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Abstract. We consider problems where n people are communicating and a random
subset of them is trying to leak information, without making it clear who are leaking the
information. We introduce a measure of suspicion and show that the amount of leaked
information will always be bounded by the expected increase in suspicion, and that this
bound is tight. Suppose a large number of people have some information they want
to leak, but they want to ensure that after the communication, an observer will assign
probability at most c to the events that each of them is trying to leak the information.
How much information can they reliably leak, per person who is leaking? We show that

the answer is
(− log(1−c)

c − log(e)
)
bits.

Keywords. Anonymity, Code-based cryptography, Cryptography, Information theory,
Steganography.

1. Introduction

Consider a world with complete surveillance: everything you do, every letter you send,
and every key you press on your keyboard is recorded by an adversary with unbounded
computational power. Suppose further that you want to reveal a secret X , but if the
adversary learns that you were trying to reveal X , it will punish you. What can you do?

The two obvious options are “do nothing”, in which case X will not be revealed
and “announce X” in which case you will be punished. Brody, Jakobsen, Scheder and
Winkler [4] defined a game where a third option, “hinting at X”, is better. Here “hinting”
means sending a message with a probability distribution which may or may not depend
on the value of X . Consider the following example:1

n people are active bloggers and each of them is a leaker with probability b, indepen-
dently of each other. All the leakers want to reveal the same secret bit X . To do so, they
all make sure that their next blog post is posted on a minute number with the same parity

1This example is inspired by [4] but the game in that paper only has one leaker, which makes in impossible
to get a small error probability ε.
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as X . If sufficiently many of the people are leakers, an observer, Frank, who knows that
this leakage it going on and who sees the timestamps will, with probability at least 1−ε,
be able find X by taking the majority of the parities of the timestamps. On the other
hand, if not too many of the n people are leakers, any particular person will not look
too likely to be a leaker. That is, for any particular person, another observer, Eve, who
knows X and sees the entire communication, will compute the probability of that person
being a leaker to be at most some c < 1.

If the secret X is not just one bit, but is known to be a string of h bits, we can just let
the first n

h people send the first bit as above, the next n
h send the next bit, and so on. If n

is sufficiently large, each of the h groups of people will with high probability contain a
large number of leakers and the most common parity of the timestamp among people in
this group will give you the hth bit of X .

These protocols will only work for particular values of n, h, b, c and ε; however, we
will see that it is possible to create better protocols. The purpose of this paper is to find
upper and lower bounds on howmuch information can be leaked this way. In order to do
so, we will define a measure of suspicion, which exactly captures the loss of anonymity
when hinting at information.

1.1. Previous Work and Our Results

There is a large body of research about how to get anonymity against a less powerful
adversary. If we assume that each pair of people have access to common randomness
that Eve cannot see, then we can use the Dining Cryptographers Protocol [6], and if we
instead assume that Eve has bounded computational power, we could for example use
MIXes [5]. Against an even weaker adversary, that does not have complete surveillance
of the internet, we can use a network of onion routers, for example, the Tor network
[11,17]. For a survey about anonymous communication methods, see [9], and for a
currently up to date list of more than 300 papers in the area, see [15].
Many different ways of measuring anonymity have been suggested. Diaz, Seys,

Claessens and Preneel [10] and independently Serjantov and Danezis [20] suggested
to use entropy as a measure of how well a cryptographic protocol preserves anonymity.
Clauß and Schiffner [7] suggested a measure based on Rényi-Entropy, Zhu and Bettati
[25] suggested a measure based on mutual information, and several other measures have
been suggested [3,14,16,22].
Another way of measuring the loss of anonymity is using the language of differential

privacy [13]. In differential privacy, we say that a randomised mechanism M is (ε, δ)-
differential private if, for any two neighbouring inputs x and y and any set S of possibly
outputs, we have

Pr(M(x)) ≤ eε Pr(M(y)) + δ.

Here x and y are said to be neighbouring if only one person’s input have changed.
Backes et al. [2] suggested a framework for measuring a loss of anonymity, using a
similar inequality. For example, they say that a protocol has (ε, δ)-sender anonymity if
an adversary’s probability of outputting 1 increases by at most a factor eε plus a constant
eεδ whenever the sender of one message is changed. Van den Hooff et al. [23] suggested



Information Theoretical Cryptogenography

a protocol, Vuvuzela, with a similar (ε, δ)-privacy guarantee. Protocols that provide
(ε, δ)-differential privacy will both protect the fact that Alice sent a message and the fact
that Bob did not send it. In this paper, we will assume that people do not mind being
revealed as a non-sender.
Throughout the paper we assume that the observers have unbounded computational

power and that the observers see all messages sent. The idea is to let every person send
random messages and have the leakers make their message correlated with the secret X .
For example the messages could be “I think X belongs to the set S”. However, every
time you make a correct hint about what the secret X is, it will increase the observer’s
suspicion that you know X . Themore precise the hint is or themore unlikely it is that you
would give the hint without knowing X , the more useful the statement is to Frank. But at
the same time, such statements would also be the statements that increases Eve suspicion
towards you the most. Our main contribution is to introduce a measure of suspicion that
captures this and to show that if you want to leak some amount of information about
X in the information theoretical sense, then your suspicion will, in expectation, have to
increase by at least the same amount. This measure of suspicion turns out to be useful
for showing upper bounds on how much information you can leak, without making it
clear that you are leaking.
We consider n players, each of whom is a leaker with probability b independently of

each other, and the leakers are told the secret value x taken by X which is uniformly
distributed on {1, . . . , 2h}. The players want to communicate in such a way that an
observer, Frank, with probability 1 − ε can guess x based on the communication, but
for any particular player, an observer, Eve, who knows x would never assign probability
greater than c to the event that that player was leaking. We are interested in the number
of bits h

n that can be revealed per person and in the number of bits h
bn that can be revealed

per expected leaker. For example, for fixed c and ε is there a bound on the number of
bits per expected leaker h

bn ? Or could this value tend to infinity if b → 0 while n → ∞?
We show that the ratio h

bn is bounded for sufficiently small ε. In fact, we show that the

supremum of the values that can be achieved for all ε is given by −b log(1−c)+c log(1−b)
bc

for fixed b and by − log(1−c)
c − log(e) if b can be arbitrarily small. Here e is the base

of the natural logarithm. To show the upper bound we use the measure of suspicion,
and to show the lower bound we use Shannon’s noisy-channel coding theorem. We also
consider a model where the total number of leakers, l, is fixed and known. Also in this
model the ratio h

l of bits per leaker is bounded by − log(1−c)
c − log(e) independently of

n. For c = 0.95 this gives around 3.1067 . . ., so if a small group of leakers blend into a
much larger group of people, they should be able to leak around 3.1 bits of information
per leaker, while keeping reasonable doubt at the 5% level.
The value c in this problem corresponds to a measure of anonymity suggested by Tóth

et al. [22]. Communication is modelled as in communication complexity, with a model
essentially identical to the one introduced by Yao [24].
Instead of some people being leakers all the time, and the rest being non-leakers

all the time, we could also consider an adaptive model where players turn into leakers
during the execution of the protocol. This gives an advantage to the leakers, because
even people who are willing to leak information count as non-leakers until they start
to leak information. In this adaptive model we need to make some choices about what
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information the players have available when deciding whether to become leakers, and
how to limit the number of player who turn into leakers. Different answers to these
questions give six different models, and we find the capacities for two of these. For
example, we show that if the players already know the secret when deciding whether to
leak it, and we require that the expected number of leakers at the end of the protocol is
at most bn, then asymptotically they can leak −min(b,c) log(1−c)

c − min(b, c) log(e) bits
of information per player.
The measure of suspicion is also useful for analysing a generalisation of the origi-

nal cryptogenography (hidden-origin-writing) problem, as introduced in [4]. Here the
authors considered a game where one person among n was randomly chosen and given
the result of an otherwise secret coin flip. The goal for the n players is to communicate
in such a way that an observer, Frank, would guess the correct result of the coin flip,
but another observer, Eve, who has the same information, cannot guess who of the n
players originally knew the result of the coin flip. The main method in [4] is a concavity
characterisation, and is very different from the information theory methods we use. We
generalise the problem so l players have the secret, and the secret is h bits. In this model
we show that if h = o(l) the winning probability tends to 1 and if l = o(h) the winning
probability tends to 0.
Finally, we show that in general to do cryptogenography, you do not need the non-

leakers to collaborate. Instead, we can use the fact that people send out randommessages
anyway, and use this in a similar way to steganography (see [18]). All we need is that peo-
ple are communicating in away that involves sufficiently randomness and that they do not
change this communication, when we build a protocol on top of that.We can for example
assume that they are not aware of the protocol, or they do not care about the leakage.

1.2. Paper Outline

We define notation and recall some concepts and theorems from information theory
and introduce a communication model in Sect. 2. In Sect. 3 we introduce a measure
of suspicion and use this to show upper bounds on how much information the players
can leak if they want Eve to have reasonable doubt that they are leaking. We use this
in Sect. 4 where we turn to reliable leakage, and define and determine the capacity for
some cryptogenography problems. Each of the next three sections builds on the first
four, but can be read independently of each other. In Sect. 5 we define some adaptive
models where non-leakers can turn into leakers, and find the capacities for two of these
models. In Sect. 6 we show how our results from Sect. 4 can be used to analyse a
generalisation of the original cryptogenography problem. Finally, in Sect. 7 we show
that we can do equally well, even if the non-leakers are not collaborating in leaking, but
are just communicating innocently. We end with an open problem section.

2. Preliminaries

Unless stated otherwise, all random variables in this paper are assumed to be discrete.
Random variables are denoted by capital letters and they take values from the set denoted
by the calligraphic version of the same letter (e.g. X takes values from X ). If X and Y
are random variables and Pr(Y = y) > 0, we let X |Y=y denote the random variable X



Information Theoretical Cryptogenography

conditioned on Y = y. That is

Pr(X |Y=y = x) = Pr(X = x, Y = y)

Pr(Y = y)
.

We typically write Pr(X = x |Y = y) instead of Pr(X |Y=y = x).
For a tuple or infinite sequence a, we let ai denote the i’th element of a, and let ai =
(a1, . . . , ai ) be the tuple of the i first elements from a. We use similar notation if A is
a tuple or sequence of random variables. For tuples a and b of na and nb elements, we
let a ◦ b denote the tuple (a1, . . . , ana , b1, . . . , bnb ). If a′ is a single element, we abuse
notation and write a ◦ a′ instead of a ◦ (a′).
In the rest of this subsectionwewill give some definitions and results from information

theory. For an introduction to these concepts and for proofs, see [8]. For a randomvariable
X and a value x ∈ X with Pr(X = x) > 0 the surprisal or the code-length2 of x is
given by

− log(Pr(X = x)),

where log, as in the rest of this paper, is the base-2 logarithm.
The entropy of X , H(X), is the expected code-length of X

H(X) = E
[− log(Pr(X = x))

]

= −
∑
x∈X

Pr(X = x) log(Pr(X = x)),

where we define 0 log(0) = 0. If p, q : X → [0, 1] are two probability distributions on
X we have the inequality

−
∑
x∈X

p(x) log(p(x)) ≤ −
∑
x∈X

p(x) log(q(x)), (1)

with equality if and only if p = q [8]. One interpretation is, if X ’s distribution is given
by p, and you encode values of X using a code optimised to the distribution q, you get
the shortest average code-length if and only if p = q.
The entropy of a random variable X can be thought of as the uncertainty about X , or

as the amount of information in X . For a tuple of random variables (X1, . . . , Xk) the
entropy H(X1, . . . , Xk) is simply the entropy of the random variable (X1, . . . , Xk). The
entropy of X given Y , H(X |Y ) is

H(X |Y ) =
∑
y∈Y

Pr(Y = y)H(X |Y=y). (2)

A simple computation shows that

2If − log(Pr(X = x)) is an integer for all x ∈ X , and we want to find an optimal prefix-free binary code
for X , the length of the code for x should be − log(Pr(X = x)), thus the name code-length. If they are not
integers, we can instead use �− log(Pr(X = x))	 and waste at most one bit.
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H(X |Y ) =H(X, Y ) − H(Y ).

The mutual information I (X; Y ) of two random variables X, Y is given by

I (X; Y ) = H(X) + H(Y ) − H(X, Y ) = H(Y ) − H(Y |X).

This is known to be nonnegative. The mutual information I (X; Y |Z = z) of X and Y
given Z = z is given by

I (X; Y |Z = z) = I (X |Z=z; Y |Z=z),

where the joint distribution of (X |Z=z, Y |Z=z) is given by (X, Y )|Z=z . The mutual
information I (X; Y |Z) of X and Y given Z is

I (X; Y |Z) = Ez I (X; Y |Z = z).

A simple computation shows that

I (X; Y |Z) = H(X, Z) + H(Y, Z) − H(X, Y, Z) − H(Z).

We will need the chain rule for mutual information,

I (X; (T1, . . . , Tk)) =
k∑

i=1

I (X; Ti |(T1, . . . , Ti−1)).

Let X and Y be random variables, and f : Y → X a function. We think of f (Y ) as a
guess about what X is. The probability of error, Pe is now Pr( f (Y ) 
= X). We will need
(a weak version of) Fano’s inequality,

Pe ≥ H(X |Y ) − 1

log(|X |) . (3)

A discrete memoryless channel (or channel for short) q consists of a finite input set Y , a
finite output set Z and for each element y ∈ Y of the input set a probability distribution
q(z|y) on the output set. If Alice has some information X that she wants Bob to know,
she can use a channel. To do that, Alice and Bob will have to both know a code. An
error correcting code, or simply a code, C : X → Yn is a function that for each x ∈ X
specifies what Alice should give as input to the channel. Here n is the length of the code.
Now the probability that Bob receives ZC = z1 . . . zn when X = x is given by

Pr(ZC = z|X = x) =
n∏

i=1

q (zi |C(x)i ) .

Bob will then use a decoding function D which sends outputs z to guesses about X . A
rate R is achievable if for all ε > 0 there is a n > 0 such that for X uniformly distributed



Information Theoretical Cryptogenography

on {1, . . . , 2�Rn	} there is a code c of length n for q and a decoding function D giving
Pr(D(Z) = x |X = x) > 1 − ε for all x ∈ X .

For a distribution p on the input set Y , we get a joint distribution of (Y, Z) given by
Pr(Y = y, Z = z) = p(y)q(z|y). Now define the capacity C of q to be

C = max
p

I (Y ; Z),

where max is over all distributions p of Y and the joint distribution of (Y, Z) is as above.
Shannon’s noisy-channel coding theorem says that any rate below C is achievable, and
no rate above C is achievable [21].

2.1. Model

In this paper we consider problems where one or more players might be trying to leak
information about the outcome of a random variable X . The number of players is denoted
n and the players are called plr1, . . . , plrn . Sometimes we will call plr1 Alice and plr2
Bob. We let Li be the random variable that is 1 if player i knows the information and 0
otherwise. If there is only one player we write L instead of L1. The joint distribution of
(X, L1, . . . , Ln) is known to everyone.
All messages are broadcast to all players and to two observers, Eve and Frank. They

can both see all the communication, and Eve also knows the value taken by X . We want
to reveal information about X to Frank, while at the same time make sure that for all i ,
Eve does not get too sure that Li = 1. The players will send messages, each chosen from
a distribution given by a protocol as defined below. The tuple t of all messages sent is
called a transcript. As each message is chosen randomly, we can consider the transcript
to be an instance of a random variable T , which we will also refer to as the transcript.
These are tuples of messages, so we can use the notation T k, Tk, tk, tk as define in the
beginning of this section. For example, T k denotes the random variable that gives the
tuple of the first k messages.
In this section we define the collaborating model. In Sect. 7 we will define a model,

where we do not need the non-leakers to collaborate. The model in Sect. 7 will be more
useful in practice; however, when constructing protocols, it is easier first to construct
them in the collaborating model (we will also define a different model in Sect. 5). In the
collaborating model we can tell all the players, including the non-leaking players, to
follow some communication protocol, called a collaborating cryptogenography protocol.
Themessages send by a leaking playermay depend on the value of X , but themessages of
non-leaking players have to be independent of X given the previous transcript. Formally,
a collaborating cryptogenography protocol π specifies for any possible value tk of the
current transcript T k :

• Should the communication stop or continue, and if it should continue,
• Who is next to send a message, say plri , and
• A distribution p? and a set of distributions, {px }x∈X (the distributions p? and

{px }x∈X depend on π and tk). Now plri should choose a message using p?, if
Li = 0 and choose a message using px if Li = 1 and X = x .
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Furthermore, for any protocolπ , there should a number length(π) such that the proto-
col will always terminate after at most length(π) messages. We assume that both Frank
and Eve know the protocol. They also know the prior distribution of (X, L1, . . . , Ln),
and we assume that they have computational power to compute (X, L1, . . . , Ln)|T =t for
any transcript t . Notice that this assumption rules out the use of cryptography.

Another way of stating the above definition of collaborating cryptogenography pro-
tocols is that the players follow a communication protocol,3 and the leakers are given x
as input while the non-leakers are given a fixed input, say “you are not a leaker”, which
is not in X .
One way that everyone can know the protocol, is if one person, e.g., Frank, announces

the protocol that they will use, and we assume that everyone follows that protocol.
Another possibility is that the players and Frank and Eve (or their ancestors) have
played a game about leaking information many times and slowly developed (or evolved)
a protocol for leaking information and learned (or evolved) to play the game optimally.
In this paper we will not consider the question of whether and how the protocol could
be developed or evolved.
While we think of different players as different people, two or more different players

could be controlled by the same person. For example, they could be communicating
using a service that preserves anonymity, except that a profile’s identity will be revealed
if the profile can be shown to be guilty in leaking with probability greater than 95%.
Here each player would correspond to a profile, but the same person could have more
profiles. However, we will use “player” and “person” as synonyms in the paper.

3. Bounds on I (X; T )

3.1. Suspicion

First we will look at the problem where only one player is communicating and she may
or may not be trying to leak information. We will later use these results when we analyse
the many-player problem.
In the one-player case, Alice sends one message A. If she is not trying to leak infor-

mation, she will choose this message in A randomly using a distribution p?. If she is
trying to leak information, and X = x , she will use a distribution px . For a random
variable Y jointly distributed with L and a value y ∈ Y with Pr(Y = y) > 0 we
let cY=y = Pr(L = 1|Y = y). We usually suppress the random variable, and write
cy instead. Here Y could be a tuple of random variables, and y a tuple of values. If
y = (y1, y2) is a tuple, we write cy1y2 instead of c(y1,y2).
We want to see how much information Alice can leak to Frank, without being too

suspicious to Eve. The following measure of suspicion turns out to be useful.

3These were first defined by Yao [24]. Unlike in [24] we allow more than two players, allow the protocol
to specify who to send the next message, and allow each message to be more than one bit. All this is standard
in communication complexity, see for example [19].
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Definition 1. Let Y be a random variable jointly distributed with L . Then the suspicion
(of Alice) given Y = y is

susp(Y = y) = − log(1 − cy)

= − log(Pr(L = 0|Y = y)).

We see that susp(Y = y) depends on y and the joint distribution of L and Y , but to
keep notation simple, we suppress the dependence on L . The suspicion ofAlicemeasures
how suspicious Alice is to someone who knows that Y = y and knows nothingmore. For
example Y could be the tuple that consists of the secret information X and the current
transcript.
We can think of the suspicion as the surprisal of the event “Alice did not have the

information”. Next we define the suspicion given a random variable Y , without setting
it equal to something.

Definition 2. The expected suspicion (of Alice) given Y or just the suspicion (of Alice)
given Y is

susp(Y ) = Eysusp(Y = y)

=
∑
y∈Y

Pr(Y = y)susp(Y = y). (4)

In each of these definitions, Y can consist of more than one random variable, e.g. Y =
(X, A). Finally, we can also combine these two definitions, giving

susp(X, A = a) =
∑
x∈X

Pr(X = x |A = a)susp((X, A) = (x, a)),

where X and A can themselves be tuples of random variables.

The definitions imply that

susp(X, A) =
∑
a∈A

Pr(A = a)susp(X, A = a),

which can be thought of as (4) given X .
When Alice sends a message A this might reveal some information about X , but at

the same time, she will also reveal some information about whether she is trying to
leak X . We would like to bound I (A; X) by the information A reveals about L . This
is not possible. If, for example, we set A = X whenever L = 1 and A = a 
∈ X
when L = 0, then I (A; X) = Pr(L = 1)H(A) which can be large. However, we have
I (A; L) ≤ H(L) ≤ 1. The lemma below shows that instead, I (A; X) can be bounded
by the expected increase in suspicion given X , and that this bound is tight.
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Lemma 1. If Alice sends a message A, we have

I (X; A) ≤ susp(X, A) − susp(X).

That is, the amount of information she sends about X is at most her expected increase
in suspicion given X. There is equality if and only if the distribution of A is the same as
A|L=0.

Proof. With no information revealed, Alice’s suspicion given X is

susp(X) = −
∑
x∈X

Pr(X = x) log(1 − cx ).

We want to compute Alice’s suspicion given X and her message A.

susp(X, A) =
∑
x,a

Pr(X = x, A = a)susp(X = x, A = a)

= −
∑
x,a

Pr(X = x, A = a) log(1 − cxa)

= −
∑
x,a

Pr(X = x, A = a)

(
log(1 − cx ) + log

(
1 − cxa

1 − cx

))
.

Now it follows that the cost in suspicion given X of sending A is

susp(X, A) − susp(X) = −
∑
x,a

Pr(X = x, A = a) log

(
1 − cxa

1 − cx

)
. (5)

Next we want to see how much information A gives about X , that is I (A; X) =
H(A)− H(A|X). We claim that this is bounded by the cost in suspicion, or equivalently,
H(A) ≤ susp(X, A) − susp(X) + H(A|X). First we compute H(A|X) using (2):

H(A|X) =
∑

x

Pr(X = x)H(A|X = x)

= −
∑

x

Pr(X = x)
∑

a

Pr(A = a|X = x) log(Pr(A = a|X = x))

= −
∑
x,a

Pr(X = x, A = a) log(Pr(A = a|X = x)). (6)

We have

1 − cxa

1 − cx
Pr(A = a|X = x)

= Pr(L = 0|X = x, A = a)

Pr(L = 0|X = x)
Pr(A = a|X = x)
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= Pr(L = 0, X = x, A = a)

Pr(X = x, A = a)

Pr(X = x)

Pr(L = 0, X = x)

Pr(X = x, A = a)

Pr(X = x)

= Pr(L = 0, X = x, A = a)

Pr(L = 0, X = x)

= Pr(A = a|X = x, L = 0)

= Pr(A = a|L = 0) (7)

Here, the last equation follows from the assumption that A is independent of X when
L = 0. From this we conclude

susp(X, A) − susp(X) + H(A|X)

= −
∑
x,a

Pr(X = x, A = a) log

(
1 − cxa

1 − cx
Pr(A = a|X = x)

)

= −
∑
x,a

Pr(X = x, A = a) log (Pr(A = a|L = 0))

= −
∑

a

Pr(A = a) log (Pr(A = a|L = 0))

≥ −
∑

a

Pr(A = a) log(Pr(A = a))

= H(A).

Here the first equality follows from (5) and (6), the second follows from (7) and the
inequality follows from inequality (1). There is equality if and only if Pr(A = a) =
Pr(A = a|L = 0) for all a. �

We will now turn to the problem where many people are communicating. We assume
that they send messages one at a time, so we can break the protocol into time periods
where only one person is communicating, and see the entire protocol as a sequence of
one-player protocols. To make the notation simpler, we will assume that the protocol
runs for a fixed number of messages, and the player to talk in round k only depends on
k, not on which previous messages was sent. Any protocol π can be turned into such a
protocol π ′ by adding dummy messages: In round k of π ′ we let plrk mod n talk. They
follow protocol π in the sense that if it is not plrk mod n’s turn to talk according to π

she sends some fixed message 1, and if it is her turn, she chooses her message as in π .
The following Corollary show that a statement similar to Lemma 1 holds for each single
message in a protocol with many players.

Corollary 2. Let (L , T k−1, X) have some joint distribution, where T k−1 denotes pre-
vious transcript. Let Tk be the next message sent by Alice. Then

I
(

X; Tk |T k−1
)

≤ susp
(

X, T k
)

− susp
(

X, T k−1
)

.
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Proof. For a particular value tk−1 of T k−1 we use Lemma 1 with (X, Tk)|T k−1=tk−1 as
(X, A) to get

I
(

X; Tk |T k−1 = tk−1
)

≤ susp
(

X, Tk, T k−1 = tk−1
)

− susp
(

X, T k−1 = tk−1
)

.

By multiplying each side by Pr(T k−1 = tk−1) and summing over all possible tk−1 we
get the desired inequality. �

A protocol consists of a sequence of messages that each leaks some information and
increases the suspicion of the sender. We can add up the increases in suspicion, and
using the chain rule for mutual information we can also add up the amount of revealed
information. However, Bob’s message might not only affect his own suspicion, it might
also affect Alice’s suspicion. To show an upper bound on the amount of information the
players can leak, we need to show that one person’s message will, in expectation, never
make another person’s suspicion decrease. We get this from the following proposition
by setting Y = (X, T k−1) and B = Tk .

Proposition 3. For any joint distribution on (L , Y, B) we have susp(Y ) ≤ susp(Y, B).

Proof. We have

susp(Y = y) = − log(Pr(L = 0|Y = y))

= − log

(∑
b∈B

Pr(B = b|Y = y)Pr(L = 0|Y = y, B = b)

)

susp(Y = y, B) = −
∑
b∈B

Pr(B = b|Y = y) log Pr(L = 0|Y = y, B = b). (8)

As p �→ − log(p) is convex, Jensen’s inequality gives us

susp(Y = y, B) ≥ susp(Y = y).

Multiplying each side by Pr(Y = y) and summing over all y ∈ Y gives us the desired
inequality. �

Let suspi denote the suspicion of plri .4

Theorem 4. If T is the transcript of the entire protocol we have

I (X; T ) ≤
n∑

i=1

(
suspi (X, T ) − suspi (X)

)
.

4This is defined similar to the suspicion of Alice, except using Li instead of L .
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Proof. From the chain rule for mutual information, we know that

I (X; T ) =
length(π)∑

k=1

I
(

X; Tk |T k−1
)

.

Now Corollary 2 shows that I (X; Tk |T k−1) ≤ suspi (X, T k) − suspi (X, T k−1) if plri

sends the k’th message and Proposition 3 shows that suspi ′(X, T k) ≥ suspi ′(X, T k−1)

for all other i ′. Summing over all rounds in the protocol, we get the theorem. �

3.2. Keeping Reasonable Doubt

Until now we have bounded the amount of information the players can leak by the
expected increase in some strange measure, suspicion, that we defined for the purpose.
But there is no reason to think that someone who is leaking information cares about the
expectation of this measure. A more likely scenario, is that each person leaking wants
to ensure that after the leakage, an observer will assign probability at most c to the event
that she was leaking information. If this is the case after all possible transcripts t , we
see that suspi (X, T ) ≤ − log(1 − c). If we assume that each player before the protocol
had probability b < c of leaking independently of X , that is Pr(Li |X = x) = b for all
x and i , we have suspi (X) = − log(1 − b). Thus

I (X; T ) ≤
n∑

i=1

(
suspi (X, T ) − suspi (X)

) = (log(1 − c) + log(1 − b)) n. (9)

To reach this bound, we would need to have Pr(Li = 1|X = x, T = t) = c for all x, t, i .
But the probability Pr(Li = 1|X = x) = b can also be computed as Et Pr(Li = 1|X =
x, T = t), so Pr(Li = 1|X = x, T = t) cannot be constantly c > b. The following
theorem improves the upper bound from (9) by taking this into account.

Theorem 5. Let π be a collaborating cryptogenography protocol, and T be its tran-
script. If for all players plri and all x ∈ X and all transcripts t we have Pr(Li = 1|X =
x) = b, and Pr(Li = 1|T = t, X = x) ≤ c then

I (X; T ) ≤ −b log(1 − c) + c log(1 − b)

c
n.

For an illustration of this theorem, see Fig. 1.

Proof. If Pr(Li = 1|X = x, T = t) ≤ c then

suspi (X = x, T = t) = − log(1 − Pr(Li = 1|X = x, T = t))

≤ − log(1 − c)

c
Pr(Li = 1|X = x, T = t). (10)
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Fig. 1. This figure illustrates Theorem 5. The curve shows the function p �→ − log(1 − p), which is used
for computing the suspicion. The line from (0, 0) to (c, − log(1− c)) shows the maximum expected posterior
suspicion plri can have if he started with Pr(Li = 1|X = x) = p and we have Pr(Li |X = x, T = t) ≤ c
for all transcripts t . The second coordinate of (b, − log(1− b)) gives the prior suspicion towards plri , so the
dotted line gives the amount of information that player i can leak.

This follows from the fact that we have equality when Pr(Li = 1|X = x, T = t) is 0
or c, and the left hand side is convex in Pr(Li = 1|X = x, T = t) while the right hand
side is linear.
Let π and T be as in the assumptions. Now we get

suspi (X, T ) =
∑
x,t

Pr(X = x, T = t)suspi (X = x, T = t)

≤
∑
x,t

Pr(X = x, T = t)
− log(1 − c)

c
Pr(Li = 1|X = x, T = t)

=
∑
x,t

− log(1 − c)

c
Pr(Li = 1, X = x, T = t)

= − log(1 − c)

c
Pr(Li = 1)

= −b log(1 − c)

c
.

Thus,

I (X; T ) ≤
n∑

i=1

(
suspi (X, T ) − suspi (X)

)

≤
(−b log(1 − c)

c
− (− log(1 − b))

)
n
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= −b log(1 − c) + c log(1 − b)

c
n. �

It is clear that the upper bound fromTheorem 5 cannot be achieved for all distributions
of (X, L1, . . . , Ln). If for example H(X) <

−b log(1−c)+c log(1−b)
c n we must also have

I (X, T ) ≤ H(X) <
−b log(1−c)+c log(1−b)

c n, that is, the players do not have enough
information to send to reach the upper bound. Even if H(X) is high, we may not be able
to reach the upper bound. If it is known that L1 = L2 = · · · = Ln the suspicion of the
players will not depend on the player, only on the messages sent. So this problem will
be equivalent to the case where only one person is sending messages.
We will now give an example where the upper bound from Theorem 5 is achievable.

We will refer back to this example when we prove that reliable leakage is possible.

Example 1. Assume that X, L1, . . . , Ln are all independent, and Pr(Li = 1) = b for
all i . Furthermore, assume that 0 < b < c < 1 and that b(1−c)

c(1−b)
is a rational number.

Let d, a ∈ N be the smallest natural numbers such that a
d = b(1−c)

c(1−b)
. We see that

b(1−c)
c(1−b)

∈ (0, 1) so 0 < a < d. We will assume that X is uniformly distributed on
{1, . . . , d}n .
Each player plri now sends one message, independently of which messages the other

players send. If Li = 0, plri chooses a message in {1, . . . , d} uniformly at random. If
Li = 1 and Xi = xi , then plri chooses a message in

{1 + (xi − 1)a, 2 + (xi − 1)a . . . , xi a} mod d

uniformly at random.5

We see that over random choice of X , the message, Ai , that plri sends, is uniformly
distributed on {1, . . . , d}, so H(Ai ) = log(d). We want to compute H(Ai |X). Given X ,
each of the d −a elements not in {1+(xi −1)a, 2+(xi −1)a . . . , xi a} mod d can only
be sent if L = 0, so they will be send with probability 1−b

d . Each of the a elements in
the set {1+ (xi −1)a, 2+ (xi −1)a . . . , xi a} mod d are sent with probability b

a + 1−b
d .

Thus,

H(Ai |X = x) = −
∑

ti ∈Ai

Pr(Ai = ti |X = x) log(Pr(Ai = ti |X = x))

= −a

(
b

a
+ 1 − b

d

)
log

(
b

a
+ 1 − b

d

)
− (d − a)

1 − b

d
log

(
1 − b

d

)

= −b

c
log

(
1 − b

d(1 − c)

)
−

(
1 − b

c

)
log

(
1 − b

d

)
.

5We use k mod d to mean the number in {1, . . . d} that is equal to k modulo d.
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The last equality follows from three uses of a
d = b(1−c)

c(1−b)
, or of its equivalent formulation,

b
a + 1−b

d = b
ac . As this holds for all x , we get.

H(Ai |X) = −b

c
log

(
1 − b

d(1 − c)

)
−

(
1 − b

c

)
log

(
1 − b

d

)
.

Now

I (Ai ; X) = H(Ai ) − H(Ai |X)

= log(d) + b

c
log

(
1 − b

d(1 − c)

)
+

(
1 − b

c

)
log

(
1 − b

d

)

= log(1 − b) − b

c
log(1 − c)

= −b log(1 − c) + c log(1 − b)

c
. (11)

The tuples (Xi , Ai , Li ) where i ranges over {1, . . . n} are independent from each other,
so we have I (T ; X) = −b log(1−c)+c log(1−b)

c n as wanted.
Next we want to compute Pr(Li = 1|T = t, X = x). This is 0 if plri send a message

not in {1+ (xi − 1)a, 2+ (xi − 1)a . . . , xi a} mod d. Otherwise, we use independence
and then Bayes’ theorem to get

Pr(Li = 1|T = t, X = x) = Pr(Li = 1|Ai = ti , Xi = xi )

= Pr(Ai = ti |Li = 1, Xi = xi )Pr(Li = 1|Xi = xi )

Pr(Ai = ti |Xi = xi )

=
1
a b

b
a + 1−b

d

=
b
a
b
ac

= c. (12)

As we wanted.

4. Reliable Leakage

In the previous example, Frank would receive some information about X in the sense of
information theory: Before he sees the transcript, any value of X would be as likely as
any other value, and when he knows the transcript, he has a much better idea about what
X is. However, his best guess about what X is, is still very unlikely to be correct. Next we
want to show that we can have reliable leakage. That is, nomatter what value X is taking,
wewant Frank to be able to guess the correct value with high probability.Wewill see that
this is possible, even when X has entropy close to −b log(1−c)+c log(1−b)

c n. Frank’s guess
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would have to be a function D of the transcript t . Saying that Frank will guess X correct
with high probability when X = x is that same as saying that Pr(D(T ) = x |X = x) is
close to one.

Definition 3. Let L = (L1, . . . , Ln) be a tuple of random variables, where the Li takes
values in {0, 1}.

A risky (n, h, L , c, ε)-protocol is a collaborating cryptogenography protocol together
with a function D from the set of possible transcripts to X = {1, . . . , 2�h	} such that
when X and L are distributed independently and X is uniformly distributed on X , then
for any x ∈ X , there is probability at least 1 − ε that a random transcript t distributed
as T |X=x satisfies

Reasonable doubt: ∀i : Pr(Li = 1|T = t, X = x) ≤ c, and
Reliable leakage: D(t) = x

That is, no matter the value of X , with high probability Frank can guess the value of
X , and with high probability no player will be estimated to have leaked the information
with probability greater than c by Eve. However, theremight be a small risk that someone
will be estimated to have leaked the information with probability greater than c. This
is the reason we call it a risky protocol. A safe protocol is a protocol where this never
happens.

Definition 4. A safe (n, h, L , c, ε)-protocol is a risky (n, h, L , c, ε)-protocol where
Pr(Li = 1|T = t, X = x) ≤ c for all i, t, x with Pr(T = t, X = x) > 0.

First we will consider the case where L1, . . . , Ln are independent and identically
distributed. The following definitions of achievability and capacity are based on the
similar definitions from information theory, as given by Shannon [21], but instead of
measuring these in bits per time unit or per usage of a channel, we measure them in bits
per player.

Definition 5. Let Indepb(n) be the random variable (L1, . . . , Ln) where L1, . . . , Ln

are independent, and each Li is distributed on {0, 1} and Pr(L1 = 1) = b.
A rate R is safely/riskily c-achievable for Indepb if for all ε > 0 and all n0, there

exists a safe/risky (n, n R, Indepb(n), c, ε)-protocol with n ≥ n0.
The safe/risky c-capacity for Indepb is the supremum of all safely/riskily c-achievable

rates for Indepb.

It turns out that the safe and the risky c-capacities for Indepb are the same, but at the
moment we will only consider the safe capacity.

Proposition 6. No rate R >
−b log(1−c)+c log(1−b)

c is safely c-achievable for Indepb.

Proof. Assume for contradiction that R >
−b log(1−c)+c log(1−b)

c is safely c-achievable
for Indepb, and let π be a safe (n, Rn, Indepb(n), c, ε)-protocol. Let δ = R −
−b log(1−c)+c log(1−b)

c . We know from Theorem 5 that
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I (X; T ) ≤ −b log(1 − c) + c log(1 − b)

c
n = (R − δ)n.

Now

H(X |T ) = H(X) − I (X; T ) ≥ Rn − (R − δ)n = δn.

By Fano’s inequality (3) we get that the probability of error for Frank’s guess is

Pe ≥ δn − 1

n R
.

Thus, for sufficiently large n0 and sufficiently small ε we cannot have n ≥ n0 and
Pe ≤ ε. When Pe > ε there must exist an x ∈ X such that Pr(D(T ) 
= x |X = x) > ε,
so R is not safely c-achievable. �

In the example in the introduction, it was suggested that if X consists of many bits, we
could divide the n people into h groups, and let each group reveal one bit. This protocol
can be seen as considering each person to be a channel, where the protocol corresponds
to using a repetition code. Repetition codes are very inefficient, so no positive rate is
achievable using such protocols. However, if we use Shannon’s noisy-channel coding
theorem we can improve the protocol and achieve any rate R <

−b log(1−c)+c log(1−b)
c .

Theorem 7. Any rate R <
−b log(1−c)+c log(1−b)

c is safely c-achievable for Indepb.

Proof. Let R <
−b log(1−c)+c log(1−b)

c and let c′ ≤ c be a number such that b(1−c′)
c′(1−b)

is rational and R <
−b log(1−c′)+c′ log(1−b)

c′ . Now use b and c′ to define a and d as in
Example 1. We consider the channel that on input j with probability b returns a random
uniformly distributed element in {1+ ( j − 1)a, 2+ ( j − 1)a . . . , ja} mod d, and with
probability 1−b it returns a random and uniformly distributed element in {1, . . . , d}. We
see that each person sending a message, exactly corresponds to using this channel. The
computation (11) from Example 1 shows that when input of this channel is uniformly

distributed, the mutual information between input and output is −b log(1−c′)+c′ log(1−b)
c′ .

Thus, the capacity of the channel is at least this value (in fact, it is this value).We now use
Shannon’s noisy channel coding theorem [8,21] to get an error correcting code C : X →
{1, . . . , d}n for this channel, that achieves rate R and for each x fails with probability
less than ε. Now when X = x any player that is not leaking will send a message
chosen uniformly at random from {1, . . . , d} and any player plri with Li = 1 chooses
a message uniformly at random from {1 + ( j − 1)a, 2 + ( j − 2)a, . . . , ja} mod d,
where j = C(x)i is the i’th letter in the codeword for x . This ensures that Frank will be
able to guess x with probability at least 1− ε. We see that given X the random variable
(Ai , Li ), is independent from A1, L1, . . . , Ai−1, Li−1, Ai+1, Li+1, . . . , An, Ln . Using
the computation from (12) we now get that Pr(Li = 1|T = t, X = x) is either 0 or
c′ ≤ c as needed. �

Corollary 8. The safe c-capacity for Indepb is −b log(1−c)+c log(1−b)
c .
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Proof. Follows from Proposition 6 and Theorem 7. �

Corollary 8 shows that if you want information about something that some proportion
b of the population knows, but no one wants other people to think that they know it with
probability greater than c, you can still get information about the subject, and at a rate
of −b log(1−c)+c log(1−b)

c bits per person you ask. What if only l people in the world have
the information? They are allowed to blend into a group of any size n, and observers
will think that any person in the larger group is as likely as anyone else to have the
information. Only the number of people with the information is known to everyone.
If they are part of a group of n → ∞ people, then each person in the larger groupwould

have the information with probability b = l
n . If we forget that exactly l people know the

information, and instead assumed that all the Li s were independent with Pr(Li = 1) = b
they would be able to leak

−b log (1 − c) + c log (1 − b)

c
n =− l

n log (1 − c) + c log
(
1 − l

n

)

c
n

→
(
log (1 − c)

c
− log (e)

)
l

bits of information, where e is the base of the natural logarithm. We will see that even
in the case where the number of leakers is known and constant, we can still get this rate.
First we define the distribution of (L1, . . . , Ln) that we get in this case.

Definition 6. Let Fixed(l, n) be the random variable (L1, . . . , Ln) that is distributed
such that the set of leakers {plri |Li = 1} is uniformly distributed over all subsets of
{plr1, . . . , plrn} of size l.
A rate R is safely/riskily c-achievable for Fixed if for all ε > 0 and all l0, there exists

a safe/risky (n, l R,Fixed(l, n), c, ε)-protocol for some l ≥ l0 and some n.
The safe/risky c-capacity for Fixed is the supremum of all safely/riskily c-achievable

rates for Fixed.

Notice that in this definition, the rate is measured in bits per leaker rather than bits
per person communicating. That is because in this setup we assume that the number of
people with the information is the bounded resource, and that they can find an arbitrarily
large group of person to hide in.
Again, it turns out that the safe and the risky c-capacity for Fixed are actually the

same, but for the proofs it will be convenient to have both definitions.

Proposition 9. No rate R >
− log(1−c)

c − log(e), where e is the base of the natural
logarithm is safely c-achievable for Fixed.

Proof. This proof is very similar to the proof of Proposition 6.
Assume for contradiction that R >

− log(1−c)
c −log(e) is safely c-achievable. Consider

a safe (n, l R,Fixed(l, n), c, ε)-protocol π . We know from Theorem 5 that
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I (X; T ) ≤ − l
n log(1 − c) + c log

(
1 − l

n

)

c
n ≤ l

(− log(1 − c)

c
− log(e)

)
.

Here the second inequality follows from ln(1 + x) ≤ x or equivalently log(1 + x) ≤
x

ln(2) = −x log(e). Let δ := R −
(− log(1−c)

c − log(e)
)
. Now

H(X |T ) = H(X) − I (X; T ) ≥ l

(
R −

(− log(1 − c)

c
− log(e)

))
= lδ.

By Fano’s inequality we get that the probability of error, Pe = Pr(D(t) 
= x) averages
over all possible values of x is

Pe ≥ lδ − 1

l R
.

Thus, if we choose l0 sufficiently large and ε sufficiently small, we cannot have l ≥ l0
and Pe ≤ ε, so that theremust be some value x where the probability of error Pr(D(T ) 
=
x |X = x) is greater than ε. �

Theorem 10. Any rate R <
− log(1−c)

c − log(e) is riskily c-achievable for Fixed.

There are two reasons that the proof of a lower bound for Indepb given in Theorem 7
does not translate directly to a lower bound for Fixed. First, in the protocol given in
the proof of Theorem 7, there is a very small risk that only the leakers send messages
consistent with being leakers. This is fine when the Li ’s are independent, but when the
total number of leakers is known, this would completely reveal who the leakers are.
This is why Theorem 10 is about risky achievability rather than safe achievability. The
second problem is that the different usages of the channel are no longer independent as
the number of leakers is constant. Intuitively, this should not be a problem, it should
only make the channel more reliable. However, to show that this works, we would have
to go through the proof of Shannon’s noisy-channel coding theorem, and show that it
still works. Instead, we will give a shorter but less natural proof, where we divide the
players onto two groups and use Theorem 7 on each group.

Proof. Let R <
− log(1−c)

c − log(e), then we can find rational b > 0 and rational c′ < c

and a δ > 0 such that R + δ <
−b log(1−c′)+c′ log(1−b)

bc′ , and let n0, ε > 0 be given. By
Theorem 7 for any ε′ > 0 and any n′

0 there exists a safe (n, n(R + δ), Indepb(n), c′, ε′)-
protocol where n > n′

0. Take such a protocol, where ε′ > 0 is sufficiently small and n′
0 is

sufficiently large. As b, and hence the denominator of b, is fixed and n can be sufficiently
large, we can increase n a little to ensure that bn is an integer, while still keeping the
rate at at least R. Thus we can assume that we have a (n, n R, Indepb(n), c′, ε′)-protocol,
where l := bn is an integer.

Now we will use this to make a risky (2n, 2�n R	,Fixed(2nb), c, ε)-protocol. For
such a protocol, X should be uniformly distributed on {1, . . . , 22�n R	}, but instead we
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can also think of X as a tuple (X1, X2) where the Xi are independent and each Xi is
uniformly distributed on {1, . . . , 2�n R	}. Now we split the 2n players into two groups
of n, and let the first group use the protocol from the proof of Theorem 7 to leak X1,
and the second group use the same protocol to leak X2. We let Franks’ guess of the
value of X1 be a function D1 depending only of the transcript of the communication of
the first group, and his guess of X2 be a function D2 depending only on the transcript
of the second group. These functions are the same as D in the proof of Theorem 7.
The total number of leakers is 2nb, but the number of leakers in each half varies. Let
SIndep denote random variable that gives the number of leakers among n people, when
each is leaking with probability b, independently of each other. So SIndep is binomially
distributed, SIndep ∼ B(n, b). Let SFixed,1 denote the number of leakers in the first group
as chosen above. Now we have.

Lemma 11. For each k,

Pr(SFixed,1 = k)

Pr(SIndep = k)
≤ 2.

Proof. We have

Pr(SFixed,1 = k) =
(2l

k

)(2n−2l
n−k

)
(2n

n

) .

A simple computation shows

Pr(SFixed,1 = k)Pr(SIndep = k + 1)

Pr(SIndep = k)Pr(SFixed,1 = k + 1)
= n − 2l + k + 1

2l − k

l

n − l
,

which is > 1 for k ≥ l and < 1 for k < l. Thus, for fixed n and l the ratio Pr(SFixed,1=k)

Pr(SIndep=k)

is maximized by k = l. Using Stirling’s formula,

1 ≤ n!√
2πn

( n
e

)n ≤ e√
2π

we get

Pr(SFixed,1 = l)

Pr(SIndep = l)
=

(2l
l

)(2n−2l
n−l

)
nn

(2n
n

)(n
l

)
ll(n − l)n−l

≤ √
2

(
e√
2π

)3

< 2. �
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Given that SIndep = k = SFixed,1, the distribution on (L1, . . . , Ln) and transcript is
the same in the protocol for Indepb as it is for the first group in the above protocol. As
Franks’ guessing function is the same in the two cases, the probability of error given
SIndep = k = SFixed,1 is the same in the two protocols. Let Ek denote the probability of
error in the protocol for Indepb given SIndep = k, and let EFixed,1 denote the probability
that Franks’ guess of X1 is wrong.

EFixed,1 =
n∑

k=1

Pr(SFixed,1 = k)Ek

≤
n∑

k=1

2 Pr(SIndep = k)Ek

≤ 2ε′.

By the same argument, the probability that Frank guesses X2 wrong is at most 2ε′, so
the probability that he guesses X = (X1, X2) is at most 4ε′. By choosing a sufficiently
low ε′ this is less than ε/2
To compute the posterior probability Pr(Li = 1|X = x, T = t) that plri was leaking,

we have to take the entire transcript from both groups into account. Given T and X , let
K denote the set of players who sent a message consistent with knowing X , and let |K |
denote the cardinality of K . Let S be the set of the 2l leaking players, and let s be a set
of 2l players. Now

Pr(S = s|X = x, T = t) = Pr(T = t |S = s, X = x)Pr(S = s|X = x)

P(T = t |X = x)
.

This is 0 if s contains players who send a message not consistent with having the
information, and is constant for all other s. Thus, any two players who send a message
consistent with having the information, are equally likely to have known X given T and
X , so they will have Pr(Li = 1|T = t, X = x) = 2l

|K | . So to ensure that Pr(Li = 1|T =
t, X = x) ≤ c with high probability (for each x and random t) we only need to ensure

that with high probability, |K | ≥ 2l
c .We see that |K | = 2l +B

(
2n − 2l, b(1−c′)

c′(1−b)

)
, which

have expectation 2l+(2n−2l) b(1−c′)
c′(1−b)

= 2l
c′ = 2l

c +2l c−c′
cc′ .We also see that the variance is

(2n−2l)b(1−b), so for sufficiently highn (and thus l)Chebyshev’s inequality, shows that
|K | ≥ 2l

c with probability at least 1−ε/2. Thus, for sufficiently large n′
0 and sufficiently

low ε′, the resulting protocol is a risky (2n, 2�n R	,Fixed(2nb), c, ε)-protocol. �

4.1. General L-Structures

Wehave shown that the safe c-capacity for Fixed is at most − log(1−c)
c −log(e)which is at

most the risky c-capacity Fixed. To finish the proof that they are both − log(1−c)
c − log(e),

we only need to show that the safe capacity is not smaller than the risky. Notice that
the corresponding claim is not true if we are only interested in the mutual information
between X and transcript T . Here we could construct a collaborating cryptography
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protocol where, with probability 1− 10−100, we have Pr(Li = 1|T = t) < b + 10−100

and yet I (X; T ) ≥ 10100. To do this we need to take X to have extremely high entropy,
and with a probability 10−100 a leaking player will send X in a message, and otherwise
just send some message. On the other hand, if we require that Pr(Li = 1|T = t) <

b + 10−100 holds for all transcripts, then I (X; T ) have to be small compared to total
number of players. The point of this section is to show that you cannot do something
similar for reliable leakage. We will prove this in a setting that generalises Indepb and
Fixed. Remember that the difference between Indepb and Fixed capacity is not only in
the distributions on (L1, . . . , Ln), but also in what we are trying to minimise the use
of. In Indepb we want to have as few people communicating as possible, while in Fixed
we only care about the number of people who are leaking. Our general definition has to
capture this difference as well.

Definition 7. An L-structure (L, C) is a set L of joint distributions of (L1, . . . , Ln)

(where n does not need to be the same for each element), where each Li is distributed
on {0, 1}, together with a cost function C : L → R≥0.
Indepb is the L-structure (LIndepb

, C#), where LIndepb
is the set of distributions on

(L1, . . . , Ln) (over n ∈ N) where for all i , Pr(Li = 1) = b and the Li are independent,
and C# is the function that sends a distribution on (L1, . . . , Ln) to n.
Fixed is the L-structure (LFixed, CFixed) of distributions on (L1, . . . , Ln) such that for

some number l the set {i |Li = 1} is uniformly distributed over all subsets of {1, . . . , n}
of size l, and CFixed sends such a distribution on (L1, . . . , Ln) to this number l.
For an L-structure (L, C) a rate R is safely/riskily c-achievable for (L, C) if for all

ε > 0 and all h0 ≥ 0 there exists a safe/riskily (n, h, L , c, ε)-protocol with h ≥ h0, h ≥
C(L)R and L ∈ L.

The safe/risky c-capacity for (L, C) is the supremum of all safely/riskily c-achievable
rates for (L, C).

We see that Definition 7 agrees with Definitions 5 and 6, and is much more general.

Proposition 12. Let (L, C) be an L-structure. The safe c-capacity for (L, C) and the
risky c-capacity for (L, C) are non-decreasing functions of c.

Proof. Let c′ > c. Any safe/risky (n, h, L , c, ε)-protocol is a safe/risky (n, h, L , c′, ε)-
protocol, so any safe/riskily c-achievable rate for (L, C) is a safe/riskily c′-achievable
rate for (L, C). �

Proposition 13. Let (L, C) be anL-structure. The safe c-capacity for (L, C) is at most
the risky c-capacity for (L, C).

Proof. Any safe (n, h, L , c, ε)-protocol is a risky (n, h, L , c, ε)-protocol, so any safely
c-achievable rate for (L, C) is riskily c-achievable for (L, C). �

The opposite inequality almost holds. Before we show that, we need a lemma.
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Lemma 14. For any risky (n, h, L , c, ε)-protocol π , there is a risky (n, h, L , c, ε)-
protocol π ′ where each message is either 0 or 1, and given previous transcript and given
that the person sending the message is not leaking, there is at least probability 1/3 of
the message being 0 and at least 1/3 of it being 1.

Proof. To restrict to {0, 1} we simply send one bit at a time, so now we only have
to ensure that the probability of a message sent by a non-leaker being 0 is always in
[ 13 , 2

3 ]. If the next message is 0 with probability p < 1/3, given that the sender is not
leaking we modify the protocol (the case where p > 2/3 is similar). First, the player
plri sending the message decides if she would have sent 0 or 1 in the old protocol π .
Call this message a. If a = 0 she chooses a number in the interval (0, p) uniformly at
random, if a = 1 she chooses a number in (p, 1) uniformly at random. She then sends
the bits of the number one bit at a time until

• She sends “1”, or
• Given transcript until now, there is probability at least 1

3 that a = 0

In the first case we know that a = 1, and we can go to the next round of π . Each time
plri says 0, she doubles the probability that a = 0, so if we are in the second case (and
was not before the last message), Pr(a = 0|T ) < 2

3 . In this case she will simply reveal
a in the next message.

Instead of choosing a real number uniformly from (0, p) or (p, 1), which would
require access to randomness with infinite entropy, plri can just in each step compute
the probabilities of sending 0 or 1 given that she had chosen such a number. Thus, if for
every probability p′ every player has access to a coin that ends head up with probability
p′, they only need a finite number of coin flips to follow the above protocol. �

The following lemma says that for any risky protocol, you can always find a safe
protocol that that achieves the same rate: you just need to increase the threshold c by an
arbitrarily small amount.

Lemma 15. Let c′ > c. The safe c′-capacity for (L, C) is at least the same as the risky
c-capacity for (L, C).

Proof. To show this, it is enough to show that if R is a riskily c-achievable rate for
(L, C), then R is safely c′-achievable for (L, C). Let R be a riskily c-achievable rate
for (L, C), and let ε′ > 0 and h′

0 be given. We want to show that there exists a safe
(n′, h′, L , c′, ε′)-protocol with h′ ≥ h′

0, L ∈ L and h′ ≥ C(L)R.
As R is riskily c-achievable for (L, C), there exists a risky (n, h, L , c, ε)-protocol for

any ε > 0 and some L ∈ L, h ≥ h′
0, h ≥ C(L)R and n. Let π be such a protocol, where

ε is a small number to be specified later.
Wewant to modify π to make it a safe protocol π ′. First, by Lemma 14 we can assume

that all messages send in π are in {0, 1} and given that the sender is not leaking, it has
probability at least 1/3 of being 0 and at least probability 1/3 of being 1.

To ensure that for no transcript t and player plri we have Pr(Li = 1|X = x, T =
t) > c′, we modify the protocol, such that everyone starts to pretend ignorance if the
next message could result in Pr(Li = 1|X = x, T k+1 = tk+1) > c′. Formally, we
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define a protocol π ′ that starts of as π but if at some point the transcript is tk and for
some i and b ∈ {0, 1} we have Pr(Li = 1|T k+1 = tk ◦ b, X = x) > c′ all the players
pretends ignorance, that is for the rest of the protocol they send messages as if they did
not have the information and were following π . Notice that only the players who knows
the information x can decide if they should pretend ignorance, but this is not a problem
as the players who do not have the information, are already sending messages as if they
did not have the information.
First we want to show that π ′ is c′-safe. As long as they do not pretend ignorance we

know that Pr(Li = 1|T k = tk, X = x) ≤ c′ for the partial transcript tk and all i . If at
some point they start to pretend ignorance, we have Pr(Li = 1|T k = tk, X = x) ≤ c′
before they start, and all messages will be chosen as if no one had the information.
Eve, who knows X , can compute Pr(Li = 1|T k+1 = tk ◦ b, X = x) > c′ for each
i and b, so she knows if everyone is pretending ignorance. Thus, Eve does not learn
anything about L from listening to the rest of the communication, so we will still have
Pr(Li = 1|T = t, X = x) ≤ c′ when π ′ terminates.
Fix x ∈ X . We want to compute the probability that they pretend ignorance given

X = x . Let E par,>c′ denote the event that for transcript T from the execution of π , we
can find some k and some i such that we have Pr(Li = 1|T k = tk, X = x) > c′. That
is, at some point in the execution of π , an observer would say that plri was leaking
with probability greater than c′. Let Etot,>c be that event that for the total transcript
there is some i such that Pr(Li = 1|T = t, X = x) > c. For each transcript t where
Pr(Li = 1|T k = tk, X = x) > c′ for some k, i , we consider that smallest k such that
Pr(Li = 1|T k = tk, X = x) > c′ happens for some i . For this fixed tk let T −k denote
the random variable that is distributed as the rest of the transcript given that the transcript
starts with tk and X = x . Let Stk denote the random variable

Stk = Pr
(

Li = 1|T = tk ◦ T −k, X = x
)

.

That is, Stk is a function of T −k . We see that Stk takes values in [0, 1] and EStk =
Pr(Li = 1|T k = tk, X = x) > c′ so by Markov’s inequality on 1 − Stk we get

Pr(1 − Stk ≥ 1 − c − ε1|X = x) ≤ E(1 − Stk )

1 − c − ε1
<

1 − c′

1 − c − ε1

for all ε1 > 0. Thus, given that E par,>c′ happens, Etot,>c will happen with probability

at least c′−c
1−c > 0. So c′−c

1−c Pr(E par,>c′ |X = x) ≤ Pr(Etot,>c|X = x) ≤ ε, where the
last inequality follows from the assumption about π .
Let Eig be the event that in the evaluation of π ′ the players pretends ignorance. The

players only pretends ignorance if they are one message away from making E par,>c′
happen. We assumed that in π each possible message get sent with probability at least
1/3 if the sender is not leaking. As there is probability at least 1−c′ that he is not leaking,
each possible message gets sent with probability at least 1−c′

3 so 1−c′
3 Pr(Eig|X = x) ≤

Pr(E par,>c′ |X = x). Thus,
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Pr(Eig|X = x) ≤ 3

1 − c′ Pr(E par,>c′ |X = x) ≤ 3ε
(1 − c)

(c′ − c)(1 − c′)
.

Let T ′ denote the random variable you get from running π ′ and T the random vari-
able you get from running π , with a joint distribution in such a way that (X, L , T ) =
(X, L , T ′) unless the players pretends ignorance. We need to show that there is a decod-
ing function D′ from the set of complete transcripts to possible values of X such that
for each x , Pr(D′(T ′) = x |X = x) ≥ 1 − ε′. From the assumptions about π we know
that there is a function D from the set of possible transcripts to the support of X such
that for each x , Pr(D(T ) = x |X = x) ≥ 1 − ε. We know that in π ′ and for fixed x ,
the players only pretends ignorance with probability at most 3ε(1−c)

(c′−c)(1−c′) , so by setting

D′ = D we get Pr(D′(T ′) = x |X = x) ≥ 1 − ε − 3ε(1−c)
(c′−c)(1−c′) . For sufficiently small ε

(depending only on ε′, c and c′) this is less than ε′ and we are done. �

If we add a continuity assumption, we get that the safe and the risky c capacity are the
same.

Corollary 16. Let (L, C) be a L-structure. If the safe c-capacity for (L, C) as a func-
tion of c is right-continuous at c0, or if the risky c-capacity for (L, C) as a function of
c is left-continuous at c0 then the safe c0-capacity for (L, C) and the risky c0-capacity
for (L, C) are the same.

Proof. Assume that the safe c-capacity for (L, C) as a function of c a right-continuous
at c0. Then Lemma 15 shows that the risky c-capacity for (L, C) is at most the safe c′-
capacity for (L, C) for all c′ > c. By continuity assumption, this gives us that the risky
c-capacity for (L, C) is at most the safe c-capacity for (L, C). Proposition 13 shows the
opposite inequality. The proof of the second part of the corollary is similar. �

Corollary 17. Let (L, C) be aL-structure. The safe c-capacity for (L, C) and the risky
c-capacity for (L, C) are the same for all but at most countably many values c ∈ (0, 1).

Proof. By Proposition 12, the safe c-capacity for (L, C) is a monotone function, so it
is continuous in all but countably many points. Now 16 implies that it is the same as the
risky c-capacity for (L, C) in all but countably many points. �

As promised, we can now show that for Indepb the safe and the risky c-capacities are
the same.

Corollary 18. The safe c-capacity for Indepb and the risky c-capacity for Indepb are
the same for all c ∈ (0, 1).

Proof. We know from Corollary 8 that the safe c-capacity for Indepb is a continuous
function of c. Now Corollary 16 implies that it is the same as the risky c-capacity for
Indepb. �
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Corollary 19. Let c ∈ (0, 1). The safe c-capacity for Fixed and the risky c-capacity
for Fixed are both − log(1−c)

c − log(e).

Proof. We know from Proposition 9 that the safe c-capacity for Fixed is at most
− log(1−c)

c − log(e), we know from Theorem 10 that the risky c′ fixed capacity is at

least − log(1−c)
c − log(e), and from Corollary 17 that they are the same except on at

most countably many values. Thus, they must both be − log(1−c)
c − log(e) on all but

countably many values. We know from 12 that both are monotone, so they must both be
− log(1−c)

c − log(e) without exceptions. �

5. Adaptive Cryptogenographic Protocols

Until nowwe have assumed that each player is either leaker or not a leaker. In this section
we study some adaptive models where people start as non-leakers, but might start to leak
at some point. Once a person is a leaker, that person will always be a leaker.
An adaptive cryptogenography protocol π is defined as follows: for each partial

transcript tk , each vector L ·,k−1 = (L1,k−1, . . . , Ln,k−1) describing the set of leaker
when the k’thmessagewas sent, and each secret x ,π gives a probability distribution over
vectors L ·,k ≥ L ·,k−1 describing the set of leakers after the k’th message. Furthermore,
like a collaborative cryptogenography protocol, π specifies for each partial transcript tk

• Should the communication stop or continue, and if it should continue,
• Who is next to send a message, say plri , and
• A distribution p? and a set of distributions, {px }x∈X (the distributions p? and

{px }x∈X depend on π and tk). Now plri should choose a message using p?, if
Li,k = 0 and choose a message using px if Li,k = 1 and X = x .

Here it is natural to put some restriction on how many leakers there can be, and on
what can influence whether a person becomes a leaker. We suggest two ways of putting a
limitation on the total number of leakers, and three different rules for what can affect the
probability that a person becomes a leaker, giving a total of six different combinations.
In this section we will find the capacities for two of them.
The two ways of restricting the total number of leakers are called “b-threshold” and

“b-dormant”. The b-threshold restriction requires that the expected number of leakers
at the end of the protocol is at most bn. This is a slightly unnatural requirement, but is
the easiest to analyse. A more natural requirement is the b-dormant restriction, which
say that at the beginning each player is chosen to be a “dormant” leaker with probability
b, and only dormant leakers can become leakers. We can think of dormant leakers as
people with the personality or the capacity to become leakers. Clearly, the b-dormant
model is more restrictive than the b-threshold model, but on the other hand, the leakers
can domore in the b-dormant model than in Indepb in the static model: If you take b = c,
the c-capacity for Indepc is 0, but in the b-dormant model you can leak information, for
example by letting each dormant leaker become leaker with probability 1/2, and use a
protocol for Indepc/2.
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The three models for how a player become a leaker are called “centrally organ-
ised”, “informed choice” and “uninformed choice”. In the centrally organised model
we assume that there is someone organising which players become leakers. We assume
this person have all the relevant information, tk , L ·,k−1 and x , and hence there is no
restriction on the distribution of L ·,k except L ·,k ≥ L ·,k−1, that is leakers cannot turn
into non-leakers. In the informed choice we assume that even the non-leakers know x ,
and they may use this when deciding whether to become a leaker, but each player makes
the decision on whether to become a leaker on her own. That is, the distribution of Li,k

depends on Li,k−1, x and tk but given x and tk it is independent from all the other L j,k’s
and L j,k−1’s. Finally, there is the uninformed choice model where the players only learn
x when they decide to become leakers. Here Li,k only depends on Li,k−1 and tk .
These give six different models that we call adaptive model. We use Mb to denote an

adaptive model with parameter b. While “b-dormant informed choice” and “b-dormant
uninformed choice” are probably themost realisticmodels, “b-threshold centrally organ-
ised” and “b-threshold informed choice” seem to be the easiest to analyse.

Definition 8. We let suspi,k denote the suspicion that Li,k = 1, e.g.

suspi,k

(
X, T k

)
= −

∑

x,tk

Pr
(

X = x, T k = tk
)
log

(
Pr

(
Li,k = 0|X = x, T k, tk

))
.

We define Li = Li,length(π) and similarly suspi = suspi,length(π).

Definition 9. A risky (n, h, Mb, c, ε)-protocol is an adaptive cryptogenography pro-
tocol satisfying the requirements of model Mb together with a function D from the set
of possible transcripts to X = {1, . . . , 2�h	} such that when X is uniformly distributed
on X , then for any x ∈ X , there is probability at least 1 − ε that a random transcript t
distributed as T |X=x satisfies

Reasonable doubt: ∀i : Pr(Li = 1|T = t, X = x) ≤ c, and
Reliable leakage: D(t) = x

A safe (n, h, Mb, c, ε)-protocol is a risky (n, h, Mb, c, ε)-protocol where Pr(Li =
1|T = t, X = x) ≤ c for all i, t, x with Pr(T = t, X = x) > 0.

A rate R is safely/riskily c-achievable for Mb if for all ε > 0 and all n0, there exists
a safe/risky (n, n R, Mb, c, ε)-protocol for some n ≥ n0.
The safe/risky c-capacity for Mb is the supremum of all safely/riskily c-achievable

rates for Mb.

Theorem 20. For b ≤ c and any model Mb the safe c-capacity for Mb is at most
−b log(1−c)

c − b log(e).

Proof. As “b-threshold centrally organised” is the least restrictive model, we can
assume that Mb is this model. Let π be an adaptive cryptogenography protocol for
Mb. The function −b log(1−c)

c − b log(e) is increasing in b, so we can assume that the
expected number of leakers at the end of π is exactly bn, as the protocol would otherwise
be an Mb′-protocol for some b′ < b.
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As when we proved Theorem 4 we can assume that the next player to send a message
does not depend on the previous transcript tk−1, but only on the number of messages
sent. If plr j sends the k’th message Corollary 2 tells us that

I
(

X; Tk |T k−1
)

≤ susp j,k−1

(
X, T k

)
− susp j,k−1

(
X, T k−1

)
, (13)

and Proposition 3 tells us that for i 
= j

suspi,k−1

(
X, T k

)
≥ suspi,k−1

(
X, T k−1

)
. (14)

If we move right hand side of (14) to the other side, add over all i 
= j and add the result
to (13) we get

I
(

X; Tk |T k−1
)

≤
n∑

i=1

(
suspi,k−1

(
X, T k

)
− suspi,k−1

(
X, T k−1

))
(15)

In this adaptivemodelwe also need to consider how it affects the suspicion that players
can turn into leakers. By a small abuse of notation we let ci,k′,x,tk denote Pr(Li,k′ =
1|X = x, T k = tk), and ci,k denote Pr(Li,k = 1). As d

dx log(x) ≥ log(e) for x ≤ 1 and
Li,k ≥ Li,k−1 we have for all i and k,

suspi,k

(
X, T k

)
− suspi,k−1

(
X, T k

)

= −
∑

x,tk

Pr
(

X = x, T k = tk
) (

log
(
1 − ci,k,x,tk

) − log
(
1 − ci,k−1,x,tk

))

≥ −
∑

x,tk

Pr
(

X = x, T k = tk
)
log (e)

((
1 − ci,k,x,tk

) − (
1 − ci,k−1,x,tk

))

=
∑

x,tk

Pr
(

X = x, T k = tk
)
log (e)

(
ci,k,x,tk − ci,k−1,x,tk

)

= (
ci,k − ci,k−1

)
log (e) . (16)

If we move right hand side of (16) to the other side, add over all i and add the result to
(15) we get

I
(

X; Tk |T k−1
)

≤
n∑

i=1

(
suspi,k

(
X, T k

)

−suspi,k−1

(
X, T k−1

)
− log (e)

(
ci,k − ci,k−1

))
.

Summing this over all rounds gives us

I (X; T ) ≤
∑

i

(
suspi (X, T ) − suspi,0(X) − log(e)

(
Pr(Li = 1) − Pr(Li,0 = 1)

))
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=
∑

i

(
suspi (X, T ) − log(e)Pr(Li = 1)

)
.

We have Pr(Li = 1|X = x, T = t) ≤ c so by the same argument as in Theorem 5
we have

suspi (X = x, T = t) ≤ − log(1 − c)

c
Pr(Li = 1|X = x, T = t).

Now we make a computation very similar to the one in Theorem 5.

∑
i

suspi (X, T ) =
∑
i,x,t

Pr(X = x, T = t)suspi (X = x, T = t)

≤
∑
i,x,t

Pr(X = x, T = t)
− log(1 − c)

c
Pr(Li = 1|X = x, T = t)

=
∑
i,x,t

− log(1 − c)

c
Pr(Li = 1, X = x, T = t)

=
∑

i

− log(1 − c)

c
Pr(Li = 1)

≤ n
−b log(1 − c)

c
.

Here the last inequality follows from the assumption that E
∑

i Li = nb By applying
Fano’s inequality as in the proof of Proposition 6, it follows that the safe c-capacity for
Mb is at most −b log(1−c)

c − b log(e). �

In the next two propositions we show that this upper bound also holds for risky
protocols.

Proposition 21. Let c′ > c. The safe c′-capacity for “b-threshold centrally organised”
is at least the same as the risky c-capacity for “b-threshold centrally organised”.

Proof. Let Mb be the model “b-threshold centrally organised”. We use that same strat-
egy as in the proof of Lemma 15. Assume that R is riskily c-achievable for Mb. To show
the statement, it is enough to show that if R is then safely c′-achievable for Mb. Let ε′ > 0
and n′

0 be given. We need to show that there exists a safe (n′, Rn′, Mb, c′, ε′)-protocol,
where n′ ≥ n′

0. As R is riskily c-achievable for Mb, there exists a risky (n, n R, Mb, c, ε)
protocol for any ε > 0 and where n ≥ n′

0. Let π be such a protocol for a small ε to be
specified later.
We will modify π to get a safe protocol π ′. By Lemma 14 we can assume that all

messages send inπ are in {0, 1} and given that the sender is not leaking, it has probability
at least 1/3 of being 0 and at least probability 1/3 of being 1.

As in the proof of Lemma 15,modify theπ by forcing the players to pretend ignorance
in some situations. Pretending ignorance means that a player sends messages as if he



Information Theoretical Cryptogenography

was a non-leaker. Once a player starts to pretend ignorance, he will continue to do so
for the rest of the protocol. Furthermore, once one leaker starts to pretend ignorance, we
want all the players to pretend ignorance. To make this possible, we need to ensure that
all the leakers can decide whether they should pretend ignorance, but the non-leakers
does not have to know, as they are already sending messages as if they were non-leakers.
If Eve is able to decide whether the players are pretending ignorance, it means that once
the players start to pretend ignorance, she does not get any further information.
We require the players to pretend ignorance from round k + 1 and onwards, if the

current transcript is tk and Pr(Li,k = 1|T k = tk, X = x) ≤ c′ but Pr(Li,k = 1|T k+1 =
tk ◦ tk+1, X = x) > c′ for some player i and some tk+1 ∈ {0, 1}. The leakers can all
compute Pr(Li,k = 1|T k+1 = tk ◦ tk+1, X = x), so the leakers know if they should start
to pretend ignorance. Eve can also compute Pr(Li,k = 1|T k+1 = tk ◦ tk+1, X = x), so
once the player pretend ignorance she does not learn any further information. We also
modify π such that when the players start to pretend ignorance, no one turn into leakers.
We can do this, because the model is centrally organised, so the probability of becoming
a leaker can depend on X . Furthermore, we modify π such that if the partial transcript tk

satisfies Pr(Li,k−1 = 1|T k = tk, X = x) ≤ c′ but Pr(Li,k = 1|T k = tk, X = x) > c′
for some i , then no one becomes a leaker at round k or any later rounds, and everyone
starts to pretend ignorance. By induction on k, these modifications ensure that Pr(Li =
1|T = t, X = x) ≤ c′.
Next we need to define the function D′ that takes transcripts of π ′ to guesses of the

value X . This is simply defined to be the same as the function D for π . To show that
π ′ is a (n′, Rn′, Mb, c′, ε′)-protocol, we need to show that for each x the probability
Pr(D′(T ) 
= x |X = x) is at most ε′. We define E par,>c′ to be the event that for transcript
T from the execution ofπ , we can find some k and some i such that we have Pr(Li,k−1 =
1|T k = tk, X = x) > c′ or Pr(Li,k = 1|T k = tk, X = x) > c′, Etot,>c to be that event
that for the total transcript there is some i such that Pr(Li = 1|T = t, X = x) > c,
and Eig to be the event that the players start to pretend ignorance. The only situation
where the players start to pretend ignorance are when there is a possible message tk+1
that would give Pr(Li,k−1 = 1|T k = tk, X = x) > c′ (as in the proof of Lemma 15)
or if we would otherwise had increase some player i’s probability of being a leaker
Pr(Li,k−1 = 1|T k = tk, X = x) to a probability greater than c′. In the first case there
is still probability at least 1−c′

3 that E par,>c′ would have happened if the players did not
pretend ignorance, and in the second case there is probability 1 that E par,>c′ would have
happened. So we still have

Pr(Eig|X = x) ≤ 3

1 − c′ Pr(E par,>c′ |X = x).

All other computations and arguments are exactly as in the proof of Lemma 15. This
gives us

Pr(Eig|X = x) ≤ 3ε
(1 − c)

(c′ − c)(1 − c′)
.
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Now we get

Pr(D′(T ) 
= x |X = x) ≤ Pr(D(T ) 
= x |X = x) + Pr(D′(T ′) 
= D(T )|X = x)

≤ ε + Pr(Eig|X = x)

≤ ε + 3ε
(1 − c)

(c′ − c)(1 − c′)
.

For sufficiently small ε, depending on ε′, c and c′, this is less than ε′. �

Proposition 22. For any b ≤ c and any model Mb the risky c-capacity for Mb is at
most −b log(1−c)

c − b log(e).

Proof. As “b-threshold centrally organised” is the most general model, we can assume
that Mb is this model. By continuity of c �→ −b log(1−c)

c − b log(e) the result follows
from Theorem 20 and Proposition 21. �

Proposition 23. For any b ≥ c and any adaptive model Mb the risky c-capacity is at
most −c log(1−c)

c = log(1 − c).

Proof. Let π be a risky (n, h, Mb, c, ε)-protocol. Then we must have Pr(Li = 1) ≤
c, so it is also a risky (n, h, “c − threshold centrally organised”, c, ε)-protocol. The
Proposition now follows from Proposition 22. �

We now show that the upper bounds are tight in two of the models.

Proposition 24. Let b < c. If Mb is “b-threshold centrally organised” or “b-threshold
informed choice”, the safe c-capacity for Mb is at least −b log(1−c)

c − b log(e).

Proof. As “b-threshold informed choice” is the most restrictive of the two models, we
can assume that Mb is this model.

Let b and c be fixed, and choose any ε > 0 and some large integer m. We will define a
protocolπ for themodel Mb that works inm stages. At the beginning everyone are avail-
able and after each stage someplayers beunavailable,meaning that theywill not send any
more messages. Before each stage starts, everyone, even an observer who does not know
X will be able to compute who should be available and who should be unavailable in that

stage. Define n′ = � c−b
2c n�, b′ = 2bc

(c−b)m and h =
⌊(−b′ log(1−c)+c log(1−b′)

c − m−2
)

n′
⌋

and let X be uniformly distributed over {1, . . . , 2h}m .
If there is less than n′ players available at the beginning of stage j , the protocol halts.

Otherwise, each of the first n′ playerswho are available, choosewhether to become leaker
independently with probability b′. Assuming that n is sufficiently big (given b, c, ε and
m) then n′ is sufficiently big and we get a safe (n′, h, Indepb′(n′), c, ε/(2m))-protocol
from the proof of Theorem 7. We let the n′ players follow this protocol to leak X j .
According to Definition 3 there is a function D of the communication, that with high
probability guesses the value the leakers tried to leak. Let X̂ j be D of the communication
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of the j’th stage. If x j 
= X̂ j we let all the leakers pretend ignorance for the rest of the
entire protocol, and the non-leakers stay non-leakers. At the end of the j’th stage some
players will have Pr(Li,( j) = 1|T ( j) = t ( j), X j = X̂ j ) > 0, where ( j) denotes the
round where stage j finishes. We let these players be unavailable for all the following
stages, and all other available players stay available. In particular we see that all players
who are leaking in a given stage, will be unavailable in all the following stages.
Eve can compute X̂ , so she can determine if the players are pretending ignorance.

Hence, once they pretend ignorance, Eve will not get any further information, so we
only need to prove that until they pretend ignorance, they have reasonable doubt.
Let j be the last stage in which player i sends a message where he did not pretend

ignorance. As he did not pretend ignorance, we must have x j−1 = X̂ j−1, and he must
have been available in stage j , otherwise he would not have sent a message in that stage.
That means that Pr(Li,( j−1) = 1|T ( j−1) = t ( j−1), X j−1) = x j−1) = 0 so Eve would
know that he did not leak in earlier rounds. As he had probability b′ of becoming a leaker
at stage j and the players used a safe (n′, h, Indepb′(n′), c, ε/(2m))-protocol in round
j , we must have Pr(Li,( j) = 1|T ( j) = t ( j), X = x) ≤ c, and no further message will
change this probability. Thus, the protocol ensures reasonable doubt.
Next we want to compute the rate for the protocol we have constructed. In the limit,

when n → ∞ much faster than m → ∞ the rate is

lim
m→∞ lim

n→∞
hm

n

= lim
m→∞ lim

n→∞

⌊(−b′ log(1−c)+c log(1−b′)
c − m−2

)
n′

⌋
m

n

≥ lim
m→∞ lim

n→∞

−b′ log(1−c)+c log(1−b′)
c n′m − (m−2n′ + 1)m

n

≥ lim
m→∞ lim

n→∞

− 2bc
(c−b)m log(1−c)+c log

(
1− 2bc

(c−b)m

)

c

( c−b
2c n − 1

)
m − (

m−2 c−b
2c n + 1

)
m

n

= lim
m→∞

− 2bc
(c−b)m log(1 − c) + c log

(
1 − 2bc

(c−b)m

)

c

(
c − b

2c

)
m −

(
m−2 c − b

2c

)
m

= lim
m→∞

−b log(1 − c) + m c−b
2 log

(
1 − 2bc

(c−b)m

)

c
−

(
m−2 c − b

2c

)
m

= −b log(1 − c) − bc log(e)

c
,

as we wanted.
Finally, we want to compute the error probability. We divide the errors into two types.

A type one error is an error where either X̂ j 
= X j . A type two error is the case where
the protocol halts because there are less than n′ available players left.
By construction, the probability of getting a type one error in stage j is at most

ε
2m . From the proof of Theorem 7, we see that if the players never pretend ignorance,
then the number of players who would become unavailable in stage j is binomially
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distributed with parameters n′ and b′ + (1 − b′) a
d where a and d are parameters from

that proof. For any δ > 0 we can choose a and d such that a
d ≤ b′(1−c)

c(1−b′) + δ. Then

b′+(1−b′) a
d ≤ b′

c +δ. Thus, the total number of players whowould become unavailable
if there were enough players and they never pretended ignorance would be binomially
distributed with parameters mn′ and p ≤ b′

c +δ = 2b
(c−b)m +δ and thus have expectation

mn′ p ≤ m

⌊
c − b

2c
n

⌋ (
2b

(c − b)m
+ δ

)

≤ m
c − b

2c
n

(
2b

(c − b)m
+ δ

)

≤ b

c
n + δnm

Bychoosing δ to be sufficiently small depending onm, andn sufficiently bigChebyshev’s
inequality shows that with probability greater than 1− ε

2 the total number of players who
become unavailable is at most c+b

2c n ≤ n − � c−b
2c n� and hence there will be n′ available

players left for the last stage. Thus, the probability of a type two error would be less than
ε
2 so the total probability of error is less than ε. �

Theorem 25. If Mb is “b-threshold centrally organised” or “b-threshold informed
choice” the c-capacity for Mb is −min(b,c) log(1−c)

c − min(b, c) log(e).

Proof. For b < c is follows from Proposition 22, Proposition 24 and the fact that the
risky capacity must be at least the same as the safe. For b ≥ c is follows from the case
b < c, Proposition 23 and the fact that the c-capacity must be non-decreasing in c. �

For an illustration of this theorem, see Fig. 2.
Notice that while our upper bounds for the six models are the same and are the same

for the safe and risky case, the c-capacities might be different between the models, and
the safe c-capacity might even be different from the risky c-capacity from some models.
Similarly, even though our upper bound for all the models does not depend on b as long
as b ≥ c, we conjecture that in the b-dormant models the c-capacity for Mc is less than
the c-capacity for M1.

6. The Original Cryptogenography Problem

Brody et al. [4] studied the following cryptogenographic problem. We flip a coin, and
tell the result to one out of n people. The n − 1 other people do not know who got the
information. Formally that means we take L = (L1, . . . , Ln) to be the random variable
that is uniformly distributed over all {0, 1}-vectors (l1, . . . , ln) containing exactly one
1 and take X to be uniformly distributed over {0, 1} independently from L . We let the
group of n people use any collaborating cryptogenography protocol, and afterwards we
let Frank guess the result of the coin flip (his guess depends only on the transcript) and
then let Eve guess who was leaking (her guess can depend on both transcript and Franks’
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Fig. 2. This figure illustrates the advantage of the adaptive models “b-threshold centrally organised” and
“b-threshold informed choice” compared to the non-adaptive model. Most of the figure is as Fig. 1. The new
line is the tangent to p �→ − log(1 − p) at p = 0. For b ≤ c the safe/risky c-capacity for Mb is given as the
length of the dotted line. In the case, the advantage in using these two adaptive models over the static one, is
given by the difference between the lower line and the curve. When b > c in the static model, there is not even
reasonable doubt from the beginning, and the capacity is −∞. In these two adaptive models, the capacity is
the same as for b = c.

guess). Eve wins if she guesses the leaker or if Frank does not guess the result of the
coin flip. Otherwise, Frank and the n people communicating wins. We assume that both
Frank and Eve make their guesses to maximise the probability that they win, rather than
maximise the probability of being correct.6

For n = 2, Brody et al. [4] showed that the group would win with probability 1
3 but no

protocol can ensure winning with probability above 3
8 . Doerr and Künnemann [12] later

improved this upper bound to 0.3672 and the lower bound to 0.3384. For general values
of n, Brody et al. [4] showed that the probability that the group wins is always below
3/4 and for sufficiently high n it is at least 0.5644. In this section we will generalise the
problem to a situation where more people are leaking and X contains more information.
It is obvious how to generalise X to more information, we simply take X to be uniformly
distributed on {1, . . . , 2�h	}. It is less obvious how to generalise to more leakers. When
more people are leaking, it would be unreasonable to require Eve to guess all the leakers.
If this was the rule, one of the leaking players could just reveal himself as a leaker and
say what X is, while the rest of the leakers behave exactly as the non-leakers. Instead,
we let Eve guess one person and if that person is leaking, she wins.

6For example if Pr(L1 = 1, X = 0|T = t) = 0.97, Pr(L1 = 1, X = 1|T = t) = 0.01 and Pr(L2 =
1, X = 1|T = t) = 0.02 then it is most likely that X = 0. However, Frank will guess that X = 1. If Frank
instead guessed X = 0 then Eve would guess that plr1 is leaking and then Eve would be certain to win. Once
Frank have guessed X = 1, Eve will guess that plr2 is leaking even though it is much more likely that plr1
is leaking. This is because, given that Frank is correct, it is more likely that plr2 is leaking, and Eve does not
care if she guesses correct when Frank is wrong.
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Definition 10. For fixed values of h, number of leakers l and number of communicating
players n > l and a collaborating cryptogenography protocol π , we let Succ(h, l, n, π)

denote the probability that after the players communicate using protocol π , Frank will
guess the correct value of X but Eve’s guess will not be a leaker, assuming that Frank
and Eve each guess using the strategy that maximise their own chance of winning. We
define

Succ(h, l, n) = sup
π

(Succ(h, l, n, π)),

where the supremum is over all collaborating cryptogenography protocols π . Finally,
we define

Succ(h, l) = lim
n→∞Succ(h, l, n).

In this section wewill investigate the asymptotic behaviour of Succ(h, l)when at least
one of l and h tends to infinity. First some propositions.

Proposition 26. The probability that the communicating players win the game does
not change if Eve is told the value of X before they start to communicate.

Proof. If Frank guesses the correct value of X , Eve was going to assume that that was
the correct value anyway (as she wants to maximise the probability that she is correct
given that Frank was correct), and if Frank guesses wrong, she would win anyway. �

In the rest of this section, we will assume that Eve knows the value of X .

Proposition 27. Succ(h, l, n) and Succ(h, l) are non-increasing in h.

Proof. Let h > h′ and let π be a protocol for parameters h, l, n and let the secret be
denoted X . We construct a protocol π ′ with parameters h′, l, n and secret denoted by
X ′. In the first round of π ′, plr1 announces h − h′ independent and uniformly chosen
bits Y , and from then on, everyone follows protocol π for X = X ′ ◦ Y . It is clear the
Succ(h, l, n, π) ≤ Succ(h′, l, n, π ′). �

Proposition 28. Succ(h, l, n) is non-decreasing in n.

Proof. We use the elimination strategy used in [4]. Let n′ > n and let π be a protocol
for parameters h, l, n. We now construct a sequence of protocols π ′

k for parameters
h, l, n′. In the protocol π ′

k each non-leaking player thinks of a uniformly chosen number
in {1, . . . , k}. First everyone who thought of the number 1 announces that and they are
out, then everyone who thought of the number 2 and so on, until only n players a left.
If two or more player thought of the same number, we might end up with less than n
players left. In that case the leakers just announce themselves. If we are left with exactly
n players, we know that the l leakers are still among them, and we have no further
information about who they are. They then use protocol π , and win with probability
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Succ(h, l, n). As k → ∞, the probability that two players thought of the same number
tends to 0, so Succ(h, l, n′, π ′

k) → Succ(h, l, n, π). �

Theorem 29. For all p ∈ (0, 1),

lim inf
l→∞ Succ

(⌈(− log(p)

1 − p
− log(e)

)
l

⌉
, l

)
≥ p.

Proof. We know from Corollary 19 that the safe c-capacity for Fixed is − log(1−c)
c −

log(e). If we let ε > 0, and use this Corollary for c = 1 − p + ε/2 we get that for

sufficiently high l, n and h =
⌈(− log(p)

1−p − log(e)
)

l
⌉
there is a protocolπ that will make

Frank’s probability of guessing wrong at most ε/2, and seen from Eve’s perspective,
no one is leaking with probability greater than 1 − p + ε/2. By the union bound, the
probability that Frank is wrong or Eve is correct7 is at most ε/2+ 1− p + ε/2, thus the
communicating players win with probability at least p − ε. �

In particular we have the following corollary.

Corollary 30. Let l → ∞ and h = h(l) be a function of l with h = o(l). Then
Succ(h, l) → 1.

Proof. Let h(l) = o(l) be a function. For each l, we have Succ(h(l), l) ∈ [0, 1], so we
only need to show that for any ε > 0 there exists l0 such that for all l ≥ l0 we have
Succ(h(l), l) ≥ 1 − 2ε. If we put p = 1 − ε in Theorem 29 we get

lim inf
l→∞ Succ

(⌈(− log(1 − ε)

ε
− log(e)

)
l

⌉
, l

)
≥ 1 − ε.

This means that there is some l1 such that for all l ≥ l1 we have

Succ

(⌈(− log(1 − ε)

ε
− log(e)

)
l

⌉
, l

)
≥ 1 − 2ε.

As h(l) = o(l), there must be some l2 such that h(l) ≤
(− log(1−ε)

ε
− log(e)

)
l for all

l ≥ l2. Now define l0 = max(l1, l2). For all l ≥ l0 we have

Succ(h(l), l) ≥ Succ

(⌈(− log(1 − ε)

ε
− log(e)

)
l

⌉
, l

)

≥ 1 − 2ε.

Here the first inequality uses Proposition 27 and l ≥ l0 ≥ l2 and the second inequality
uses that l ≥ l0 ≥ l1. �

7Here we assume that Frank guesses on the most likely value of X , and we allow Eve to use any strategy.
It could be that Frank could do better, but he is guaranteed at least this probability of winning.
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Definition 11. Let the distribution of (X, L1, . . . , Ln) be given and let π be a protocol
with transcript T and π ′ a protocol with transcript T ′. For a transcript t of π let μt

denote the distribution (X, L1, . . . , Ln)|T =t , and similar for transcripts t ′ of π ′. We say
that π and π ′ are equivalent for (X, L1, . . . , Ln) (or just equivalent when it is clear
what the distribution of (X, L1, . . . , Ln) is) if the distribution of μT is the same as the
distribution of μT ′ .

Notice that for fixed t ,μt is a distribution of (X, L1, . . . , Ln), soμT is a random vari-
able those values are themselves distributions over (X, L1, . . . , Ln). For π and π ′ to be
equivalent, we require the probability that the posterior distribution of (X, L1, . . . , Ln)

is μ to be the same for both π and π ′. For two different distributions of (X, L1, . . . , Ln)

with the same support, π and π ′ are equivalent for one of them if and only if they are
equivalent for the other distribution. Thus, when the support of (X, L1, . . . , Ln) is clear,
we can simply say equivalent.

Proposition 31. If π and π ′ are equivalent collaborating cryptogenography protocols,
then Succ(h, l, n, π) = Succ(h, l, n, π ′).

The next lemma show that we can ensure that before any player crosses probability c
of having the bit, seen from Eve’s perspective, that player lands on this probability.

Lemma 32. Letπ be any collaborating cryptogenography protocol, let (X, L1, . . . , Ln)

have any distribution and let c ∈ (0, 1). Then there exists an equivalent collaborating
cryptogenography protocol π ′ such that when we use it on (X, L1, . . . , Ln) and let T ′
denote its transcript, it satisfies: For all x ∈ X , all plri and all non-empty partial
transcripts t ′k , if

Pr(Li = 1|T ′k = t ′k, X = x) > c.

then there is a k′ < k such that

Pr(Li = 1|T ′k′ = t ′k′
, X = x) = c

Proof. Let π , (X, L1, . . . , Ln) and c be given, and assume that (x, i) = (x0, i0) is a
counterexample to the requirement from the lemma. We will then construct a protocol
π ′ such that (x0, i0) is not a counterexample for π ′, and any (x, i) that satisfied the
requirement for π also satisfies it for π ′. By induction, this is enough to prove the
lemma.
We can assume that the messages in π are sent one bit at a time. We say a partial

transcript tk is problematic if

Pr(Li0 = 1|T k = tk, X = x0) < c

but

Pr(Li0 = 1|T k+1 = tk ◦ m, X = x0) > c.
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for some bit value m. Without loss of generality, assume that m = 1. Let p = Pr(Tk+1 =
1|T k = t ′k).
We will use the c-notation from Sect. 3, so for example

ctk ,x0 = Pr(Li = 1|T k = tk, X = x0).

Now

c > ctk ,x0 = pctk◦1,x0 + (1 − p)ctk◦0,x0

so ctk◦0,x0 < c. Let q ∈ (p, 1) be the number such that

c = qctk◦1,x0 + (1 − q)ctk◦0,x0 .

Now we modify π . First, the player plr j , who is going to send to k + 1’th message in
π , decides if she would have sent 0 or 1 in π . If she would have sent 1 she sends the
bits 11. If she would have sent 0 she sends 10 with probability p(1−q)

q(1−p)
∈ (0, 1), and

otherwise she sends 00. In all cases she sends the bits one at a time. They then continue
the protocol π as if only the last of the two bits had been sent. If we let T ′ denote the
transcript of the protocol with this modification, we get

cT ′k+1=tk◦0,x0 = cT k+1=tk◦0,x0 < c

and

cT ′k+1=tk◦1,x0 = pcT k+1=tk◦1,x0 + (1 − p)
p(1−q)
q(1−p)

cT k+1=tk◦0,x0
p + (1 − p)

p(1−q)
q(1−p)

= qcT k+1=tk◦0,x0 + (1 − q)cT k+1=tk◦1,x0
= c.

So if plr j sends 11 or 10 in the modified protocol, we land on probability c. Let π ′
be the protocol we get from π by doing this modification for each problematic partial
transcript tk in π . It is clear that π and π ′ are equivalent, and that any (x, i) that satisfied
the requirement before also does so afterwards. �

Lemma 33. For any c ∈ (0, 1) and any h, l, n, π , we have Succ(h, l, n, π) ≤ 1 −
ch+l log(1−c)+lc log(e)−c

h .

Proof. As Succ(h, l, n) is non-decreasing in n, we can assume that n > l
c , so that

Pr(Li = 1) < c at the beginning. By Lemma 32 and Proposition 31 we can assume that
π satisfies the requirement for π ′ in 32.
Letπ ′ be the protocol that starts of asπ , butwhere the players start to pretend ignorance

(as in the proof of Lemma 15) if Pr(Li = 1|T k = tk, X = x) = c for some i , current
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transcript tk and the true value x of X . This ensures that Pr(Li = 1|T ′ = t, X = x) ≤ c
for all i and t . Let T ′ be the transcript of π ′. From Theorem 5 we get

I (X; T ′) ≤
(

− log(1 − c)

c
− log(e)

)
l

We let Frank guess as he would if we used protocol π . By Fano’s inequality, (3), Frank’s
probability of being wrong when he only sees the transcript of π ′ is

Pe ≥ H(X |T ′) − 1

log(|X |)
= H(X) − I (X; T ′) − 1

log(|X |)

≥
h − l

(− log(1−c)
c − log(e)

)
− 1

h

In the cases where Frank is wrong in π ′ there are two possibilities: Either the players did
not pretend ignorance, in which case Frank would also be wrong if they used protocol
π , or they did pretend ignorance so Pr(Li = 1|T k = tk, X = x) = c for some i and
some smallest k. When this first happens Eve can just ignore all further messages in π

and guess that plri is leaking. This way she is wins with probability at least c. Thus, all
the situations in π ′ where Frank guesses wrong, correspond to situations in π where Eve
would win with probability at least c. So Eve’s probability of winning when the players
are using protocol π is at least

cPe ≥ ch + l log(1 − c) + lc log(e) − c

h

�

Corollary 34. For fixed l we have

lim
h→∞Succ(h, l) = 0.

Proof. By Lemma 33 we have Succ(h, l) ≤ 1 − ch+l log(1−c)+lc log(e)−c
h for each c ∈

(0, 1). Setting c = 1 − ε we get

lim sup
h→∞

Succ(h, l) ≤ lim sup
h→∞

1 − ch + l log(1 − c) + lc log(e) − c

h
= ε.

AsSucc(h, l) ∈ [0, 1] and the above holds for all ε > 0wehave limn→∞ Succ(h, l) = 0.
�
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Theorem 35. Let r > 0 be a real number. Now

lim sup
l→∞

Succ(�r log(e)l�, l) ≤ log(r + 1)

r log(e)

Proof. Set c = r
r+1 and h = �r log(e)l� in Lemma 33. Then Eve’s probability of

winning is at least

r�r log(e)l� − l(r + 1) log(r + 1) + lr log(e) − r

�r log(e)l�(r + 1)

As l tends to infinity, this tends to

r2 log(e) − (r + 1) log(r + 1) + r log(e)

r log(e)(r + 1)
= 1 − log(r + 1)

r log(e)

as wanted. �

In particular we have the following corollary.

Corollary 36. Let h → ∞ and let l = l(h) be a function of h with l(h) = o(h). Then
Succ(h, l) → 0.

Proof. Let l(h) = o(h) be a function. As Succ(h, l(h)) ∈ [0, 1] for all h, we only
need to show that for all ε > 0 there exists a h0 such that for all h ≥ h0 we have
Succ(h, l(h)) ≤ 2ε. We see that log(r+1)

r log(e) → 0 as r → ∞, so we can find a number r

such that log(r+1)
r log(e) ≤ ε. By Theorem 35 we have

lim sup
l→∞

Succ(�r log(e)l�, l) ≤ log(r + 1)

r log(e)
≤ ε

So there exists a number l1 such that for all l ≥ l1 we have

Succ(�r log(e)l�, l) ≤ 2ε.

As l(h) = o(h) there is a h1 such that for all h ≥ h1 we have h ≥ r log(e)l(h). By
Corollary 34 limh→∞ Succ(h, l) = 0 for each value l. So for each value l there is a h2(l)
such that for all h ≥ h2(l) we have Succ(h, l) ≤ 2ε. Define h2 = maxl<l1 h2(l). Now
define h0 = max(h1, h2). We want to show that for any h ≥ h0 we have Succ(h, l(h)) ≤
2ε. If l(h) < l1, then h ≥ h0 ≥ h2 ≥ h2(l(h)), so Succ(h, l(h)) ≤ 2ε. If l(h) ≥ l1 then

Succ(h, l(h)) ≤ Succ(�r log(e)l�, l)

≤ 2ε.

Here the first inequality follows from h ≥ h0 ≥ h1 and Proposition 27, and the second
inequality follows from l ≥ l1. �
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7. Hiding Among Innocents

Until now we have assumed, that even the players who are not trying to leak informa-
tion will collaborate. In this section we will show that we do not need the non-leakers
to collaborate. As long as some people are communicating innocently, and that com-
munication is sufficiently non-deterministic, we can use these people as if they were
collaborating.
Formally, we model the innocent communication by an innocent communication pro-

tocol. While protocols usually are designed to compute some function, innocent com-
munication protocols is a way of describing what is already going on. An innocent
communication protocol ι is a protocol that for each possible partial transcript sk and
each player i gives a finite set Ai,sk of possible messages that that person can send in
the next round, and a probability distribution on that set. In innocent communication
protocols every person sends a message in each round. This assumption is not a restric-
tion: if we have a protocol where only one player at a time sends messages, we can turn
it into an innocent communication protocol, by requiring that all the other players send
the message “no message” with probability 1. We will only be interested in innocent
communication protocols that continue for infinitely many rounds. This assumption is
of course unrealistic but in practice we only need it to be long.
Let S denote the random variable that is the infinite transcript we get from running

ι, and let Sk denote the partial transcript of the first k rounds. For a player plr j and a
partial transcript sk of the first k rounds of ι we define

pmax, j (s
k) = max

a
(Pr(A j,sk = a)|Sk = sk),

where A j,sk is the message sent by plr j in round k + 1. We say that ι is informative if
for a random transcript S and for each player

∏
k∈N pmax, j (Sk) = 0 with probability 1.

In other words, if at each round in the protocol you try to guess what message plr j will
send in the next round, then with probability 1 you will eventually fail. Notice that the
model for innocent communication here is equivalent to what is used in [18], and the
definition of informative is almost the same as the definition of always informative in
[18] when one player is communicating.8

We say that a collaborating cryptogenography protocol π is revealing if there is a par-
tial transcript tk and a player plr j that is to send the next message A when the transcript
is tk and a message a such that plr j will send message a with positive probability if
L j = 1 but not if L j = 0. If this is not the case, we say that π is non-revealing.9 The
point in cryptogenography is to hide who is sending the information, so we are only
interested in non-revealing protocols.
The following is the main theorem of this section.

8The difference is that in [18],
∏

k∈N pmax,i (T
k ) have to go to 0 exponentially fast.

9A non-revealing protocol can also reveal who the leakers are. For example, if it is known that exactly one
person is leaking and all but one person sends a message that could not have been sent by a leaker. However,
if Pr(L = (0, . . . , 0)) > 0 then a non-revealing protocol will never reveal anyone as a leaker.
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Theorem 37. Let π be a non-revealing collaborating cryptogenography protocol, and
let ι be an informative communication protocol. Then there exists a protocol ιπ that is
equivalent to π , but where the non-leakers follow the protocol ι.

Proof. The idea is to construct the protocol ιπ and at the same time an interpretation
function i that maps transcripts s of ιπ to transcripts t of π . We want them to satisfy the
following.

1. For each partial transcript sk of ιπ and each player plr j , ιπ gives a probability
distribution, depending only on X, L j , sk and j that plr j will use to choose his
next message.

2. If L j = 0 then plr j choose her messages in ιπ using the same distributions as in
ι.

3. The interpretation function i maps (infinite) transcripts s of ιπ to either transcripts
t of π or to “error”. The probability of error is 0.

4. If T denotes the transcript of π and S denotes the transcript of ιπ , then given that
i(S) is not error, (X, L1, . . . , Ln, i(S)) is distributed as (X, L1, . . . , Ln, T ).

5. For each transcript t of π , the random variable (X, L1, . . . , Ln) is independent
from S given i(S) = t .

Here the second requirement ensures that non-leakers can follow the protocol without
knowing X or π . In fact, unlike in the collaborating communication protocol, they
might be thinking that everyone is just having an innocent conversation. Thus in ιπ

we refer to the non-leakers as innocents. Notice the important assumption that first the
innocent communication protocol ι is defined and thenwe create a protocol ιπ for leaking
information on top of that. This corresponds to assuming that the non-leaking players
either do not care about the leak, or that they are oblivious to the protocol. If ι was
allowed to depend what the leakers do, the non-leaking players could try to prevent the
leak, and it would be a very different problem.
The fourth of the above requirements tells us that ιπ reveals at least as much about

(X, L1, . . . , Ln) as π and the last requirement says that we do not learn anything more.
This ensures that Frank and Eve, who both know ιπ , learn exactly as much from the
transcript of ιπ as they would from the transcript of π .

Proposition 38. If ιπ satisfies the above requirements, then ιπ and π are equivalent.

Proof. Recall Definition 11, of equivalence. i gives error with probability 0, so we
can ignore all those cases. By requirement 4, i(S) has the same distribution as T , and
by requirement 4 and 5 the distribution μs of (X, L1, . . . , Ln) given S = s equals the
distribution μi(s). Thus, μS , μi(S) and μT have the same distribution. �

Before we construct the protocol ιπ we will define a function i ′ that maps partial
transcripts sk′

of ιπ to tuples (tk, [y, z)) where tk is a partial transcript of π , and
[y, z) ⊂ [0, 1) is a half-open interval. When i ′(sk′

) = (tk, [y, z)), we refer to tk as
the interpretation of sk′

. Loosely speaking, the point of the interval is that not all mes-
sages in ι are sufficiently unlikely that they can correspond to a message in π , so instead
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of interpreting them as a message in π , we store the information by remembering an
interval. For an infinite transcript s, the function i ′ will satisfy

1. i ′(λ) = (λ, [0, 1)), where λ is the empty string
2. If i ′(sk′

) = (tk, [y, z)) then either

• i ′(sk′+1) = (tk ◦ m, [0, 1)) for some message m in π , or
• i ′(sk′+1) = (tk, [y′, z′)), where [y′, z′) ⊆ [y, z)

3. If i ′(sk′
) = (tk, [y, z)) and tk is a complete transcript for π , then y = 0, z = 1

and i ′(sk′′
) = (tk, [0, 1)) for all k′′ ≥ k′

Thus every time we reveal one more round from the transcript s, we will either learn one
message in π from the interpretation of s, or the interval gets smaller or stays the same.
If the interpretation of sk′

is tk , we let j (sk′
) and j (tk) denote the index of the player to

send the next message in π when the current transcript is tk . When it is clear what sk′
is,

we write j instead of j (sk′
). If i ′(sk′

) = (tk, [y, z)) and i ′(sk′+1) = (tk ◦ m, [0, 1)) we
say that at time k′ player j (sk′

) finished sending the message m in π and at time k′ + 1
player j (sk′+1) starts sending a new message in π .
For each partial transcript tk of π , we letAtk denote the set of possible next messages.

We assume that all set of messages, both in π and ι, have an ordering, for example the
lexicographical order. Algorithm 1 gives a pseudo code for i ′, but we will also define it
in the main text.

Algorithm 1 i ′.
1: procedure I’(sk′

)
2: t ← λ � λ denotes the empty string, t a partial transcript
3: k ← 0
4: y ← 0
5: z ← 1
6: for r from 1 to k’ do
7: y′ ← y + (z − y)Pr(S j (t),r < s j (t),r |Sr−1 = sr−1)

8: z′ ← y + (z − y)Pr(S j (t),r ≤ s j (t),r |Sr−1 = sr−1)

9: y ← y′
10: z ← z′
11: if ∃a ∈ At : Pr(Tk+1 < a|T k = t, L j (t) = 0) ≤ y,

12: z ≤ Pr(Tk+1 ≤ a|T k = t, L j (t) = 0) then
13: t ← t ◦ a
14: k ← k + 1
15: y ← 0
16: z ← 1
17: end if
18: end for
19: return (t, [y, z))
20: end procedure

Define a function f : [0, 1) → Atk such that

f −1(a) = [Pr(Tk+1 < a|T k = tk, L j = 0),Pr(Tk+1 ≤ a|T k = tk, L j = 0)).
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By definition of innocent communication protocol, each message in ι is chosen from
a finite set, but to explain the point of the function f , imagine for now that ι said that
in the next round plr j should send a random real uniformly from in [0, 1). We could
now interpret that as the message f (x) ∈ Atk in π . Then ιπ would say that if plr j

was innocent he should send a number uniformly from [0, 1) and if he was leaking,
he should first choose a ∈ Atk using the distribution specified by π , and then send a
number chosen uniformly at random from f −1(a). More generally, if ι said that plr j

should choose his next message M from some continuous distribution on R, we could
take the quantile function given L j = 0 of the message

m �→ Pr(M < m|L j = 0)

to turn it into a message that is uniform on [0, 1) given L j = 0. Unfortunately, there
are only finitely many possible messages for plr j to send in each round, so instead of
getting a number out of the quantile function, we define a similar function to get an
interval. Let i ′(sk′

) = (tk, [y, z)) and letM j,sk′ denote the set of possible messages that

plr j can send in round k′ + 1 when transcript is sk′
and choose some ordering on the

set. Define g : [y, z) → M j,sk′ by

g−1(m) = {y + (z − y)t |t ∈ [Pr(M < m|L j = 0),Pr(M ≤ m|L j = 0))}.

Thus instead of getting a number in [0, 1) out of m ∈ M j,sk′ , we get an interval g−1(m),
whose length is proportional to the probability that an innocent player would send that
message. If g−1(m) ⊂ f −1(a) for some a ∈ Atk we say that plr j sends a in π and
define i ′(sk′+1) = (tk ◦ a, [0, 1)). Otherwise, plr j is not done sending his message and
we define i ′(sk′+1) = (tk, g−1(m)). Algorithm 1 gives a pseudo code for computing i ′.
Here s j,r denotes the message in ι sent by player j in round r .
Now if for some k′ we have i ′(sk′

) = (t, [0, 1)) where t is a complete transcript of
π we define i ′(sk′′

) = (t, [0, 1)) for all k′′ > k′ and i(s) = t . If for some s no such k′
exists, we define i(s) to give “error”.
Next we define the protocol ιπ . Any non-leaking player chooses his messages as given

by ι and when the current transcript is sk′
all players except plr j (sk′

)
also choose their

messages as in ι. When a leaking player, plr j (sk′
)
, starts sending a message in π , he

first choose the message a ∈ Atk using the distribution given by π (this distribution
depends on X = x). Next he chooses a number α randomly and uniform in f −1(a).
Until he has sent his message in π he will now send messages m such that α ∈ g−1(m).
This uniquely specifies which messages m to send (notice that g will depend on current
transcript in ιπ , so m is not necessarily the same for every round). When we get to a
transcript sk′

that is interpreted as a complete transcript t of π all the players will just
follow ι. Figure 3 gives an example of how one message in π is send by using ιπ .

We see that if in π a leaking player’s distribution of a is exactly the same as a non-
leaking players, then the distribution of the number α chosen by the leaking player in
uniform on [0, 1). By the definition of g, the probability that a leaking player sends a
particular message m in ιπ is exactly the probability given by ι, and thus the same as a
non-leaking player. Using this reasoning in the opposite direction, this tells us that we
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Fig. 3. Example of how to construct a part of ιπ . In this figure we see an example of how construct a part
of ιπ . In π , the next player to send a message is plr j . The message A1 should come from A = {a1, a2}.
We have Pr(A1 = a1|L j = 0) = 0.4, so f : [0, 1) → A maps x ∈ [0, 0.4) to a1, and x ∈ [0.4, 1) to a2.

Now L j = 1, so plr j first chooses a message from A to send, this happens to be a1, and then a number α

chosen randomly and uniformly from f −1(a1). In ι, the next message M1 that plr j sends should be from

M1 = {m1
1, m2

1}. If plr j was innocent and was following the protocol ι, we would have Pr(M1 = m1
1) = 0.6,

so g1 : [0, 1) → M1 maps x ∈ [0, 0.6) tom1
1 and the rest tom2

1. As α ∈ [0, 0.6), plr j now sends themessage

m1
1. We see that g−1

1 (m1
1) overlaps with both f −1(a1) and f −1(a2), so an observer cannot yet determine

which message in π plri was sending, so plr j has not sent his message yet. His next message M2 should be

choosen fromM2 = {m1
2, m2

2}, and again it happens that if he was following ι then Pr(M2 = m1
2) = 0.6, so

g2 : [0, 0.6) → M2 maps x ∈ [0, 0.36) to m1
2 and the rest to m2

2. As α ∈ [0, 0.36), plr j sends the message

m1
2, and now g−1

2 (m1
2) ⊂ f −1(a1), so now an observer can see that plr j was sending the message a1 in π ,

and plr j is done sending his message in π .

can assume that even the innocents, when starting sending a message in π , choose a
uniformly distributed α ∈ [0, 1) and send the message m such that α ∈ g(m), until they
have sent the message in π . They may not do that, but the probability of any transcript
is the same as if they did.
Finally, we need to check that ιπ satisfies the 5 requirements. The first two follows

from the construction. To show the third, we need to show that for a random transcript
s of ιπ there will with probability 1 exist a k′ such that i ′(sk′

) = (t, [0, 1)) where t is a
complete transcript for π . As π only has finitely many rounds, it is enough to show that
for each message of π we start sending in ιπ , there is probability 1 that we will finish
sending it. Assume that i ′(sk′

) = (tk, [0, 1)) for some k′, where tk is an incomplete
transcript of π , but for all k′′ > k′ the interpretation of sk′′

is still tk . If plr j (sk′
)
is

innocent, everyone will be following ι, so by the assumption that ι is informative, the
set of transcripts where the length of the interval does not go to 0 has probability 0.
As stated earlier we can assume that when sending a message in π , even the innocents
start by choosing a random number α uniformly from [0, 1). As f only jumps in finitely
many points, there is probability 0 that plr j (sk′

)
chooses one of these points. If he does

not, and the length of the interval goes to 0, he will eventually send his message in
π . Thus, there is probability 0 that a non-leaker does not send his message. A leaker
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chooses his random α ∈ [0, 1) using a different distribution, but we can divide [0, 1)
into a finite set of intervals (given by f −1(a)) such that it is uniform on each of these
intervals. This tells us that given sk′

there is a constant K such that, as long as plr j (sk′
)

is still sending the same message in π , any continuation of the transcript is at most K
times more likely when plr j (sk′

)
is leaking as when he is not leaking. Thus, there is still

probability K · 0 = 0 that he will not finish his message in π .
For the fourth requirement, we observe that any leaking player is actually choosing

messages in π following the distribution given by π , and then making sure that the
message send in ιπ will be interpreted as the message he wanted to send in π . The
innocent players are not doing this, but we have seen that the distribution on the message
they send in ιπ are the same as if they did. Thus, requirement 4 holds. Finally, we see
that given i(S) = t a player not sending a message in π always follows ι and a player
sending a message in π can be thought of as haven chosen an α uniformly from f −1(a)

where a is the next message in transcript t . This is independent from (X, L1, . . . , Ln)

and thus the last requirement follows. �

To implement the protocol ιπ the leaking players do not have to choose all the infinitely
many digits in a random number α. Instead, they can just for each message compute the
probability that they would send each message, given that they had chosen an α. We also
see that if i(S) does not give an error, then there is some k such that Sk determines i(S).
If we let K be the random variable that is ∞ when we have error and otherwise gives
the smallest value k such that Sk determines i(S), then we know that Pr(K = ∞) = 0.
So all the probability mass of K is on the integers, hence for any ε > 0 there must
exists some k0 such that Pr(K ≥ k0) < ε. That is, i(Sk0) gives a total transcript with
probability greater than 1 − ε

In order to find the protocol ιπ you need have a description of the protocol ι. This
is a strong assumption: even if you are able to communicate innocently, it does not
mean that you are aware of the distribution you use to pick your random messages. In
steganography, the weaker assumption that you have a random oracle that takes history
and player index as input and gives a message following the innocent distribution as
output, is sometimes enough [18]. However, it is not clear if this weaker assumption is
enough for doing cryptogenography. While it may not be possible to find ι for all kinds
of innocent communications, there are situations where we can approximate ι very well.
For example, if a person posts blog posts, we can consider the message to be only the
parity of the minutes in the sending time. This value will probably, for most people, be
close to uniformly distributed on {0, 1}.

8. Open Problems

In this paper we only considered how much information l players can leak in an asymp-
totic sense, where l tends to infinity, and the proof of the achievability results is not
constructive. We have not tried to find any explicit protocols that work well for fixed
specific values of l and tolerance of errors ε, but that would be an interesting possibility
for further research. We assumed that both Eve and Frank knew the true distribution q
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of (X, L1, . . . , Ln). It might be interesting to consider the problem where their beliefs,
qE and qF are different from q and from each other.

We have only found the c-capacity for Fixed and for Indepb. It would be interesting
to find a way to compute the capacity of more general L-structures. It would also be
interesting so find the safe and the risky capacities in the last four adaptive models, in
particular to see if there in this model can be a difference between the safe and the risky
capacities.
In the setup we considered here, there are two types of players. Some know the

information that we want to leak and some do not. We could also imagine that some
people know who knows the information, without knowing the information itself, and
some could know who knows who knows the information and so on. We could also have
people who would only know X if it belongs to some set S, and otherwise only know
that X /∈ S. It is known from the game theory literature that all of this can be described
by having a joint distribution (X, P1, . . . , Pn) where X is the information we want to
leak and Pi is a random variable known to player i [1].
A different generalisation would be to have players who try to prevent the leakage by

sending misleading information. Such players would also not want to be discovered. If
Frank notices that someone is sending misleading information, he could just ignore all
the messages sent by that person.
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