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ABSTRACT
Objective To explore whether gene expression profiling
can identify a molecular mechanism for the clinical
benefit of canakinumab treatment in patents with
tumour necrosis factor receptor-associated periodic
syndrome (TRAPS).
Methods Blood samples were collected from 20
patients with active TRAPS who received canakinumab
150 mg every 4 weeks for 4 months in an open-label
proof-of-concept phase II study, and from 20 aged-
matched healthy volunteers. Gene expression levels were
evaluated in whole blood samples by microarray analysis
for arrays passing quality control checks.
Results Patients with TRAPS exhibited a gene
expression signature in blood that differed from that in
healthy volunteers. Upon treatment with canakinumab,
many genes relevant to disease pathogenesis moved
towards levels seen in the healthy volunteers.
Canakinumab downregulated the TRAPS-causing gene
(TNF super family receptor 1A (TNFRSF1A)), the drug-
target gene (interleukin (IL)-1B) and other inflammation-
related genes (eg, MAPK14). In addition, several
inflammation-related pathways were evident among the
differentially expressed genes. Canakinumab treatment
reduced neutrophil counts, but the observed expression
differences remained after correction for this.
Conclusions These gene expression data support a
model in which canakinumab produces clinical benefit in
TRAPS by increasing neutrophil apoptosis and reducing
pro-inflammatory signals resulting from the inhibition of
IL-1β. Notably, treatment normalised the overexpression
of TNFRSF1A, suggesting that canakinumab has a direct
impact on the main pathogenic mechanism in TRAPS.
Trial registration number NCT01242813.

INTRODUCTION
Tumour necrosis factor (TNF) receptor-associated
periodic syndrome (TRAPS), an autosomal-
dominant disease, is one of a group of hereditary
autoinflammatory periodic fever syndromes that
includes familial Mediterranean fever, hyperimmu-
noglobulin D syndrome and the cryopyrin-
associated periodic syndromes (CAPS), among
others.1 2 Mutations of the TNF super family
receptor 1A (TNFRSF1A) gene are responsible for
TRAPS, which is characterised by recurrent fever,
myalgia, abdominal pain, rash, headaches, ocular
symptoms and in some cases, amyloid A

amyloidosis.3–6 TRAPS, along with other autoin-
flammatory disorders, is associated with severe
inflammation without a concomitant increase in
autoantibodies or antigen-specific T cells.3 7

Overexpression of interleukin (IL)-1β from circulat-
ing monocytes collected during disease flares has
been recently described.8 IL-1β is recognised as a
key pro-inflammatory cytokine in a variety of
inflammatory conditions.9 10

Although the connection between TNFRSF1A
mutation and increased release of IL-1β remains
unclear, it is suspected that misfolding of the
TNFR1 protein product triggers stress-related
responses and accompanying inflammatory reac-
tions including enhanced IL-1β release.1 11 12

TNFRSF1A mutations have also been suggested to
affect pro-inflammatory signalling downstream of
TNFR1, leading to constitutive activation of the
nuclear factor kappaB (NF-κB) pathway and
increased cytokine secretion; some mutations may
also enhance IL-1β signalling due to the hyperin-
flammatory background in TRAPS.13 Given the
molecular and clinical profiles of TRAPS, the IL-1
pathway has been hypothesised to be a viable
therapeutic target, which has been supported by
small case series demonstrating responses to
anakinra.14 15

Canakinumab is a high-affinity human monoclo-
nal antihuman IL-1β antibody of the IgG1/κ
isotype.16 17 It is designed to bind to human IL-1β,
blocking the interaction of the cytokine with its
receptor, and thus functionally neutralising its bio-
activity without preventing binding of the natural
endogenous inhibitor, IL-1 receptor antagonist, or
IL-1α to IL-1 receptors. In a phase II proof-of-
concept study, canakinumab treatment provided
complete or near-complete clinical responses in 19
of 20 patients with active recurrent or chronic
TRAPS (ClinicalTrials.gov identifier number
NCT01242813).18 We performed an analysis of
gene expression from patients in this study and age-
matched healthy volunteers to characterise treat-
ment-induced alterations.

METHODS
Study design and patients
The design of the open-label, multicentre, proof-of-
concept study is described separately (ClinicalTrials.
gov identifier number NCT01242813).18 Briefly,
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patients 7 years and older with a genetically confirmed diagnosis
of TRAPS and active recurrent or chronic disease received cana-
kinumab 150 mg subcutaneously every 4 weeks (q4wk) during a
4-month treatment period (days 1, 29, 57 and 85). A single-
dose up-titration to 300 mg was permitted at day 8 in non-
responders. Upon completion of the treatment period on day
113, patients entered a treatment withdrawal/follow-up period
lasting up to 5 months. Whole blood samples for microarray
analysis of gene expression levels were collected at baseline, day
15 and day 113 from 20 patients in the study cohort, and on
one occasion from 20 untreated age-matched healthy
volunteers.

Gene expression analyses
Gene expression profiling was performed to identify differen-
tially expressed genes between baseline samples and those col-
lected during canakinumab treatment (day 15 and day 113) in
patients with TRAPS and between the patients with TRAPS and
the healthy volunteers. Blood samples from consenting patients
were collected in PAXgene blood RNA tubes according to the
manufacturer’s guidelines (PreAnalytiX, Hombrechtikon,
Switzerland) and stored at −80°C until RNA extraction. The
total RNA from whole blood was isolated with the PAXgene
Blood RNA Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s recommendations. The amplified cDNA was
hybridised to Affymetrix Human Genome 133 Plus 2.0 arrays
following standard procedures.

Analytical methods
The probe set annotation ‘hgu133plus2hsentrezg’ was obtained
from http://brainarray.mbni.med.umich.edu/ and used for
mapping of probe sets to genes. With use of this custom chip
definition file, statistical analyses were performed on the gene
level, as opposed to the probe level. All microarrays passing
quality control (QC) were subjected to robust multi-array
average condensing. The 2% trimmed mean of each chip was
scaled to a target intensity of 150. The analysis of differentially
expressed genes is described in the online supplementary
appendix.

Pathway analysis
Differentially expressed genes were mapped onto pathway maps
using gene symbols in Metacore. We examined a number of
canonical pathway maps from Metacore relevant to the patho-
genesis of TRAPS including immune response toll-like receptor
(TLR) signalling pathway, immune response IL-1 signalling
pathway, apoptosis and survival: endoplasmic reticulum stress
response pathway and the autophagy map. Genes that were
upregulated or downregulated by at least 1.3-fold were consid-
ered for this analysis.

RESULTS
Identification of a TRAPS gene expression signature in
untreated patients
A total of 20 patients with TRAPS (mean age, 34.6
±18.36 years; range, 7.0−77.8 years; TNFRSF1A gene muta-
tions shown in online supplementary table S1) entered the trial,
of whom 19 patients had at least one microarray dataset that
had passed QC. Similarly, 19 healthy controls had a microarray
that passed QC. After condensing to gene level analysis, filtering
Affymetrix control probes and removing low intensity probes,
6642 genes remained in the data set. The disease-causing gene
TNFRSF1A was upregulated in patients with TRAPS by 1.4-fold
compared with the healthy volunteers. Other genes relevant to

inflammation were also upregulated among patients with
TRAPS including MAPK14 (2-fold), NFKB1 (1.3-fold), TLR5
(2.4-fold) and MMP9 (2.4-fold) among others. Among genes
involved in the TLR signalling pathway, eight genes were upre-
gulated by at least 1.4-fold in patients with active TRAPS
(figure 1A). Of note, IL-1β was upregulated at the gene expres-
sion level by 1.8-fold in patients with TRAPS. Four other genes
in the IL-1 immune response signalling pathway were also upre-
gulated by at least 1.4-fold (figure 1B). The upregulation of
genes in the apoptosis and survival, endoplasmic reticulum
stress response pathway and autophagy pathway maps are
shown in figure 1C, D, respectively.

To identify genes that differed the most between patients with
TRAPS and healthy volunteers, a twofold change in gene
expression and a corrected p value threshold of 0.05 were
applied. This led to a gene set of the most differentially
expressed genes in patients with TRAPS, hereby referred to as
the TRAPS disease signature (figure 2, see online supplementary
table S2).

Canakinumab alters the expression of genes relevant to
TRAPS pathogenesis
Gene expression profiles in patients with TRAPS were dramatic-
ally altered by treatment with canakinumab. Genes meeting a
≥twofold change and p value cut-off of 0.05 between baseline
and day 15 in the canakinumab-treated patients with TRAPS
defined a canakinumab treatment signature (figure 3, see online
supplementary table S3). Changes in expression of these genes
were largely maintained with continued canakinumab treatment
through day 113. Many (>40%) of the canakinumab treatment
signature genes (see online supplementary table S2) were also
among the TRAPS disease signature genes (see online supple-
mentary table S3), indicating that many genes differentially
expressed in patients with active TRAPS compared with healthy
volunteers are also differentially expressed postcanakinumab
treatment relative to baseline. In fact, 95.9% of the TRAPS
disease signature genes had expression levels move towards that
of the healthy volunteers by day 15 of canakinumab treatment
(figure 2).

Of note, the disease-causing gene TNFRSF1A had expression
levels decreased by 1.4-fold upon canakinumab treatment. As
mentioned above, this gene was upregulated by 1.4-fold in
untreated patients with TRAPS compared with healthy volun-
teers. Likewise, the drug target gene IL-1B was upregulated in
patients with TRAPS by 1.8-fold relative to healthy volunteers,
then downregulated by 1.9-fold upon canakinumab treatment
(figure 4).

In addition, other inflammation-related genes were downre-
gulated after canakinumab treatment. Using genes that changed
by at least 1.4-fold, several inflammation-related and innate
immune response-related pathways were evident among the dif-
ferentially expressed genes, including the immune response
IL-1 pathway. Notably, MAPK14, the gene encoding the p38
MAP kinase, was among both the TRAPS disease signature
genes and canakinumab treatment signature genes; it is found
in the IL-1 pathway downstream from the drug target IL-1β
(figures 1B and 4). Other genes in the IL-1 pathway, such as
NFKB1, were also affected by canakinumab treatment, but to a
lesser degree.

Changes in neutrophil count are not sufficient to explain the
canakinumab treatment signature
As previously reported,19 canakinumab treatment reduces neu-
trophil counts in whole blood. Since gene expression profiles
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were derived from whole blood, the gene expression changes
observed upon canakinumab treatment may have resulted from
changes in the proportion of cell types in whole blood and not
necessarily from changes in transcriptional regulation. In fact,
65% of the canakinumab signature genes were correlated
(r2>0.5) with the neutrophil count. Although neutrophil counts

were reduced by an average of approximately 30% upon treat-
ment with canakinumab, the canakinumab signatures genes
exhibited changes in expression of twofold or greater. When the
neutrophil count was included in the linear models described
above, 52% of the canakinumab signature genes continued to be
differentially expressed post-treatment with p<0.05.

Figure 1 Pathway maps showing changes in gene expression for tumour necrosis factor receptor-associated periodic syndrome (TRAPS) patients
compared with healthy volunteers and for patients with TRAPS with canakinumab treatment compared with baseline. (A) Immune response TLR
signalling. (B) Immune response IL-1 signalling. (C) Apoptosis and survival: endoplasmic reticulum stress response. (D) Autophagy. Next to each
differentially expressed gene, a small icon representing a thermometer can be seen. The thermometers marked as ‘1’ reflect transcriptional levels at
baseline relative to healthy subjects, while the ones marked as ‘2’ reflect changes post-treatment. Downregulation is indicated by a blue
thermometer, while upregulation is marked by a red thermometer, with the level of dysregulation proportional to the length of the colour in the
thermometer. Transcripts with a fold change of 1.4 or better are shown in solid black boxes, while those with a fold change between 1.3 and 1.4
are shown in dashed black boxes. Even though many of the fold changes in the pathway maps are lower than 1.4, the directionality of the
dysregulation is consistently opposite between patients with TRAPS at baseline versus healthy subjects and in postcanakinumab-treated patients
versus precanakinumab-treated patients. This lends support to the interpretation that these transcriptional changes are disease and treatment
induced, respectively. In some of the cases, the transcripts are seen to be upregulated in the post-treatment contrast, but there is no thermometer
denoted for the disease versus healthy contrast. In many of these cases, the fold change is in the opposite direction, but the absolute value is <1.3.
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DISCUSSION
TRAPS is a monogenic disease in which the underlying patho-
genesis is not yet completely understood. Other groups have
previously applied proteomic techniques to elucidate the com-
plexity of intracellular signalling pathways affected by specific
TRAPS-associated TNFRSF1A mutations, such as C33Y, and
demonstrated increased expression of inflammation-related pro-
teins.20 However, it was not clear whether this upregulation
could be attributed to protein stability (reduced protein turn-
over) or to changes at the level of gene expression. Our study
focused on gene expression, not proteomics, in a patient group
with mixed TNFRSF1A mutations. Our findings build on the lit-
erature by showing that gene expression differences are, at least
in part, responsible for observed differences in protein
expression.

Use of gene expression profiling with comparisons between
active disease and healthy volunteers can be a powerful tool in
identifying potential molecular mechanisms associated with
disease. In addition, the ability to compare expression profiles
in patients with active disease and then when they are on treat-
ment with a single cytokine inhibitor allows a unique insight
into the molecular effects of canakinumab treatment.
Canakinumab altered the gene expression profiles of patients
with TRAPS by day 15, at a time when nearly all patients had
achieved complete or near-complete clinical responses.21

Notably, the gene expression profiles in patients with TRAPS at

day 15 more closely resembled those from the age-matched
healthy volunteers than those from the patients with TRAPS
themselves at baseline. The canakinumab treatment signature
genes differentially expressed on day 15 were largely maintained
through day 113, suggesting that patients on continued treat-
ment do not generally revert to baseline gene expression levels.
Thus, the effect of canakinumab at the molecular level may
persist during continued monthly treatment.

We have shown for the first time that the disease-causing gene
TNFRSF1A is upregulated at the transcript level in treatment-
naïve patients with active TRAPS compared with healthy volun-
teers and then downregulated with canakinumab treatment.
TNFRSF1A was previously shown to be upregulated in TRAPS
at the protein level, with the increase in TNFR1 protein levels
attributed to a reduction in its turnover.22 Based on the findings
of the current study, the increase in the TNFR1 protein may
also be due, in part, to an increase in TNFRSF1A transcript
levels. These data support the possible role of IL-1 blockade in
the downmodulation of one of the major pathogenic factors
associated with the development and maintenance of the inflam-
matory response in TRAPS, namely the intracellular accumula-
tion of the mutated TNFR1 protein.

We have also shown that the drug target gene IL-1β is upregu-
lated at the transcript level in treatment-naïve patients with
TRAPS compared with healthy volunteers and then downregu-
lated with canakinumab treatment. Although canakinumab is
known to specifically inhibit IL-1β at the protein level, feedback
mechanisms in the IL-1 pathway and other innate immune
response pathways may also act to downregulate IL-1β at the

Figure 2 Heatmap of gene expression levels for tumour necrosis
factor receptor-associated periodic syndrome (TRAPS) disease signature
genes. Genes with a Benjamini-Hochberg corrected p≤0.05 and an
absolute fold change ≥2 between untreated patients with TRAPS at
baseline and healthy volunteers define the TRAPS disease signature
genes. Each gene is normalised by Z-score across all samples shown.
Note how expression levels at both day 15 and day 113
postcanakinumab treatment move towards those seen in healthy
volunteers.

Figure 3 Heatmap of gene expression levels for canakinumab
signature genes. Genes with a Benjamini-Hochberg corrected p≤0.05
and an absolute fold change ≥2 between day 15 post-treatment and
baseline in tumour necrosis factor receptor-associated periodic
syndrome patients define the canakinumab signature genes. Each gene
is normalised by Z-score across all samples shown. Note how
expression levels at both day 15 and day 113 postcanakinumab
treatment move towards those seen in healthy volunteers.
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transcriptional level after treatment with canakinumab. In
support of an IL-1β feedback mechanism, in vitro studies have
shown that increasing IL-1 protein levels can induce IL-1β
expression.23 Canakinumab has been shown to disrupt this posi-
tive feedback loop in patients with CAPS.16 The gene expression
data in the current study suggest a similar disruption of the
IL-1β feedback loop with canakinumab in patients with TRAPS,
as previously suggested by the normalisation of monocyte IL-1β
secretion from anakinra-treated patients with TRAPS.8

The gene expression and pathway data in the current study
indicate that IL-1 blockade with canakinumab treatment
increases neutrophil apoptosis and decreases pro-inflammatory
signalling. MAPK14, which is downregulated after canakinumab
treatment, is present in the IL-1 pathway downstream of the
drug target IL-1β. The p38 kinase encoded by MAPK14 was

activated in a mouse model of TRAPS, resulting in an increased
inflammatory response;22 further, apoptosis is induced when
this family of kinases is inhibited.24 Inhibition of MAP kinases
may induce apoptosis through inhibition of NF-κB, a negative
regulator of apoptosis in the IL-1 pathway and a positive regula-
tor of inflammation. The NF-κB pathway is upregulated by
TRAPS-associated TNFRSF1A mutations.25 26 Downregulation
of NF-κB is expected to result in an increase in apoptosis and a
concomitant decrease in inflammatory response. In the current
study, NF-κB was upregulated 1.3-fold in patients with TRAPS
at baseline compared with healthy volunteers, and downregu-
lated by 1.2-fold with canakinumab treatment at day 15 com-
pared with baseline.

Patients with TRAPS also appear to have reduced
TNFα-induced apoptosis in neutrophils,27 and the resulting

Figure 4 The disease-causing gene (TNFRSF1A, panel A), drug-target gene (IL-1B, panel B) and inflammation-related genes (MAPK14 and NFKB1,
panels C and D, respectively) are upregulated in tumour necrosis factor receptor-associated periodic syndrome (TRAPS) patients and downregulated
upon canakinumab treatment. Lines connect data points originating from the same patient. The figure titles within each panel contain both the
Entrez gene IDs (numbers preceding ‘_at’) and the gene symbols. Note how these genes are upregulated at baseline in patients with TRAPS relative
to healthy volunteers. Upon treatment at day 15, the expression levels of the genes are reduced to those observed in healthy volunteers and this
reduction is maintained through day 113. The fold change between baseline and visit 6 is indicated at the top of each graph.
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accumulation of neutrophils may in turn lead to the accumula-
tion of pro-inflammatory cytokines and thus contribute to
TRAPS pathogenesis.1 Thus, the reduction in neutrophil counts
in patients with TRAPS—presumably reflected in part by
MAPK14 and NF-κB downregulation—may also contribute to
the clinical response achieved with canakinumab. However, it is
likely that changes in gene expression, in addition to the reduc-
tion in neutrophil count, contribute to the improved condition
in patients with TRAPS after treatment with canakinumab. Even
after controlling for neutrophil count, more than half of the
canakinumab treatment signature genes had significant changes
in expression levels. Many of these genes are involved in inflam-
matory signalling and their downregulation would be expected
to reduce such signalling.

In previous studies, canakinumab was shown to produce clin-
ical benefit in most patients with systemic juvenile idiopathic
arthritis (SJIA).19 Interestingly, 39% of the canakinumab treat-
ment signature genes identified in patients with TRAPS were
also differentially expressed in SJIA patients upon treatment
(Novartis data on file). Although the filtering criteria and statis-
tical modelling varied by study, the substantial overlap between
data sets is representative of the underlying biology of canakinu-
mab treatment. Similar to the TRAPS data, the differentially
expressed genes common to both SJIA and TRAPS correlated
with reductions in neutrophil counts. However, the reduction in
neutrophil counts does not fully explain the downregulation of
these genes, leading to the conclusion that the two diseases
share transcriptional profiles underlying the biology of canaki-
numab treatment.

We assessed several pathway maps due to their relevance to
TRAPS and to the action of canakinumab. Many of these
disease mechanisms were identified initially from studies con-
ducted in monocytes and murine models.4 In the pathways
examined, there was a notable trend for upregulation of genes
at baseline that are relevant to disease pathogenesis and a subse-
quent downregulation upon canakinumab treatment. For
example, several cell surface receptors (eg, TLR1, TLR4, TLR6,
CD15) found in the immune response TLR signalling pathway
were perturbed in patients with TRAPS relative to healthy
volunteers, suggesting that they contribute to the inflammatory
response in TRAPS (see figure 1A). Several key players in this
pathway were upregulated at baseline and downregulated after
canakinumab treatment, consistent with the inhibition of IL-1β
by canakinumab. Similarly, in the immune response IL-1 signal-
ling map, several nodes (eg, IL-1β, MAPK14) were evident
reflecting transcriptional upregulation in patients with TRAPS
compared with the healthy volunteers, and subsequently down-
regulation after canakinumab treatment compared with baseline
(see figure 1B). Because many of the same genes in these path-
ways are both upregulated in patients with TRAPS and then
downregulated by canakinumab, it lends confidence that these
pathways are involved in both TRAPS disease and treatment
modulation. However, it is also possible that TLR4 upregulation
in TRAPS and subsequent downregulation with canakinumab
likely reflects changes in cell populations. Instead, the most
important mechanism associated with the downregulation of
IL-1β production may be the downregulation of IL-1β itself,
since there is evidence that IL-1 acts as one of the major indu-
cers of IL-1 itself.28 29 Although IL-1α is also known to stimu-
late IL-1β production,20 the use of specific probes for these
cytokines suggests that IL-1β is the important driver of IL-1β
production in TRAPS.

In the apoptosis and survival: endoplasmic reticulum stress
response pathway map, upregulation of GRP78 and

downregulation of MAPK14 after canakinumab treatment were
observed, leading to neutrophil apoptosis and to the endoplas-
mic reticulum-associated protein degradation of misfolded
proteins (see figure 1C). In the autophagy map, the largest tran-
scriptional changes were seen for endophilin B1 and in TLR sig-
nalling (see figure 1D). The autophagy process is thought to be
defective in the presence of excessive intracellular amounts of
mutant TNFR1 protein, leading to the induction of NF-κB
activity and IL-1β oversecretion.8 However, the number of
transcriptionally affected genes relevant to autophagy and
inflammasome-associated gene processes in the two contrasts
(patients with TRAPS vs healthy volunteers, and patients with
TRAPS postcanakinumab vs baseline) were not sufficient to
draw any conclusions about their relevance in our cohort.
Mitochondrial reactive oxygen species have been identified as a
key driver of inflammation in TRAPS.30 We examined pathway
maps for oxidative phosphorylation and superoxide production,
and observed changes for eight genes in the latter map similar
to those shown in the maps in figure 1, namely an increase in
expression in patients with TRAPS at baseline compared with
healthy volunteers and a decrease in expression upon canakinu-
mab treatment.

It is important to recognise that gene expression does not
necessarily correlate with protein production, and therefore
further studies would be useful to determine the pathogenic
relevance of the gene expression changes reported herein.
Potentially relevant studies include measuring the protein
products themselves, or performing in vitro gene knockout or
knockin studies. Additionally, other methods for measuring
the implicated signature genes appear warranted to further
understand mechanisms important in the disease and canakinu-
mab action.

Taken together, the present findings support a model in
which IL-1β inhibition by canakinumab downregulates genes in
the IL-1 signalling and other innate immunity pathways that are
overexpressed in TRAPS. Treatment with canakinumab downre-
gulates both the disease-causing and drug-target genes resulting
in the downregulation of inflammatory responses. Treatment
with canakinumab also induces apoptosis of neutrophils.
Together, the decrease in pro-inflammatory signalling and the
reduction in neutrophil counts most likely contribute to the
changes seen in patients with TRAPS at the transcriptional level
during canakinumab treatment. In turn, these molecular changes
likely contribute to the clinical improvement seen in these
patients, suggesting that canakinumab produces disease-
modifying effects in TRAPS.
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