
Electrostatically Guided Rydberg Positronium

A. Deller, A. M. Alonso, B. S. Cooper, S. D. Hogan, and D. B. Cassidy
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

(Received 10 June 2016; published 12 August 2016)

We report experiments in which positronium (Ps) atoms were guided using inhomogeneous electric
fields. Ps atoms in Rydberg-Stark states with principal quantum number n ¼ 10 and electric dipole
moments up to 610 D were prepared via two-color two-photon optical excitation in the presence of a
670 Vcm−1 electric field. The Ps atoms were created at the entrance of a 0.4 m long electrostatic
quadrupole guide, and were detected at the end of the guide via annihilation gamma radiation. When the
lasers were tuned to excite low-field-seeking Stark states, a fivefold increase in the number of atoms
reaching the end of the guide was observed, whereas no signal was detected when high-field-seeking states
were produced. The data are consistent with the calculated geometrical guide acceptance.
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The ability to manipulate neutral atoms and molecules
using optical, electric, or magnetic fields [1–6] has enabled
many advances in atomic and molecular physics, such as
the creation of new states of matter [7], precision tests of
fundamental symmetries [8], ultraprecise atomic clocks [9],
cold collision experiments [10], and atom interferometry
[11]. Unfortunately positronium (Ps), the hydrogenic
electron-positron bound state [12], has not been included
in this revolution, largely because of limitations in available
positron sources [13] and the short Ps ground-state lifetime:
being composed of a particle-antiparticle pair, Ps is inher-
ently unstable in the ground state, with a mean lifetime
against annihilation of only 142 ns for the “long-lived”
triplet states [14].
This situation is now changing, owing to developments in

positron trapping andmanipulation techniques [15] that have
made high-intensity, pulsed, positron sources considerably
more accessible [16]. This in turn facilitates the optical
excitation of Ps atoms with pulsed lasers [17], and it is now
possible to routinely produce Ps in highly excited (Rydberg)
states [18–22]. Since Ps annihilation requires overlap of the
electron and positron wave functions, it is strongly sup-
pressed for states with orbital angular momentum quantum
numberl > 0 [23,24], and the lifetimes of PsRydberg-Stark
states are almost entirely determined by fluorescence [22].
Thus, transferring Ps atoms from the ground state to
Rydberg-Stark states has two beneficial effects: (1) it sig-
nificantly increases their lifetimes and (2) it can result in the
production of atoms with very large electric dipole moments
[25]. Together these properties provide a way to control Ps
motion using inhomogeneous electric fields [26,27] over
long time scales. Variations of such techniques have been
used for decades [28] to manipulate ground-state polar
molecules [2] as well as atoms and molecules in Rydberg
states [4], but have never before been applied to Ps.
Controlling the motion of Ps atoms is desirable because,

although there are many physical processes through which

Ps can be generated following positron interactions with
solid-state materials [29–34], they all tend to result in
similar Ps properties, that is, thermal (or hotter) Ps atoms,
emitted with a large angular spread. Because of their low
mass (2me) thermal Ps atoms at 300 K have speeds of
∼7 × 104 ms−1, which is orders ofmagnitude faster than one
can obtain from, for example, a supersonic gas expansion
(e.g., [35]) or a buffer gas source (e.g., [36]). Some
techniques have been developed to produce colder Ps atoms
[37–39], but they are not efficient and/or require unstable
targets. Alternative methods under investigation include
using cryogenic mesoporous silica films with larger pores
[40,41], or Ps production via delocalized Bloch states in
metal-organic-framework materials [20]. Currently, how-
ever, no satisfactory method is known to efficiently produce
Ps atoms with energies ≲10 meV.
The possibility of laser cooling Ps has been discussed for

many years [42] but it has not been achieved experimen-
tally. However, when starting from a thermal Ps source,
laser cooling would be of only limited utility because viable
cooling schemes require transitions that cycle via the
ground state (i.e., 13S → 23P transitions), and hence only
a finite number of cooling cycles are possible before Ps
atoms are lost to annihilation. This amounts to around 30
cycles in 200 ns, and reducing the Ps temperature by
∼100 K would result in the loss of approximately half of
the atoms [43]. The laser sources that have been suggested
for Ps cooling (e.g., [44]) are generally within current
technological capabilities, and laser cooling may become
useful if colder ensembles of atoms can be generated, or if
other cooling processes can be simultaneously employed
(e.g., [45]).
Here we demonstrate radial confinement of Ps atoms

in Rydberg-Stark states with principal quantum number
n ¼ 10 in an electrostatic quadrupole guide. The Ps atoms
were created in an electric field to facilitate selective
excitation of specific parts of the Stark manifold [21].
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After entering the guide, atoms in states with positive Stark
shifts [i.e., low-field-seeking (lfs) Stark states] are deflected
away from the electrodes by the inhomogeneous electric
fields [46], and are thus guided along the length of the
device. Atoms in states with negative Stark shifts [i.e.,
high-field-seeking (hfs) Stark states] are deflected away
from the axis of the guide and are lost. The experiments we
report open the door to the future implementation of more
sophisticated techniques, including deceleration [47,48]
and trapping [49] of Ps atoms.
The experimental methods used to produce and detect

Rydberg Ps atoms are the same as those previously described
[50]. A Surko-type buffer gas trap [15] is used to produce
time-focused [51] positron pulses containing approximately
105 particles at a repetition rate of 1 Hz. The temporal
and spatial beam properties used here are Δt ∼ 4 ns and
Δx ∼ 3 mm (FWHM). The positron beam is transported by a
uniform magnetic field of ∼100 G and implanted into a
mesoporous silica film [32]. This target subsequently emits
Ps atoms with a mean longitudinal energy of ∼100 meV
[52], corresponding to a speed of ∼105 ms−1. The Ps
production efficiency of the silica targets used is ∼25%
[53], and the emitted atoms form a dilute ground-state gas in
vacuum with an initial density of approximately 107 cm−3.
Rydberg Ps atomswere prepared using the 13S → 23P →

n3S=n3D excitation scheme, first demonstrated by Ziock
et al. [54]. These transitions were driven by two Nd:YAG
pumped pulsed dye lasers (6 ns FWHM): a broadband
(Δν ¼ 85 GHz,) ultraviolet (UV) laser (Epulse ≈ 500 μJ,
λ ¼ 243.0 nm) and a narrower (Δν ¼ 5 GHz,) infrared
(IR) laser (Epulse ≈ 8 mJ, λ ¼ 728 − 760 nm). The UV
and IR laser light was linearly polarized, perpendicular
and parallel to the magnetic field direction, respectively.
Owing to the large Ps velocities, the limiting factor in the
excitation efficiency was the ∼10% overlap of the UV laser
bandwidth with the Doppler broadened 13S → 23P tran-
sition; we estimate that∼103 Rydberg atomswere generated
per second.
The Ps excitation region and the quadrupole guide

structure and electric fields are shown schematically in
Fig. 1. Because Ps is produced in a reflection geometry, the
guide potentials are switched on ∼150 ns after the positron
beam has passed through. Ps atoms are emitted within 10 ns
of the positron implantation [52]; some of these atoms are
excited to Rydberg levels and then travel towards the guide,
reaching the entrance in ∼200 ns. As indicated in Fig. 1(b),
the path from the silica target to the guide is partially
collimated by a 5.8 mm diameter hole in a ring electrode,
located 6.0 mm from the target. Also shown in the figure
are the positions of three lutetium-yttrium oxyorthosilicate
(LYSO) scintillator-based gamma-ray detectors [55]. The
first detector (A) covers the target area and is used to
monitor Ps formation and excitation, while Ps atoms that
leave the excitation region are detected by two more
detectors (B and C) located approximately 0.4 m away.

An electric field of 670 Vcm−1 was applied in the
excitation region in order to separate the Rydberg-Stark
states, and the resulting Stark-broadened spectrum of
transitions from n ¼ 2 to n ¼ 10 is shown in Fig. 2(a).
These data were obtained (using detector A) by analyzing
suitable time windows in single-shot lifetime spectra [56] to
generate a signal parameter Sγ that is proportional to the
number of Rydberg atoms present [50]. There is a slight
difference in the detection efficiency of lfs and hfs states
because they are deflected by the inhomogeneous electric
fields between the ring and guide electrodes. As a result, the
measured spectrum is not perfectly symmetric. The applied
field is not sufficient to permit the spectral resolution of
individual Stark states [21], but it is sufficient to allow for
the optical selection of predominantly lfs or hfs states. The
100 G magnetic field used to transport the positrons does
not significantly affect the energy level structure or dynam-
ics of the Rydberg atoms. This is because in these states
spin-orbit interactions are minimal, and the magnetic
moment associated with the net orbital angular momentum
of the electron-positron pair is zero [57].
The electric dipole moments of Ps Stark states are given

by ~μ ¼ −ð3=2ÞnkeaPs, where k ¼ n1 − n2 is the difference
between the parabolic quantum numbers [25], e is the
electron charge, and aPs ¼ 2a0 ¼ 1.058 × 10−10 m is the
Ps Bohr radius. For the laser polarizations employed here
the excited states are produced predominantly with azimu-
thal quantum number ml ¼ 1 [21], and even values of k,

FIG. 1. (a) Schematic layout of the experiment, indicating the
Ps excitation region, the position of the quadrupole guide, and the
LYSO gamma-ray detectors A, B, and C. (b) Expanded view of
the excitation region, and (c) a contour plot of the electric field
strength inside the quadrupole with 1 kV applied.
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where k has values from −ðn− jmlj−1Þ toþðn− jmlj−1Þ
in steps of 2 [25]. The calculated relative spectral intensities
[58] of the transitions to the nD components of the ml ¼ 1
Stark states are indicated by the vertical bars in Fig. 2(a).
The solid black line is a convolution of the calculated
intensity distribution with a 130 GHz Gaussian function,
representing the experimental spectral resolution due to the
laser bandwidth and Doppler broadening, as determined by
field-free line shape measurements.
Enhanced Ps transport along the guide is indicated by

an increased count rate in detectors B and C. Unlike the
single-shot lifetime spectra used to observe multiple near-
simultaneous events close to the Ps formation region, single
event counting is used to detect atoms that travel away from
this region. The counting procedure is the same as that used
in previous Ps time-of-flight (TOF) measurements [22].
The detector signals are recorded with an oscilloscope in
6 μs time windows in which an event is registered if the
output amplitude exceeds 1 mV for more than 30 ns. The

overall efficiency of the two detectors, including the solid
angles subtended, is estimated to be on the order of 5%.
Figure 2(b) shows the background subtracted total count

rate from detectors B and C as a function of the IR laser
wavelength, for a range of voltages applied to the guide.
The background was measured with the IR laser off
resonance. The data obtained with 0 V applied to the guide
were recorded at the same time as the spectrum shown in
Fig. 2(a). In this case we detect any Ps Stark states that are
emitted towards the guide within a narrow cone with a half
angle of approximately 1°.
When the guide fields are applied the signal detected byB

and C depends strongly on the IR laser wavelength. No hfs
states are detected, demonstrating that even for states with
the smallest electric dipolemoments (i.e., k ¼ −2 stateswith
μ ¼ 150 D) and for the lowest applied fields, the hfs states
cannot traverse the guide. The maximum applied potential
results in a maximum electric field of 4.2 kV cm−1, which is
well below the lowest field required to ionize Ps states with
n ¼ 10 (∼14 kV cm−1 [58]).
For a low guide field only those states with the highest

dipole moment (i.e., k¼þ8 states with μ¼610D) are obser-
ved above the guide off background signal. Nevertheless,
this field is sufficient to suppress transport of all hfs states.
When the field is increased, more of the lfs Stark states
are transported, which may be partially due to a focusing
effect in the space between the ring and guide electrodes.
The TOF distributions of the guided atoms have been

directly measured for two different IR wavelengths, for
which either lfs (k ∼þ6) or hfs (k ∼ −6) Stark states were
predominantly prepared. These data are shown in Fig. 3.

FIG. 2. (a) Spectrum of the n ¼ 2 → 10 transitions measured
using detector A. The grey vertical bars represent the relative
spectral intensity for individual k states, labeled by the horizontal
scale. The black solid line is a convolution of these with the
∼130 GHz experimental spectral resolution. (b) The background
subtracted count rate obtained from detectors B and C, measured
with the indicated potentials applied to the guide. The dashed
vertical line in both panels represents the expected centroid
wavelength.

FIG. 3. Background subtracted TOF data recorded by detectors
B and C with 1 kV applied to the guide electrodes, for IR laser
wavelengths corresponding to (a) outer lfs (k ∼þ6) and (b) outer
hfs (k ∼ −6) states, as indicated. The data set is truncated for
times less than ∼0.5 μs because of detector saturation following
implantation of the positron pulse.

PRL 117, 073202 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

12 AUGUST 2016

073202-3



The measured TOF distributions are consistent with the
fraction of the initial Ps phase-space distribution that meets
the guide acceptance criteria. The flight times are compa-
rable to the 3 μs florescence lifetime of Rydberg-Stark
states with n ¼ 10 [22]. This process results in self-
annihilation in the field of view of detectors B and C,
while atoms that do not decay via fluorescence mostly
annihilate following a collision with a pumping restriction
at the end of the quadrupole structure (see Fig. 1).
Whether a Ps atom is guided or not depends on its

radial position and velocity at the guide entrance, its
dipole moment, and the electric fields in the quadrupole
structure. The transverse phase-space acceptance when
the guide is operated at þ1 kV is shown in Fig. 4 for each
lfs Stark state. Also shown are the initial positions in
phase space in the x and y directions of 100 Rydberg
atoms. The trajectories have been determined numerically,
assuming a 700 K Maxwell-Boltzmann velocity distribu-
tion and a cosine angular distribution. Note that the
velocity spread in the x direction is narrowed by the
Doppler selection of the excitation lasers. The trajectories,
neglecting any focusing effects, indicate that ∼10% of the
Rydberg Ps atoms that pass through the ring electrode are
guided. This corresponds to ∼8% of the total Rydberg Ps
distribution.
The design of the guide used in this work is very basic,

and can be improved in numerous ways. For example,
better matching of the excitation region and the guide
entrance will increase the geometrical acceptance.
Introducing multiple guide stages will make it possible
to perform deceleration experiments, and sets the stage for
further work using time-varying fields. It may also be
beneficial to use different electrode and electric field
configurations, such as surface based transmission lines
[59,60] or wires [61,62], which would be more convenient
for probing guided Ps atoms with microwave or laser fields,

or for allowing them to interact with other species
(e.g., [63,64]).
The ∼25 meV kinetic energy of thermal Ps is well

within the range of energy extraction achieved in other
Rydberg-Stark deceleration and trapping experiments using
time-varying fields [60]. Therefore, with some modifica-
tions to account for the different velocity distributions,
similar levels of control are anticipated in Ps experiments.
Since Stark deceleration operates via conservative forces,
it cannot be exploited to reduce the phase-space density of
(i.e., to cool) a sample of atoms or molecules. The efficacy
of such techniques, as well as those employing velocity
selection (for example, as might be achieved using a curved
quadrupole guide [65]), improves when colder sources of
atoms or molecules are employed. Thus, the development
of methods to generate cold or monoenergetic Ps atoms
(e.g., [20]) will be beneficial for deceleration and trapping
experiments.
The experiments described here represent an important

step towards the long-term goal of using inhomogeneous
electric fields to create controlled beams of Ps atoms in
long-lived Rydberg-Stark states. The ability to simulta-
neously extend the lifetime and control the translational
motion of Ps atoms will facilitate several ongoing research
programs, such as spectroscopy [19,66], gravitational
free-fall experiments [67,68], generating positron-atom
bound states via Ps-atom scattering [63], and the formation
of antihydrogen following Rydberg Ps interactions with
antiprotons [64].
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