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WHAT IS ALREADY KNOWN ABOUT THIS TOPIC? 

 Morphoea has a number of distinct clinical subsets with variable anatomical 
distribution, morphology and depth of tissue involvement 
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 Susceptibility mechanisms (including genetics and underlying autoimmunity) and 
environmental triggers are at play in morphoea pathogenesis 

 A variety of innate and adaptive inflammatory and profibrotic immunopathogenic 
mechanisms and signalling pathways have demonstrated roles in the pathogenesis 
of sclerotic skin disease  

 
WHAT DOES THIS STUDY ADD? 

 This review draws together what is currently known in the pathogenesis of systemic 
sclerosis and other fibrotic processes, to expand on and provide links with our 
current limited understanding of morphoea pathogenesis. 

 We propose the key-inciting role of epidermal keratinocytes in morphoea 
pathogenesis based on the Blaschkoid nature of linear morphoea, and recognised 
role of keratinocyte derived factors and epidermal-dermal signalling pathways in the 
pathogenesis of sclerotic skin disease.  

 We review underlying genetic and immunopathological mechanisms in morphoea, 
and suggest how these may link to recognised reproducible clinical subsets.   

 Finally, we look ahead at possible future targeted and individualised therapeutic 
approaches in sclerotic skin disease and morphoea.  

 
 
 
 
 
ABSTRACT 
A number of immunoinflammatory and profibrotic mechanisms are recognised in the 
pathogenesis of broad sclerotic skin processes, and more specifically, morphoea.  However, 
precise aetiopathogenesis is complex and remains unclear.  
Morphoea is clinically heterogeneous, with variable anatomical patterning, depth of tissue 
involvement, and sclerotic, inflammatory, atrophic and dyspigmented morphology.  
Underlying mechanisms determining these reproducible clinical subsets are poorly 
understood, but of great clinical and therapeutic relevance.  Regional susceptibility 
mechanisms (such as environmental triggers, mosaicism and positional identity) together 
with distinct pathogenic determinants (including innate, adaptive and imbalanced pro and 
anti-fibrotic signaling pathways) are likely implicated.  In the age of genetic profiling and 
personalised medicine, improved characterisation of the environmental, systemic, local, 
genetic and immunopathologic factors underpinning morphoea pathogenesis, may open the 
door to novel targeted therapeutic approaches.  
 
 
INTRODUCTION 
A review of morphoea pathogenesis is timely with improved understanding of underlying 
molecular mechanisms likely to bring the advent of more targeted therapeutic approaches. 
However the clinical heterogeneity of morphoea, with variable anatomical patterning, 
morphology and depth of tissue involvement observed both within and between individuals, 
poses many clinical and pathogenic challenges (see Figure 1).  Whilst key aetiologic, 
immunoinflammatory and profibrotic molecular mechanisms are likely shared across these 
subsets of morphoea, there must be underlying determinants of clinical heterogeneity. 
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Unmasking the genetic and molecular basis of this reproducibly observed clinical variability 
in morphoea has great therapeutic potential.  
 
SUSCEPTIBILITY MECHANISMS 
Systemic and regional genetic and epigenetic susceptibility mechanisms are all potentially at 
play in morphoea (see Figure 1 and 2).  Certain HLA subtypes, including HLA-DRB1*04:04 
and HLA-B*37, infer increased susceptibility, especially in generalized and linear subtypes1, 
and morphoea is reported in first or second-degree relatives in 2% of cases2 3 4.   
A personal or family history of autoimmune or rheumatologic diseases is seen in up to 46% 
of those with morphoea2 5 6.2 5 7-9; sometimes more frequently in generalized or linear 
subtypes2 7.   Hence, one may speculate that a shared susceptibility locus exists for these 
disorders.  As such, the systemic autoimmune nature of morphoea is further recognised by a 
variety of autoantibodies2 7 10 11; antinuclear antibodies (ANA) can occur in 18 to 68%2 9 12-20 
and notably, more of those with ANA positivity appear to have extracutaneous 
manifestations11.   
 
Distinct genetic ‘intrinsic subsets’ in systemic sclerosis (SSc) have been described, with 
reproducible and temporally stable gene expression profiles correlating to inflammatory 
and fibroproliferative signatures, and related clinical heterogeneity21-25.  Significantly, 
differences in gene expression can be mapped not only to fibroblasts, but also to epithelial, 
endothelial, smooth muscle, T and B cells24 26.  Genome wide expression profiling of skin 
biopsies from three morphoea patients linked them to the inflammatory signature23, hence 
implicating mediators such as interferon (IFN), interleukin (IL)-13, chemokine (C-C motif) 
ligand (CCL)-2, early growth response (EGR)-1 gene and others in pathogenesis21-25.  Indeed, 
IFN-γ-inducible protein 10 (IP10, CXCL10) is elevated in children with morphoea27 and acts 
via CXC-chemokine-receptor (CXCR)-3 to attract inflammatory cells to the skin.   
Of great potential relevance to regional genetic susceptibility is evidence that linear 
morphoea follows Blaschko’s lines of epidermal development; suggesting likely mosaicism 
for a mutation that causes increased susceptibility to morphoea at certain sites28-39 (see 
Figure 1 and 2).  However, that a fibroblast driven dermal process can be Blaschkoid raises 
many unanswered questions, but its feasibility is perhaps substantiated by the existence of 
other similar conditions, including focal dermal hypoplasia (FDH; Goltz syndrome)40 and a 
recent report of Blaschkoid granuloma annulare41.  This may highlight the potential role of 
epidermally-derived signalling and immunoinflammatory pathways in morphoea 
pathogenesis.  
 
Finally, epigenetic mechanisms may provide a potential link between genetic susceptibility, 
environmental aetiology and site specificity (see Figure 1).  Altered patterns of histone 
acetylation and DNA-methylation at multiple genetic loci have been demonstrated in SSc.  
This has included transcriptional silencing of repressive genes in SSc fibroblasts, resulting in 
increased profibrotic gene expression and transforming growth factor (TGF)-β induced 
responses42 43.  The importance of microRNAs (miRNAs) in the pathogenesis of skin fibrosis 
is also emerging.  Twenty-six miRNAs are shown to be deregulated in SSc skin and isolated 
fibroblasts, some forming part of a positive feedback profibrotic mechanism activated by 
TGF-β44.  miR-21 and miR-155 are profibrotic and show elevated expression in SSc skin45.  
These miRNAs are in turn regulated by TGF-β and hence have, as their predicted targets, 
genes involved in matrix repair and remodelling; such as collagens, matrix 
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metallopeptidases (MMPs) and integrins46.  Conversely, miR-30b levels are inversely 
correlated to modified Rodnan skin scores (mRSS) and appear to be related to increased 
platelet-derived growth factor (PDGFR) expression on dermal fibroblasts47.   Notably, down-
regulation of anti-fibrotic miR-748 49 and miR-196a5050 have been demonstrated in the skin 
and serum of patients with morphoea, potentially contributing to overproduction of 
collagen type I.  
 
TRIGGERING EVENTS 
An array of environmental triggers are widely reported in the aetiology of morphoea, 
seemingly linking susceptibility mechanisms and eventual, but not inevitable, disease 
onset51-53 (see Figure 1 and 2).  Trauma, in the form of insect bites, injection/vaccination, 
repeated friction, surgery, penetrating trauma, radiotherapy and extreme exercise, may 
trigger morphoea in up to 16% of adults54 and 9% of children5.  Trauma related morphoea 
may occur at the affected site, or a more systemic response may be triggered, with site 
unrelated skin sclerosis also seen.  Of relevance is isomorphic disseminated plaque 
morphoea, which occurs symmetrically and at sites of repeated minor friction induced 
trauma along the waistline, bra strap and inguinal creases54 55 (see Figure 1).  The 
mechanisms of trauma related morphoea remain somewhat elusive; enhanced innate 
signalling via toll-like receptor (TLR)-ligands inducing fibroblast activation and an abnormal 
wound healing response has been proposed56.  Several vaccinations are implicated 
temporally and anatomically with morphoea, including hepatitis B, tetanus, vitamin B12 and 
more57-64.  Whether this is purely trauma related (due to vessel injury, tissue hypoxia and 
subsequent immune activation) or potentially due to common adjuvant vaccine constituents, 
remains uncertain65.  Somewhat similarly, post-irradiation morphoea predominantly occurs 
at the site of radiation and within 12 months of completing treatment (most commonly in 
the setting of breast cancer)66 67.  However up to one-quarter of cases may extend beyond 
the radiation field and the immunopathology of this is not clear66 67, but increased IL-4, IL-5 
and TGF-β is suggested68.  Infection also triggers morphoea5 and perhaps most 
controversially, Borellia species are associated in some studies69-75.   Finally, various drugs 
can seemingly initiate the development of skin sclerosis76-80, and drug cessation does not 
necessarily result in resolution79 81.  Specific drug related lymphocyte responses and 
autoantibody production, with consequent vascular damage, reactive oxygen species, IL-1, 
tumour necrosis factor (TNF)-α and TGF-β production may be involved76 82.  
 
PATHOGENESIS 
A plausible model of morphoea pathogenesis would involve a triggering event in a 
susceptible individual that results in a cascade of innate and adaptive immunoinflammatory 
and profibrotic responses, involving potential epidermal signalling and mesenchymal drivers 
(see Figure 2).  Notwithstanding morphologic variation and distinct patterning observed in 
different morphoea subsets, many of these fundamental immunopathogenic mechanisms 
are likely to be shared.   
  
The epidermis  
Keratinocytes 
A number of factors known to be involved in dermal fibrosis can be produced by 
keratinocytes, including TGF-β, IL-1, IL-6, TNF-α, PDGF, fibroblast growth factor (FGF), CCL2, 
endothelin (ET)-1, fibrillin-1, friend leukaemia integrated transcription factor (Fli)-1, S100A9, 
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alpha-melanocyte-stimulating hormone (α-MSH)  and others83 (see Figure 2).  Accordingly, 
fibroblasts are more contractile when cultured with epithelial cells84 and keratinocytes can 
alter the expression of extracellular matrix (ECM) gene modulators such as connective tissue 
growth factor (CTGF), fibronectin and type 1 collagen85 86 in experimental models. 
Furthermore, although little is documented in morphoea specifically, in the context of SSc 
skin, activated highly proliferative keratinocytes have been demonstrated in the epidermis23 

87 88 and importantly, unstimulated keratinocytes promote myofibroblast activation 
independent of TGF-β89. 
 
S100A9 is induced in keratinocytes during epidermal stress and, via TLR4, stimulates 
fibroblast proliferation and over expression of CTGF by SSc fibroblasts88 90.    Over 
expression of TLR-4 occurs in fibrosis and its profibrotic effects are related to potentiating 
TGF-β activity and suppression of antifibrotic miRNAs (eg. miR-29)46.  CTGF mRNA and 
protein have been identified in dermal fibroblasts in morphoea91 92.  Keratinocyte FGF-
receptor 1 and 2 are also linked to S100A9 activity and fibrosis.  FGF-receptor knockout mice 
demonstrate loss of claudins and occludin which causes transepidermal water loss, severe 
xerosis and resultant activation of γδ-T-cells and keratinocytes to produce IL-1, S100A8 and 
S100A9, promoting a profibrotic response90.  
 
α-MSH mediates melanocyte pigment production via melanocortin-1 receptors (MC1R), is 
up regulated in the epidermis and fibroblasts of human burn wounds and hypertrophic 
scars93, and modulates pro and anti-inflammatory cytokines produced by keratinocytes, 
monocytes and fibroblasts94.  Conversely, and signifying its physiological homeostatic role, 
α-MSH (via MC1R) antagonizes cutaneous fibrosis induced by repeated TGF-β exposure and 
bleomycin95-97.  As such, MC1R knockout mice have demonstrated a susceptibility to 
fibrosis98.    
 
Fibrillin-1 is a major component of the microfibrillar ECM network.  Its expression has been 
associated with diffuse cutaneous SSc of the ‘fibroproliferative’ signature23 and antibodies 
against fibrillin-1 have been documented in patients with morphoea and SSc99.  Stiff skin 
syndrome is due to mutations in the domain of fibrillin-1 that mediates integrin binding, and 
is characterized by sclerotic skin usually over the entire body; somewhat reminiscent of 
pansclerotic morphoea100 101. Further evidence connecting fibrillin-1 to sclerotic skin disease 
is the suggested link between variation at the fibrillin-1 gene locus and SSc in Choctaw 
Indians102.  
 
Finally, keratinocyte derived transcription factor Fli-1 has a demonstrated role in dermal 
fibrosis mouse models and SSc. Down-regulation of Fli-1 induces an SSc-like phenotype in 
fibroblasts, vascular endothelium and macrophages.  Additionally, keratinocyte Fli-1 
knockout mice exhibit enhanced skin fibrosis with increased IL-1, IL-6 and IL-8 expression103.    
 
Epidermal-dermal signaling and developmental pathways 
Epidermal-dermal morphogenic signaling pathways (including Wingless and int homolog 
(Wnt), Sonic hedgehog (Shh) and Jagged-Notch) involved in embryonic development, tissue 
patterning, morphogenesis and wound repair, are of increasing interest in skin fibrosis90 104-

108 (see Figure 2).  These pathways have been implicated in SSc109-113 and are also of 
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potential relevance to patterning and morphologic variation seen clinically in morphoea; 
although little is confirmed in the present literature in this regard.   
 
Jagged-Notch pathways, which control formation of boundaries between groups of cells 
during embryogenesis and mediate epithelial-mesenchymal transition, are over activated in 
fibroblasts in SSc46 114.  Similarly, Shh is elevated in fibroblasts, endothelial cells and 
keratinocytes of SSc patients, allowing degradation of Gli proteins, thus promoting fibrosis46 

111 115. 
Finally, and perhaps especially significant, is Wnt signaling, which originates in the epidermis.  
Normal stimulation of fibroblasts with Wnt ligands results in β-catenin-mediated expression 
of collagen, other matrix proteins, CTGF, enhanced fibroblast proliferation, myofibroblast 
differentiation and increased cell migration116-120.  Genome expression profiling has 
demonstrated elevated expression of several Wnt ligands, receptors and decreased 
expression of Wnt antagonists in SSc115 116 118-127.  Of further relevance to skin sclerosis, Wnt-
β-catenin signaling and TGF-β pathways are known to interact, and peroxisome proliferator-
activated receptor (PPAR)-γ (a recognized antifibrotic receptor which inhibits Wnt-β-catenin 
signaling) is decreased in SSc, thus promoting fibrosis120.  Additionally, Wnt signaling inhibits 
epidermal responsiveness to FGF-receptors, providing another link between potentially 
important epidermal inciting pathways and dermal fibrosis. Finally, β-catenin independent 
keratinocyte derived Wnt5a is highly expressed in SSc fibroblasts, and Wnt5a knockout mice 
appear resistant to Bleomycin induced skin sclerosis128.    
 
Immunoinflammation 
Innate responses 
The potential role of the innate immune system in triggering the complex profibrotic 
cascade is of increasing interest.  Type 1 IFNs are key innate mediators and are intimately 
linked with TLR-signaling (see Figure 2).  TLR-3 is involved in downstream increases in 
inflammatory and profibrotic cytokines and chemokines such as IL-6 and IP10 (CXCL10), as 
well as increased responsiveness of fibroblasts to TGF-β46.  Additionally, synthetic TLR3-
ligand induces the expression of several ECM genes in fibroblasts and dermal fibrosis in 
mouse models129.   
Interferon-regulatory factor 5 (IRF5) is a transcription factor involved in TLR-signaling and 
activation of target IFN genes130. IRF5 has been coined a susceptibility factor to SSc and its 
potential role in pulmonary fibrosis has been identified130.   
Further implicating IFN in fibrosis is signal transducer and activator of transcription 4 
(STAT4), which induces expression of type 1 IFNs, and STAT4 null mice exposed to bleomycin 
develop reduced fibrosis compared to controls130.  STAT4 is also pivotal in pro-inflammatory 
cytokine production including TNF-α, IL-2 and IL-6; hence its role in an inflammatory model 
of fibrosis is potentially relevant to morphoea, where an inflammatory signature has been 
demonstrated in some23.   
NF-kappaB, the master regulator of innate immune signaling, is important in skin 
homeostasis and more recently a profibrotic role of the c-Rel subunit expression within 
keratinocytes has been suggested, with abnormal epidermal expression patterns in SSc skin 
compared to healthy controls131.   
Inflammasome activation and IL-1β production is also implicated in many animal models of 
fibrosis, and has a potential role in SSc132 133 (see Figure 1 and 2).   Indeed, NACHT, LRR and 
PYD domains-containing protein 3 (NLRP3) inflammasome and IL-1β levels correlate with 
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mRSS and immunohistochemistry staining shows strong NLRP3 and IL-1β staining in the 
epidermis of SSc skin133.  Similarly, ET-1 levels correlate with NLRP3 and mRSS, ET-1 
receptors are increased in SSc133-137, and external stimuli can induce ET-1 and concurrent 
TGF- β production by oral mucosal keratinocytes in oral submucous fibrosis134.   
 
Adaptive responses  
A cytokine profile based conceptual model of the immunopathology of morphoea was 
recently proposed138 and has been supported by further cytokine expression profiling.139-143 
An early active disease phase characterized by inflammation with a Th1 cytokine response 
(mediated by IL-2, TNF-α and IL-6) appears to be followed by ongoing inflammation and 
initiation of fibrosis driven by Th17 related IL-1, IL-17, IL-22 and TGF-β production. 
Subsequent progression to a final fibrotic and atrophic phase then occurs, predominated by 
Th2 cytokines (IL-4 and IL-13)138 (see Figure 1 and 2).   
Correspondingly, raised IL-2, IL-2 receptor and TNF-α levels are seen in early phase 
morphoea15 139 144 and correlate with IL-4 and IL-6 levels, objective skin scores138-140, anti-
histone and anti-ssDNA antibodies142.  Serum IL-1 and IL-6 levels (Th-17 inducers) are also 
elevated during early disease (<24 months), whilst levels of Th17 effectors (IL-17F and IL-22) 
become elevated later (24-48 months)138 145. IL-6, stimulated by IL-1, is required for wound 
healing and fibroblast activity, and is intimately involved in morphoea146. In response to 
injury, IL-1, via IL-6 and PDGF, promotes fibroblast proliferation, resultant transcription of 
type I, III and IV collagens83 147 and CTGF expression148.  IL-1 pathways can also activate 
fibroblasts in SSc 149.  Further, low IL-17C with high IL-17E and IL-22 increases fibroblast 
profibrotic responses which is further enhanced in the presence of IL-22 and TNF activated 
keratinocytes in both SSc and morphoea150. IL-17A also appears important, with levels 
decreasing in correlation with TGF-β and IL-22 in the setting of polymerised collagen 
treatment and associated normalisation of dermal architecture in morphoea skin151. 
TGF-β is recognized as a potential master regulator of wound healing and a driver of 
pathological fibrosis135.  Increased levels of TGF-β and TGF-β receptor-I and II have been 
demonstrated in skin biopsies and sera of morphoea and SSc patients138 152-157.  In addition, 
and perhaps highly relevant, is the key role of TGF-β in regulating normal embryonic and 
fetal growth and development, as well as postnatal growth of connective tissue.  A number 
of MMPs and tissue inhibitor of metalloproteinases (TIMPs) are also deregulated by TGF-β 
expression158; promoting ECM production and limiting degradation.  MMP-12 is over 
expressed in SSc and associated with extent of skin disease, disease duration and severity of 
pulmonary fibrosis159 160.  Similarly, MMP-12 may be implicated in the antifibrotic affects of 
UVA1 phototherapy161. 
Finally in this cytokine profile based model of morphoea, Th2 related IL-4 and IL-13 appear 
to be are linked to the late fibrotic, as well as final atrophic and/or hyperpigmented phases 
of morphoea morphology. Regarding fibrosis, IL-4 and IL-13 up-regulate collagen synthesis, 
inhibit collagenase activity143, with elevated IL-13 levels have been demonstrated in some 
morphoea patients in the late fibrotic stage140.  In addition, IL-13 pathways may be 
interlinked with TGF-β and CCL2, and recent gene expression profiling of morphoea patients 
confirmed increased IL-13 and CCL2 activity23.    
 
The role of B-cells in morphoea is also well supported. As mentioned, a personal or family 
history of an associated autoimmune or rheumatologic diagnosis can occur in 9 to 46% of 
those with morphoea2 5 7-9.  Accordingly, the systemic autoimmune nature of morphoea is 
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further recognised by a variety of autoantibodies2 7 10 11, and an increased level of B-cell 
activating factor in the serum of affected patients further infers systemic autoimmunity162.  
Antinuclear antibodies (ANA) can occur in 18 to 68%2 9 12-20.  Furthermore, B-cells are known 
to produce profibrotic cytokines such as IL-6 and TGF-β, promote a profibrotic Th2 response 
and regulatory B-cells (which inhibit Th1 and Th17) are decreased in SSc163. 
 
Mesenchyme and Fibroblasts  
Myofibroblasts are the key effecter cell in fibrosis. Upon injury, fibroblasts migrate towards 
a wound and, under the influence of growth factors, differentiate into secretory 
myofibroblasts; central to repair during wound healing115.  In wounds, the process of 
myofibroblast activation and population expansion are appropriately switched off via 
apoptosis or de-activation.  In contrast, this physiological balance is deregulated in 
pathological fibrosis, including morphoea, and a pro-fibrotic environment rich in activating 
signals such as TGF-β, FGFs and CTGF inappropriately persists115 (see Figure 1 and 2).  
 
Studies support the role of fibroblast transdifferentiation in fibrotic skin disease, which 
expands resident fibroblast populations from many other differentiated cell lineages.   Bone 
morphogenetic protein-2 (BMP-2) induced TNF-α, TGF-β Smad signaling, CTGF, FGF as well 
as developmental pathways (Wnt, Shh and Jagged-Notch) all potentially induce epithelial to 
myofibroblast transformation in keratinocytes, and are separately implicated in skin 
fibrosis164-169.  Interestingly, and of potential relevance to Blaschkoid morphoea, is the 
increased keratinocyte expression of α-smooth muscle actin in patients with stiff skin 
syndrome (fibrillin-1 gene mutation) and the related lack of normal basal layer keratinocyte 
columnar organization100 101.  In addition to transdifferentiation, the aberrant differentiation 
of circulating bone marrow-derived mesenchymal progenitors (fibrocytes) into fibroblasts 
and myofibroblasts is also described in SSc170 171.   
 
Mesenchymal patterning and location-specific gene expression 
Fibroblasts show location specific gene expression, formally referred to as ‘positional 
identity’.  The master regulating genes of positional identity during development are the 
homeodomain genes of the HOX sub-family, along with their co-factors, TALE.  HOX-genes 
encode transcriptional factors that determine the positional identity of fibroblasts along 
anterior-posterior and secondary axes109 172-175.  Hence fibroblasts from different sources, 
although immunophenotypically very similar, display distinct and site-specific HOX and TALE 
signatures; for example, HOXA13 is expressed in distal fibroblasts and is required for normal 
toe, finger and foreskin development172 173.  Importantly, site-specific HOX and TALE 
transcriptional patterns remain stable throughout life and hence epigenetic factors are at 
play172 173.   

As one may elucidate, such site specific gene signatures are not only responsible for 
determining position and patterning during development, but also play a pivotal role in 
subsequent downstream orchestration of site-specific mesenchymal cell differentiation and 
related pathway signaling; acting as micromanagers of adult cell differentiation109 176.  Many 
patterning and developmental pathways, including Shh and Wnt are involved177, and the 
resultant regional diversification, which can be traced back to specific axial positions, may 
suggest that fibroblasts at different sites should actually be considered as groups of 
distinctly differentiated cells109 177-180.  Importantly, these many pathways which are 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

instrumental in developmental patterning, positional identity, regional-specific 
mesenchymal differentiation and overlying epidermal fate, are intricately linked to 
pathogenesis of fibrosis via site specific expression of factors including TGF-β, Wnt, FGFs, 
BMP, receptor kinase, phosphatase families and G-protein signaling109 173 (see Figure 1).  
Hence somewhat unsurprisingly their pathogenic role in SSc specific skin and internal organ 
disease is documented46 181, and although likely of relevance, currently there are no specific 
investigations into the role of these mechanisms in morphoea (see Figure 2).   
 
POTENTIAL MOLECULAR MECHANISM OF MORPHOEA CLINICAL SUBSETS  
Although there are clearly several shared aetiopathogenic mechanisms across the spectrum 
of morphoea, there must be underlying determinants of anatomical patterning and the 
variably sclerotic, atrophic and pigmented morphology observed clinically (see Figure 1).  In 
some, this will likely reflect local susceptibility factors including regional genetic and/or 
epigenetic perturbation, as described above.  Whilst in others it may suggest distinct 
pathogenic mechanisms.  As alluded to, morphoea classically evolves through three clinical 
stages; active inflammation, followed by sclerosis and then dyspigmentation and/or atrophy.  
However, there is marked variation within this phenotypic spectrum, both between and 
within individual patients; for example, atrophoderma may present without clinically 
apparent preceding inflammation or sclerosis in some or all lesions.  Epigenetics, 
perturbation of homeostatic signaling (eg. α-MSH/MRC1, positional identify or Wnt-
signaling) and/or aberrant recruitment of antifibrotic pathways may be at play.  Of 
relevance, FDH (an X-linked genodermatosis; porcupine homolog gene (PORCN) mutation) 
results in Blaschkoid distributed dermal atrophy and pigmentation.  PORCN gene expression 
causes epidermally-derived palmotoleic acid induced Wnt-signaling and protein release.  It 
has been suggested that this subsequently regulates underlying dermal development and 
could account for the Blaschkoid distribution of FDH40.  Thus, beyond providing an example 
of a dermal Blaschkoid process, the pathogenesis of FDH may in fact be more closely related 
to morphoea than immediately appreciated.  
 
IMPLICATIONS FOR THERAPY 
With improved understanding of the molecular pathogenesis of morphoea, it is likely that 
more precisely targeted biologic therapies directed towards specific immunoinflammatory 
and connective tissue repair pathways will become increasingly available (see Table 1).   
As discussed, the role of activated T-cells is described in the pathogenesis of morphoea and 
well understood in SSc and animal models of skin fibrosis138 182 183. Abatacept (recombinant 
IgG1 fusion protein to cytotoxic T-lymphocyte antigen 4 (CTLA4)), inhibits activated T-cells 
by binding to CD80 and CD86, thereby blocking interactions with CD28.  Thus, abatacept has 
resulted in significant improvement in two cases of deep and extensive morphoea184 and 
further cases of SSc185 186.   
Infliximab (chimeric monoclonal antibody to TNF-α) has induced remission in one case of 
generalised morphoea187 and three cases of eosinophilic fasciitis188-190.  As a Th1 cytokine 
linked to the early inflammatory phase of morphoea, one can elucidate how TNF-α 
inhibition could be a useful therapy.  However, etanercept (TNF-α receptor fusion protein) 
has been linked to the subsequent development of disseminated plaque morphoea (at sites 
related and completely separate to injections) in a patient with psoriasis receiving therapy 
for 18 months191.  Whether this was due to injection site related trauma and a subsequent 
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systemic response, or a trauma unrelated paradoxical immunological drug response, 
remains unclear.  
Imatinib (tyrosine kinase inhibitor) via anti-TGF-β and PDGF effects, showed promising 
results in three cases of morphoea192-194 (see Table 1).  Whilst not yet used in morphoea, 
tocilizumab (humanized IL-6 receptor monoclonal antibody) has been used with some 
success in SSc195-197.  In experimental SSc mouse models, PPAR (γ and α) agonist IVA337 can 
decrease ECM deposition and TGF-β related Smad-signaling198.  And finally, PDE4 inhibition 
(Apremalast®) reduces and inhibits fibrosis in a mouse model of sclerotic skin disease, with 
amelioration of skin fibrosis in sclerodermoid GVHD103. 
Based on present understanding of pathogenesis, future targets for morphoea could include 
IL-1 (Anakinra; anti-IL1), IL-13, IL17E, TGF-β or Wnt-signaling pathway mediators, among 
others (see Table 1).  Importantly, the potential for non-systemic routes of administration, 
such as topical preparations in optimized vehicles, long acting patches, or local intradermal 
or subcutaneous injection, may improve tolerability and increase therapeutic benefit to risk 
ratios.   
 
CONCLUSIONS 
The complexity of morphoea aetiopathogenesis is clear.  Whilst some broadly involved 
immunoinflammatory and profibrotic signaling cascades are elucidated, an overlay of 
clinical heterogeneity means regional susceptibility mechanisms and distinct pathogenic 
determinants are likely implicated.  In the age of genetic profiling and advanced molecular 
science, more precise characterisation of systemic and local genetic and immunopathologic 
factors underpinning the anatomical and morphologic variability in morphoea, may open 
the door to novel targeted therapeutic approaches.  
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Table 1. Selected potential key molecular pathogenic mechanisms in morphoea and related future 
treatment targets. 
 

Mechanism / evidence of profibrotic action(s) 
Target Therapies 

(experimental / available) 

EPIDERMAL / KERATINOCYTE SIGNALLING 
Key examples; IL1, IL6, TNF-α, PDGF, FGF-receptors, CCL2, ET-1, Fibrillin-1, Fli-1, morphogenic signalling pathways  
αMSH / MCR1 Homeostatic pathway which modulates pro and anti-

inflammatory cytokines to antagonize TGF-β induced skin 
fibrosis   

- Afamelanotide (αMSH 
analogue) 

S100A9 Stimulates fibroblast proliferation and CTGF via TLR4 
signalling  

 

Keratinocyte 
FGF-receptors 

Receptor loss leads to transepidermal water loss with IL-1, 
S100A8 and S100A9 production and resultant profibrotic 
response 

 

Fibrillin-1  ECM microfibrillar component overexpressed in some SSc 
populations, antibodies demonstrated in morphoea and 
mutation responsible for stiff skin syndrome 

 

Fli-1 Transcription factor; down-regulation induces SSc-like 
phenotype and enhances skin fibrosis via IL-1, IL-6 and IL-8 
over-expression  

 
 

Wnt-signalling Stimulates enhanced fibroblast proliferation, myofibroblast 
differentiation, collagen and ECM expression and CTGF. 
Inhibited by PPAR-γ receptor agonists. 
 
Inhibits epidermal responsiveness to FGF-receptors.  

 
 
- IVA337 (PPAR (γ and α) 
agonist) 
 

INNATE IMMUNITY  
TLR3 IL-6 

IP10 
Heightened fibroblast responsiveness to TGF-β 

- Tocilizumab (anti IL-6) 

STAT4   proinflammatory / profibrotic cytokines; TNF-α, IL-2, 
IL-6 
Type-1 IFNs, leading to increased fibrosis  

- Lisofylline (blocks STAT-4 
signalling)  

NF-κB Skin homeostatic pathway, profibrotic c-Rel subunit 
abnormally expressed in SSc keratinocytes  

 

IL-1 / NLRP3 
inflammasome  

Levels correlate with mRSS  - Anakinra (anti IL-1) 

ADAPTIVE RESPONSES 
Early active inflammatory phase 
Th2 cytokines: 
IL-2, TNF-α, IL-6 

 
Increased levels in early (<24 months) morphoea, 
correlate with skin scores 

 
- Infliximab (anti-TNFα 

Amplified inflammation and initiation of fibrosis 
Th17 cytokines: 
IL-1, IL-17, IL-22 
 
 
 
 
TGF-β 

 
Increased levels later (24-48 months)  
IL-1 promotes fibroblast proliferation, collagen 
production and CTGF expression 
 
 
Potential master regulator of pathological fibrosis 
Increased levels in skin and serum  

 
- Anakinra (anti IL-1) 
- Secukinumab / Ixekizumab 
(anti-IL-17A), Brodalumab 
(anti IL-17 receptor A), IL-17E 
or F antibodies 
- Fresolimumab (anti TGF- β) 
- Pirfenidone gel (anti TGF- β) 
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Up-regulates MMPs eg. MMP12 over-expressed in SSc  
Final fibrotic and atrophic phase 
Th2 cytokines: 
IL-4, IL-13 

 
Up-regulate collagen synthesis and inhibit collagenase 
activity  
IL-13 levels and activity in morphoea  
IL-4 levels correlate with early inflammatory phase 
cytokines and skin scores  

 

MESENCHYME AND FIRBOBLASTS 
Fibrocyte to 
myofibroblast 
trans-
differentiation 

Aberrant differentiation of mesenchymal progenitors 
described in SSc  

 

Epithelial to 
myofibroblast 
trans-
differentiation  

Induced by cytokines and signalling involved in 
morphoea related fibrosis; TNF-α, TGF-β, CTGF, FGF2, 
Wnt, Shh and Jagged-notched.  
Demonstrated in stiff skin syndrome  

 

Location specific 
mesenchymal gene 
expression and 
patterning 

Determined by pathways and molecular mechanisms 
intricately linked to pathological fibrosis; TGF-β, Wnt, 
FGFs and others.  
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Figure 1. Linking clinical morphoea variability (anatomical, morphology and depth of tissue 
involvement), to possible underlying genetic and molecular mechanisms. Specifically, 
anatomical distributions may be explained by certain factors of regional diversification, 
whilst variations in morphology and depth of tissue involvement may be determined by 
differing immunoinflammatory and pro / anti-fibrotic pathways.  
 
Figure 2. Proposed morphoea pathogenesis; underlying susceptibility mechanisms plus 
epigenetic and environmental factors combine to trigger a cascade of epidermal 
(keratinocyte) and dermal (fibroblast) innate, adaptive, fibrotic molecular mechanisms and 
signaling pathways, culminating in fibrosis. 
α-MSH = α-melanocyte stimulating hormone , ET1 = endothelin 1; Fli1 = , Shh = Sonic hedgehog, Wnt = , PPAR = ,Kɸ FGFR = keratinocyte 
fibroblast growth factor receptors , CTGF = connective tissue growth factor, TGF-β = transforming growth factor , TLR  = toll-like receptor, 
IRF5 = , STAT4 = , NLRP3 = , IL = interleukin, TNFα = tumour necrosis factor, PDFG = platelet derived growth factor, MMPs = matrix 
metalloproteins, TIMPs = tissue inhibitors of metalloproteinases, FGF = fibroblast growth factor, COMP = cartilage oligomeric matrix 
protein.    

 


