
 1 

Biological Sciences - Neuroscience 
Social Sciences - Psychological and Cognitive Sciences 
 

Title: Semantic representations in the temporal pole 

predict false memories 

 

Martin J. Chadwick1,2*, Raeesa S. Anjum2, Dharshan Kumaran1, Daniel L. Schacter3,4*, 

Hugo J. Spiers2†, Demis Hassabis1† 

 

Affiliations:  

1Google DeepMind, London, UK 

2Institute of Behavioural Neuroscience, Department of Experimental Psychology, 

Division of Psychology and Language Sciences, University College London, London, 

UK 

3Department of Psychology, Harvard University, Cambridge, MA, USA 

4Center for Brain Science, Harvard University, Cambridge, MA, USA 

*To whom correspondence may be addressed. Email: mjchadwick@google.com or 

dls@wjh.harvard.edu 

†Joint senior authors 

 

Keywords: 

False Memory; Semantic; Temporal Pole; fMRI; Pattern Similarity 

 



 2 

Abstract 

Recent advances in neuroscience have given us unprecedented insight into the 

neural mechanisms of false memory, showing that artificial memories can be 

inserted into the memory cells of the hippocampus in a way that is indistinguishable 

from true memories. However, this alone is not enough to explain how false 

memories can arise naturally in the course of our daily lives. Cognitive psychology 

has demonstrated that many instances of false memory, both in the lab and the real 

world, can be attributed to semantic interference. While previous studies have 

found that a diverse set of regions show some involvement in semantic false 

memory, none have revealed the nature of the semantic representations 

underpinning the phenomenon. Here we use functional MRI (fMRI) with 

representational similarity analysis to search for a neural code consistent with 

semantic false memory. We find clear evidence that false memories emerge from a 

similarity-based neural code in the temporal pole, a region that has been called the 

“semantic hub” of the brain. We further show that each individual has a partially 

unique semantic code within the temporal pole, and this unique code can predict 

idiosyncratic patterns of memory errors. Finally, we show that the same neural code 

can also predict variation in true memory performance, consistent with an adaptive 

perspective on false memory. Together, our findings reveal the underlying structure 

of neural representations of semantic knowledge, and how this semantic structure 

can both enhance and distort our memories. 
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Significance Statement 

False memories can arise in daily life through a mixture of factors including 

misinformation and prior conceptual knowledge. This can have serious 

consequences in settings such as legal eyewitness testimony, which depend on the 

accuracy of memory. We investigated the brain basis of false memory with 

functional MRI, and found that patterns of activity in the temporal pole region of the 

brain can predict false memories. Furthermore, we show that each individual has 

unique patterns of brain activation that can predict their own idiosyncratic set of 

false memory errors. Together, these results suggest that the temporal pole may be 

responsible for the conceptual component of illusory memories.  

 

\body 

Each of us has a vast store of semantic knowledge that we apply to incoming 

sensory data in order to extract meaning from the world around us. Semantic 

representations are capable of capturing important structural features of the world 

at many different levels of abstraction, which allows for rapid and flexible responses 

to a diverse array of environmental challenges. This pre-existing knowledge 

structure guides ongoing cognition which usually aids performance, but under some 

circumstances can lead us into error (1–3). A striking example is the widely studied 

DRM (Deese, Roediger, and McDermott) false memory illusion (4, 5). In a typical 

DRM task, subjects are asked to memorize a set of words such as “snow”, “winter”, 

“ice”, and “warm”. After a delay, subjects will typically falsely remember having 

seeing the semantically related word “cold”. It is widely agreed that this memory 
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illusion is driven by the semantic relatedness between words contained in the 

encoding list (e.g. “snow”) and falsely remembered words that were not actually 

presented (e.g. “cold”). As such, it is thought that each list item automatically, but 

weakly, activates the semantically related concept (Fig. 1A). This activation leads to 

memory confusion either through a cumulative priming of the related lure (5, 6), or 

the encoding of the semantic overlap as a “gist” memory (3), resulting in a false 

memory unless the error is detected by some internal monitoring process (7). As 

such, the DRM effect provides a powerful method for investigating both the nature 

of false memories as well as the structure of semantic knowledge and its effects on 

cognition.  

  

Despite the well-characterized cognitive mechanisms involved in the DRM effect (7), 

its neural basis is currently not well understood. Previous neuroimaging and patient 

studies have provided robust evidence that a core network of regions in the medial 

and lateral temporal lobe, as well as frontal and parietal regions (8–16) is involved 

when encoding or retrieving semantic false memories. However, a mechanistic 

understanding of how these regions generate false memories is lacking. In 

particular, although it is known that the semantic relatedness between the different 

words drives the illusion (3, 6, 7), little is known about the neural basis of this 

semantic relatedness. Computational models of semantic cognition propose that 

concepts are represented by a similarity-based code in an amodal “semantic hub”, 

situated in the apex of the ventral processing stream in the temporal pole (17, 18). 

While other regions such as the temporo-parietal cortex (19) have also been linked 
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to the representation of abstract conceptual knowledge, the temporal pole is most 

consistently implicated in both patient and neuroimaging studies (17, 20, 21).  

 

These computational models therefore make clear predictions about the expected 

neural basis of semantic false memory. Namely, the temporal pole (TP) semantic 

hub should contain a similarity-based code such that the neural representations of 

DRM words reflect the known semantic relatedness between those words. 

Furthermore, the likelihood that a given word list will generate a false memory 

should be directly related to the degree of neural overlap. This prediction has not 

previously been investigated, despite the clear implications for understanding both 

false memory and the structure of semantic knowledge. Here we used functional 

MRI (fMRI) to measure the neural overlap between DRM lists and related lures, 

allowing us to directly test this prediction. 

 

Results 

We used a representational similarity analysis (RSA) approach, which uses the 

neural pattern similarity between pairs of stimuli to infer the representational 

similarity (22). This method is therefore well-suited for assessing neural overlap 

between semantic representations (23–25), as the degree of overlap should be 

directly reflected in the representational similarity. We used this approach to 

measure the degree of neural overlap between each set of DRM words and their 

related lure word (Fig. 1). Crucially, each DRM list is known to have a different 

probability of inducing a false memory, with some much greater than others (26, 
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27). If our prediction is correct, then we should find a brain region displaying a 

direct correspondence between the degree of neural overlap and false memory 

likelihood across the different DRM word lists. To measure the neural 

representations of the DRM word lists, eighteen participants viewed 40 separate 

four-word DRM lists, along with the 40 associated lure words (Table S1), while we 

collected fMRI data. While viewing the words, subjects performed an incidental 

categorization task (manmade or natural) in order to ensure that all words were 

processed at the semantic level. We used the canonical false recognition scores 

reported in (27) as our measure of false memory likelihood, and applied a 

searchlight analysis (28) across the whole brain to establish whether any brain 

region displayed the predicted positive correlation between neural overlap and 

false memory likelihood.   

 

This analysis revealed a significant cluster in the left temporal pole (TP), with no 

other significant information anywhere else in the brain.  This result provides 

evidence that this specific region is responsible for encoding the semantic 

relatedness between thematically related words (Fig. 2). Furthermore, this result 

shows that the precise level of neural overlap in the TP predicts the probability that 

a false memory will be constructed for a given DRM list. This result is therefore fully 

consistent with the computational accounts of semantic cognition, and 

demonstrates that a similarity-based code in the TP is capable of generating false 

memories. Strikingly, our measure of false memory likelihood is a canonical 

measure taken from an independent set of subjects (26, 27), yet we can nevertheless 
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successfully predict this information based purely on the neural data of our group of 

subjects. This result clearly demonstrates a robust level of agreement across 

different individuals in the neural representation of the concepts contained within 

the DRM lists. Thus, it appears that the TP is responsible for representing a shared 

conceptual space, which is a vital component of successful communication. For 

completeness, we also looked for regions displaying a negative correlation between 

neural overlap and false memory likelihood, although it is not clear that any such 

correlation is theoretically meaningful. This analysis revealed a single significant 

cluster in the right superior frontal gyrus (peak MNI coordinates: 24, 20, 50; 

Pseudo-t = 4.71; cluster extent = 163 voxels).  

 

In order to ensure that TP neural data are really capturing meaningful semantic 

representations, we ran an additional set of control analyses based on the 

functionally defined TP region of interest (ROI). We examined four issues. First, if 

the neural data are capturing semantic relatedness between the lure and list items, 

we should find that each lure is more similar to its own list than any other list, 

regardless of any differences in false memory strength. To assess this hypothesis, 

we directly compared the neural similarity within and across the 40 DRM sets. As 

expected, this analysis revealed a significant within-set increase in similarity 

(Z=3.11, p<0.001). Second, to ensure that the neural effects were not driven by 

extraneous factors such as the word frequency or the visual similarity of the lure 

and list words, we investigated whether either of these factors correlated with the 

TP neural overlap. Neither of these variables significantly predicted the neural data 
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(Word Frequency: Z=0.02, p=0.98; Visual Similarity: Z=1.72, p=0.085), suggesting 

that they are not significant drivers of neural similarity in this region. Third, the task 

performed in the scanner while subjects viewed the words was a semantic category 

judgment task (man-made or natural). While the categorical nature of the encoding 

task was incidental to the effect of interest, it is nevertheless possible that neural 

representations related to the semantic categories are present in the TP. To 

investigate this possibility we derived a subject-specific measure of task category 

similarity between the lure and list of each DRM set based on the pattern of 

responses to each word (see Methods). We found no evidence for a correlation 

between this variable and the neural data (Z=0.46, p=0.65), suggesting that task-

driven categorical representations are not present in the TP. Finally, we investigated 

whether the correlation between neural overlap and canonical false memory 

strength was still present after controlling for the three additional variables (word 

frequency, visual similarity, and categorical representation). Using a cross-validated 

ROI approach to avoid issues of statistical circularity (29), we found clear evidence 

for a significant correlation between neural overlap and canonical false memory 

even after partialling out the control variables (Z=2.03, p=0.021). Thus, our result 

cannot be explained by extraneous factors such as word frequency or visual 

similarity. We further explored each of these three control variables using a 

searchlight analysis across the whole brain, but none of these analyses revealed any 

significant results. Given that our measure of neural overlap is in each case based on 

the average pattern expressed over four list items, this will greatly reduce the 

power of any analysis that is not explicitly based on some shared representation, 
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such as the semantic gist. Thus, it is not surprising that these additional analyses did 

not find any significant results.  

 

While our initial analysis focused on shared semantic representations, it is also 

likely that each of us forms some idiosyncratic semantic associations through our 

own individual experience. Such quirks of experience could lead to measurable 

differences in neural overlap in the TP, and consequently to unique patterns of false 

memory errors. In order to investigate this possibility, our subjects participated in a 

DRM false memory recognition task in a separate session that took place several 

weeks prior to the scanning session. The same 40 DRM word lists were used in both 

the behavioral and scanning sessions, which allowed us to directly compare each 

individual's neural data to their behavioral data. As expected, the subjects displayed 

the typical false memory effect, and committed a large number of high-confidence 

false alarms to the critical lure stimuli (Fig. 3). As a further quality control check, we 

explored the consistency of our group’s behavioral data compared to the canonical 

false memory data (26, 27). The group false memory likelihood correlated positively 

with both the canonical data (r(39)=0.53, p<0.001) and with the neural data 

(Z=1.68, p=0.047), demonstrating that this subject group’s data conforms to the 

canonical data as expected.   

 

However, the key question was whether there might be a subject-specific mapping 

between the TP neural overlap and the pattern of false memory errors, over and 

above any shared semantic representations common to all subjects. To assess this 
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issue we used an individuation analysis (30), comparing the within-subject neural-

behavioral correlations (unique semantic information) to the between-subject 

neural-behavioral correlations (shared semantic information), in each case 

controlling for the canonical false memory strength to remove additional shared 

semantic information. This analysis revealed a significantly higher within- than 

between-subject correlation (Z=2.63, p=0.0042). This result was still significant 

after additionally partialling out the influence of the three control variables 

discussed above (Z=2.55, p=0.0054). This result provides clear evidence that each 

individual has a partially unique set of semantic representations within the TP that 

have a direct impact on memory distortions (Fig. 4). Importantly, such a result 

cannot be explained by incidental differences in TP physiology or anatomy alone 

(30), as these more basic properties would not predict each subject’s false memory 

behavior.  

 

Importantly, the fMRI and behavioral data for each subject were collected in 

separate sessions separated by many weeks, which demonstrates that the structure 

of neural overlap must be stable over at least this length of time, and plausibly for 

much longer than this. This long delay also minimized any possible influence of the 

initial behavioral session on the neural representations expressed during scanning. 

To further ensure that there was no such influence, we leveraged the wide range of 

inter-session delay lengths across subjects (min=21 days, max=239 days) that 

emerged as a consequence of differences in subject availability. If there were an 

effect of the behavioral session due to memory for the items experienced in this 
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session, we would expect this effect to degrade over time. We would therefore 

expect a negative correlation between the length of delay and the strength of neural-

behavioral mapping. In fact we find a non-significant positive correlation instead 

(r=0.26, p=0.30), which clearly shows that memory is not enhancing the neural 

overlap data.  

 

The main focus of this study was to investigate the neural basis of false memory. 

However, an adaptive perspective on false memory (1) would suggest that our 

semantic knowledge should aid cognition under most circumstances (31), rather 

than purely acting as a source of memory distortion. This hypothesis would 

therefore suggest that we ought to also find a positive correlation between neural 

overlap and true memory performance for the list items that were actually 

presented during encoding. As predicted, we found a significant mapping between 

TP neural overlap and true memory strength (Z=2.33, p=0.0099), which remained 

significant after partialling out the three control variables (Z=2.29, p=0.011). We 

also investigated the possibility that subject-specific TP neural coding might predict 

true memory performance, using an individuation analysis (30). This analysis 

demonstrated a significant individuation effect in the TP for true memories (Z=2.16, 

p=0.016) as well as false, and this result remained significant after partialling out 

the three control variables (Z=2.11, p=0.017). These results provide clear evidence 

that the semantic similarity code within this region can be beneficial for memory 

systems, as well as potentially leading to memory distortions.  
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Discussion 

Our study demonstrates that the left temporal pole (TP) contains partially 

overlapping neural representations of related concepts, and that the extent of this 

neural overlap directly reflects the degree of semantic similarity between the 

concepts. Furthermore, the neural overlap between sets of related words predicts 

the likelihood of making a false memory error. Together, these findings provide 

support for neural network models of semantic cognition that posit that the TP 

utilizes a similarity-based coding scheme to sustain amodal distributed 

representations of individual concepts and their relationships within an abstract 

semantic space (17, 18). The similarity-based coding of concepts has significant 

computational advantages in allowing efficient generalization of existing knowledge 

to novel situations, while still allowing for the “grounding” of each concept in a full 

set of domain-specific cortical regions mediated by the hub-like connectivity of the 

TP (17, 18) – consistent with previous studies showing that domain-specific 

semantic features are indeed distributed across a wide range of cortical regions 

(32). Nevertheless, our results suggest that the type of coding scheme underpinning 

the representation of concepts within the TP has a potential cost, specifically the 

emergent property of false memories.  

 

Although the focus of our experiment was on the structure of semantic 

representations, it is likely that interactions between regions in the medial temporal 

lobe (MTL) and the TP are critical to the generation of false memories. While our 

data cannot speak directly to this issue, there are two clear lines of evidence that are 
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suggestive. First, results from both rodent (33) and human research (34) 

demonstrate that false memories can be established as memory “engrams” within 

the hippocampus through artificial manipulation or reconsolidation processes. 

Second, recent studies have shown that recognition memory performance can be 

driven by a dynamic similarity-based computation within the MTL at retrieval (35, 

36). It is likely that both sets of processes interact with the semantic representations 

in the TP in order to produce semantic false memories (3, 6, 37) . 

 

While we found clear evidence for a semantic code within the left TP, other 

neighboring regions have also been found to contain semantic-like representations 

– particularly the anterior ventral temporal cortex (23, 25). We suggest that these 

differing locations are likely due to the level of semantic abstraction, as the set of 

studies with results located in anterior ventral temporal cortex all used highly 

concrete stimuli (either concrete words, or direct use of pictures). By contrast, our 

set of words included many abstract concepts such as “justice” and “desire” (see 

Table S1 for full list). This suggestion is supported by a meta-analysis that 

contrasted regions involved in abstract versus concrete words, and that found clear 

evidence that the temporal pole was more active in response to abstract words, 

while ventral temporal regions showed a preference for concrete words (20).  

 

Finally, our results show that each individual’s unique TP representations predict 

idiosyncratic patterns of false memory errors. Given that we rely on shared 

semantic representation in order to communicate with one another, this individual 
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variation is perhaps surprising. However, it does converge with other recent reports 

of individual differences in semantic (30) and episodic representation (38), and 

suggests that divergent personal experience is sufficient to create individually 

unique representations in higher-level semantic regions. This striking finding 

suggests that it will be important to further characterize both the shared and 

individually unique aspects of semantic cognition to better understand the nature of 

conceptual knowledge. 

 

Methods 

Participants 

18 participants (11 female) took part in this study. All were right-handed native 

English speakers, and had normal or corrected-to-normal vision. The study was 

approved by the University College London research ethics committee, and all 

participants gave written consent to take part in the study.  

 

Stimuli 

For both testing sessions, the stimuli were drawn from forty standard DRM lists (26, 

27). Due to time-constraints in the fMRI scanning session, we used only four list 

items from each DRM list (see Fig. 3B for a comparison with previous results based 

on the full set of 15 list items). Where possible these were four list items with the 

highest associative strength with the lure word. However, this full set of forty lists 

contains some words that were repeated across lists, and some words that we 

considered to be culturally specific in semantic relatedness to the related concept, 
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such as “United States” in the “army” list. Any unsuitable list words were therefore 

excluded, and alternative, lower list associates were included instead. The full set of 

stimuli used is displayed in the Table S1. In total, the stimulus set included 40 DRM 

related concept lures, and 160 associated DRM list items. For the behavioral DRM 

task, we also used an additional 160 unrelated novel words, which were matched to 

the DRM lists in average concreteness and frequency. 

 

Overall task structure 

All participants took part in two separate experimental sessions separated by 

several weeks (mean 65 days, min=21, max=239). The first session was a behavioral 

session involving a standard DRM recognition paradigm, providing subject-specific 

false memory data. The second session was a functional MRI session, where subjects 

viewed words taken from the DRM lists during an incidental task. Both sessions are 

explained in more detail below. We elected to run the behavioral session before the 

scanning session to ensure that repeated exposure to the DRM words during 

scanning did not impact the behavioral false memory effects. This procedure 

therefore provided us with a “pure” measure of individual false memories. However, 

we acknowledge that this design could still have the reverse problem, in that there 

could be carry-over effects from the behavioral to the fMRI session. The long delay 

between sessions was built in to minimize any such issues, and further control 

analyses were conducted to further rule this out as a problem (see Results).  

 

Behavioral DRM task 
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The first testing session was purely behavioral, and involved a standard DRM 

recognition paradigm. During an encoding phase, subjects were presented with 40 

sets of four-word DRM lists. They were instructed to memorize as many of the 

presented words as possible. For each list, the four words were presented 

consecutively for 500ms each, with a 3s interval between each list. The order of the 

40 lists was randomized across subjects. Subjects were then required to perform an 

incidental visual discrimination task for 15 minutes, in order to minimize explicit 

rehearsal of the list words. Following this distraction period, subjects were given a 

recognition memory test for the previously presented words. All 160 DRM list 

words were presented, along with the 40 related concept lure words, and 160 

unrelated novel words. This set of 360 words was presented one at a time, in a 

randomized order. Subjects were required to decide whether they thought the word 

was old or new, along with a confidence judgment (sure or unsure). The task was 

self-paced, with no time limit. 

 

Behavioral DRM analysis 

The recognition memory test data were analyzed to determine whether the subjects 

displayed the expected false memory effect. To do this analysis, for each subject we 

calculated the proportion of words categories as ‘Old’ for each of the three 

conditions (Old items, New items, and Lure items). This provided us with a measure 

of the Hit rate, False Alarm rate, and for the related concept lure items, False 

Memory rate. To assess whether the expected false memory effects were present, 

we conducted a series of planned pairwise comparisons between conditions using 
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two-tailed Wilcoxon signed rank tests. First, we tested for a basic recognition 

memory effect, by comparing the Hit rate to the False Alarm rate. Next, we 

investigated whether our subjects displayed the expected false memory effect, by 

comparing the False Memory rate with the False Alarm rate. Following this, we 

compared False Memory and False Alarm rate using just high confidence trials in 

order to determine whether the task induced robust false memories. Finally, we 

investigated whether the pattern of false memory errors across the 40 DRM lists 

correlated with the false memory rate reported by (27), despite the fact that we 

used only the first four list associates from each DRM list, as opposed to the full set 

of 15. All behavioral results are reported in Fig. 3. 

 

fMRI task 

Several weeks later, the same subjects came in for a second testing session in the 

fMRI scanner. During each of four functional runs, the 40 DRM related concepts, and 

160 DRM list words were presented one at a time, for 3s each. Thus, in total, each 

word was presented 4 times, in order to allow a more stable estimate of the neural 

pattern. The order of presentation was randomized, with the additional constraint 

that words from the same DRM set were never presented consecutively. Each 

subject took part in four functional runs in total. The behavioral task involved a 

semantic category decision for each presented word. Specifically, subjects had to 

decide whether they thought each word was more related to the category of 

‘manmade’ or ‘natural’, and indicate this by pressing the relevant button. As we 

were simply interested in measuring the neural patterns expressed for each DRM 
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concept, the task itself was incidental. However, we reasoned that a semantic 

categorization task would require the subjects to fully process the semantic 

meaning of each word. The fact that each word would be repeated four times during 

scanning introduces a possible source of noise due to novelty effects on the first 

presentation. We therefore allowed the subjects one practice block prior to entering 

the scanner in order to reduce any novelty signals in the subsequent scanning 

session. 

 

MRI scan details 

It is well known that fMRI of the temporal poles can be problematic due to 

susceptibility artifacts (signal dropout) in this region, which can substantially 

reduce BOLD sensitivity (39). We therefore elected to use a 1.5 tesla MRI scanner, 

which suffers from less pronounced dropout in this region, and therefore can 

actually have greater BOLD sensitivity than higher field-strength scanners (40). The 

precise sequences used were further optimized to reduce signal dropout in ventral 

anterior regions, including the temporal pole. All MRI data was collected using a 

Siemens Avanto 1.5 tesla MRI scanner with a 32-channel head coil at the Birkbeck-

UCL Centre for Neuroimaging (BUCNI) in London. The functional data were acquired 

using a gradient-echo EPI sequence in an ascending sequence, with a slice thickness 

of 2mm and a 1mm gap, TR=85ms, TE=50ms, slice tilt=-30°, field of view 192mm, 

and matrix size 64×64. The whole brain was acquired with 40 slices, leading to a 

volume acquisition time of 3.4s. The precise slice tilt was chosen as a compromise 

between sensitivity, coverage, and speed (40, 41). Four functional runs were 



 19 

collected for each participant. Following functional imaging, an anatomical image 

was acquired for each participant (T1-weighted FLASH, TR = 12ms, TE = 5.6ms, 

1mm3 resolution). 

 

fMRI pre-processing 

The first six functional volumes were discarded to allow for T1 equilibration. The 

remaining data were slice-time corrected, and spatially realigned. Each participant’s 

structural image was co-registered to the first functional image. The structural 

images were segmented, and the deformations estimated during this step were 

applied to both the structural and functional images in order to normalize them into 

MNI space. All preprocessing steps were conducted using SPM12. Default 

parameters were chosen for each step. 

 

Pattern estimation 

We were interested in investigating neural overlap between the neural 

representations of each set of DRM list words and their related concept. Our 

hypothesis was that each DRM list word should have a neural representation that 

overlaps with that related concept. In order to assess this hypothesis, we estimated 

two patterns for each DRM set – one pattern for the related concept itself, and 

another for all four of the list words combined. This latter pattern captured the 

neural pattern that was common across all four list items, which should therefore 

capture the representational overlap. If our hypothesis is correct, then this pattern 

should correlate with the related concept pattern. To estimate this set of patterns, 
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we used the GLMdenoise toolbox (42), which implements a denoising step in 

addition to estimating the beta weights for each regressor. Each pattern was 

estimated using an event-related regressor indicating the onset of the related 

concept/set of list words across the four functional sessions. This procedure 

resulted in a set of 80 beta weight images (40 DRM list patterns and 40 related lure 

concept patterns). These were converted to t-statistics by dividing the parameter 

estimate by the estimate of the standard error, thereby normalizing the responses of 

each voxel (43). The resulting t-statistic images were left unsmoothed to preserve 

any fine-grained spatial information (44). 

 

Searchlight analysis 

We used a searchlight representational similarity analysis (22, 28) to search for 

brain regions containing the predicted neural code. Representational similarity 

analysis (RSA) uses the neural pattern similarity between pairs of stimuli to infer 

the representational similarity. This approach is therefore highly appropriate for 

assessing neural overlap between semantic representations, as the degree of 

overlap should be directly reflected in the representational similarity. We first 

assessed the neural overlap between each DRM related concept and its related set of 

list words, by measuring the Pearson correlation between the pair of voxel patterns. 

In each case, we normalized the similarity data by subtracting the mean Pearson 

correlation between the DRM related concept and each unrelated DRM list pattern. 

This procedure removed any general effects of similarity that were not driven by 

semantic relatedness, and resulted in a vector of 40 neural overlap scores for the 40 
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DRM lists. Our prediction is that the degree of neural overlap within the temporal 

pole should reflect semantic relatedness, and therefore predict false memory 

likelihood across the 40 DRM lists. We used the canonical false recognition scores 

reported in (26, 27) as our measure of false memory likelihood for the 40 DRM lists. 

We used a searchlight approach (28) to search across the whole brain for regions 

containing a neural code consistent with our predictions. This approach involves 

stepping through each voxel in the brain, and in each case running a 

representational similarity analysis on the cluster of voxels surrounding that central 

voxel (for all analyses, we used a spherical searchlight with 10mm radius). We used 

a variation of this approach, where the value at each voxel was the average value of 

all searchlight analyses that included that voxel. This information-averaging 

approach more accurately reflects the multivariate nature of the analysis, and 

results in a smoother image (45). For computational efficiency, we restricted our 

analysis to a whole-brain gray matter mask, created by averaging the normalized, 

segmented gray matter images, and applying a threshold of 0.5. This searchlight 

approach was applied to the analysis described above, using a Fisher-transformed 

Pearson correlation to assess the mapping between neural overlap and false 

memory likelihood in each searchlight. This was repeated for all subjects, and 

statistical significance at each voxel was assessed at the group level using a 

nonparametric permutation approach (46). This procedure provides a means of 

applying strict family-wise error correction for multiple comparisons without any 

parametric assumptions. For this analysis, 10,000 permutations were applied with 

10mm variance smoothing, and a standard cluster threshold of Pseudo-t > 3 was 
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used to assess statistical significance (46). Only regions that are significant at p<0.05 

with family-wise error correction are reported. 

 

Temporal pole region of interest 

In order to further explore the representations contained within the temporal pole, 

a region-of-interest (ROI) was created based on the initial searchlight results. The 

ROI included all voxels within the TP that passed the searchlight cluster threshold of 

t>3. The resulting ROI consisted of 92 voxels. 

 

Correlation between canonical false memory and neural overlap 

In Fig. 2B we report the correlation between the group average TP neural overlap 

for each DRM list, and the canonical false memory likelihood (26, 27), in order to 

illustrate the strength of the relationship. To avoid an artificial inflation of the effect 

size estimate due to non-independence in the choice of ROI, we used a leave-one-

subject out cross-validation approach (29). On a given cross-validation fold, we took 

the searchlight maps for 17/18 subjects, averaged the maps, and selected the top 

200 voxels. We then used these voxels as an ROI to measure the neural overlap in 

the 40 DRM lists for the remaining subject (note that in this case we did not 

normalize the neural overlap score by subtracting the between-list correlation, as 

we consider the raw correlation values to be descriptively more informative). This 

procedure was repeated 18 times, each time leaving out a different subject. This 

analysis resulted in neural overlap data for all 18 subjects based on an 

independently selected ROI, thereby avoiding statistical ‘double-dipping’ (29). We 
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averaged the neural overlap across the subjects to create a single summary neural 

overlap score for each of the 40 DRM lists. This score was then correlated with the 

canonical false memory scores, as reported in Fig. 2B. An additional correlation was 

conducted after removing two potential outliers, identified using a bootstrapped 

Mahalanobis distance, and a threshold of Ds > 6. Note that while this cross-

validation approach is guaranteed to provide an unbiased correlation, it is not 

guaranteed that the voxels used will be based on the same TP region as reported in 

the searchlight results. We therefore investigated the number of voxels falling with 

the temporal pole region (defined using the Harvard-Oxford Atlas) for each fold of 

the cross-validation. Every single fold included at least some voxels within this 

region, ranging from 5 to 42, with an average of 25.5. Thus a good proportion of the 

neural information going into this analysis was indeed based on the TP. 

 

False memory individuation analysis 

In order to test for the presence of unique TP neural information that predicts 

subject-specific false memories, we used an individuation analysis (30). The logic 

here is that if an individual has a unique set of TP neural representations that 

meaningfully influences cognition, then that individual's neural overlap data should 

predict their own pattern of false memory errors better than any other subject's 

false memory errors. To assess this possibility, we created a false memory vector for 

each individual subject based on their specific pattern of false memory errors in the 

behavioral DRM session. Given that we were specifically interested in genuine false 

memories rather than mistakes driven by uncertainty, we defined a false memory as 
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a high confidence ‘old’ response to a related concept lure. The false memory vector 

was in each case a binary vector of 40 values for the 40 DRM lists, with a 1 

indicating the DRM lists that results in a false memory, and 0 elsewhere. For each 

subject, we calculated the Spearman correlation between their TP neural overlap 

and false memory data (within-subject correlation). We then calculated the 

Spearman correlation between that subject’s neural overlap and each other 

subject’s false memory data, and averaged across these correlation values to 

provide a summary between-subject correlation. This procedure resulted in a 

within-subject and between-subject correlation for every subject. To assess whether 

there was significantly greater within-subject predictive information in the neural 

data, we compared the within- and between-subject correlations with a Wilcoxon 

sign rank test. A one-tailed test was used due to our one-sided hypothesis that the 

correlation should be greater within- than between-subject.  

 

True memory individuation analysis 

In order to be consistent with the false memory analysis, we defined a ‘true 

memory’ as a high confidence ‘old’ response to a previously presented DRM list 

item. The true memory vector was created by calculating for each DRM list, the 

proportion of words that were judged to be ‘old’ with high confidence. This resulted 

in a true memory vector of length 40 for each individual subject. The true memory 

individuation analysis was otherwise identical to the false memory individuation 

analysis described above. 
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Control analyses 

To ensure that the results were driven by neural similarity that was specific to the 

false memory strength and not additional extraneous factors, we conducted three 

control analyses. First, we established that word frequency (47) was not 

contributing to the neural data. Given that the neural overlap was based on the 

similarity between each lure and the respective list items, the absolute word 

frequency of the critical lure could not by itself explain this measure. Instead, we 

calculated the average difference in word frequency between each DRM lure and the 

four DRM list items. Second, we investigated whether visual similarity between the 

words could be contributing to the effects. We used the Levenshtein edit distance to 

assess the similarity between each pair of words, as this has been shown to be a 

good predictor of various lexical effects (48), and is therefore appropriate for 

assessing low-level word similarity. For each DRM set the visual similarity was 

defined as the average edit distance between the lure and list items. Finally, we 

explored whether the incidental task performed in the scanner could be driving the 

neural similarity results. To investigate this possibility, for each of the 40 DRM lists 

we quantified the number of list words where the subject had indicated the same 

category as the related lure concept for that list. The stronger the degree of 

correspondence, the stronger any task category representation should be for that 

particular DRM list. Each of these three control variables was correlated with the 

neural overlap data to determine whether each significantly contributed to the 

neural data. Additionally, all three variables were controlled for in each analysis 

reported in the results section.  
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Fig. 1. Neural predictions arising from the DRM false memory illusion. (A) For three 

DRM lists, we illustrate the semantic relatedness between presented list items on 

the periphery, and the unseen related concept at the center. Beneath each, we show 

the likelihood that this word list will produce a false memory for the related lure 

concept. As semantic relatedness increases, so does the false memory likelihood. (B) 

We hypothesize that the neural representation of DRM list items should overlap 

with the neural representation of the related lure concept. The extent of overlap 

should directly reflect the semantic relatedness and false memory likelihood of each 

DRM lure concept. To assess neural overlap for a DRM list we measured the fMRI 

voxel pattern similarity between the lure concept and the four related list items.  
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Fig. 2. Neural overlap correlates with canonical false memory likelihood in the left 

temporal pole (TP). (A) A whole-brain searchlight analysis revealed a significant 

cluster in the left TP (peak MNI coordinates: -51, 17, -25; Pseudo-t = 5.33; cluster 

extent = 92 voxels), with no other region displaying any significant information. 

Results are displayed on a cortical surface map using BrainNet Viewer (49).  (B) To 

visualize the relationship between neural overlap and false memory, we plot the 

group average neural overlap for each of the 40 DRM lists against canonical false 

memory likelihood, using a cross-validation procedure over subjects to avoid 

artificial inflation of the effect size. There is a clear positive correlation between the 

two (r(39)=0.40, p=0.012), showing that the degree of semantic relatedness in the 

neural data predicts variation in false memory strength across the DRM lists. This 

correlation remains (r(39)=0.45, p=0.005),  after removing two potential outliers. 
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Fig. 3. DRM recognition memory results. (A) Group mean hit rate, false alarm rate 

and false memory rate are displayed for all responses regardless of confidence 

(blue), and for high confidence responses (red). Error bars represent 95% 

confidence intervals, adjusted for within-subject data (50). False Memory rates were 

significantly greater than False Alarm rates (Z=3.72, p<0.001). This is clear evidence 

for the expected false memory illusion, which is robust even for high confidence 

responses (Z=3.72, p<0.001). (B) The group level false memory likelihood across the 

40 DRM lists correlated positively (r(39)=0.48, p=0.0016) with canonical false 

recognition rates, even after removing one potential outlier  (r(39)=0.48, p=0.0018). 

All plots are based on a sample size of 18. 
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Fig. 4. The temporal pole (TP) contains subject-specific neural information that 

predicts false memories. (A) For each subject, we calculated the correlation between 

their TP neural overlap, and their pattern of false memories. As a baseline, we 

calculated the average between-subject correlation. This procedure is illustrated 

schematically. By comparing the within-subject (red arrow) and average between-

subject (blue arrows) correlations we can determine whether there is any subject-

specific mapping between the neural and behavioral data. (B) The group average 

within- and between-subject correlations are displayed for the false memory data. 

Error bars display 95% confidence intervals on a one-way t-test, corrected for 

within-subjects statistical testing (50).  The plots are based on a sample size of 18. 
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