimens US15.2-sc11 and 322 

Furu-sc2 belong to the Intermediate form-B of (Hagino et al., 2009) (Table 2). 323 

Light microscopic studies showed that calcified cells of B. bigelowii often have a 324 

flagellum-like organ (arrows on Fig. 3), which is capable of coiling (arrow on Fig. 3c). 325 

B. bigelowii often adhered firmly to the surface of slide glass or petridish using this 326 

organ (Figs. 3d-e). This behavior of the organ suggests that it is a haptonema. Calcified 327 

cells of B. bigelowii were non-motile. Two equal flagella were reported from motile 328 

non-calcified cells of B. bigelowii (= C. parkeae) (Green and Leadbeater, 1972), but 329 

have never been observed on calcified cells of B. bigelowii. In relation to the coccolith 330 

formation, numerous calcified B. bigelowii cells have been observed during isolation for 331 

molecular studies (Hagino et al., 2013; Hagino et al., 2009; Takano et al., 2006) and for 332 

attempted culture studies, None of these have ever been observed to possess incomplete 333 

pentaliths inside the cells, nor have intracellular pentaliths been recorded in any other 334 

study.  335 



 336 

3-3. SEM observation of cell surface structure 337 

The specimen Furu-SEM-1 originally had complete 12 pentaliths (Figs 3a-b), however 338 

it lost its pentaliths during preservation of the haptonema for SEM observation, and so 339 

its cell surface structure was exposed (Fig. 4). SEM observation showed that the sides 340 

of the individual pentaliths (white solid arrows on Fig. 4c) and the contact surface 341 

between the sides of the trapezoidal segments (black solid arrows on Fig. 4c) are 342 

delineated by ridges. This cell surface structure is unlike anything observed on any 343 

other coccolithophore, inded typically coccolitopohre cell surfaces are smotth with on 344 

trace of the coccoliths. Clearly this distinctive surface is related to the pentaliths and so 345 

we will refer to it as the pentalith-substrate,. 346 

The ridges on the pentalith-substrate between sides of pentaliths have fine grooves that 347 

correspond to laminae forming the pentaliths (dashed black arrow on Fig. 4c). In 348 

addition, fine wrinkles occurred on the distal surface of the pentalith-substrate (white 349 

dashed double headed arrows on Fig. 4c) with the same orientation as the fine grooves 350 

observed on the inner layers of pentaliths in SEM (white solid double-headed arrows on 351 



Figs. 1a and b), and c axis of calcite of the layers (Appendix2, Kameo and Furukawa, 352 

2007). The haptonema emerged from one of the inter-plate ridges of pentalith-substrate 353 

(white triangle on Fig. 4b). 354 

 355 

3-3. TEM observation of cell structure 356 

Figure 5a shows the general appearance of one of the thin sections obtained from a B. 357 

bigelowii cell. The cell is surrounded by thick pentaliths, and the distal surface of 358 

pentaliths is covered with a thin black layer (black triangles), that indicates the presence 359 

of a thin organic structure covering the pentaliths. The section also shows a spherical 360 

body (S. in Fig. 5a) and two chloroplasts (C in Fig. 5a). Figs. 5b and 5c are close up 361 

view of Fig 5a, showing details of the organic structure. Relatively thick organic 362 

structures were visible at contact surfaces between pentaliths (white solid arrows on 363 

Figs. 5b-c) as well as at contact surfaces between trapezoidal segments consisting a 364 

coccolith (a black solid arrow on Fig. 5b). These structures correspond to the ridges of 365 

pentalith-substrate observed in SEM (black and white arrows on Fig. 4). The organic 366 

structure covering distal surface of pentaliths (black triangles on Fig. 5a) consists of 367 



multiple very thin layers (black triangles on Fig. 5c), and those layers were connected to 368 

the ridges of pentalith-substrate (a white solid arrow on Fig. 5c). Thus, the trapezoidal 369 

segments forming a pentalith are surrounded by an organic structure consisting of the 370 

pentalith-substrate and thin distal organic layers. 371 

 372 

3-4. Crystallographic study of pentaliths  373 

TEM studies of the thin-foil section prepared from middle part of layers showed (Fig. 374 

6a) that the layers consist of many elongated calcite grains, which were consistently 375 

aligned (Figs 6b-c). The directions of elongation were essentially the same as those of 376 

the fine grooves observed on pentaliths in SEM (double-headed white arrows on Figs 377 

1a-b) (Plate 2-6 of (Hagino et al., 2009), and of the wrinkles observed on the 378 

pentalith-substrate (dashed double-headed white arrows on Fig 4c). The whole area of a 379 

segment (Fig. 6c) showed a sharp SAED pattern of calcite along the [21-1] zone axis 380 

(Fig. 6d). This result shows all of the elongated grains in a segment have exactly the 381 

same crystallographic orientations. The c-axis was not detected from the plane of this 382 

thin section. 383 



 384 

3-5. Elemental analyses of pentaliths 385 

A total of twenty six pentaliths of B. bigelowii, eight heterococcoliths of Emiliania 386 

huxleyi, five heterococcoliths of Gephyrocapsa oceanica and six heterococcoliths of 387 

Tergestiella adriatica were examined by SEM-EDS (Fig. 7). The integrated counts of 388 

Ca-Kα and Mg-Kα peaks in each spectrum were obtained. Ca and Mg counts taken 389 

from the carbon tape without coccolithophores (background) were mostly lower than 390 

10,000 and 800, respectively. The Ca counts ranging from ca 14,000 to 90,000 in the 391 

heterococcoliths, and 40,000 to 80,000 in pentaliths of B. bigelowii. The Mg counts of 392 

heterococcoliths were usually less than 1,000, although the counts of two coccoliths of 393 

G. oceanica exceeded 1,000. The Mg counts of pentaliths of B. bigelowii ranged from 394 

ca. 28,000 to 78,000, and were positively correlated with the Ca counts (R = 0.67).  395 

 396 

4. Discussion 397 

4-1. Ploidy state  398 



This study revealed that calcified cells of B. bigelowii have a haptonema, and use it for 399 

adhesion to external substrata. The calcified cells are non-motile and do not have 400 

flagella, unlike non-calcifying motile cells of B. bigelowii, which were originally 401 

described as C. parkeae as possessing a haptonema and two flagella (Green and 402 

Leadbeater, 1994). This is the first known example of haptophytes in which the 403 

non-motile cells without flagella possess a haptonema.  404 

Many coccolithophores change their motility and scale morphology in their life cycle. 405 

Members of Nöelaerhabdaceae (Isochrysidales) are non-motile and calcifying in diploid 406 

phase, and motile and non-calcifying in haploid phase. Members of the Coccolithales 407 

are non-motile and calcifying in diploid phase, and motile and calcifying in haploid 408 

phase. Members of the Syracosphaerales and Zygodiscales are motile and calcifying in 409 

both the diploid and haploid phases (e.g. Houdan et al., 2004; Young et al., 2003). So 410 

far as is known, all haploid cells of coccolithophores are motile. The ploidy state of 411 

non-motile (calcifying) and motile (non-calcifying) cells of B. bigelowii is still 412 

unknown due to lack of culture strains, however, comparison of its behavior with that of 413 

other coccolithophores suggests that the non-motile (calcifying) and motile 414 



(non-calcifying) stages of B. bigelowii likely correspond to diploid and haploid phases, 415 

respectively. 416 

 417 

4-2. Pentalith-substrate  418 

In this study, the presence of pentalith-substrate of the specimen Furu-SEM1 was 419 

revealed as a result of dissolution of pentaliths during cleaning of the cell using 420 

ion-exchanged water after fixation of the organic structure by osmium tetroxide. In our 421 

experience, coccoliths/pentaliths can be dissolved in ion-exchanged water, probably 422 

because ion-exchanged water is depleted in ions and the carbon dioxide in the 423 

atmosphere easily dissolves in the ion-exchanged water. Another example of dissolution 424 

of pentaliths in ion-exchanged water is shown in Appendix 3. The pH of the 425 

ion-exchanged water used for cleaning of the specimen Furu-SEM1 is unknown, but 426 

probably it was slightly acidic. (Hochuli, 2000) reported organic fossils, which closely 427 

resemble the pentalith-substrate of B. bigelowii, from Oligocene sediments from the 428 

North Sea prepared for palynological studies using hydrochloric and hydrofluoric acids. 429 

The material forming the pentalith-substrate is unknown, however, observation by 430 



(Hochuli, 2000) indicates that it is probably formed with some resistant 431 

non-hydrolyzable biopolymer. At this moment, there are no reports on cell covering 432 

formed with resistant non-hydrolyzable biopolymer from the members of the 433 

Haptophytes. Therefore, it is difficult to assume the composition of pentalith-substrate 434 

at this point. 435 

The morphological similarity between the organic cell covering structure 436 

(pentalith-substrate and thin layers) and the pentaliths of B. bigelowii is unusual for 437 

coccolithophores. Previous studies showed that diploid cells of typical coccolithophores 438 

bearing heterococcoliths have smooth cell membranes, and that there is no relationship 439 

between the morphology of the cell membrane and of heterococcoliths (e.g. Drescher et 440 

al., 2012; Probert et al., 2007). Haploid cells of typical coccolithophores (e.g. C. 441 

pelagicus) have complex cell coverings consisting of the plasmalemma, columnar 442 

material, several layers of scales, holococcoliths and an outermost investment called the 443 

envelope. The organic ‘envelope’ is considered as delimiting the site for calcification of 444 

holococcoliths (Rowson et al., 1986), but again there is no morphological similarity 445 

between cell membrane structure and holococcoliths. As we reported above, trapezoidal 446 



segments of pentalith of B. bigelowii are surrounded by the pentalith-substrate and 447 

multiple very thin organic layers. The site for calcification of the pentaliths has not been 448 

confirmed yet due to the lack of in situ observations of calcification, however, the close 449 

morphological similarities suggest that the organic pentalith-substrate and thin layers 450 

may act as a ‘guide’ for the shaping of pentaliths, and the organic layers covering distal 451 

side of trapezoidal segment may correspond to ‘envelope’ of motile cells of C. 452 

pelagicus. 453 

 454 

4-3. Process of calcification 455 

A pentalith with incomplete calcareous layers (Fig. 2e) can be considered as in the 456 

process of calcification or malformation rather than the result of secondary dissolution 457 

of layers, since secondary dissolution of pentalith starts from the margin of pentaliths 458 

not from the center of pentaliths (Appendix 3). Presence of multiple incomplete 459 

calcified layers along ridges of pentalith-substrate suggests that B. bigelowii calcify 460 

multiple layers at the same time (arrow on Fig. 2e). 461 



A naked cell without pentaliths but with pentagonal impressions on its cell surface, 462 

which resembles the pentalith-substrate of B. bigelowii, was observed in this study (Fig. 463 

2f). The sample, which yielded the naked cell, also contained many B. bigelowii cells 464 

with calcified pentaliths. Therefore, if it is B. bigelowii, it should be in the state prior to 465 

the start of calcification rather than a cell that lost pentaliths due to secondary 466 

dissolution. If the cell is in the precursor state to calcification, presence of twelve 467 

impressions of pentaliths on a cell (Fig. 2f) suggest that B. bigelowii does calcification 468 

of 12 pentaliths on cell surface synchronously.  469 

We have isolated > 500 of cells of B. bigelowii through our previous studies and 470 

on-going culture studies, but never seen incomplete pentaliths within the cell of B. 471 

bigelowii (Hagino et al., 2013; Hagino et al., 2009; Takano et al., 2006) (personal 472 

observation by KH). The lack of observation of incomplete pentaliths inside the cell 473 

supports our hypothesis that B. bigelowii calcifies the 12 pentaliths synchronously on its 474 

cell surface not inside the cell.  475 

 476 

4-3. Mineralogical characteristics of pentaliths 477 



TEM study of a pentalith revealed that the layers in the thin-foil section consist of 478 

numerous calcite grains elongated in almost the same direction (Figs 6b-c). Since the 479 

thin-foil section was prepared from intermediate part of layers, which is hardly affected 480 

by secondary-dissolution, the morphology observed in TEM is a primary structure not 481 

the result of dissolution. The direction of the long axis of the grains and their 482 

appearance looks to be the same as that of the fine grooves observed from inner layers, 483 

which were exposed by loss of the outermost smooth distal layer (double-headed solid 484 

arrows in Figs 2a-b) (Fig. 2-6 of Hagino et al., 2009). The similarity in structure 485 

observed in both TEM and SEM suggests that the fine grooves observed by loss of 486 

outermost layers are also a primary structure. This result raised another question, why 487 

does the only outermost distal layer have a smooth surface? The absence of fine 488 

grooves/calcite grain structure can be explained by multiple organic layers covering the 489 

distal surface of pentalith (black triangles on Fig. 5c) that may conceal the fine structure 490 

of distal lamina. 491 

The direction of the long axis of the calcite grains looks to be the same as that of the 492 

fine wrinkles observed on the distal surface of the pentalith-substrate (double headed 493 



dashed arrows on Fig. 4c). Similarity in direction of calcite grains and wrinkles of 494 

pentalith-substrate suggest a possibility: the pentalith-substrate plays a role on growth 495 

of calcite grains. 496 

The examined TEM section should consist of a couple of stacked lamina, since the 497 

thin-foil TEM section (c.a. 180 nm) was much thicker than that of a single lamina of the 498 

pentalith (< 70 nm, Appendix 4). Therefore, calcite grains in all the lamina have 499 

perfectly identical crystal orientation. This suggests that B. bigelowii strictly controls 500 

crystal orientation of calcite grains.  501 

 502 

4-4. Chemical contents of pentaliths 503 

Heterococcoliths calcified intracellularly contain very low Mg2+ (1/10~ 1/100) in 504 

comparison to foraminiferan tests calcified extracellularly (Stoll et al. 2001). That is 505 

consistent with the highly regulated selective ion transport mechanism utilized during 506 

calcification (Brownlee and Taylor, 2004; Stoll and Ziveri, 2004). On the other hand, 507 

holococcoliths, which are calcified outside the periplast (Rowson et al., 1986), contain 508 

higher amount of Mg than heterococcoliths (Cros et al., 2013). Our study revealed that 509 



B. bigelowii almost certainly calcifies pentaliths extracellularly, and always contain a 510 

relatively high amount of Mg in the pentalith. Together with the results from (Cros et al., 511 

2013), our study showed that elemental compositions of calcified scales are correlated 512 

with the site of calcification, and that higher contents of Mg in the calcified scales 513 

indicates extracellular calcification. The phylogenetic positions and the sites of 514 

calcification of many other nannolith-bearing species, such as Nannoconus, are still 515 

unknown. So, elemental studies of calcareous nannofossils using EDS would be useful 516 

to help identify the calcification sites as well as understanding of phylogeny of extinct 517 

calcareous nannofossils.  518 

Elemental compositions of foraminiferan tests have been used for reconstruction of the 519 

temperature and/or water chemistry in geological ages (e.g. Barker et al., 2005). The 520 

high Mg content of pentaliths of B. bigelowii suggests the possibility that pentaliths will 521 

record seawater chemistry at the time of the calcification as is the case for foraminiferan 522 

tests. The fossil records of the family Braarudosphaeraceae extend back to the Early 523 

Cretaceous (140 million years ago) with no change in ulstrastructure, (Bown, 1998). So, 524 



we predict that pentaliths of the Braarudosphaeraceae may provide valuable records of 525 

the chemical conditions of seawater in the geological past. 526 

 527 

5. Summary 528 

1. Non-motile calcified cells of Braarudosphaera bigelowii do have a haptonema but 529 

do not possess flagella. B. bigelowii uses the haptonema for adhesion to external 530 

substrates. 531 

2. B. bigelowii has a pentalith-substrate that closely underlies the calcareous 532 

pentaliths, and multiple organic thin layers that develop from ridges of the 533 

pentalith-substrate extend onto the distal surface of the pentaliths. The close 534 

morphological correspondence suggests that the pentalith-substrate and organic 535 

thin layers act as a ‘guide’ for shaping the pentaliths, and for calcification of 12 536 

pentaliths covering a cell occur on pentalith-substrate at the same time. 537 

3. Braarudosphaera pentaliths consistently show higher Mg content than regular 538 

heterococcoliths, closer to the values, which would be expected for equilibrium 539 

calcification from sea-water. This supports our hypothesis that B. bigelowii calcify 540 



their pentaliths extracellularly rather than in an intracellular compartment, it also 541 

makes them of potential value for geochemical study.  542 
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Figure Caption 553 

Fig. 1. Location of samples used in this study: (a) Locality of Furue, Usuka, and Tomari 554 

ports. (b) Locality of sampling stations in the Tomari area. 555 



Fig. 2. Scanning electron and light microscopic images of Braarudosphaera bigelowii 556 

and SEM image of an unknown specimen, resembling B. bigelowii.  557 

(a) B. bigelowii from st. 3 of Tomari Port (June 27, 2009). (b) B. bigelowii from st. 3 of 558 

Tomari Port (June 27, 2009). (c) B. bigelowii from st. D of Tomari Port (June 15, 2012). 559 

(c) Lightly calcified B. bigelowii specimen from offshore Tomari (June 17, 2013). (d) 560 

Lightly calcified specimen of B. bigelowii from st. D of Tomari Port (June 21, 2011). 561 

(e) Incomplete pentalith of B. bigelowii from offshore Tomari (June 17, 2013). (f) 562 

unidentified cell that has B. bigelowii-like cell surface structure from st. 1 of Tomari 563 

Port (June 21, 2010). Note. Arrow on (e) indicates position where multiple laminae are 564 

visible. Double-headed arrows on (a) and (b) indicate the orientation of the grooves on 565 

the laminae. 566 

Fig. 3. Light microscopic images of B. bigelowii: (a) and (b) Specimen Furu-SEM1. (c) 567 

specimen US15.2-sc11, (d) and (e) Furu-sc2. White arrows indicate the haptonema. 568 

Fig. 4. SEM images of cell surface structure of the specimen Furu-SEM1. (a) general 569 

view of the specimen. (b) close up view of the base of the haptonema (white triangle). 570 

(c) Close up view showing the pentalith-substrate. Solid white arrows indicate 571 



pentalith-substrate between contact surfaces of pentaliths. Solid black arrows indicate 572 

extensions of the pentalith-substrate into the contact surface between trapezoidal 573 

segments. Dashed black arrow shows horizontal lines on pentalith-substrate that 574 

corresponds to laminae of pentalith. Double-headed dashed white arrows show the 575 

direction of fine corrugations on the pentalith-substrate structure. 576 

Fig. 5. TEM images of a cytological section through a B. bigelowii cell. (a) Complete 577 

cytological section of the B. bigelowii cell. (b and c) Details of the cross section. C. and 578 

S in Fig. 5(a) indicate chloroplast and spheroid body, respectively. Solid white arrows 579 

indicate the pentalith-substrate extending between the pentaliths and protruding slightly 580 

beyond them. Solid black arrow indicates pentalith-substrate intruding into the contact 581 

surface between trapezoidal segments. Black triangles indicate thin organic layers 582 

covering the distal surface of the pentalith and connected to the pentalith-substrate. 583 

Fig. 6. Thin-foil cross section of pentaliths of B. bigelowii cut using a focused-ion beam 584 

(FIB) apparatus. (a) TEM image of the whole section, this comprises a section parallel 585 

to the surface of one pentalith (black arrow) and through the sides of two neighboring 586 

pentaliths (white arrows). (b) Close up view of a segment of Fig. 6a in TEM. (c) 587 



High-angle annular dark field (HAADF) image of the segment in Fig. 6b, showing a 588 

skeletal texture consisting of elongated calcite grains. The contrast is mainly caused by 589 

averaged atomic numbers of the sample. Bright area shows elongated calcite grains. The 590 

direction of the elongation corresponds to that of fine graves in SEM observation (Figs. 591 

2a and b). (d) Electron diffraction pattern taken from whole area of the segment b along 592 

the [21-1] zone axis. The pattern shows all of the elongated grains have exactly same 593 

crystallographic orientations. 594 

Fig. 7. Mg and Ca X-ray microanalysis counts for pentaliths of B. bigelowii, 595 

heterococcoliths of Emiliania huxleyi, Gephyrocapsa oceanica, and Tergestiella 596 

adriatica, and background.  597 
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