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Abstract

We prove that any equational basis that defines RRA over wRRA must
contain infinitely many variables. The proof uses a construction of ar-
bitrarily large finite weakly representable but not representable relation
algebras whose “small” subalgebras are representable.

1 Introduction

Jónsson [7] axiomatized the class of lattices isomorphic to lattices of commut-
ing equivalence relations. The operations of meet and join in such lattices are
intersection and relational composition, respectively. Adding converse and the
identity relation, Jónsson axiomatized the class of algebras isomorphic to alge-
bras of binary relations with intersection, composition, converse, and identity
as their operations. Applied to relation algebras, Jónsson’s axioms yield a char-
acterization of the the class of weakly representable relation algebras, i.e., the
class of relation algebras isomorphic with respect to 0, ·, 1,

, ,̆ ; to algebras of
binary relations with set-theoretic constants and operators ∅,∩, Id,−1, | (see [6,
Definition 5.14]).
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Jónsson asked whether his axioms (which were quasi-equations) could be
replaced by equations. Pécsi [13] proved that they can. Jónsson proved there is
a relation algebra that is not weakly representable, and asked whether there are
weakly representable relation algebras that are not representable. Andréka [4]
not only provided such examples, but showed that no finite number of first
order conditions are enough to insure that a weakly representable algebra is
representable.

Let RRA denote the class of representable relation algebras, and let wRRA
denote the class of weakly representable relation algebras. Since wRRA is a
variety, Andréka’s result says that if Σ is an equational basis that defines RRA
over wRRA, that is, RRA = wRRA ∩Mod(Σ), then Σ cannot be finite. In the
present paper, we strengthen Andréka’s result in Theorem 1:

Theorem 1. Suppose Σ is a set of equations such that RRA = wRRA∩Mod(Σ).
Then the set of variables used by equations in Σ is infinite.

This solves a problem from the first author’s dissertation [1]. We solve
another problem from [1] by exhibiting a non-representable relation algebra
with a weak representation over a finite set. In addition, we reduce the size of
the smallest known weakly representable but not representable relation algebra
from 2366 (from [4]) to 27 (see Corollary 13).

2 Proof of Main Result

Definition 2. A relation algebra A = (A, 0, 1, ,+, ·, 1,
, ˘, ;) is a boolean algebra

(A, 0, 1, ,+, ·, ) together with an associative binary operation ; having identity
element 1

,
, i.e., x = x ;1

,
, and a unary operation ˘, satisfying additivity: x ;(y+

z) = x ;y + x ;z, (x+ y)̆ = x̆+ y̆, involution laws: ˘̆x = x, (x ;y)̆ = y̆ ;x̆ and the
triangle law: x̆ ;x ;y ≤ y. A is symmetric if it satisfies x̆ = x, for all x ∈ A. A
is integral if 1

,
is an atom.

If A is symmetric then A is commutative (satisfies x ;y = y ;x), by the invo-
lution laws. We only deal with finite symmetric (hence commutative) algebras.

Definition 3. Let U be an equivalence relation over a set D. A representation θ
of a relation algebra A with unit U over base D is an injective map θ : A→ P(U)
sending each a ∈ A to aθ (⊆ U), the image of a under θ, that respects all the
relation algebra operators and constants:

0θ = ∅
1θ = U,

xθ = U \ xθ = {(u, v) ∈ U : (u, v) /∈ xθ},
(x+ y)θ = xθ ∪ yθ = {(u, v) ∈ U : (u, v) ∈ xθ ∨ (u, v) ∈ yθ},
(x · y)θ = xθ ∩ yθ = {(u, v) ∈ U : (u, v) ∈ xθ ∧ (u, v) ∈ yθ},

(1
,
)θ = {(u, u) : u ∈ D},
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x̆θ = (xθ)−1 = {(u, v) ∈ U : (v, u) ∈ xθ},
(x ;y)θ = xθ|yθ = {(u, v) ∈ U : ∃w ∈ D

(
(u,w) ∈ xθ ∧ (w, v) ∈ yθ

)
},

A weak representation is defined similarly, but need not respect union or comple-
mentation. RRA and wRRA are the classes of relation algebras that have repre-
sentations and weak representations, respectively. As we mentioned earlier, they
are both equational varieties. Given a representation (or a weak representation)
θ over base D, any x ∈ D and any a ∈ A we write θ(a, x) for

{y ∈ D : (x, y) ∈ aθ}.

If θ is any weak representation ofA whose unit is some equivalence relation U
over base D then for any equivalence class X of U the map φ : A → ℘(X ×X)
defined by aφ = aθ ∩ (X × X) is easily seen to respect 0, 1, ·, 1′, ,̆ ; (the unit
is now X × X, the base is X). Further, if θ is a representation then φ also
respects ,+. If A is integral then it is easy to check, for non-zero x ∈ A, that
x; 1 = 1;x = 1 and this ensures that φ is injective. A representation (or weak
representation) over base D where the unit is D ×D is called square. Since all
the relation algebras considered in this paper are integral, if a representation
(respectively weak representation) exists then a square (weak) representation
also exists. When we refer to a (weak) representation over a set D the unit will
be assumed to be D2 = D ×D.

Lemma 4. If θ is a weak square representation of a relation algebra A over a
set D, then θm is a weak square representation of A over Dm, where, for every
m ≥ 1 and every element x of A,

xθ
m

= {(u, v) ∈ Dm ×Dm : ∀i < m
(
(ui, vi) ∈ xθ

)
}. (1)

Proof. The following calculations show that θm maps 1
,
, ·, ;, and ˘ to the

identity relation, intersection, relative product, and converse, respectively, just
because θ does so.

(1
,
)θ

m

= {(u, v) ∈ (Dm)2 : ∀i < m
(
(ui, vi) ∈ (1

,
)θ
)
}

= {(u, v) ∈ (Dm)2 : ∀i < m
(
ui = vi

)
}

= {(u, v) ∈ (Dm)2 : u = v},
(x · y)θ

m

= {(u, v) ∈ (Dm)2 : ∀i < m
(
(ui, vi) ∈ (x · y)θ

)
}

= {(u, v) ∈ (Dm)2 : ∀i < m
(
(ui, vi) ∈ xθ · yθ

)
}

= {(u, v) ∈ (Dm)2 : ∀i < m
(
(ui, vi) ∈ xθ ∧ (ui, vi) ∈ yθ

)
}

= {(u, v) ∈ (Dm)2 : ∀i < m
(
(ui, vi) ∈ xθ

)
∧ ∀i < m

(
(ui, vi) ∈ yθ

)
}

= xθ
m

∩ yθ
m

,

(x ;y)θ
m

= {(u, v) ∈ (Dm)2 : ∀i < m
(
(ui, vi) ∈ (x ;y)θ

)
}

= {(u, v) ∈ (Dm)2 : ∀i < m
(
(ui, vi) ∈ xθ ;yθ

)
}

= {(u, v) ∈ (Dm)2 : ∀i < m∃wi ∈ (Dm)2
(
(ui, wi) ∈ xθ ∧ (wi, vi) ∈ yθ

)
}

3



= {(u, v) ∈ (Dm)2 : ∃w ∈ (Dm)2
(
(u,w) ∈ xθ

m

∧ (w, v) ∈ yθ
m)
}

= xθ
m

|yθ
m

,

x̆θ
m

= {(u, v) ∈ (Dm)2 : ∀i < m
(
(ui, vi) ∈ x̆θ

)
}

= {(u, v) ∈ (Dm)2 : ∀i < m
(
(ui, vi) ∈ (xθ)−1

)
}

= {(u, v) ∈ (Dm)2 : ∀i < m
(
(vi, ui) ∈ xθ

)
}

= {(u, v) ∈ (Dm)2 : (v, u) ∈ xθ
m

}
= (xθ

m

)−1.

Definition 5. If 3 ≤ p < ω and 0 ≤ n < ω, then L(p, n) is the finite symmetric
integral relation algebra with atoms 1

,
, a0, . . . , ap, t1, . . . , tn such that, if 0 ≤

i, j ≤ p, i 6= j, 1 ≤ k, l ≤ n, and k 6= l, then

ai ;ai = 1
,

+ ai,

ai ;aj = 0
, · ai + aj ,

ai ;tk = t1 + · · ·+ tn,

tk ;tk = 1
,

+ a0 + · · ·+ ap,

tk ;tl = a0 + · · ·+ ap.

Let A = a0 + · · ·+ap and T = t1 + · · ·+ tn. Whenever 0 ≤ i, j ≤ p and i 6= j, let
Lij(p, n) be the subalgebra of L(p, n) whose atoms are 1

,
, ai+aj, ak for k 6= i, j,

0 ≤ k ≤ p, and t1, . . . , tn (when n ≥ 1).

Note that L(p, 0) has only the atoms 1
,
, a0, . . . , ap, so T = 0, A = 0

,
, and

only the first two rules above govern relative multiplication of atoms in L(p, 0).
Lij(p, n) is indeed a subalgebra of L(p, n) because all products involving the
atom ai + aj are joins of other atoms, as shown here:

(ai + aj);(ai + aj) = 1
,

+A,

(ai + aj);ak = A · ak for k 6= i, j,

(ai + aj);tl = T for 1 ≤ l ≤ n.

In all of what follows, we assume 3 ≤ p < ω and 0 ≤ n < ω.

Lemma 6. If 0 ≤ i, j ≤ p ≤ q and i 6= j, then Lij(p, n) is isomorphic to a
subalgebra of L(q, n).

Proof. The map from the atoms of Lij(p, n) to L(q, n) which maps ai + aj to
ai + aj +

∑q
k=p+1 ak and fixes all other atoms extends (using additivity) to an

embedding of Lij(p, n) into L(q, n).

Lemma 7. If θ is a representation of L(p, n) over D then

p− 1 = |θ(x, ai)| ≥ 2n− 1

for all x ∈ D and 0 ≤ i ≤ p.
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Proof. Suppose that θ is a representation of L(p, n) over D. Let x ∈ D. Then
(x, x) ∈ (1

,
)θ ⊆ (a0 ;a0)θ = aθ0|aθ0 so there is some x′ ∈ D such that (x, x′) ∈ aθ0.

Now a0 ≤ a1 ;ai for i ∈ {2, . . . , p}, so there are distinct y2, . . . , yp ∈ θ(x, a1) such
that (yi, x

′) ∈ aθi for i ∈ {2, . . . , p}, hence θ(x, a1) ⊇ {y2, . . . , yp}. Conversely, if
w ∈ θ(x, a1) then (w, x′) ∈ aθ1|aθ0 = aθ2 ∪ · · · ∪ aθp, so there is some j ∈ {2, . . . , p}
such that (w, x′) ∈ aθj , hence w = yj because

(w, yj) ∈ (aθ1|aθ1) ∩ (aθj |aθj ) = (a1 ;a1 · aj ;aj)
θ = (1

,
)θ.

Therefore θ(x, a1) = {y2, . . . , yp} and |θ(x, a1)| = p− 1. If n = 0 or n = 1 then
2n− 1 ≤ p− 1 (since p ≥ 3) and we are done, so assume n ≥ 2.

Since (x, x) ∈ tθ1|tθ1, there is some x′′ ∈ D such that (x, x′′) ∈ tθ1, as shown
in the diagram below. Since t1 ≤ a1 ;ti there are distinct u1, . . . , un ∈ θ(x, a1)
such that (ui, x

′′) ∈ tθi , for i ∈ {1, . . . , n}. Since ti ≤ a1 ;ti there are v2, . . . , vn ∈
D such that (ui, vi) ∈ aθ1 and (vi, x

′′) ∈ tθi , for i ∈ {2, . . . , n}. Note that
v2, . . . , vn ∈ θ(x, a1) since a1 ;a1 = a1 + 1

,
, and that u1, . . . , un, v2, . . . , vn are

distinct elements of θ(x, a1), so |θ(x, a1)| ≥ 2n− 1.

vi

tiui

a1

ti

x

a1

t1

a1

x′′

u1

a1
t1

Corollary 8. If 2n > p then L(p, n) /∈ RRA.

Lemma 9. If p is a prime power then L(p, 0) has a representation over a set
of size p2 and L(p, 1) has a representation over a set of size 2p2.

Proof. The first part was proved in [9, Theorem 1], along the following lines.
Let Fp be the finite field of cardinality p. Let D = F2

p. D is the affine plane
with p points on each line. Define some relations on D as follows. If 0 ≤ i < p,
Ri is the set of pairs of distinct points that lie on lines with slope i, while Rp
is the set of pairs of distinct points that lie on a “vertical” line (with “infinite
slope”).

Ri = {(x, y) : x, y ∈ D, y − x ∈ {(j, ij) : 0 < j ∈ D}}, for 0 ≤ i < p,

Rp = {(x, y) : x, y ∈ D, y − x ∈ {(0, j) : 0 < j ∈ D}}.

Define a map φ : L(p, 0) → ℘(D2) by letting (1
,
)φ be the identity over D,

aφi = Ri (for 0 ≤ i ≤ p) and extend φ by additivity to arbitrary elements of
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L(p, 0). Then φ is a representation of L(p, 0) on D. Let ′ : D → D′ be a bijection
from D to some disjoint set D′ and let θ be defined on atoms of L(p, 1) by

(1
,
)θ = {(x, x) : x ∈ D ∪D′},
aθi = Ri ∪ {(x′, y′) : (x, y) ∈ Ri}, for 0 ≤ i ≤ p,
tθ1 = (D ×D′) ∪ (D′ ×D).

Extend θ by additivity to all of L(p, 1). Then θ is a representation of L(p, 1)
over D ∪D′.

Corollary 10. If p is a prime power then L(p, 0) has weak representations over
finite sets of size p2m for all m ≥ 1.

Let θ be any weak representation of L(p, 0) over a (possibly very large) finite
base D. Again, let ′ : D → D′ be a bijection from D to some disjoint set D′ and
let θ′ be the weak representation of L(p, 0) over D′ defined by (x′, y′) ∈ bθ′ ⇐⇒
(x, y) ∈ bθ (for any x, y ∈ D, b ∈ L(p, 0)). Next we define a ‘randomly labelled’
L(p, n) structure ξ = ξ(θ) over base D ∪D′, as follows. Partition D ×D′ into
n pieces T1, · · · , Tn randomly, i.e., each pair (x, y′) ∈ D × D′ is included in
exactly one of the Ti (some 1 ≤ i ≤ n) with equal probabilities 1

n each, and the
probabilities for distinct edges are independent. For b ∈ L(p, n) let

bξ = (b · (A+ 1
,
))θ ∪ (b · (A+ 1

,
))θ
′
∪
⋃
ti≤b

(Ti ∪ Ti−1).

Lemma 11. Assume θ is a weak representation of L(p, 0) over a base D. Let
d = |D| and k ≤ |θ(ai, x)| for all x ∈ D, 0 ≤ i ≤ p. Provided(

n2

n2 − 1

)d
> 4n2d(d− 1) and (2)(

n

n− 1

)k
> 4(p+ 1)nd2, (3)

the probability that the random structure ξ is a weak representation of L(p, n)
is strictly positive.

Proof. For any distinct x, y ∈ D, any z′ ∈ D′, and any 1 ≤ i, j ≤ n the
probability that (x, z′) ∈ Ti and (y, z′) ∈ Tj is 1

n2 . Hence, for any distinct
x, y ∈ D and any 1 ≤ i, j ≤ n the probability that there is no z′ ∈ D′ such

that (x, z′) ∈ Ti and (y, z′) ∈ Tj is (n
2−1
n2 )d. Thus the probability that there is

a distinct pair x, y ∈ D and some 1 ≤ i, j ≤ n such that there is no z′ ∈ D′

witnessing the product ti ;tj is at most d(d−1)n2
(
n2−1
n2

)d
. Similarly, for x ∈ D,

y′ ∈ D′, 0 ≤ q ≤ p, and 1 ≤ i ≤ n, the probability that there is no z ∈ D

such that (x, z) ∈ aρq and (z, y′) ∈ Ti is
(
n−1
n

)|θ(aq,x)|
<
(
n−1
n

)k
. Hence the

probability that ξ fails to be a weak representation is less than

2d(d− 1)n2
(
n2 − 1

n2

)d
+ 2(p+ 1)d2n

(
n− 1

n

)k
.
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(2) and (3) ensure that this probability is strictly less than 1
2 + 1

2 , hence the
probability that ξ is a weak representation is strictly positive.

Lemma 11.5. If x > (4a)2 and x > e
b
a then x > a loge(x) + b.

Proof. The first condition is equivalent to loge(x) > 2 loge(4a). Recall that
ey > y for all real y.

eloge(x)−loge(4a) > loge(x)− loge(4a)

so

x > 4a(loge(x)− loge(4a))

> 4a
loge(x)

2
(by first condition)

= 2a loge(x)

> a loge(x) + b (by second condition)

Theorem 12. If p ≥ 3 is a prime power and 1 ≤ n, then L(p, n) is weakly
representable over arbitrarily large finite sets.

Proof. Let θm be the weak representation of L(p, 0) given in (1) with base
D = (F2

p)
m, |D| = p2m, and note, for all x ∈ D and all diversity atoms a

of L(p, 0), that |θ(a, x)| = (p − 1)m. Observe, in (2) and (3), that d = p2m

and k = (p − 1)m and that the left hand side of each inequality is governed
by a double exponential function of m whereas the right hand side is governed
by only a single exponential function of m. Hence it is already clear that for
sufficiently large m both inequalities are satisfied. For such m, there is strictly
positive probability that the random structure ξ(θm) is a weak representation
on a base of size 2p2m (Lemma 11), hence a weak representation ξ exists within
this probability space.

We claim that (2) holds provided m > logp(16n2) and (3) holds provided

m > 2 logp−1(24n) and m > 1
3 logp−1(4n(p+ 1)). Note, for α > 1

loge(
α

α− 1
) >

1

2α
. (*)

Now for the first part of the claim, suppose m > logp(16n2). Then pm > 16n2

so p2m > (4 × 4n)2 > 2n = e
loge(4n2)

2 . So by Lemma 11.5 with a = 4n2, b =
2n2 loge(4n

2),

p2m > (4× 4n2)2, e
log(4n2)

2 ⇒ p2m > 4n2 log(p2m) + 2n2 log(4n2)

⇒ p2m

2n2
> log(4n2) + 2 log(p2m)
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⇒ p2m log(
n2

n2 − 1
) > log(4n2) + 2 log(p2m) by (*)

⇒ (
n2

n2 − 1
)p

2m

> 4n2p2m(p2m − 1)

giving (2).
Now, for the second part of the claim, we show that (3) holds provided (i)
m > 2 logp−1(24n) and (ii) m > 1

3 logp−1(4n(p + 1)). Here’s the proof. By

(ii) we have (p − 1)m > 3
√

4n(p+ 1) and by (i) we have (p − 1)m > (24n)2.
So, by Lemma 11.5 with a = 6n, b = 2n log(4n(p + 1)), we get (p − 1)m >
6n log((p− 1)m) + 2n log(4n(p+ 1)). Thus

(p− 1)m

2n
> log(4n(p+ 1)) + 3 log((p− 1)m)

≥ log(4n(p+ 1)) + 2 log(pm) (p ≥ 3).

Hence (by (*)), we get (p − 1)m log( n
n−1 ) > log(4n(p + 1)) + log(p2m) and so

( n
n−1 )(p−1)

m

> 4(p+ 1)np2m, yielding (3).

For example, by Theorem 12 and Corollary 8, we have the smallest known
weakly representable but not representable relation algebra:

Corollary 13. L(3, 2) is a non-representable relation algebra that is weakly
representable over a finite set.

Theorem 14. If p is a prime power and p is large compared to n ≥ 1, then
L(p, n) is representable over a finite set of size 2p2.

Proof. The case n = 1 is covered by Lemma 9, so assume n ≥ 2. By Lemma 9,
let θ be a representation of L(p, 0) over a set D, where |D| = p2 and |θ(u, ai)| =
p − 1. If p is sufficiently large compared to n so that (2) and (3) hold then
by Lemma 11 there is a strictly positive probability that the random structure
ξ(θ) is a weak representation, hence a weak representation ξ of this form exists.
We show next that p > 16n2 ensures (2) holds and p > 1 + (48n)2 ensures

(3) holds. If p > 16n2 then p2 > 2n = e
log(4n2)

2 . So by Lemma 11.5 with
a = 4n2, b = 2n2 log(4n2),

p2 > 2n2 log(4n2) + 4n2 log(p2)⇔ p2

2n2
> log(4n2) + 2 log(p2)

⇒ p2 log(
n2

n2 − 1
) > log(4n2) + 2 log(p2) by (*)

⇒ (
n2

n2 − 1
)p

2

> 4n2p2(p2 − 1)

yielding (2).

Now suppose p > (48n)2 + 1. This is more than enough to get p−1 > e
log(4n)

6 =

8



6
√

4n. So by Lemma 11.5 with a = 12n, b = 2n log(4n) we get (p − 1) >
2n log(4n) + 12n log(p− 1). Hence

p− 1

2n
> log(4n) + 6 log(p− 1)⇒ (p− 1) log(

n

n− 1
) > log(4n) + 4 log(p+ 1) p ≥ 16

⇒ (
n

n− 1
)p−1 > 4n(p+ 1)5 > 4n(p+ 1)4p

yielding (3).
Since θ is a representation (not just a weak one) and since each edge from
(D×D′) is labelled by an atom below T , it follows that ξ respects complement
and is therefore a representation of L(p, n).

Theorem 15. For every finite γ there are p and n such that L(p, n) ∈ wRRA \
RRA and all the γ-generated subalegbras of L(p, n) are representable over finite
sets.

Proof. Pick any prime power p such that 2γ < p + 1 and pick n > p/2. By
Theorem 12 L(p, n) is weakly representable and by Corollary 8 L(p, n) is not
representable. Let Γ = {g1, . . . , gγ} ⊆ L(p, n) be a set of γ generators. Since
2γ < p+ 1 there are distinct i, j ≤ p such that for each k either ai + aj < gk or
(ai + aj) · gk = 0. By Lemma 6, the subalgebra of L(p, 0) generated by the γ
elements gk ·A embeds into L(p′, 0) for all p′ ≥ p. We may extend this embedding
(and fix each ti) to obtain an embedding of the Γ generated subalgebra of
L(p, n) into L(p′, n). By Theorem 14, if p′ is sufficiently large compared to n
then L(p′, n) is representable over a finite set. Hence the subalgebra of L(p, n)
generated by Γ is representable over a finite set.

Proof of Theorem 1. Suppose Σ is a set of equations defining RRA over wRRA,
i.e., RRA = wRRA ∩Mod(Σ). Also, suppose for contradiction that there is a
finite γ such that every equation ε ∈ Σ contains only variables from x1, . . . , xγ .
Choose large odd prime power p > 2γ − 1 and let n = (p+ 1)/2.

Since L(p, n) is not representable, but is weakly representable, there is some
equation ε ∈ Σ that is not valid in L(p, n). By assumption, ε contains at
most γ variables. Consider an assignment ′ : {x1, . . . , xγ} → L(p, n) to the
variables, falsifying ε. Let Sg(x′1, . . . , x

′
γ) be the subalgebra of L(p, n) generated

by x′1, . . . , x
′
γ . Since each term using only variables {x1, . . . , xγ} evaluates under

′ to the same thing in L(n, k) as in Sg(x′1, . . . , x
′
γ), this variable assignment

falsifies ε in Sg(x′1, . . . , x
′
γ). But by Theorem 15, Sg(x′1, . . . , x

′
γ) is representable,

yet it fails the equation ε ∈ Σ, contradicting the assumption RRA = wRRA ∩
Mod(Σ).

3 Equational Complexity

The following definition of equational complexity from [12] gives a sort of “mea-
sure” of non-finite-axiomatizability.

9



Definition 16. The length of an equation is the total number of operation
symbols and variables appearing in the equation. For example, the length of
(x+ y) · z = x · z + y · z is 12.

For a variety V of finite signature, the equational complexity of V is defined
to be a function βV where for a positive integer m, βV(m) is the least integer such
that for any algebra A of the similarity class of V with |A| ≤ m, A ∈ V iff A
satisfies all equations true in V of length at most βV(m). More generally, given
two varieties W ⊆ V, the equational complexity of W over V is the function
βW/V where for any positive integer m, βW/V(m) is the least integer such that
for any algebra A ∈ V with |A| ≤ m, A ∈W iff A satisfies all equations true in
W of length at most βW/V(m).

In [2], a log-log lower bound was given for the equational complexity function
for RRA. (See also [12].) Theorem 1 implies that the equational complexity
function of RRA over wRRA must be unbounded; below, we give an explicit
lower bound, also log-log.

Theorem 17. Let β = βRRA/wRRA be the equational complexity function of RRA
over wRRA. Then for all m ≥ 27,

β(m) > log2(2 log2(m)− 5)− log2 3.

Proof. From the proof of Theorem 15, we have that if A is a γ-generated sub-
algebra of L(p, dp+1

2 e) with γ < log2(p + 1), then A is representable, hence

L(p, dp+1
2 e) satisfies all equations with γ variables valid over representable al-

gebras. Since L(p, dp+1
2 e) is not representable and |L(p, dp+1

2 e)| = 22+p+d
p+1
2 e,

it follows that log2(p + 1) ≤ β(22+p+d
p+1
2 e) = β(2d

3p+5
2 e). For any m ≥ 27 (=

2
3×3+5

2 ) we can find p ≥ 3 such that 2d
3p+5

2 e ≤ m < 2d
3p+7

2 e ≤ 2
3p+8

2 . Then

2 log2(m)− 8

3
< p. (4)

Adding one and then taking logs of both sides of (4) yields

log2

(
2 log2(m)− 5

3

)
< log2(p+ 1)

≤ β(2d
3p+5

2 e)

≤ β(m),

where the last line follows from monotonicity of β.

Therefore β(m) > log2(2 log2(m)− 5)− log2 3
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4 Open Questions

Naturally, it seems likely that any equational basis for wRRA contains infinitely
many variables.

Problem 1. Does wRRA have a finite-variable equational basis?

The proof of Lemma 9, essentially due to Roger Lyndon, shows that L(m, 0)
is representable whenever there is an affine plane of order m. Furthermore,
Lyndon proves the converse: if there is no affine plane of order m then L(m, 0)
is not representable.

Problem 2. Is L(m, 0) weakly representable for all finite m ≥ 3?

If the answer to Problem 2 is “Yes”, that would give a cleaner proof of the
main result of the present paper. If the answer is “No”, for infinitely many m,
it would yield a negative answer to Problem 1.

Problem 3. Find a reasonable lower bound for the equational complexity func-
tion for wRRA.

A Monk algebra is an algebra derived from E
{2,3}
k+1 by splitting diversity atoms

(see [5]). The algebras E
{2,3}
k+1 for 1 ≤ k ≤ 400 were recently shown in [3] to

be representable (except possibly for k = 8, 13). Splitting can destroy repre-
sentability, however, as in the present paper.

Problem 4. Are all the Monk algebras weakly representable?

It is known [10] and follows from Theorem 15 that any equational theory
defining RRA must use infinitely many variables, but now consider arbitrary
first order theories.

Problem 5. Is there a first order theory (necessarily infinite) that defines RRA
using only finitely many variables? If so, how many variables are needed?

Failing that:

Problem 6. Is there a first order theory (necessarily infinite) that defines RRA
over wRRA using only finitely many variables?
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