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a b s t r a c t

The redox states of the NAD and NADP pyridine nucleotide pools play critical roles in defining the activity
of energy producing pathways, in driving oxidative stress and in maintaining antioxidant defences.
Broadly speaking, NAD is primarily engaged in regulating energy-producing catabolic processes, whilst
NADP may be involved in both antioxidant defence and free radical generation. Defects in the balance of
these pathways are associated with numerous diseases, from diabetes and neurodegenerative disease to
heart disease and cancer. As such, a method to assess the abundance and redox state of these separate
pools in living tissues would provide invaluable insight into the underlying pathophysiology. Experi-
mentally, the intrinsic fluorescence of the reduced forms of both redox cofactors, NADH and NADPH, has
been used for this purpose since the mid-twentieth century. In this review, we outline the modern
implementation of these techniques for studying mitochondrial redox state in complex tissue prepara-
tions. As the fluorescence spectra of NADH and NADPH are indistinguishable, interpreting the signals
resulting from their combined fluorescence, often labelled NAD(P)H, can be complex. We therefore
discuss recent studies using fluorescence lifetime imaging microscopy (FLIM) which offer the potential to
discriminate between the two separate pools. This technique provides increased metabolic information
from cellular autofluorescence in biomedical investigations, offering biochemical insights into the
changes in time-resolved NAD(P)H fluorescence signals observed in diseased tissues.

& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The pyridine nucleotide pools, nicotinamide adenine dinu-
cleotide (NAD) and nicotinamide adenine dinucleotide phosphate
(NADP), are crucial to the intracellular balance between the gen-
eration of reactive oxygen species (ROS) and their neutralisation.
The NAD pool participates in processes driving energy homo-
eostasis, generally associated with the subsequent production of
ROS. The NADP pool, meanwhile, plays a primary role in main-
taining the antioxidant defences, but in some tissues may also
serve as a cofactor in free radical generating reactions [1]. Both
NAD and NADP act as “electron carriers”, ferrying reducing
equivalents between redox reactions taking place inside the cell. In
their oxidised forms, NADþ and NADPþ , both molecules may
receive electrons by the addition of a hydride ion, producing the
reduced forms, NADH and NADPH. These are intrinsically fluor-
escent [2], a phenomenon that has been exploited as a label-free
method for monitoring the intracellular redox state of living cells
and tissues for more than 60 years [3]. The approach represents a
r Inc. This is an open access article
potentially powerful tool for interrogating the state of biochemical
pathways in cells and tissues, but interpreting changes in auto-
fluorescence in relation to the activity of metabolic pathways re-
mains a challenge [4–6].

In most cell types, the total pool of NAD (oxidised plus reduced
forms) is larger than that of NADP. However, the primary role of
NADP is as an electron donor in anabolic pathways. As this re-
quires the pool to be kept in a significantly reduced state, the
NADPH/NADPþ ratio is maintained high [7]. In contrast, the role
of NAD as an electron acceptor in catabolic pathways requires the
pool to be maintained in an oxidised state. Therefore, the NADH/
NADþ ratio is kept low [8]. Thus, while the size of the total NAD
pool may be greater than that of the NADP pool, the intracellular
concentrations of the reduced forms, NADH and NADPH, are ty-
pically of a similar order of magnitude [9]. The spectral properties
of these fluorescent forms of the cofactors are indistinguishable
[10,11]. Thus, the mixed signal is often referred to as NAD(P)H [12].

The absorption and emission properties of NAD(P)H were first
described by Warburg et al. in the 1930's and 1940's [13]. The
construction of instrumentation for the use of NAD(P)H fluores-
cence as a reporter of redox state in living samples began in the
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1950’s with the pioneering work of Chance et al. [14]. In the fol-
lowing years, demonstrations of NAD(P)H fluorescence spectro-
scopy were performed in isolated mitochondria [15], ex vivo cells
[16] and in vivo organs [17]. The development of laser scanning
confocal microscopy in the 1970's added spatial resolution to NAD
(P)H fluorescence measurements [18,19], permitting assessment of
differences in the redox state between subcellular organelles or
different cell types in a complex tissue [20]. In the 1990's, time-
resolved fluorescence measurements were applied to NAD(P)H for
the first time [21], allowing determination of the lifetime of the
autofluorescence in response to changes in redox state. Akin to an
optical half-life, the fluorescence lifetime of a molecule is highly
sensitive to changes in its local environment [2], suggesting the
possibility of quantitative reporting of biochemical changes asso-
ciated with the NAD and NADP pools from inside living systems
without the addition of extrinsic fluorophores. The commerciali-
sation of fluorescence lifetime add-ons to conventional confocal
microscopes in the early 2000’s made fluorescence lifetime ima-
ging microscopy (FLIM) widely accessible [22], leading to a rapid
growth in the NAD(P)H FLIM literature. The frequent observation
of differences in NAD(P)H lifetime characteristics between healthy
and neoplastic tissue has now put the development of clinical
diagnostic devices at the forefront of this field [23–27].

Our purpose in this review is to provide both an introduction to
Fig. 1. The redox states of the mitochondrial NAD and NADP pools are determined by
determined by the activities of glycolysis, lactate dehydrogenase (LDH) and the pentos
malate-aspartate (MA) shuttle and citrate-α-ketoglutarate shuttles (Cα) respectively. The
(MαA) antiporters and the citrate carrier (CC). Inside the mitochondria, pyruvate produ
converted into acetyl CoA by the pyruvate dehydrogenase (PDH) complex, permitting its
at the electron transport chain (ETC) or be converted into NADPH at the nicotinamid
glutathione peroxidase (GPX) or peroxiredoxin (PRX) antioxidant systems via the gluta
the field of NAD(P)H fluorescence imaging and an overview of the
relevant biochemical pathways required to interpret the data that
such experiments generate. We therefore outline the primary
mechanisms of NADH and NADPH production and consumption
and introduce the basic photophysics of the cofactors before dis-
cussing practical considerations required to apply NAD(P)H fluor-
escence intensity measurements to probe the mitochondrial redox
state. We give an overview of some recent applications of FLIM to
NAD(P)H measurements and describe our efforts, using this tech-
nique, to separate the contributions of NADH and NADPH to the
total autofluorescence signal in several models. As these reduced
forms are equally abundant but play contrasting biochemical roles,
this method provides crucial insights into the redox balance in
living biological systems, beyond those available from measure-
ments of fluorescence intensity alone.
2. Biochemical foundations of NAD(P)H fluorescence
measurements

2.1. The central role of NAD in mitochondrial energy transduction

Glycolysis, taking place in the cytosol, provides the most pri-
mitive pathway for converting the chemical potential energy
a range of interconnected pathways. The redox state of cytosolic NAD and NADP,
e phosphate pathway (PPP), may be indirectly passed to the mitochondria via the
se rely on the actions of the aspartate-glutamate (AGA) and malate α-ketoglutarate
ced by glycolysis, imported via the mitochondrial pyruvate carrier (MPC), may be
oxidation in the TCA cycle to produce NADH. This may then be used to produce ATP
e nucleotide transhydrogenase (NNT). NADPH may then be used to maintain the
thione (GR) and thioredoxin (TR) reductase enzymes.



T.S. Blacker, M.R. Duchen / Free Radical Biology and Medicine 100 (2016) 53–65 55
stored in the bonds of glucose into usable energy in the form of
adenosine triphosphate (ATP) [28–32]. As two ATP molecules are
used in the early stages of the process, including by the insulin-
activated hexokinase to utilise the negative charge of the phos-
phate group to trap the substrate in the cell [33], the complete
conversion of glucose into pyruvate results in a net gain of two
ATP molecules [34]. However, as shown in Fig. 1, ATP is not the
only molecule to carry energy away from glycolysis. The oxidation
of glyceraldehyde 3-phosphate into 1,3-biphosphoglycerate in-
volves passing hydride to NADþ , forming NADH. Glycolysis
therefore relies on the availability of NADþ to ferry electrons away
from this reaction. Alongside the activity of phosphofructokinase,
the redox state of the cytosolic NAD pool is thus a primary reg-
ulator of the glycolytic rate [33], and therefore of mitochondrial
substrate supply. To this end, the cytosolic NADH/NADþ ratio
must be maintained low, between 0.01 and 0.05, for glycolysis to
proceed [8]. This may be achieved in two ways. Firstly, lactate
dehydrogenase may reduce pyruvate into lactate, using NADH to
perform the reduction to restore the NADþ pool [35]. This reac-
tion drives the elevated lactic acid production during anaerobic
exercise or hypoxia [36] and is also observed in tumours, even in
the presence of sufficient oxygen, in the so-called Warburg effect
[34]. Alternatively, the electrons carried by NADH in the cytosol
may be transferred to the mitochondria via the malate-aspartate
shuttle [37,38]. While this mechanism is significantly slower at
oxidising the cytosolic NAD pool than lactate dehydrogenase, due
to the involvement of up to six separate reactions [34], it facilitates
the progression of anaerobic glycolysis while providing reducing
equivalents to the mitochondria for aerobic metabolism. Indeed,
the shuttle plays a significant role in a large number of biological
processes, including insulin secretion, cancer cell survival and
heart and neurodegenerative diseases [37–39].

In the mitochondria, oxidative phosphorylation couples ATP
production to the energy released by the reduction of oxygen to
water using electrons carried by NADH [40–43]. This produces
approximately 28 further ATP molecules from the two molecules
of pyruvate derived from the passage of a single glucose molecule
through the glycolytic pathway [40]. Pyruvate enters the mi-
tochondria through the pyruvate carrier [44] and is oxidised and
decarboxylated into acetyl CoA, producing CO2 and NADH [45].
Citrate, formed by joining the acetyl group of acetyl CoA to ox-
aloacetate, then enters the tricarboxylic acid (TCA) cycle [46].
While this process may classically be viewed as a catabolic prelude
to ATP generation by aerobic respiration, the large array of inter-
mediates involved serve as important biosynthetic precursors [34],
including for the synthesis of non-essential amino acids and fatty
acids [47]. Thus, in proliferating cells, with high biosynthetic re-
quirements, additional carbon sources may be used to increase the
flux of the cycle, such as glutamine, which can be converted into
both acetyl CoA and TCA cycle intermediates [48–50]. The full cycle
produces one molecule of ATP, two molecules of CO2 and, crucially
for linking this process to oxidative phosphorylation, three mole-
cules of NADH.

The mitochondria are the site for the universal conversion of all
types of fuel substrate into ATP [33], with β oxidation pathways
permitting the conversion of fats into acetyl CoA alongside the
mechanisms already discussed for the utilisation of sugars and
amino acids [51]. NADH links the TCA cycle to cellular energy
generation, carrying electrons to the electron transport chain (ETC)
on the inner mitochondrial membrane. Upon oxidation to NADþ
by complex I, NADH dehydrogenase, the electrons are passed
down the chain to complex IV, cytochrome c oxidase, where four
electrons are passed to an oxygen molecule and combined with
four protons, producing two molecules of water [42]. The com-
plexes of the ETC couple electron transfer to proton translocation
into the intermembrane space, generating the electrochemical
gradient across the inner mitochondrial membrane [40,52] which
drives ATP synthesis by the F1FO-ATP synthase [53,54]. A single
mitochondrial NADH molecule may produce two to five ATP mo-
lecules through this mechanism [40,55], assuming that the pro-
tons passed into the intermembrane space cannot leak back into
the mitochondrial matrix and that the electrons from NADH are
passed along the ETC without loss. In reality, both of these pro-
cesses may decrease the efficiency of aerobic respiration. Protons
may leak across the inner mitochondrial membrane, uncoupling
oxidative phosphorylation and generating heat [56], and electrons
may also leak from the electron transport chain and pass directly
to oxygen, producing superoxide, O2

� , the proximal source of
mitochondrial ROS [57]. The deleterious effects of these potentially
toxic compounds on nucleic acids, proteins and lipids have been
implicated in a range of pathologies from cancer and neurode-
generation to diabetes and atherosclerosis [58]. Electron leak from
the respiratory chain is more likely when the complexes are in
reduced states [56]. This will occur if NADH is supplied to the
electron transport chain at a higher rate than the downstream
reduction of oxygen can take place [59], such as following cyto-
chrome c release during apoptosis or under conditions of hypoxia
[57]. As mitochondrial hyperpolarisation decreases the rate of re-
spiration [61], an increased membrane potential is associated with
increased mitochondrial superoxide production [62]. Uncoupling
proteins may decrease the membrane gradient and thus decrease
superoxide production [63], and uncoupling has been linked to
increased lifespan [64]. However, such an approach may waste
energetic resources and limit ATP production, so the cell employs
defence systems, maintained by NADPH, to minimise the negative
effects of ROS. Thus, while increased NADH levels may increase
superoxide production [65], increased NADPH levels may mini-
mise ROS-induced damage. There is therefore a striking contrast
between the intracellular roles of these structurally similar co-
factors, with their relative abundance relating to the level of oxi-
dative stress within a particular metabolic phenotype.

2.2. Maintenance of antioxidant defences by the NADP pool

The neutralisation of superoxide begins with its rapid conver-
sion into hydrogen peroxide H2O2, by superoxide dismutase (SOD)
[66]. Loss of SOD activity causes severe pathology. For example, its
knockout in mice causes anaemia, neurodegeneration, severe
muscle weakness and reduced lifespan [67]. However, hydrogen
peroxide is itself a reactive oxygen species. In contrast to super-
oxide generated by the ETC, whose negative effects are confined to
the mitochondria, hydrogen peroxide carries no net charge, al-
lowing it to diffuse further and inflict damage within the rest of
the cell [68], causing DNA strand breaks in the nucleus, leading to
mutations [69], and activating DNA repair enzymes which carry
negative downstream consequences including the consumption of
NADþ and depletion of mitochondrial substrate supply [70,71].
Hydrogen peroxide is further neutralised by catalase, which di-
rectly decomposes two molecules of hydrogen peroxide into mo-
lecular oxygen and two molecules of water. However, the Mi-
chaelis constant (Km) of catalase for H2O2 is significantly higher
than that of the so-called peroxidases [72]. These thiol-linked
antioxidant systems, including glutathione peroxidase (GPX) and
peroxiredoxin (PRX), therefore act as the first line of defence
against hydrogen peroxide, with catalase playing a role only when
the peroxidases are overwhelmed [56]. Two reducing equivalents
are required for the reduction of hydrogen peroxide to water in
GPX and PRX, provided by glutathione (GSH) and thioredoxin
(TRX) respectively. Glutathione reductase and thioredoxin re-
ductase then restore these thiols back to their reduced form to re-
establish their antioxidant function. Both enzymes use NADPH as
an electron donor and the balance between use of the GPX and
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PRX systems differs between tissues [73,74]. Depleted GSH and
TRX levels have been associated with a range of pathologies, in-
cluding cancer, neurodegenerative diseases and alcohol-linked li-
ver disease [75–77]. Maintenance of the NADP pool in a reduced
form is thus crucial to maintaining cell and tissue health [7].

Instead of its oxidation to pyruvate in glycolysis to produce
NADH, the oxidation of glucose to ribulose 5-phosphate in the
pentose phosphate pathway may alternatively be used to produce
cytosolic NADPH [1]. The first of two NADPH-producing enzymes
in the pathway, glucose 6-phosphate dehydrogenase, has an affi-
nity for NADPþ700-times higher than for NADþ[78], allowing the
NADPH/NADPþ ratio in the cytosol to be maintained high (at
43:1), independently of the NAD pool redox ratio [9]. Following
this oxidative branch of the pathway [79], continued non-oxida-
tive metabolism of ribulose 5-phosphate may occur, allowing the
production of ribose 5-phosphate. The ribose sugar forms part of
the structure of ATP, NAD and NADP and, crucially, forms the
backbones of RNA and DNA. The pentose phosphate pathway is
thus highly active in rapidly dividing cells, such as cancers [80],
and the NADPH produced provides the reducing equivalents for
lipid synthesis, a crucial requirement for cell proliferation [81]. As
is the case for NAD, a shuttle equilibrates the redox state of NADP
across the inner mitochondrial membrane, using citrate and α-
ketoglutarate [82–84], as shown in Fig. 1. Mitochondrial NADPH
may also be generated by the oxidation of malate to pyruvate by
malic enzyme, which plays an important role in insulin secretion
[85]. However, the extent to which any NADP-associated dehy-
drogenase can be used for NADPH production is crucially depen-
dent on the NADPþ concentration. This is generated by the
phosphorylation of NADþ , which is uniquely catalysed by NAD
kinase [7]. As NADPH levels are determined by the availability of
NADPþ , NAD kinase plays a vital upstream role in controlling the
cellular concentration of NADPH in addition to that played by the
individual dehydrogenases [86,87].

The crucial involvement of NADPH in maintaining the GSH and
TRX pools implies a purely antioxidant role for this cofactor, in
contrast to NAD and the direct links between its redox state and
ROS generation by the ETC. However, in some tissues, NADPH may
display pro-oxidative behaviour due to the expression of NADPH
oxidase [88]. This multisubunit complex assembles on cell mem-
branes where it catalyses the reduction of molecular oxygen to
superoxide, using NADPH as the electron donor. The importance of
this enzyme was first recognised in white blood cells [89], which
engulf and destroy invading pathogens by phagocytosis. This is
thought to be driven by the molar concentration of superoxide
produced by the NADPH oxidase at the vacuolar membrane in the
respiratory burst [90]. A whole family of NADPH oxidases have
been identified and appear to play physiological signalling roles
[91]. ROS signalling mediated by the NADPH oxidase is involved in
wound healing, regulation of renal blood flow and the generation
of otoconia in the ear, to name but three of many [89]. The balance
between the pro- and anti-oxidant roles of NADPH is thus de-
pendent on the relative expression of NADPH oxidase and the
peroxidases. NADPH oxidase is able to produce superoxide at a
maximal rate around five times greater than a single glutathione
reductase enzyme can utilise NADPH for antioxidant purposes
[92–94]. However, the Km for NADPH in glutathione reductase is
much smaller than that of NADPH oxidase (16 mM vs. 110 mM
[94,95]). At physiological NADPH concentrations (�100 mM [96]),
NADPH will only power pro-oxidative reactions to a greater extent
than anti-oxidative reactions when the concentration of NADPH
oxidase is more than approximately a third of that of the perox-
idases, based on Michaelis-Menten kinetics. A search of pro-
teomics data [97] reveals that such levels are only encountered in
phagocytic white blood cells such as neutrophils and monocytes,
where the balances of NADPH oxidases to peroxidases are around
100 and 1 respectively [98,99]. In all other tissues, including brain,
liver, kidney, heart and lung, peroxidases outnumber members of
the NADPH oxidase family (NOX1–5 and DUOX1–2) by around 10
to one [98,100]. Thus, in the majority of tissues, NADPH primarily
acts to prevent, rather than promote, the effects of ROS.

2.3. Interconnectivity of NAD and NADP pools

While dehydrogenases associated with the TCA cycle or the
citrate-α-ketoglutarate shuttle may contribute, the primary path-
way for the maintenance of a reduced NADP pool inside the mi-
tochondria in a large number of cell types involves the direct
passage of reducing equivalents from NADH to NADPþ by the
mitochondrial nicotinamide nucleotide transhydrogenase (NNT)
[101]. Like ATP synthase, the forward reaction of this inner-
membrane protein is powered by the translocation of protons into
the mitochondrial matrix [102]. A loss-of-function mutation of the
NNT in C57BL/6J mice, first recognised in 2005 [9], has helped to
establish the importance of this enzyme [103]. NNT expression
differs between cell types, being highest in the heart and kidney
[104]. Approximately half of the mitochondrial NADPH in the brain
is believed to depend on the action of the NNT, and its inhibition
causes significant oxidative stress [73]. Thus, this enzyme allows
the reducing power produced by the citric acid cycle to be split
into an ATP-generating portion as NADH, and an antioxidant
portion, used to neutralise the ROS generated during the routine
action of the electron transport chain, as NADPH [103,105].
Alongside this direct link inside the mitochondria, the NAD and
NADP pools are also linked in the cytosol by interactions between
the pentose phosphate pathway and glycolysis. The non-oxidative
branch of the pentose phosphate pathway supports conversion of
the ribulose 5-phosphate produced by the oxidative branch into
various glycolytic intermediates by a network of enzymes [80,106].
This provides pathways that control the relative production of
NADH, NADPH, ATP and ribose 5-phosphate depending on the
instantaneous metabolic requirements of the cell [79,107], and
regulation occurs through feedback between metabolome and
transcriptome [108]. The precise pathways utilised will cause
varying effects on the redox states of both the NAD and NADP
pools.

The key role of the NNT and the network of interactions taking
place in cytosolic glucose metabolism highlight that the pathways
involved in maintenance of the NAD and NADP pools in their se-
parate redox states are highly interconnected. Indeed, in addition
to the malate-asparate and citrate-α-ketoglutarate shuttles pro-
viding separate transmission of NAD and NADP redox state be-
tween cytosol and mitochondria, a pyruvate-malate shuttle in
which the redox state of the cytosolic NADP pool is coupled to that
of the mitochondrial NAD pool has also been observed [109]. Ad-
ditional complexity in these redox networks also arises from the
reversibility of a number of the reactions. For example, during
ischaemia, the citric acid cycle may reverse and consume NADH
[39], the NNT may oxidise NADPH to produce NADH when the
membrane potential is collapsed [104] or lactate dehydrogenase
may reverse, using lactate as a metabolic substrate, producing
NADH in the cytosol alongside pyruvate for aerobic ATP produc-
tion [110]. Indeed, it has been suggested that lactate secreted by
astrocytes may serve as the primary energy source for neurons in
the brain [111]. Thus, the highly contrasting intracellular roles of
the NAD and NADP pools and their separate redox states are
supported by a complex and interconnected network of pathways.

2.4. Intrinsic fluorescence of reduced NADH and NADPH

The light absorption properties of NADH and NADPH are
identical; spectra peak at 340 nm with a full width at half
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maximum (FWHM) of �60 nm [10]. The molecular orbitals in-
volved in this excitation are localised to the nicotinamide ring of
the molecule, the redox-active region [112]. Quantum-chemical
calculations have shown that removal of the hydride ion carried by
NADH or NADPH, forming NADþ or NADPþ , causes the energy of
the highest occupied molecular orbital (HOMO) to decrease by
2.96 eV. However, the energy of the lowest unoccupied molecular
orbital (LUMO) decreases by only 1.99 eV, meaning the energy
difference between the two states involved in the light-induced
transition is 0.97 eV larger than that of the electron-carrier in its
reduced form. This is caused by the increased positive charge of
the carbon atoms bonded to the nitrogen in the nicotinamide ring
in NAD(P)þ compared to NAD(P)H [11]. As a result, HOMO to
LUMO excitation requires more energy in the oxidised cofactors
and their absorption spectrum is blue-shifted relative to their re-
duced counterparts, peaking at around 220 nm. Optical in-
vestigation of NADþ and NADPþ is not practical inside living
tissues as absorption by and subsequent mutation of DNA will be
significant at these ultraviolet wavelengths [114]. However, NADH
and NADPH represent viable targets as their absorption lies in a
window between that of DNA to the blue and flavin, a similarly
abundant fluorescent redox cofactor, to the red [115].

Due to their �104 times larger mass, the nuclei of the mole-
cules remain static over the femtosecond timescales at which
electronic excitation takes place [116]. As excitation of NADH and
NADPH shifts electron density from the nitrogen of the nicotina-
mide ring towards the amide group [112], shown in Fig. 2, bond
strengths become altered. The atoms will readjust to their lowest
excited state potential energy configuration on the picosecond
timescale, with energy liberated to the surrounding medium [117].
Fluorescence occurs when the excited molecule relaxes back to the
ground state by emitting a photon, with the vibrational energy lost
to the surroundings in the excited state causing the light emitted
to be of longer wavelength than the light absorbed. The emission
spectrum is therefore red-shifted relative to the absorption spec-
trum [118]. As with the absorption spectra, the emission spectra of
NADH and NADPH are identical, peaking at 460 nm with FWHM
100 nm [10]. The shared absorption and emission properties of the
two electron-carriers give rise to the combined signal being la-
belled as NAD(P)H.

Fluorescence is only one of a number of possible routes by
which a molecule in the excited state can return to the ground
Fig. 2. NADþ and NADPþ(A and C) differ from NADH and NADPH (B and D) by the addit
NADH and NADPH causes a shift in electron density from the nicotinamide nitrogen towa
two cofactors and lies far from the adenine end of the molecule where the phosphate gro
same. The combined fluorescence observed in live samples, such as HeLa cells (E), is of
state [119]. Alternatively, the energy of excitation can be trans-
ferred during collisions with surrounding molecules or other
molecular groups attached to the fluorophore in a process known
as quenching [120]. Furthermore, the energy absorbed may in-
stead initiate motion within part of the molecule to return it to its
ground state configuration. This process is known as internal
conversion [2]. As quenching and internal conversion do not in-
volve the emission of a photon, both are examples of non-radiative
de-excitation processes. In the absence of non-radiative de-ex-
citation, a particular molecular species will remain in its excited
state for an amount of time dictated by the intrinsic electronic
structure of the molecule [121]. The introduction of non-radiative
decay pathways will increase the rate at which the molecules re-
turn to the ground state, decreasing the average dwell time in the
excited state. This interval, typically of the order of nanoseconds, is
known as the fluorescence lifetime [122]. As the rates at which
quenching and internal conversion occur will reflect the im-
mediate surroundings of the molecule, changes in fluorescence
lifetime can be used to infer changes in the environment with
which a fluorescent species is interacting [2,120,123–125].

Aqueous NADH solutions at room temperature display two
fluorescence lifetimes of approximately 0.3 ns and 0.7 ns [126].
These values are identical to the fluorescence lifetimes of solutions
of NADPH [2], which is unsurprising given the distance of the
phosphate group from the chromophoric nicotinamide ring. These
apparently homogeneous samples must therefore consist of two
distinct fluorescent species. Unresolved disagreement exists in the
literature as to whether these two species correspond to con-
trasting interactions between the nicotinamide and adenine rings
in extended and folded configurations of the cofactor [127,128] or
reflect competing excited state processes taking place on the ni-
cotinamide ring alone [112,129]. However, it has long been es-
tablished that binding to enzymes increases the fluorescence
lifetimes of NADH and NADPH to values between 1 ns to 6.5 ns,
with the precise lifetime increase dictated by the enzyme to which
it binds [127,130–13,3,96]. The cause of the lifetime increase has
previously been assumed to be due to the cofactor being shielded
from quenching in the binding site [135]. However, this would
imply that an unrealistically large (molar) concentration of
quenchers were present in the surrounding medium [136] and so
interactions between the cofactor and the binding site must also
contribute [137]. Restricting the conformational freedom of the
ion of a hydride ion to the nicotinamide ring of the molecule. Absorption of light by
rds the oxygen of the amide group (shown in blue). As this group is identical in the
up exists in NADP not NAD, the spectral characteristics of the two molecules are the
ten labelled NAD(P)H.
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nicotinamide moiety has been shown to dramatically increase the
lifetime of NAD(P)H by shutting down internal conversion path-
ways [2,138] and so differences in lifetime when bound to differ-
ent enzymes are likely mediated by the rigidity of each enzyme-
cofactor complex [139].

The ratio of photons emitted as fluorescence to total photons
absorbed is known as the fluorescence quantum yield of a mole-
cule. NADH and NADPH each possess a relatively low quantum
yield of 2% when isolated in solution [127]. Enzyme binding de-
creases the likelihood of return of an excited molecule to the
ground state via a non-radiative pathway and leaves the radiative
rate largely unaffected [133]. This increases the quantum yield in
proportion to the increase in lifetime. Tailor-made fluorescent dyes
will be designed and synthesised to possess high quantum yields
in order to maximise their brightness. For example, the dyes
rhodamine 6G and fluorescein have quantum yields of 95% and
97% respectively [140]. Achieving such high quantum yields for
NAD(P)H would require an enzyme to increase the lifetime of the
cofactor to around 20 ns, significantly longer than has ever been
observed. Increases in lifetime to between 1 ns and 6.5 ns corre-
spond to increases in quantum yield to only 5% and 33% respec-
tively. Nevertheless, with laser excitation and sensitive detectors,
this metabolic cofactor still represents a viable target for studying
mitochondrial redox state using fluorescence imaging.
3. Practical application of live-cell NAD(P)H fluorescence

3.1. NAD(P)H fluorescence in live cells and tissues

While the historical development of NAD(P)H autofluorescence
monitoring was carried out on custom-built fluorometry systems
[13,14], the technique has been made more accessible by the wide
availability of confocal microscopy in the 21st century laboratory.
High quality objective lenses and precise laser control by galvan-
ometer mirrors ensures that the fundamental restriction to the
lateral resolution of the obtained images is the size of the dif-
fraction-limited focused illumination spot that is scanned across
the sample [141]. For visible light, this corresponds to around
250 nm. As the width of a mitochondrion lies between 500 and
1000 nm [142], mitochondrial morphology can be successfully
resolved with confocal microscopy [143]. In the case of NAD(P)H
fluorescence, this allows the response of the mitochondrial redox
state to an external perturbation to be differentiated from that of
the cytosol [20]. Spectrally-distinct mitochondrially-targeted dyes,
such as tetramethylrhodamine methyl ester (TMRM) may be used
to aid the identification of organelle-specific regions of interest [4].
The “confocal pinhole”, an aperture placed in front of the detector
that rejects out of focus light and gives confocal microscopy its
name, allows images to be taken at different depths through the
sample [144]. Following this “optical sectioning”, the slices can be
reconstructed into a three-dimensional image, permitting the full
spatial organisation of the mitochondrial network inside a live cell
or tissue to be characterised [145].

Performing fluorescence imaging of NAD(P)H may require the
addition of an ultraviolet laser to an existing confocal system, due
to the blue-shifted absorption wavelength of the cofactor in
comparison to most visible fluorophores. For example, our setup
consists of an inverted LSM 510 laser scanning confocal micro-
scope (Carl Zeiss) with 351 nm excitation provided by an argon ion
laser (Coherent Enterprise UV), while the emitted signal is mea-
sured after passing through a 435–485 nm bandpass emission
filter to exclude the small amount of contaminating flavoprotein
fluorescence that may occur at this wavelength [146]. As the
transmittance of microscope optics decreases rapidly at wave-
lengths below 400 nm, it is necessary to use quartz optics in the
excitation path. Additionally, the relatively weak fluorescence of
NAD(P)H compared to conventional fluorophores may require sa-
crifice of axial resolution for signal intensity by using the largest
confocal pinhole available. Two-photon excitation offers an alter-
native to the application of a UV laser [147]. Here, two photons are
absorbed effectively simultaneously to provide the total energy
required for transition from the ground to excited state [148]. Each
photon provides half the energy needed for the transition, so the
wavelength of the excitation light required doubles to 700–
740 nm, negating the need for quartz optics while maintaining the
emission at 460(750) nm. However, as two-photon absorption is
a low probability event, significant excitation will only take place
within the focal volume of the objective lens, with the high photon
flux output by a pulsed, typically Ti: sapphire, laser also required
[149]. This offers the advantage of inherent optical sectioning
without the need for a pinhole, with axial resolutions of around
500 nm comparable with those achievable using single photon
confocal microscopy [147,150]. However, this may be a drawback
for autofluorescence imaging where acquisition times may need to
be increased to achieve the same signal levels as for single-photon
excitation, lowering the temporal resolution of the measurement.
Two-photon excitation also allows images to be acquired at a
greater depth into a thick sample compared to single-photon
methods (up to 1 mm, compared to 100 mm [149]) allowing mi-
tochondrial redox state to be investigated in complex living tissue
preparations as well as simple cell culture models.

At each pixel of an image, the level of NAD(P)H fluorescence
will reflect the concentration of the reduced forms of the two
cofactors at that location. This is governed by the total size of the
NAD and NADP pools, and the balance of oxidation and reduction
reactions. Assuming that both NAD biosynthesis and reduction of
NADþ to NADH by the TCA cycle remain constant over the time-
scale of the changes (within seconds [115]), the observed signal
will reflect changes in the NAD(P)H/NAD(P)þ ratio. This can be
clearly demonstrated by considering the effect of alterations in the
rate of the ETC on the redox state of the mitochondrial NAD pool.
Indeed, such correlations were used by Chance et al. to first
identify NAD(P)H as the source of live-tissue autofluorescence in
this spectral region [17]. Decreased ETC activity, for example fol-
lowing a decreased oxygen supply, will limit the rate of oxidation
of NADH at complex I, increase the NADH/NADþ redox ratio, and
increase mitochondrial NAD(P)H fluorescence. Conversely, in-
creasing ETC activity, such as by uncoupling, will increase oxida-
tion of NADH at complex I, decrease the mitochondrial NADH/
NADþ ratio and decrease NAD(P)H fluorescence [115]. The activ-
ities of redox-associated pathways can therefore be qualitatively
assessed by measuring the change in the NAD(P)H fluorescence
level in response to a carefully chosen external perturbation. For
example, taking advantage of the spatial resolution afforded by
modern confocal imaging, the activity of the malate-aspartate
shuttle could be estimated by observing the change in NAD(P)H
fluorescence distribution upon the application of its inhibitor
aminooxyacetic acid (AOAA) [38]. If the shuttle was highly active,
its inhibition would decrease the fluorescence of the mitochondria
coupled with an increase in the rest of the cell. Other examples of
monitoring the change in NAD(P)H intensity in response to an
environmental change include the demonstration that β-amyloid
causes astrocytic oxidative stress in Alzheimer’s disease [70],
spatial variations in the redox response to hypoxia in cardiomyo-
cytes [151] and hyperactivation of the NAD-consuming DNA repair
enzyme poly-adenosine ribosyl polymerase (PARP) during gluta-
mate excitotoxicity [71].

In systems in which it is necessary to compare two separate
biological preparations, direct comparison of the NAD(P)H fluor-
escence intensity will not provide a comparison of their individual
redox states, as the total NAD(P) pool may differ between the two



Fig. 3. Fluorescence lifetime imaging microscopy (FLIM) records a time-correlated
single photon counting (TCSPC) histogram at each pixel of the image. Fitting of a
biexponential decay model to this data, using the minimisation of the reduced chi-
squared ( χR

2) statistic as a goodness-of-fit parameter, gives the average lifetime of
bound NAD(P)H species τbound at that pixel, alongside the fraction of the NAD(P)H
that is bound to enzymes αbound.
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samples. For example, two cell types with identical resting NAD(P)
H levels may have drastically different NAD(P)þ levels. As the
mitochondrial NADH/NADþ redox ratio, and not the absolute
NADH level, will reflect the balance between mitochondrial NADH
supply and demand, linked to the level of superoxide production
at the respiratory chain [57], a protocol for measuring this quantity
in living cells has found widespread use. By applying drug treat-
ments chosen to maximally reduce or maximally oxidise mi-
tochondrial NAD, direct comparisons of redox state can be made
between separate samples. Application of the uncoupler carbonyl
cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) will cause
maximal oxidation of the mitochondrial NADH pool by the action
of NADH dehydrogenase, whereas inhibition of complex IV of the
electron transport chain using cyanide will stop respiration,
maximally reducing the mitochondrial NADH pool. The intensity
of NAD(P)H fluorescence observed in response to FCCP and cya-
nide treatment then defines a dynamic range for the comparison
of the emission intensity under the initial untreated conditions.
This resting intensity can be normalised and scaled between the
minimum and maximum values obtained with the drug
treatments to give an approximate value of the mitochondrial
NADH/NADþ ratio [115]. This approach has been applied in a wide
range of contexts, ranging from the role of PINK1 in neurodegen-
eration in Parkinson's disease [152] and the effects of IF1 protein
and polyphosphate expression on mitochondrial function
[153,154], to differences in mitochondrial redox state between
kidney tubules [155] and role of the maternal diet in oocyte me-
tabolism [156].

In principle, if compounds could be applied that unequivocally
caused maximal oxidation and reduction of the separate popula-
tions of cytosolic NAD, cytosolic NADP and mitochondrial NADP,
the redox ratios of these cofactor pools could be estimated in a
similar manner to the FCCP/cyanide assay for mitochondrial NAD.
However, the established links between the pathways that main-
tain each of these four populations in their respective redox states
mean that any external perturbation is likely to influence pools
other than those targeted. For example, while FCCP causes com-
plete collapse of the mitochondrial membrane potential, compu-
tational modelling [157] suggests that decreases of just 25 mV,
from a starting value of around 180 mV [158], are sufficient to
cause NNT reversal [104]. The model predicts that around 50% of
the total NADPH would be oxidised by this reversal, in addition to
a near-total oxidation of the NAD pool. This additional NADPH
oxidation upon FCCP application would cause the observed base-
line NAD(P)H signal to be lower than if NADH alone was being
oxidised, causing an overestimation of the NADH to NADþ ratio.
Based on the pool sizes and redox ratios quantified by Ronchi et al.
[9], the true ratio could be up to 46% smaller than that implied by
the measurements. Efforts have been made to isolate the con-
tribution of NADP to the total NAD(P)H signal by applying hydro-
gen peroxide to oxidise NADPH to NADPþ through the action of
glutathione reductase and thioredoxin reductase [104]. However,
as NADPH represents a conserved species with NAD kinase being
the key regulator of its concentration [87], the array of pathways
for its production will be upregulated under oxidative stress,
making it difficult to fully oxidise the NADP pool [160]. For decades
a method has been required for quantitative measurement of the
relative contributions of NADH and NADPH to the total NAD(P)H
signal to avoid these complications associated with the off-target
effects of external perturbations. As seen here, inhibitor-based
methods for assessing the relative contribution of the two pools
provide only qualitative comparisons, in an era where quantitative
biochemical assays are becoming ever more crucial [161]. The
application of fluorescence lifetime imaging microscopy to the
study of NAD(P)H seems at last to provide a potential solution to
these drawbacks [4].

3.2. Differences in fluorescence lifetime of NADH and NADPH in live
cells

Lifetime measurements had been employed as a sensitive
probe of the excited state behaviour of solutions of fluorescent
molecules since the mid 20th century [162]. However, these ap-
proaches were first adapted to perform measurements across two
spatial dimensions in the 1990’s, with the acronym FLIM in-
troduced to describe an apparatus used to acquire “images in
which the contrast is based upon the fluorescence lifetimes rather
than upon local probe concentrations or local intensity” [163]. In
1992, the fluorescence lifetime of NAD(P)H within live biological
samples was first measured [21]. This was performed on suspen-
sions of yeast in a cuvette and employed the time-correlated single
photon counting (TCSPC) technique [22], shown schematically in
Fig. 3. Now the standard approach in NAD(P)H FLIM, this method
involves repeatedly exciting the sample with a pulsed light source.
The illumination intensity is reduced so that, on average, only one
in 100 pulses causes the emission of a single fluorescence photon,
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which is registered by a sensitive detector. The time delay between
the incoming pulse and the emission of fluorescence is recorded
and the corresponding bin on a histogram of delay times is in-
cremented [125]. When the arrival times of sufficient numbers of
photons (typically more than 2000) have been registered, the
histogramwill provide sufficient data to allowmeasurement of the
exponential rates of decay of the excited state population. This is
achieved by fitting decay models to the data, providing the time
constant of the exponential decay corresponding to the fluores-
cence lifetime of the sample [164]. In the case of NAD(P)H in the
live yeast suspensions, a single lifetime did not adequately de-
scribe the observed fluorescence decay [21], as judged by the value
of the reduced chi-squared statistic. For a perfect agreement be-
tween model and data, this statistic is equal to one [2]. In light of
the NAD(P)H photophysics described above, the observation of
more than one lifetime inside living biological samples is not
surprising, indicating the presence of both freely diffusing and
enzyme bound NAD(P)H species.

FLIM performs the TCSPC method across a confocal image, al-
lowing the lifetimes of the fluorescent species present to be de-
termined at each pixel. While NAD(P)H displays two lifetimes
when free in solution and a wide range of different lifetimes when
bound to different enzymes [127,130–13,13,96], NAD(P)H FLIM
studies typically resolve two lifetimes at each pixel, of approxi-
mately 0.4 ns and 2–4 ns [4,96,165,166]. This results from signal-
to-noise constraints imposed by the requirement to maintain the
integrity of the live biological sample being imaged, necessitating
very low laser intensities and short imaging times. The values
themselves correspond to a concentration-weighted average of the
0.3 ns and 0.8 ns free lifetimes, labelled τfree, and an average of the
specific enzyme bound species present at that location, labelled
τbound [4]. As fluorescence lifetime measurements correlate with
changes in the local environment of the fluorophore, intracellular
NAD(P)H lifetimes were quickly recognised to be sensitive to
changes in the metabolic state of a tissue. For example, in 1996 it
was observed that the fraction of NAD(P)H fluorescence emitted
by enzyme-bound species, labelled αbound, would decrease as the
availability of oxygen was decreased [167]. In a model of oral
carcinogenesis, Skala et al. showed that the value of τbound itself
was significantly shorter in neoplastic tissue than in adjacent
healthy tissue, decreasing from 2.03 ns in control regions to 1.6 ns
in precancerous regions, indicating a difference in the distribution
of enzymes that the NAD(P)H present was binding to between the
two tissue types [165]. The authors then demonstrated that mi-
micking hypoxia by application of cobalt chloride to cell cultures
[168] also caused a significant decrease in the enzyme bound
lifetime, perhaps indicating a Warburg-like inhibition of oxidative
phosphorylation upon carcinogenesis. Alongside recent work
correlating NAD(P)H fluorescence decay characteristics to phos-
phorescence-based measurements of oxygen concentrations [169],
such observations demonstrate clear potential for monitoring
metabolic state using NAD(P)H FLIM.

Between the early demonstrations in the 1990's and the pre-
sent day, more than 1500 NAD(P)H fluorescence lifetime imaging
studies have been published (Google Scholar), describing changes
in the lifetime characteristics of live-cell NAD(P)H fluorescence
in situations ranging from the onset of apoptosis [166,170,171],
necrotic deterioration of skin [172] and wound healing [173] to
stem cell differentiation [174], blood-glucose sensing [175] and
aggregation of α-synuclein in Parkinson’s disease [176]. However,
until recently, the mechanisms linking the known metabolic shifts
in these biological models to the changes in NAD(P)H lifetime
were largely unknown, limiting their value as a biomedical assay.
Combining the Warburg hypothesis of 1924 with the frequent
observation of differences in NAD(P)H lifetime between healthy
and cancerous tissue leads to the popular assumption that NAD(P)
H lifetime changes reflect changes in the balance of ATP produc-
tion between oxidative phosphorylation and glycolysis [177].
However, oncogenic metabolic transformations are now known to
be significantly more complex than a simple shift from aerobic to
anaerobic ATP production, involving changes in both NAD- and
NADP-associated pathways [81]. Indeed, recent studies have sug-
gested that the relative rates of glycolysis and oxidative phos-
phorylation do not directly dictate the intracellular NAD(P)H
fluorescence lifetime and that any relationship between these
metabolic pathways and the fluorescence decay characteristics of
NAD(P)H in the tissue may be considerably more nuanced [4,178].

Despite its relatively similar abundance [9,87], identical spec-
tral characteristics [10], equally important role in intracellular
metabolism [1] yet independent enzyme binding sites [179], the
involvement of NADPH alongside NADH in determining the in-
tracellular NAD(P)H fluorescence lifetime has largely been ignored.
However, in 2008, Niesner et al. performed a novel NAD(P)H FLIM
study on granulocytes exposed to Aspergillus fumigatus [180]. As
discussed above, white blood cells contain sufficient NADPH oxi-
dase for NADPH to act as a pro-oxidant [97–99]. Contact between
the pathogen and the cell membrane initiates assembly of the
NADPH oxidase and locally increased glucose flux through the
pentose phosphate pathway, allowing production of the molar
concentrations of superoxide required to break down the fungus
[90,181]. The authors observed the lifetime of enzyme bound NAD
(P)H to be approximately 2 ns within the majority of the granu-
locytes, but localised regions of the cytosol in contact with the
fungus displayed increased enzyme bound lifetimes of 3.7 ns. This
offered the possibility that increased NADPH levels are associated
with increased enzyme bound NAD(P)H fluorescence lifetimes.

To systematically investigate the role of NADPH in determining
the time-resolved fluorescence of intracellular NAD(P)H, we re-
cently compared the NAD(P)H fluorescence lifetime in cell lines in
which NAD kinase was either knocked down or overexpressed
[4,87]. Knockdown caused a 3-fold decrease in NADPH con-
centration relative to control cells and was associated with an
enzyme-bound NAD(P)H lifetime of 2.7 ns, whereas over-
expression caused a 4- to 5-fold increase in NADPH relative to
control and an increase in the lifetime of enzyme bound NAD(P)H
to 3.8 ns. Selectively unbinding NADPH from its enzymes by ex-
posure to the competitive inhibitor epigallocatechin gallate
(EGCG) decreased the lifetime in the overexpressing cells back to
3.1 ns [182]. As altered NAD kinase expression caused little effect
on NADH levels [87], these data implied that intracellular bound
NADPH shows a significantly longer fluorescence lifetime than
bound NADH. These results therefore suggested that the lifetime of
enzyme-bound NAD(P)H in a particular cell type is determined by
the balance of NADPH to NADH. In support of this hypothesis, we
observed significantly higher glutathione levels in cell types of the
mammalian cochlea in which the enzyme bound NAD(P)H life-
time, and therefore the NADPH/NADH ratio, was increased [4,183].
As the relative sizes of the NADPH and NADH populations dictates
the balance between ROS defence and production, an increased
enzyme-associated NAD(P)H fluorescence lifetime may therefore
reflect an increased antioxidative capacity and subsequently de-
creased oxidative stress.

To further test the hypothesis that the NADPH/NADH balance
determines the enzyme-bound intracellular NAD(P)H lifetime, we
compared the results of FLIM measurements on cardiomyocytes
from C57BL mice in which the NNT was present or absent [104].
While the enzyme-bound NAD(P)H lifetime was 2.5 ns in both cell
types, addition of FCCP significantly increased this value to 2.8 ns
in the cells lacking the NNT only. The lack of change in the NNT-
expressing cells was interpreted as a reflection of the equal oxi-
dation of NAD and NADP due to the simultaneous action of com-
plex I of the respiratory chain and the reverse action of the NNT,
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oxidising NADPH to produce NADH in response to the FCCP-in-
duced collapse of the mitochondrial membrane potential. In the
absence of the NNT, NADH was still oxidised in response to FCCP,
but there was no simultaneous oxidation of NADPH, causing the
lifetime to increase. Inhibition of the electron transport chain in
these cells with cyanide significantly decreased the bound NAD(P)
H lifetime, to 1.9 ns in the absence of NNT and 2.1 ns in its pre-
sence. As inhibition of respiration causes accumulation of NADH,
these results also suggest that the NADPH/NADH balance defines
the enzyme bound NAD(P)H lifetime. The slightly larger value with
the NNT present likely reflects its primary action in converting
part of the abundance of NADH into NADPH. These results helped
to demonstrate that reversal of the NNT increases oxidative stress
during pathological cardiac overload, as mice lacking this enzyme
were protected from heart failure [104]. Such findings could lead
to novel strategies for targeting diseases mediated by mitochon-
drial ROS production, highlighting the utility of NADH and NADPH
fluorescence as an intrinsic biochemical probe.

3.3. Separating NADH and NADPH using fluorescence lifetime
imaging

The results discussed above imply that a rigourous under-
standing of the differential intracellular photophysics of NADH and
NADPH will permit the quantitative assessment of their con-
centrations using NAD(P)H FLIM [2,4,104,180]. As a first step to-
wards this goal, we made the assumption that the two cofactors
possess finite and distinct fluorescence lifetimes when bound to
enzymes inside tissue. We used computational modelling to show
that the enzyme-bound lifetime of NAD(P)H fluorescence re-
presents a concentration-weighted average of the specific enzyme
populations present. By using HPLC assessment of the pyridine
nucleotide contents of the NAD kinase overexpression and knock-
down cell lines [87], we estimated the fluorescence lifetimes of
intracellular bound NADPH and NADH to be 4.4(70.2) ns and 1.5
(70.2) ns respectively [4]. As the fluorescence intensity of a po-
pulation of molecules Itotal is dependent on both its concentration
and its lifetime, FLIM allows fluorescence intensities to be con-
verted into relative concentrations [184]. This allowed us to derive
the following expressions for the concentrations of bound NADH
and NADPH inside a tissue,
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These expressions rely on the arbitrary constant k, which is
related to variables describing the experimental system such as
the temporal profile of the illumination pulses, the efficiency of
the detection apparatus and the absorption cross sections of NADH
and NADPH [184]. Therefore in their present form, Eqs. 1 and 2
allow only semi-quantitative assessment of the relative con-
centrations of NADH and NADPH. To make this technique fully
quantitative to output concentrations in molar units, it is possible
to measure k using a reference solution of NADH [133,96].

Application of Eqs. 1 and 2 allowed us to show that the redox
ratio of the NADP pool is more oxidised in the nucleus than in the
cytosol of HEK293 cells, while the redox state of the NAD pool is
the same in the two compartments [4]. This is consistent with an
absence of pentose phosphate pathway enzymes in the nucleus
despite the presence of glycolytic enzymes [185]. We also used
these formulae to show that EGCG treatment in the NAD kinase
overexpressing cells affected only the bound NADPH and not
bound NADH concentrations [4]. This reflected the specific in-
hibition of NADPH binding by EGCG [182], suggesting that this
simple model may be a good first approximation to understanding
the link between NAD(P)H biochemistry and intracellular fluor-
escence decay dynamics. Work is now continuing on developing
more advanced models for assessing the abundances of the two
pools using fluorescence lifetime measurements [186] in order to
make this technique more widely accessible to the redox biology
community.
4. Future directions in NAD(P)H autofluorescence

The coupling of ATP production to the reduction of oxygen to
water in the mitochondria comes at the cost of oxidative stress.
NAD and NADP lie at the heart of the balance between energy
supply and ROS defence, and imbalance between the two leads to
cellular dysfunction. Tools to study the behaviour of these cofac-
tors in living tissues are therefore invaluable to our understanding
of the role of mitochondrial redox state in health and disease.

Biochemical assays such as high-performance liquid chroma-
tography (HPLC) offer direct measures of the redox state of NAD
and NADP. However, imaging techniques based on the intrinsic
fluorescence of these cofactors allow these measurements to be
carried out in complex tissue preparations non-destructively,
where differences are detectable between different cell types with
subcellular resolution. Such methods may play an invaluable role
in establishing the existence of novel metabolic coupling pathways
between different cell types, such as the astrocyte-neuron lactate
shuttle in the brain [187]. In addition to these advantages in basic
biomedical research, further understanding the origins of varia-
tions in the fluorescence properties of NADH and NADPH in living
tissues will also advance the field of autofluorescence diagnostics.
While a range of clinical tools have been devised for imaging NAD
(P)H fluorescence in situ [23–27], their practical application has
been hindered by a lack of understanding of the metabolic
meaning of the resulting data. Nevertheless, the crucial role of
altered metabolism in pathogenesis and the centrality of NAD and
NADP to these processes would suggest that an increased under-
standing of intracellular NAD(P)H fluorescence could contribute,
alongside other laser-based techniques such as Raman spectro-
scopy [188], to the development of optical diagnostic devices.

Throughout this review, it has been clear that the pathways
involved in determining the steady state NADH and NADPH levels
represent a complex and interconnected network. The standard
approach of applying pharmacological perturbations to a cell to
isolate the contributions of NAD(P)H fluorescence from particular
enzymatic subsystems can therefore be troublesome due to un-
expected differential effects on neighbouring pathways. Under
these circumstances, the understanding of NAD(P)H fluorescence
changes may be aided by computational modelling [157,189,190].
Such approaches have already been applied successfully to in-
tensity-based monitoring of redox state [191], but their adaptation
to lifetime measurements is yet to be performed.

While our recent work has suggested that increased NADPH
levels increase the mean fluorescence lifetime of enzyme-bound
species, the reasons why this cofactor should display a longer
fluorescence lifetime compared to that of NADH within the com-
plex environment of the cell is not obvious. Differences in the
fluorescence lifetime of NADH and NADPH when bound to their
respective enzymes could be caused by variations in the level of
conformational restriction of the cofactors in their corresponding
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binding sites [2]. However, discrimination between the two co-
factors is realised at the adenine end of the molecule [179], away
from the excited state localisation. Increased understanding of the
photophysics of NADH and NADPH when bound to their respective
enzymes will therefore be crucial in the ongoing advancement of
the NAD(P)H FLIM field. Such knowledge will increase the level of
metabolic information obtainable from these intrinsically fluor-
escent cofactors, and consequently enhance our understanding of
mitochondrial redox state in health and disease.
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