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Abstract. We introduce a new algorithm to construct travel time distances between a point
in the interior of a Riemannian manifold and points on the boundary of the manifold, and describe
a numerical implementation of the algorithm. It is known that the travel time distances for all
interior points determine the Riemannian manifold in a stable manner. We do not assume that there
are sources or receivers in the interior, and use the hyperbolic Neumann-to-Dirichlet map, or its
restriction, as our data. Our algorithm is a variant of the Boundary Control method, and to our
knowledge, this is the first numerical implementation of the method in a geometric setting.
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1. Introduction. We consider the inverse boundary value problem for the acous-
tic wave equation on a domain in Rn, or Riemannian manifold with boundary, M .
The problem is to recover, in an appropriate region near ∂M and appropriate coor-
dinates, a spatially varying wave speed c or metric g, from the Neumann-to-Dirichlet
map or its restriction to a subset of the boundary, say Γ ⊂ ∂M .

Waves propagate in a domain M with speed c, and the travel time for a wave
between a pair of points x and y in M is given by the Riemannian distance d(x, y)
computed with respect to the travel time metric c−2dx2. For this reason, it is natural
to formulate the inverse boundary value problem using concepts from Riemannian
geometry. Also, this allows us to consider anisotropic wave speeds in a unified way.

We present a new method to use the restriction of the Neumann-to-Dirichlet map
to determine travel time distances of the form d(x, y) where y ∈ Γ and x belongs
to a semi-geodesic neighborhood of Γ. That is, y is a point in the set where we
have boundary measurements, and x ∈ M belongs to a region near Γ where the
semi-geodesic coordinates of Γ are valid (see Section 2.2 for definitions). The precise
subset of M for which we can determine travel times depends upon the data and the
geometry of M , however we remark that this subset is not necessarily a thin layer
about Γ. We refer to these travel times as point source travel time data, since the
distance d(x, y) corresponds to the first arrival travel time from a (virtual) interior
point source located at x as recorded at the boundary at y. We emphasize that our
method synthesizes the travel times from a point source in the interior of M without
requiring an actual receiver or source at that location.

To motivate our results, we note that for a Riemannian manifold with boundary
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(M, g), the set of travel times {d(x, y) : x ∈M,y ∈ ∂M} have previously been shown
to determine the geometry of M , see e.g. [19]. In particular, in the full boundary
data case, it has been shown that this determination is even stable [20]. Furthermore,
it can be shown that travel times determine shape operators that appear as data for
the generalized Dix method [14]. This is of particular interest in the isotropic case,
since that method allows for the local nonlinear reconstruction of a wave speed near
geodesic rays. We also note that in [33], an explicit reconstruction method is developed
for conformally Euclidean metrics, wherein travel times for points in a semi-geodesic
neighborhood of Γ and properties of Killing vector fields are used to determine the
metric in the same neigborhood in Euclidean coordinates.

Our method to determine boundary distances works by first using a variant of
the Boundary Control method (BC method) to determine volumes of subdomains of
M referred to as wave caps. These volumes are computed by solving a collection of
regularized ill-posed linear problems. The BC method originates from [6], where it
was used to solve the inverse boundary value problem for the acoustic wave equation.
We note that [8] was the first variant of the BC method posed in a geometric setting.
For a thorough overview of the BC method, we refer to [19] and [7]. Regularization
theory was first combined with the BC method in [10], and the technique used, here,
to determine volumes was developed in [28].

In the present paper, we introduce a procedure that uses volumes of wave caps to
construct point source travel time data for points near Γ. This, in turn, reduces the
inverse boundary value problem to the stable problem of determining a Riemannian
submanifold of (M, g) near Γ from point source travel time data. In particular, our
procedure splits the inverse boundary value problem into an ill-posed but linear step
(the volume computation) and a non-linear but well-posed step (distance determina-
tion and reconstruction of the submanifold).

We describe a numerical implementation of our method, and provide computa-
tional experiments to demonstrate our technique. We remark that our computational
experiments provide the first computational realization of a geometric variant of the
BC method. Moreover, we explain how the instability of the volume computation step
is manifest in our computational experiments. All variants of the BC method that use
partial data contain similar unstable components, and we believe that the instability
of the method reflects the ill-posedness of the inverse boundary value problem itself.
However, contrary to Calderón’s problem, that is, the elliptic inverse boundary value
problem [12, 37], it is an open question whether the inverse boundary value problem
for the wave equation is ill-posed in general. For results concerning the stability of
Calderón’s problem we refer to [1, 26].

Also, we point out that under favorable geometric assumptions, the hyperbolic
inverse boundary value problem is known to have better stability properties than
Calderón’s problem, see e.g. [9, 24, 27, 34, 35, 36] and references therein. These
results assume data on the whole boundary or that Γ is strictly convex.

2. Statement of the results. In this section, we describe our data and as-
sumptions, and what we intend to recover from the data.

2.1. Direct problem as a model for measurements. We work in the fol-
lowing setting,

Assumption 1. M is a smooth compact connected manifold with smooth bound-
ary ∂M , and g is an unknown smooth Riemannian metric on M .
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Let µ ∈ C∞(M) be a strictly positive weight function, note that we do not
require any additional information about µ. We consider the following wave equation
on (M, g) with boundary source f ∈ C∞0 ((0,∞)× ∂M),

(1)
∂2
t u(t, x)−∆g,µu(t, x) = 0, (t, x) ∈ (0,∞)×M,
Nµu(t, x) = f(t, x), (t, x) ∈ (0,∞)× ∂M
u(0, ·) = 0, ∂tu(0, ·) = 0, x ∈M.

The operator ∆g,µ is the weighted Laplace-Beltrami operator, which is given by
∆g,µw(x) := µ−1 divg(µ gradg w) and Nµw := −µ 〈ν, gradg w〉g is the associated Neu-
mann derivative. Here, ν is the inward pointing unit normal vector to ∂M in the
metric g, divg and gradg are respectively the divergence and gradient on (M, g), and
〈·, ·〉g denotes the inner product with respect to the metric g. We remark that ∆g,µ

is defined so that we can also handle the usual acoustic wave equation. Indeed, if
M ⊂ Rn is a domain equipped with a strictly positive wave speed c ∈ C∞(M), then
with respect to the conformally Euclidean metric g = c−2dx2, the weight µ = cn−2

yields ∆g,µ = c2∆, where ∆ denotes the Euclidean Laplacian.
We now introduce our data model. We denote the solution to (1) with Neumann

boundary source f by uf (t, x). For T > 0, and Γ ⊂ ∂M an open set, we define the
Neumann-to-Dirichlet operator associated with (1) by,

Λ2T
Γ : f 7→ uf |(0,2T )×Γ, f ∈ C∞0 ((0, 2T )× Γ).

Note that we are identifying functions in [0, 2T ]× Γ with their zero continuations in
[0, 2T ] × ∂M , and we will continue to do this. The map Λ2T

Γ extends to a bounded
operator on L2((0, 2T ) × Γ), see for instance [22]. For data, we suppose that Λ2T

Γ is
known. We note that Λ2T

Γ models boundary measurements for waves generated with
acoustic sources and receivers located on Γ, where the waves are both generated and
recorded on Γ for 2T units of time. In addition, we note that in seismic applications
the Neumman-to-Dirichlet map appears in simultaneous source acquisition.

Our primary interest is in constructing distances with respect to the Riemannian
metric g, and we denote the Riemannian distance between the points x, y ∈ M by
d(x, y). To simplify our distance computation procedure, we assume:

Assumption 2. The distances d(y, z) are known for y, z ∈ Γ with d(y, z) < T .

We note that this is not a major limitation since for y, z ∈ Γ with d(y, z) < T , the
data Λ2T

Γ determines d(y, z), see e.g. [13, Section 2.2].

2.2. Construction of the point source travel time data. We define R(M)
to be the set of boundary distance functions on M ,

(2) R(M) = {rx : x ∈M, and for z ∈ ∂M , rx(z) := d(x, z)}.

We note that, for x ∈ M and z ∈ ∂M , rx(z) gives the minimum travel time from x
to z. With this interpretation, rx(z) represents the first arrival time at z from a wave
generated by a point source located at x.

In Section 3 we develop a method to synthesize values of rx from Λ2T
Γ for points

x that are sufficiently near Γ, and which are indexed by a set of coordinates known as
semi-geodesic coordinates1. We refer to this procedure as forming point source travel

1Such coordinates are considered in seismology, where they are referred to as image ray coordi-
nates [17].
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time data, since our procedure reproduces the travel time information for a point
source located at x without having a source or receiver there.

The geometry of the supports of solutions to (1) inform our constructions. To be
explicit, let τ be a function on Γ satisfying 0 ≤ τ(z) ≤ T for all z ∈ Γ and define the
domain of influence of τ ,

M(τ) :=
{
x ∈M : there exists a z ∈ Γ̄ such that d(x, z) ≤ τ(z)

}
.

We depict M(τ) in Figure 1a. Consider the set

(3) Sτ := {(t, z) ∈ (0, T )× Γ̄ : t ∈ (T − τ(z), T )}.

We recall that solutions to (1) exhibit finite speed of propagation in the metric g, and
specifically, if supp(f) ⊂ Sτ then supp(uf (T, ·)) ⊂M(τ).

When τ is a multiple of an indicator function, we will occasionally use a special
notation for M(τ). To be specific, we denote the indicator function of a set S by 1S ,
and for s ≥ 0 we will use the notation M(Γ, s) := M(s1Γ) and M(y, s) := M(s1{y}).

We denote the unit sphere bundle SM := {ξ ∈ TM : |ξ|g = 1}, and define the
inward/outward pointing sphere bundles by ∂±SM := {ξ ∈ ∂SM : (ξ,±ν)g > 0},
where ν is the inner unit normal vector field on ∂M . We define the exit time for
(x, ξ) ∈ SM \ ∂+SM , by τM (x, ξ) := inf{s ∈ (0,∞) : γ(s;x, ξ) ∈ ∂M} where
γ(·;x, ξ) is the geodesic with the initial data γ(0) = x, γ̇(0) = ξ.

For y ∈ Γ we define σΓ(y) to be the maximal arc length for which the normal
geodesic beginning at y minimizes the distance to Γ. That is,

σΓ(y) := max{s ∈ (0, τM (y, ν)] : d(γ(s; y, ν),Γ) = s}.

We recall, see e.g. [19, p. 50] that σΓ(y) > 0 for y ∈ Γ. Moreover, σΓ is lower
semi-continuous, see e.g. [23, Lemma 12]. We define

(4) x(y, s) := γ(s; y, ν) for y ∈ Γ and 0 ≤ s < σΓ(y).

The mapping (y, s) 7→ x(y, s) is a diffeomorphism from {(y, s) : y ∈ Γ, 0 ≤ s < σΓ(y)}
onto its image, so we will refer to (y, s) as semi-geodesic coordinates for x(y, s). This
is a slight abuse of terminology, since the pair (y, s) belongs to Γ × [0,∞) instead
of a subset of Rn. On the other hand, by selecting local coordinates on Γ these
“coordinates” can be made into legitimate coordinates.

Next, we recall the definition of the cut locus of Γ, which is the set of points
given by C = {x (y, σΓ(y)) : y ∈ Γ}. We depict C in Figure 1b. Due to the lower
semi-continuity of σΓ and boundedness of Γ, the distance between Γ and C is positive.

We will use the following notions of volume: let dVg and dSg denote the Rieman-
nian volume densities of (M, g) and (∂M, g|∂M ) respectively. We remark that dSg is
determined on Γ by Λ2T

Γ , see e.g. [13, Section 2.2] so we assume that it is known. We
define the natural Riemannian volume density associated with ∆g,µ by dVµ := µdVg.
We remark that its name derives from the fact that ∆g,µ is self-adjoint on L2(M ; dVµ)
with domain H1

0 (M)∩H2(M). The volume density dVµ determines a volume measure
which we denote Volµ. In addition, we will use the following shorthand notation for
volumes of domains of influence m(τ) := Volµ(M(τ)).

We now describe a set of geometrically relevant subsets whose volumes will allow
us to determine distances. Let y ∈ Γ, and let s, h > 0 satisfy s+h < σΓ(y). We define
the wave cap,

capΓ(y, s, h) := M(y, s+ h) \M◦(Γ, s),
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Fig. 1: (a) The domain of influence for a τ in C(Γ) along with the profile of τ . (b) The
cut locus of Γ along with a pair of equal length geodesics showing the break-down
of the semi-geodesic coordinates at C. The shaded region is the subset of M that
supports semi-geodesic coordinates.

where M◦(Γ, s) = {x ∈ M : d(x,Γ) < s}. Note that under the above hypotheses,
x(y, s) belongs to capΓ(y, s, h). We will use wave cap volumes to determine distances.

Our main result is an algorithm to use the data Λ2T
Γ to construct distances of

the form rx(y,s)(z) for y, z ∈ Γ and s > 0 with d(x(y, s), z) < min(σΓ(y), T ). Our
procedure can also be viewed as a constructive proof of the following known result,
see e.g. [19]:

Theorem 1. Let y, z ∈ Γ and s > 0 with d(x(y, s), z) < min(σΓ(y), T ). Then
Λ2T

Γ determines rx(y,s)(z).

The constructive proof will be given in Section 4. We note that this construction
can also be viewed as a series of experiments. Following the proofs in Section 4.2, we
provide an algorithmic overview of our distance computation procedure.

3. The Boundary Control method. In this section, we describe the elements
of the BC method required to determine m(τ) from Λ2T

Γ . In addition, we briefly
contrast our technique to alternative approaches to the BC method, and provide an
overview of some computational aspects of the BC method.

The purpose of the BC method is to gain information about the interior of M
by processing boundary measurements for waves that propagate in M . To begin,
we recall the control map, Wτ , which takes a Neumann boundary source f to the
corresponding solution at time T . That is, let τ : Γ→ [0, T ] be continuous or a linear
combination of characteristic functions of open sets and define,

Wτf := uf (T, ·), Wτ : L2(Sτ )→ L2(M).

The map Wτ is continuous, compact even, as a map from L2(Sτ ) into L2(M), see e.g.
[22, 39]. We will write W := Wτ in the special case that τ ≡ T , and we note that in
this case, Sτ = (0, T )× Γ. Thus, for any other τ : Γ→ [0, T ], Wτ can be viewed as a
restriction of W to sources supported in Sτ .

One cannot directly observe the output of Wτ from boundary measurements be-
cause its output is a wave in the interior of M . Thus, in order to deduce information
about the interior of M , one forms the connecting operator,

Kτ := W ∗τWτ , K : L2(Sτ )→ L2(Sτ ).
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The continuity of Wτ implies that Kτ is a continuous operator on L2(Sτ ). The practi-
cal utility of Kτ is that it can be computed by processing the boundary data, Λ2T

Γ , see
(6) below. This fact was first observed by Blagoveschenskii in the 1+1-dimensional
case [11]. We remark that Kτ derives its name from the fact that it connects the
inner product on boundary sources with the inner product on waves in the interior.
That is, for f , h in C∞0 (Sτ ),

〈uf (T, ·), uh(T, ·)〉L2(M ;dVµ) = 〈f,Kh〉L2(Sτ ; dt⊗dSg).(5)

We next recall the “Blagoveschenskii Identity,” which gives an expression for Kτ

in terms of the data Λ2T
Γ . In particular, we use the expression for Kτ used in [30],

Kτ = Pτ
(
JΛ2T

Γ Θ−RΛTΓRJΘ
)
Pτ .(6)

Here, Θ : L2((0, T )× Γ)→ L2((0, 2T )× Γ) is the inclusion (zero padding) given by:

Θf(t, ·) :=

{
f(t, ·) 0 < t ≤ T,

0 T < t < 2T,

R : L2((0, T )× Γ)→ L2((0, T )× Γ) is the time reversal on (0, T ) given by:

Rf(t, ·) := f(T − t, ·) 0 < t < T,

J : L2((0, 2T )× Γ)→ L2((0, T )× Γ) is the time integration, given by:

Jf(t, ·) :=
1

2

∫ 2T−t

t

f(s, ·) ds 0 < t < T,

and Pτ : L2((0, T ) × Γ) → L2((0, T ) × Γ) is the orthogonal projection onto L2(Sτ )
given by:

(7) Pτf := 1Sτ · f.

We will use the special notation K := Kτ when τ ≡ T . In this case, the operator Pτ
coincides with the identity and (5) can be written as K = JΛ2T

Γ Θ−RΛTΓRJΘ. Thus,
for any τ , the operator Kτ can be expressed as Kτ = PτKPτ .

3.1. Overview of BC method variants. There are several variants of the BC
method, all of which are based on solving control problems of the form: Given a
function φ on M , and a function τ : Γ→ [0, T ], find a boundary source f such that

Wτf = φ.(8)

In general, this problem is not solvable since the range of Wτ is generally not closed.
On the other hand, it can be shown that approximate controllability holds, that is,
there is a sequence (fj)

∞
j=1 ⊂ C∞0 (Sτ ) such that

lim
j→∞

Wτfj = 1M(τ)φ, in L2(M).(9)

The approximate controllability follows from the hyperbolic unique continuation result
by Tataru [38] by a duality argument, see e.g. [19, p. 157].

The original version of the BC method [6] uses the Gram-Schmidt orthonor-
malization to find a sequence (fj)

∞
j=1 satisfying (9). The method was implemented
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numerically in [5], and it requires choosing an initial system of boundary sources, see
step 2 in [5, p. 233]. No constructive way to choose the initial boundary sources is
given, and some choices may lead to an ill-conditioned orthonormalization process,
see the discussion in [10].

More recently, Bingham, Kurylev, Lassas and Siltanen introduced a variant of the
BC method where the Gram-Schmidt process is replaced by a quadratic optimization
[10]. Their method is posed in the case Γ = ∂M , and is based on constructing a
sequence (fj)

∞
j=1 such that the limit (9) becomes focused near a point. To elaborate,

their method considers an arbitrary h ∈ L2((0, T )× ∂M) with φ chosen as φ = Wh.
For a point y ∈ ∂M and small enough 0 < s, r < T , they choose appropriate τ
to produce a sequence of sources (fj)

∞
j=1 ⊂ Sτ such that Wfj → 1cap∂M (y,s,r)Wh.

However, no constructive procedure to choose the boundary source h is given, and
some choices may lead to sequences such that this limit vanishes also near the point
where it should be focused, see the assumption on the non-vanishing limit in [10,
Corollary 2]. We note that the method [10] has not been implemented numerically.

Our approach employs a quadratic optimization similar to [10] but differs from it
by selecting φ = 1 in place of Wh. By solving the approximate control problems for
this choice of φ, we can compute volumes m(τ) for certain functions τ : Γ→ [0, T ]. We
note that the method we use to compute these volumes was developed in [28, 29], and
it was applied to an inverse obstacle problem in [30]. Here we show how to compute
the boundary distance functions from the volumes m(τ).

Our method contains only constructive choices of boundary sources, and it allows
us to understand the numerical errors that we make in each step of the algorithm. In
Section 5, we see that the dominating source of error in our computational experiments
is related to the instability of the control problem (8) under the constraint supp(f) ⊂
Sτ . This instability is inherent in all the variants of the BC method mentioned above.

In addition to [5], the only multidimensional implementations of a variant of the
BC method, that we are aware of, are [31, 32]. These variants are based on solving the
control problem (8) without the constraint supp(f) ⊂ Sτ . The target function φ is
chosen to be harmonic, and the method exploits the density of products of harmonic
functions in L2(M). Such an approach works only in the isotropic case, that is, for
the wave equation ∂2

t − c(x)2∆ where the wave speed c(x) > 0 is scalar valued.
We also mention that the original version of the BC method [6] assumes the wave

equation to be isotropic, and that in [24], an approach similar to [32] was shown
to recover a lowpass version of the wave speed in a Lipschitz stable manner under
additional geometric assumptions. Furthermore, we refer to [18] for a comparison of
the BC method and other inversion methods in the 1+1-dimensional case.

3.2. Regularized estimates of volumes of domains of influence. We now
explain how we pose our approximate control problems, and how we use their solutions
to compute volumes of domains of influence. To begin, let τ : Γ → [0, T ] be either
a linear combination of characteristic functions of open sets or τ ∈ C(Γ). We obtain
an approximate solution to (8) with right-hand side φ = 1, by solving the following
minimization problem: for α > 0 let

(10) fα := argmin
f∈L2(Sτ )

‖uf (T, ·)− 1‖2L2(M ;dVµ) + α‖f‖2L2(Sτ ;dt⊗dSg).

As was shown in [28], for τ as above: this problem is solvable, the solution can be
obtained by solving a linear problem involving Kτ , and ufα(T, ·) → 1M(τ) as α → 0.
For the convenience of the reader, we outline the proof here, and moreover, we recall
that the approximate control solutions, fα, can be used to compute m(τ).
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To show that (10) has a solution we first recall two results about Tikhonov regu-
larization. For proofs see e.g. [21, Th. 2.11] and [30], respectively.

Lemma 2. Suppose that X and Y are Hilbert spaces. Let y ∈ Y and let A : X →
Y be a bounded linear operator. Then for all α > 0 there is a unique minimizer of

‖Ax− y‖2 + α ‖x‖2

given by xα = (A∗A+ α)−1A∗y.

Lemma 3. Suppose that X and Y are Hilbert spaces. Let y ∈ Y and let A : X →
Y be a bounded linear operator with range R(A). Then Axα → Qy as α → 0, where
xα = (A∗A+ α)−1A∗y, α > 0, and Q : Y → R(A) is the orthogonal projection.

Since Wτ is bounded, the first Lemma implies that (10) is solvable. To apply
the second lemma to our current setting, we must describe the range of Wτ and
compute W ∗τ 1. Toward that end, we recall that supp(Wτf) ⊂M(τ) by finite speed of
propagation. When τ is a linear combination of characteristic functions of open sets,
Tataru’s unique continuation [38] implies that the inclusion

{Wτf ; f ∈ L2(Sτ )} ⊂ L2(M(τ)),(11)

is dense, see e.g. [19, Th. 3.10]. The result was extended to the case of τ ∈ C(Γ) in
[28]. Thus R(Wτ ) = L2(M(τ)) for the functions τ under consideration. To compute
W ∗τ 1, we note an equality similar to (5) that is satisfied for f ∈ L2(Sτ ):

〈uf (T, ·), 1〉L2(M ;dVµ) = 〈f, Pτ b〉L2((0,T )×∂M ;dt⊗dSg).(12)

Here, Pτ is defined by (7), and b(t, x) := T−t for (t, x) ∈ (0, T )×Γ. Thus, W ∗τ 1 = Pτ b.
Applying Lemmas 2 and 3 to the observations above, we see that for each α > 0,

equation (10) has a unique solution fα, given by:

fα := (W ∗τWτ + α)−1W ∗τ 1 = (Kτ + α)−1Pτ b,(13)

thus fα is obtained from the data. Moreover, the waves Wτfα satisfy Wτfα → Qτ1
in L2(M) as α tends to zero, where Qτ is the projection of L2(M) onto the subspace
R(Wτ ) = L2(M(τ)). Note that Qτ1 = 1M(τ). Using this fact and applying (12) to
fα we conclude,

m(τ) = lim
α→0+

〈fα, Pτ b〉L2((0,T )×∂M ;dt⊗dSg).(14)

Thus we can compute m(τ) from operations performed on the data Λ2T
Γ .

4. Constructing distances. In this section, we present our proof of Theorem 1.
We accomplish this through a sequence of lemmas that are designed to illuminate the
steps required to turn the theorem into an algorithm. Also, we provide an alternative
technique to determine distances, which we use in our numerical implementation.

4.1. Constructive proof of Theorem 1. The following lemma provides a
bound on the distance between a point and a wave cap,

Lemma 4. Let y ∈ Γ, s ∈ (0, σΓ(y)), and h ∈ (0, σΓ(y)− s). Let z ∈ Γ and r > 0.
Then d(z, capΓ(y, s, h)) < s+ r if and only if

m(s1Γ + r1z + h1y)−m(s1Γ + r1z) < m(s1Γ + h1y)−m(s1Γ).(15)

We note that (15) tests whether there is an overlap between the sets capΓ(y, s, h) and
capΓ(y, s, r), see Figure 2.
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Proof. Since h > 0 and h < σΓ(y) − s, we see that capΓ(y, s, h) contains a
non-empty open set. In particular, it has strictly positive measure. Moreover, if
d(z, capΓ(y, s, h)) < s+r then the intersection of capΓ(y, s, h) and M(z, s+r) contains
a non-empty open set and has strictly positive measure.

We note that m(s1Γ + h1y) is the measure of M(y, s + h) ∪M(Γ, s) and that
m(s1Γ + h1y)−m(s1Γ) is the measure of capΓ(y, s, h). Indeed,

Volµ(M(y, s+ h) ∪M(Γ, s)) = Volµ(capΓ(y, s, h)) + Volµ(M(Γ, s)).

Analogously, m(s1Γ + r1z + h1y)−m(s1Γ + r1z) is the measure of

M(y, s+ h) \ (M(Γ, s) ∪M(z, s+ r)) = capΓ(y, s, h) \M(z, s+ r).

If d(z, capΓ(y, s, h)) < s+ r then the intersection of capΓ(y, s, h) and M(z, s+ r) has
strictly positive measure, whence (15) holds.

On the other hand, if d(z, capΓ(y, s, h)) ≥ s + r then capΓ(y, s, h) ∩M(z, s + r)
is contained in the topological boundary of M(z, s+ r) which is of zero measure [28].
Thus

m(s1Γ + r1z + h1y)−m(s1Γ + r1z) = m(s1Γ + h1y)−m(s1Γ),

and (15) does not hold.

Γ

M

s

s+h

y

x(y,s)

capΓ(y,s,h)

(a)

Γ

M

y

z

s

s+r

s+h

x(y,s)

(b) s+ r > d(z, capΓ(y, s, h))

Γ

M

y

z

s

s+h

s+r
x(y,s)

(c) s+ r ≤ d(z, capΓ(y, s, h))

Fig. 2: (a) A wave cap. (b)-(c) The light gray regions indicate the wave caps used in
Lemma 4 and the dark gray region indicates the overlap between the caps.

The next lemma demonstrates that when s < σΓ(y), the wave caps capΓ(y, s, h)
tend, in a set-theoretic sense, towards x(y, s).

Lemma 5. Let y ∈ Γ and s ∈ (0, σΓ(y)). Then,⋂
h>0

capΓ(y, s, h) = {x(y, s)}.(16)

Proof. Let y, s as above, and let I(y, s) denote the left hand side of (16). Let w be
any point belonging to I(y, s). Then w ∈ capΓ(y, s, h) for all h > 0, so s ≤ d(Γ, w) and
d(y, w) < s+h for all h > 0, thus d(y, w) ≤ s. Since y ∈ Γ, we conclude s = d(Γ, w) =
d(y, w). On the other hand, if w is a point in M satisfying s = d(Γ, w) = d(y, w),
then w ∈ capΓ(y, s, h) for any h > 0, hence w ∈ I(y, s). We conclude,

(17) I(y, s) = {w ∈M : d(y, w) = d(Γ, w) = s}.
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Because s < σΓ(y), we have d(x(y, s), y) = d(x(y, s),Γ) = s, so x(y, s) ∈ I(y, s). It
remains to show that no other points belong to I(y, s).

Let w belong to I(y, s), we will show that w = x(y, s). If we knew for certain
that w belonged to the image of the semi-geodesic coordinates, then this would be
immediate from the definition of these coordinates. On the other hand, if we did not
require Γ to be open, then simple examples show that for points y in the topological
boundary of Γ it is possible that I(y, s) has many points. We demonstrate that when
Γ is open this cannot happen.

Since M is a compact connected metric space with distance arising from a length
function, the Hopf-Rinow theorem for length spaces applies and we conclude that there
is a minimizing path β : [0, l]→M from y to w. By [2], β is C1 and we may assume
that it is unit speed parameterized. Hence l = s. As β is minimizing from both y and
Γ to w, we see that β̇(0) = ν. Thus β coincides with x(y, t) for t ≤ min(s, τM (y, ν)).
But s < σΓ(y), hence s < τM (y, ν). Thus we see that w = β(s) = x(y, s).

We use the preceding lemma to show that, when h is small, the distance between a
point z ∈ Γ and the wave cap capΓ(y, s, h) surrounding x(y, s) yields an approximation
to d(z, x(y, s)).

Lemma 6. For y, z ∈ Γ, and s < σΓ(y), d(z, capΓ(y, s, h)) → d(z, x(y, s)) as
h→ 0.

Proof. Let {hj} ⊂ R+ be a sequence for which hj ↓ 0. Then each capΓ(y, s, hj) is
compact, so there exists wj ∈ capΓ(y, s, hj) such that d(z, wj) = d(z, capΓ(y, s, hj)).
Because M is a compact manifold, the sequence {wj} has a convergent subsequence
{wjk} converging to a point w. Since the wave caps capΓ(y, s, h) nest, the tail of
{wjk} belongs to the closed set capΓ(y, s, hjk) for each jk, hence w ∈ capΓ(y, s, h) for
each h > 0. By the previous lemma, we conclude w = x(y, s).

Together, continuity of the distance function and the particular choice of the
wjk imply that, d(z, capΓ(y, s, hjk)) = d(z, wjk) → d(z, x(y, s)). Since the wave caps
nest, the sequence {d(z, wj)} is monotone non-decreasing, and since it is bounded
above it has a limit. In particular, any subsequential limit coincides with the limit.
Thus we conclude that d(z, capΓ(y, s, hj)) → d(z, x(y, s)) as j → ∞, and in turn,
d(z, capΓ(y, s, h))→ d(z, x(y, s)) as h→ 0.

The volumes appearing in Lemma 4 cannot be computed directly with the τ ’s
appearing in the regularized volume determination. That is, the lemma requires us
to compute volumes such as m(s1Γ +r1z +h1y), but the function τ = s1Γ +r1z +h1y
is equivalent to s1Γ in L2((0, T )× Γ). As a result, the set L2(Sτ ) will produce waves
that fill L2(M(s1Γ)) as opposed to the desired set L2(M(τ)). The problem is that the
spikes h1y and r1z have supports with dSg measure zero. The remedy is to replace
the spikes by functions that produce the same domains of influence but have better
supports. To accomplish this, for y ∈ Γ and R ∈ [0,∞), we define τRy on Γ by:

(18) τRy (z) := R− d(z, y) for z ∈ Γ.

Note that τRy is continuous. We recall that under Assumption 2 the distances d(y, z)
for y, z ∈ Γ with d(y, z) < T are known (or, alternatively, that they have been
computed in some other fashion from Λ2T

Γ ). Thus under our assumptions the functions
τRy are known.

Lemma 7. Let y, z ∈ Γ, s, r, h > 0. We will use the notation f ∨ g to denote the
function obtained by taking the pointwise maximum of f and g. Then, we have the
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following equalities,

M(τ ry ) = M(r1y),(19)

M(τs+hy ∨ τs+rz ∨ s) = M(h1y + r1z + s1Γ),(20)

M(τs+rz ∨ s) = M(s1Γ + r1z).(21)

Proof. Let x ∈M(r1y), then d(y, x) < r. Since τ ry (y) = r, we have that d(y, x) <
τ ry (x), hence x ∈ M(τ ry ). Now let x ∈ M(τ ry ). Then there is a point z ∈ Γ for
which d(x, z) < τ ry (z). Applying the definition of τ ry , we find r > d(x, z) + dΓ(y, z) ≥
d(x, z) + d(y, z) ≥ d(x, y). Hence x ∈M(r1y). We conclude that M(τ ry ) = M(r1y).

We demonstrate equality (20) and note that (21) is proved in an analogous fashion.
Let τ = τs+hy ∨ τs+rz ∨ s. Then x ∈ M(τ) just in case d(x, p) < τ(p) for some p ∈ Γ,

which happens if and only if d(x, p) is less than τs+hy (p), τ r+hz (p), or s. The preceding
paragraph implies that this happens just in case x belongs to M((s+ h)1y),M((s+
r)1z), or M(s1Γ), which happens if and only if x ∈M(s1y + r1z + s1Γ).

We are finally in a position to prove Theorem 1.

Proof (Of Theorem 1). First, let r and h be positive numbers satisfying s+r < T
and s+h < T . Define functions τ1 = s, τ2 = τs+hy ∨ s, τ3 = τs+rz ∨ s, and τ4 = τs+hy ∨
τs+rz ∨s. Using the regularized volume determination from equation (14), we compute
the volumes m(τi) for i = 1, . . . , 4. Then, Lemma 7 implies that m(τ1) = m(s1Γ),
m(τ2) = m(s1Γ +h1y), m(τ3) = m(s1Γ + r1z), and m(τ4) = m(s1Γ +h1y + r1z), thus
we have determined the volumes appearing in (15). By Lemma 4 we can compute
d(z, capΓ(y, s, h)) by

(22) d(z, capΓ(y, s, h)) = s+ inf{r : 0 ≤ r < T − s, and (15) holds}.

Finally, by Lemma 6, we can compute d(z, x(y, s)) by

(23) d(z, x(y, s)) = lim
h→0

d(z, capΓ(y, s, h)).

4.2. Alternative distance determination method. The method to deter-
mine distances derived from Theorem 1 uses the fact that, under the hypotheses of
the theorem, the distance between a point z ∈ Γ and the wave cap capΓ(y, s, h) serves
as an approximation to d(z, x(y, s)), and that this approximation improves as h→ 0.
However, in the case where g is the Euclidean metric, d(z, capΓ(y, s, h)) converges to
d(z, x(y, s)) with the rate O(h1/2). Thus the convergence is typically slow. In this
section, we provide another technique to determine the distance to points which we
find, for a given nonzero h, tends to provide better distance estimates.

The idea of this alternative distance determination method is to once again check
for overlap between the sets capΓ(y, s, h) and capΓ(z, s, r), but instead of seeking the
minimum r for which these wave caps overlap, we seek r for which Volµ(capΓ(y, s, h)∩
capΓ(z, s, r)) is half of Volµ(capΓ(y, s, h)).

Before proving that our alternative distance determination procedure is valid, we
provide a lemma that shows that the diameter of a wave cap vanishes as the height
of the cap goes to zero.

Lemma 8. Let y, z ∈ Γ, s ∈ (0, σΓ(y)). Then,

(24) lim
h→0

diam(cap(y, s, h)) = 0.
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Proof. Suppose the claim were false. Then there exists a sequence of positive
real numbers hi ↓ 0 and points pi ∈ capΓ(y, s, hi) such that d(x(y, s), pi) 6→ 0. Since
M is compact, the sequence {pi} has a convergent subsequence. Relabeling this
subsequence by pi we have that there exists p ∈M such that pi → p. But this implies
that d(p, x(y, s)) 6= 0, hence p 6= x(y, s). On the other hand, since pi ∈ capΓ(y, s, hi)
we must have that p ∈

⋂
h>0 capΓ(y, s, h), but this gives a contradiction, since by

Lemma 5 this implies that p = x(y, s).

We now present our alternative distance determination method.

Lemma 9. Let y, z ∈ Γ, s ∈ (0, σΓ(y)), and 0 < h < σΓ(y) − s. Let rh be the
solution to,

(25) Volµ(capΓ(y, s, h) ∩ capΓ(z, s, rh)) =
1

2
Volµ(capΓ(y, s, h)).

Then, for dh := s+ rh, we have that dh → d(z, x(y, s)) as h→ 0.

Proof. First, we recall that for s and h as above, capΓ(y, s, h) will contain a
non-empty open set, hence the right-hand side of (25) will be nonzero. Thus, from
the definition of rh, we conclude that capΓ(y, s, h) ∩ capΓ(z, s, rh) is a non-empty
and proper subset of capΓ(y, s, h). Using the definition of capΓ(z, s, rh) and rh we
conclude that s + rh ≥ d(z, capΓ(y, s, h)). On the other hand, since the intersection
between the wave caps is a proper subset of capΓ(y, s, h) we see that there exists
p ∈ capΓ(y, s, h) \ capΓ(z, s, rh). In particular, this implies that s + rh ≤ d(z, p) ≤
dist(z, capΓ(y, s, h)) + diam(capΓ(y, s, h)). Hence,

d(z, capΓ(y, s, h)) ≤ dh ≤ d(z, capΓ(y, s, h)) + diam(capΓ(y, s, h)).

Since d(z, capΓ(y, s, h)) → d(z, x(y, s)) and diam(capΓ(y, s, h)) → 0 as h → 0, we
conclude that dh → d(z, x(y, s)) as h→ 0.

We summarize the steps of the proof in an algorithmic form in Algorithm 1.

Algorithm 1 Continuum level distance determination using the alternate procedure.

Let: y, z ∈ Γ and s > 0 with rx(y,s)(z) < T.
Let: h0 > 0 small enough that s+ h0 < min{σΓ(y), T}.
for all 0 < h < h0 :

for all 0 < r < T − s :
Let: τ1 = s1Γ, τ2 = τs+hy , τ3 = τs+rz , τ4 = τ1 ∨ τ2 ∨ τ3
for all α > 0 :

for i = 1, . . . , 4 :
Let: fα,i be the solution to (Kτi + α)Pτif = Pτib

for i = 1, . . . , 4 :
Compute: m(τi) = limα→0〈fα,i, b〉L2(Sτ ; dt⊗dSg,µ)

Compute: mtarget cap(h) := m(τ2)−m(τ1)
Compute: moverlap(h, r) := m(τ4)−m(τ3)−m(τ2) +m(τ1)

Let: r = rh solve moverlap(h, r) = 1
2mtarget cap(h).

Compute: rx(y,s)(z) = s+ limh→0 rh.

5. Computational experiments. In this section we present computational ex-
periments demonstrating the distance determination procedure we have described in
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the previous sections. We demonstrate our procedure in both Euclidean and hyper-
bolic geometries. However, we stress that our method can be applied in the general
Riemannian setting.

5.1. Numerical method for the direct problem. In our computational ex-
periments, we take M to be the 2-dimensional lower half-space M = {(x, y) : y ≤ 0}
equipped with a conformally Euclidean metric g = c−2dx2. We consider the Eu-
clidean case where c ≡ 1 and the hyperbolic case where c = 1/(1− y). In both cases,
our weight is given by µ = cn−2, so the weighted Laplace-Beltrami operator that we
consider is c−2∆, where ∆ denotes the 2-dimensional Euclidean Laplacian. Hence, in
our experiments, the Riemannian wave equation (1) simplifies to the standard 2 + 1-
dimensional wave equation with wave speed c. In order to simulate partial data, for
our source/receiver set, Γ, we take Γ = [−L,L] × {0} ⊂ ∂M with L = 2.05. We
simulate waves propagating for 2T time units, where T = 1.25.

For sources, we use a basis of Gaussian pulses of the form

ϕi,j(t, x) = C exp
(
−at(t− ts,i)2 − ax(x− xs,j)2

)
,

with parameters at = ax = 5.562 · 103, and we choose C to normalize the ϕi,j in
L2([0, T ]× Γ, dt⊗ dSg). Sources are applied at regularly spaced points (xs,j , 0) with
xs,j = −2 + (j − 1)∆xs for j = 1, . . . , Nx,s and times ts,i = 0.05 + (i − 1)∆ts for
i = 1, . . . , Nt,s. The source offset ∆xs and time between source applications ∆ts are
both set as ∆xs = ∆ts = .0125. At each of the Nx,s = 321 source positions we apply
Nt,s = 93 sources. For each basis function, we record the Dirichlet trace data at
regularly spaced points (xr,k, 0) with xr,k = −2.05 + (k − 1)∆xr for k = 1, . . . , Nx,r
and times tr,l = (l − 1)∆tr for l = 1, . . . , Nt,r. The receiver offset ∆xr, satisfies
∆xr = 0.5∆xs resulting in Nx,r = 657 receiver positions. The time between receiver
measurements, ∆tr, satisfies ∆tr = 0.1∆ts, resulting in Nt,r = 2001 measurements at
each receiver position.

We discretize the Neumann-to-Dirichlet map by solving the forward problem for
each source ϕi,j and recording its Dirichlet trace at the receiver positions and times
described above. That is, we simulate the following data,

(26)

{
Λ2Tϕi,j(tr,l, xr,k) = uϕi,j (tr,l, xr,k) :

i = 1, . . . , Nt,s, j = 1, . . . , Nx,s,
l = 1, . . . , Nt,r, k = 1, . . . , Nx,r

}
.

To perform the forward modelling, we use a continuous Galerkin finite element
method with piecewise linear Lagrange polynomial elements and implicit Newmark
time-stepping. In particular, we use the FEniCS package [25]. We use a regular
triangular mesh, where the time step and mesh spacing are selected so that 8 points
per wavelength (in directions parallel to the grid axes) are used at the frequency f0

where the spectrum of the temporal portion of the source falls below 10−6 times its
maximum value.

5.2. Solving the control problem. We discretize the connecting operator K
by approximating its action as an operator on span{ϕi,j}. That is, we use the discrete
Neumann-to-Dirichlet data, (26), to discretize Kτ by formula (6), where τ ≡ T . To
be specific, we first compute the Gram matrix [G]ij = 〈ϕi, ϕj〉L2([0,T ]×Γ,dt⊗dSg) and

its inverse [G−1]. Then, for A = JΛ2T
Γ , RΛTΓ and RJ , we compute the matrix for A

acting on span{ϕi,j} by:

[A]ij =
∑
k

[G−1]ik〈ϕk, Aϕj〉L2([0,T ]×Γ,dt⊗dSg).
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Finally, we use these matrices to compute the matrix for K:

(27) [K] = [JΛ2T
Γ ]− [RΛTΓ ][RJ ].

For τ ∈ C(Γ), with 0 ≤ τ ≤ T , we obtain the matrix [Kτ ] discretizing the con-
necting operator Kτ by masking the entries in [K] that correspond to basis functions
ϕi,j with centers (ts,i, xs,j) 6∈ Sτ . We note that, in practice, we find that this tends to
provide a better approximation to Kτ than computing the matrix [Pτ ] and computing
the product [Pτ ][K][Pτ ].

We consider the discretized control problem

(28) ([Kτ ] + α[Pτ ])[fα] = [Pτ ][b],

where we use the matrix [Pτ ] to refer to the mask described above, and use α = 10−5.
Here, [b] denotes the coefficient vector for the approximation to b in span{ϕij} and
we recall that b(t, x) = T − t, which was defined beneath (12). To solve (28) for [fα],
we use restarted GMRES. In Figure 3 and Table 1 we depict control solutions fα =∑
i[fα]iϕi and their associated wavefields ufα(T, ·). A volume estimate m̂(τ) for m(τ)

is obtained from [fα] by computing the discretized inner product m̂(τ) = [fα]T [G][b],
which approximates m(τ) as in (14). For the remainder of this paper we will continue
to use the notation m̂(τ) to indicate the approximation to m(τ) computed like this.

Fig. 3: Illustration, in the Euclidean case, of a source fα (top) and the corresponding
wavefield ufα(T, ·) (bottom) for which ufα(T, ·) ≈ 1M(τ). Here, τ corresponds to τ4
from Table 1. To show both plots with the same horizontal axis, we have extended
fα to zero outside of [0, T ]× Γ and plotted time on the y-axis.

5.3. Estimating distances. We estimate distances between z ∈ Γ and points
of the form x(y, s) where y = (0, 0). In particular, for each fixed s we estimate the
distances d(x(y, s), (zi, 0)) for uniformly spaced (zi, 0) ∈ [−1, 1] × {0} ⊂ Γ. We take
the offset ∆z between the points zi equal to ∆z = 4∆xs = .05, and select the points
(zi, 0) to coincide with every fourth source position. As a proxy for estimating the
distance to x(y, s), we use a target wave cap of the form capΓ(y, s, h) with height
h = .025, and estimate the distances rx(y,s)((zi, 0)) for s = .125, .25, .375, .5.

For each s we solve the discrete control problem (28) in order to obtain estimates
m̂(s1Γ) and m̂(τs+hy ) for the respective volumes of M(Γ, s) and M(y, s + h). From
these, we estimate the volume of the target cap by,

m̂target cap = m̂(τs+hy )− m̂(s1Γ).
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τ fα ufα(T, ·)

τ1

τ2

τ3

τ4

Table 1: Illustration, in the Euclidean case, of the essential features of sources and
waves used in distance estimation procedure. See Figure 3 for interpretation of axes.
Solutions, fα, to the discretized control problem plotted next to their associated
wavefields ufα(T, ·) approximating 1M(τ). Here, τ1 = s1Γ, τ2 = τs+hy , τ3 = τs+rz , and
τ4 = τ1 ∨ τ2 ∨ τ3, where y = (0, 0), z = (0.5, 0), h = .05, and r = 0.125. The black
markers in the wavefield plots indicate the points y and z.

For each point (zi, 0), we also solve control problems to obtain volume estimates

m̂(τ
rj+s

(zi,0)) and m̂(τ
rj+s

(zi,0)∨τ
s+h
y ∨s1Γ), where we select the parameters rj , j = 1, . . . , Nr

so that the two sets {s+rj : j = 1, . . . , Nr} = {ts,k : ts,k > r} coincide. We implement
the distance estimation procedure described in Lemma 9 to estimate rx(y,s)((zi, 0)) as
follows: for each rj we estimate Volµ(capΓ(y, s, h) ∩ capΓ((zi, 0), s, rj)) by,

m̂overlap,j = m̂(τ
rj+s

(zi,0) ∨ τ
s+h
y ∨ s1Γ)− m̂(τ

rj+s

(zi,0))− m̂(τh+s
y ) + m̂(s1Γ).

We then find the indices j, j + 1 for which

(29) m̂overlap,j ≤
1

2
m̂target cap ≤ m̂overlap,j+1,

and estimate rh by linearly interpolating between rj and rj+1. This procedure ap-
proximates (25). We depict the results of the volume overlap estimation in Figure 4.
Since the volumes in these images have all been normalized by the target cap volumes,
computing rh by (29) corresponds to finding the x-value where the curve connecting
the data points passes through the line y = 0.5. We depict the distance estimation
results in Figure 5.
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Fig. 4: Some examples, in the Euclidean case, of relative overlap volumes,
moverlap/mtarget cap, vs. r. For s = .25, h = .025 and z = 0.15 (left) and z = 0.3
(right). The markers denote relative overlap volumes estimated in the distance esti-
mation procedure, and the curves indicate analytical relative overlap volumes.

(a) Euclidean distances (b) Hyperbolic distances

Fig. 5: Distance estimates (markers) for d(x(y, s), (zi, 0)) for y = (0, 0) and for
s = .125, .25, .375, .5, plotted along with the true distances (solid curves).

5.4. Discussion of sources of numerical errors and instability. Examining
Figure 5, one can see that in each of the estimated distance curves, the distances
are over-estimated for z = (zi, 0) near y = (0, 0). This error results in part from
the distance estimation method. For example, when z = y the correct distance
d = s + r would be obtained by taking r = 0. On the other hand, when z = y,
both of the wave caps used in the distance estimation procedure are centered on the
same point, so for 0 ≤ r ≤ h the variable wave cap, capΓ(z, s, r), coincides with
capΓ(z, s, r) ∩ capΓ(y, s, h). From the definition of rh, we find that we will have
0 < rh < h. Thus the distance estimate dh will necessarily over-estimate d(y, x(y, s)).
Similar remarks apply for estimating d((zi, 0), x(y, s)) for (zi, 0) near y, although the
strength of this effect decreases as (zi, 0) gets further from y. We call this source of
error geometric distortion, since it results entirely from the geometry of our distance
estimation procedure and is independent of errors arising from the control problems.
In Figure 6 we depict the geometric distortion by repeating our distance estimation
technique with exact volume measurements. Note that the distances in Figure 6 are
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overestimated at all points, which contrasts most with the distances estimated at large
offsets in Figure 5.

Fig. 6: Demonstration of geometric distortion in the Euclidean case. Distances
(markers) are estimated by using the distance estimation technique on exact volumes
and plotted for d(x(y, s), (zi, 0)) for y = (0, 0) and s = .125, .25, .375, .5, along with
the true distances (solid curves).

Our numerical tests suggest that the dominant source of error comes from the
control step. In order to discuss this instability, we return to considering the con-
tinuum problem. Taking τ ∈ C(Γ), we can ask whether there exists f ∈ Hs(Sτ ) for
some s ∈ R for which Wτf = 1M(τ). This question can be answered by considering
the more general problem of exact controllability, in which one seeks to determine
when the equation (uf (T, ·), ∂tuf (T, ·)) = (w0, w1) has a solution in Hs(Sτ ) for any
(w0, w1) belonging to an appropriate space of Cauchy data for the wave equation.

In [4], the question of exact controllability is considered. One of the main results
of that paper is that the ray geometry of the wave equation can be used to determine
necessary and sufficient conditions for exact controllability. Using the same set of
ideas to those in [4], it is shown in [3] that in order for exact controllability to hold
for Wτ in M(τ) from Sτ , the following geometric controllability condition must hold:

Each generalized bicharacteristic (x(t), t) satisfying x(T ) ∈ M(τ), passes over
Sτ ∪ S′τ in a non-diffractive point.

Here, S′τ = {(t, x) ∈ Γ × (T, 2T ) : T ≤ t ≤ T + τ(x)}. We recall that Sτ is
defined by (3), and note that S′τ is the temporal reflection of Sτ across t = T . For
a generalized bicharacteristic (x(t), t), the path x(t) is a unit speed geodesic in the
interior of M and it is reflected according to Snell’s law when it intersects the boundary
∂M transversally. Tangential intersections with the boundary can cause the path to
glide along the boundary, and in the case of an infinite-order contact, the path x(t)
can be continued in many ways, see [4]. We refer also to [4] for the definition of
non-diffractive points. The geometric controllability condition is necessary for exact
control to hold from Sτ , since when it fails for (x, ξ) ∈ S∗(M(τ)), propagation of
singularities implies that for any s ∈ R and any f ∈ Hs(Sτ ), (x, ξ) 6∈WF(uf (T, ·)), see
e.g. [15, Section 23]. Here, WF(uf (T, ·)) denotes the wave front set of uf (T, ·), and we
refer to [16, Def. 8.1.2] for its definition. Thus, if w ∈ L2(M(τ)) has (x, ξ) ∈WF(w)
then, for each s ∈ R, there does not exist f ∈ Hs(Sτ ) for which Wτf = w.

In our computational experiments, the geometric controllability condition actually
fails over every point in M(τ). This is due to the fact that at each x ∈ M(τ) there
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exists a family of unit-speed geodesic rays with (γ(T ), γ̇(T )) = (x, ξ) ∈ Sx(M) and
ξ belonging to a cone over x, for which the corresponding geodesics γ fail to pass
over Sτ ∪ S′τ . For an approximate control solution uf (T, ·) approximating 1M(τ), we
observe instabilities near x ∈ M(τ) where WF(1M(τ)) meets the cone over which
exact control fails. In particular, for the τ considered in our experiments, WF(1M(τ))
meets the uncontrollable cone only above points x ∈ ∂M(τ) where ∂M(τ) fails to
be C∞ smooth. Above all other points, WF(1M(τ)) is either empty or only contains
controllable directions. We note that for those points x where ∂M(τ) fails to be
smooth, {x} × (R2 \ 0) ⊂WF(1M(τ)), and refer to Appendix A for further analysis.

(a)

(b)

(c)

(d)

Fig. 7: (a) A wavefield demonstrating instability of the solution to the control problem
when WF(1M(τ)) contains uncontrollable directions over (±.5,−.5) and (±1.25,−.5)
(b) A wavefield for which all directions in WF(1M(τ)) are controlled. (c) Another
wavefield demonstrating instability, with uncontrollable directions in WF(1M(τ)) over
(±1.25,−.5). (d) The difference between the wavefields (a) and (c). Note that this
corresponds to an approximation to 1cap(y,s,h). Moreover, the instabilities in (a) and
(c) located over (±1.25,−.5) appear to cancel each other.

In the case of τ = τs+hy ∨s1Γ, instabilities occur for x in the corners of capΓ(y, s, h),
where ∂M(τ) fails even to be C1. Additionally, we observe instabilities near the
points (±L,−s), where the flat portion of ∂M(τ) transitions into a circle and fails
to be C2. We demonstrate these effects in Figure 7a, by plotting a wavefield uf (T, ·)
approximating 1M(τ) for y = (0, 0), s = .5, and h = .2. The former instabilities occur
near the points (±.5,−.5), and the latter instabilities occur near (±1.25,−.5). We
contrast this with the case where τ = τs+hy , which we show in Figure 7b. In this
second example, the domain of influence is a disk and every co-vector in WF(1M(τ))
can be controlled, and unlike the first example, we observe no instabilities. Note that
in all of the examples in Figure 7 we restrict our computations to Γ = [−1.25, 1.25].

In Figure 7c we plot the wavefield uf (T, ·) that approximates 1M(s1Γ). Note that

as in the case of τ = τs+hy ∨ s1Γ, we observe instabilities near the points (±1.25,−.5).
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In Figure 7d we plot the difference between the wave fields approximating 1M(τs+hy ∨s1Γ)

and 1M(s1Γ), and note that this difference yields an approximation to the characteristic
function of capΓ(y, s, h). In particular, we note that the instabilities observed near
(±1.25,−.5) in Figures 7a and 7c appear to cancel upon taking the difference in
Figure 7d. On the other hand, instabilities near the corners of the caps at (±.5,−.5)
persist after taking the difference. Since our distance determination procedure relies
primarily on the volumes of wave caps, which are obtained by taking differences in
this fashion, we find that the instabilities near the corners of the caps tend to provide
the main source of error for our distance estimation procedure.

Appendix A. Wave front set of 1M(τ). In Section 5 all of the functions τ
that we consider give rise to sets M(τ) with piecewise smooth boundary. For these
functions, if x ∈ ∂M(τ) is a point at which ∂M(τ) is not smooth, then ∂M(τ) either
fails to be C1 or C2 at x. We compute the wave front set of 1M(τ) over a point x
where ∂M(τ) fails to be C1. In particular, we show that {x}× (R2 \0) ⊂WF(1M(τ)).
Put differently, WF(1M(τ)) contains all cotangent directions above the point x. The
case where ∂M(τ) fails to be C2 at a point is similar and we omit it.

We begin by noting that if h ∈ R, u ∈ C∞0 (R), and φ ∈ C∞(R) is real valued and
has no critical points in supp(u), then:

(30)

∫ h

−∞
u(x)e−iλφ(x)dx =

iu(h)e−iλφ(h)

λφ′(h)
+
∂x(u/φ′)|x=h e

−iλφ(h)

λ2φ′(h)
+
R(λ, h, φ, u)

λ3
.

Here, |R| is bounded by a constant that depends only on supp(u), minx∈supp(u) |φ′(x)|
and the C3 norms of u and φ. The proof of (30) follows from repeated integration by
parts and the fact that for L := iφ′−1∂x, Le−iλφ = e−iλφ.

Since ∂M(τ) is assumed to be piecewise smooth with a discontinuous derivative
at x, after a rotation and translation we may assume that x = (0, 0) and locally
identify M(τ) with A := {(x1, x2) : x2 ≤ h(x1)} where h : R→ R is smooth on R \ 0,
h 6∈ C1(R), and h(0) = 0. Thus, it will suffice show that {(0, 0)}×(R2 \0) ⊂WF(1A).

Let u ∈ C∞0 (R2) with u = 1 near the origin. We consider the Fourier transform

û1A(λξ) =

∫ +∞

−∞
e−iλξ1x

1

∫ h(x1)

−∞
u(x)e−iλξ2x

2

dx2dx1,

where ξ is a unit vector and λ > 0. First we suppose that ξ2 6= 0. Then by (30),∫ h(x1)

−∞
u(x)e−iλξ2x

2

dx2 =
iw(x1)e−iλξ2h(x1)

λξ2
+
v(x1)e−iλξ2h(x1)

λ2ξ2
2

+
R

λ3
,

where w(x1) = u(x1, h(x1)) and v(x1) = ∂x2u(x1, h(x1)). Note that R,w, and v
are compactly supported with respect to x1 since u is. Also note that w = 1 near
x1 = 0. If we choose u such that supp(u) is small enough then h will be smooth in
(supp(w) ∪ supp(v)) \ 0. In particular, w and v are smooth away from 0.

We define φ(x1) = ξ1x
1 + ξ2h(x1), φ± = φ|±x1>0, and define also h± analogously.

Suppose that φ′−(0) = ξ1 + h′−(0)ξ2 6= 0. Then φ has no critical points in the set
{x1 < 0} ∩ supp(w) if supp(w) is taken small enough. Thus by (30),∫ 0

−∞
we−iλφdx1 =

i

λφ′−(0)
+
R+(λ, h, φ, u)

λ2
.
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A similar expression holds for the integral from 0 to ∞ if φ′+(0) 6= 0. Applying an

analogous argument to v, we see that
∫ +∞
−∞ ve−iλφdx1 = O(λ−1). Hence,

û1A(λξ) =
1

ξ2

(
1

φ′+(0)
− 1

φ′−(0)

)
λ−2 +O(λ−3).

Thus û1A does not decay rapidly if φ′+(0) 6= φ′−(0), equivalently if h′+(0) 6= h′−(0).
To summarize, if h′+(0) 6= h′−(0) then over the point (0, 0), WF(1A) contains

all directions except possibly (1, 0) and the four directions (−h′±(0)ξ2, ξ2), where

|ξ2| = (|h′±(0)|2 + 1)−1/2. Finally, since a wave front set is a closed conic set [16], we
conclude that {(0, 0)} × (R2 \ 0) ⊂WF(1A).
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[16] L. Hörmander, The analysis of linear partial differential operators. I, vol. 256 of Grundlehren
der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1990.

[17] P. Hubral and T. Krey, Interval Velocities from Seismic Reflection Time Measurements,
Society of Exploration Geophysicists, 1980, doi:10.1190/1.9781560802501.

[18] S. I. Kabanikhin, A. D. Satybaev, and M. A. Shishlenin, Direct methods of solving mul-
tidimensional inverse hyperbolic problems, Inverse and Ill-posed Problems Series, VSP,
Utrecht, 2005.

http://dx.doi.org/10.1080/00036818808839730
http://dx.doi.org/10.1007/978-1-4612-2436-5_4
http://dx.doi.org/10.1088/0266-5611/13/5/002
http://dx.doi.org/10.1080/03605309208820863
http://dx.doi.org/10.3934/ipi.2011.5.745
http://dx.doi.org/10.1137/130931291
http://dx.doi.org/10.1190/1.9781560802501


CONSTRUCTING TRAVEL TIME DISTANCES 21

[19] A. Katchalov, Y. Kurylev, and M. Lassas, Inverse boundary spectral problems, vol. 123 of
Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca
Raton, FL, 2001, doi:10.1201/9781420036220.

[20] A. Katsuda, Y. Kurylev, and M. Lassas, Stability of boundary distance representation and
reconstruction of Riemannian manifolds, Inverse Problems and Imaging, 1 (2007), pp. 135–
157, doi:10.3934/ipi.2007.1.135.

[21] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer, New
York, 2011.

[22] I. Lasiecka and R. Triggiani, Sharp regularity theory for second order hyperbolic equations
of Neumann type. part 1. L2 nonhomogeneous data, Annali di Mathematica Pura ed Ap-
plicata, 157 (1990).

[23] M. Lassas and L. Oksanen, Inverse problem for the Riemannian wave equation with Dirichlet
data and Neumann data on disjoint sets, Duke Math. J., 163 (2014), pp. 1071–1103,
doi:10.1215/00127094-2649534.

[24] S. Liu and L. Oksanen, A Lipschitz stable reconstruction formula for the inverse problem for
the wave equation, Trans. Amer. Math. Soc. (to appear). Preprint arXiv:1210.1094, (2012).

[25] A. Logg, K.-A. Mardal, G. N. Wells, et al., Automated Solution of Differential Equations
by the Finite Element Method, Springer, 2012, doi:10.1007/978-3-642-23099-8.

[26] N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,
Inverse Problems, 17 (2001), pp. 1435–1444, doi:10.1088/0266-5611/17/5/313.

[27] C. Montalto, Stable determination of a simple metric, a covector field and a potential from the
hyperbolic dirichlet-to-neumann map, Communications in Partial Differential Equations,
39 (2014), pp. 120–145, doi:10.1080/03605302.2013.843429.

[28] L. Oksanen, Solving an inverse problem for the wave equation by using a minimization algo-
rithm and time-reversed measurements, Inverse Problems and Imaging, 5 (2011), pp. 731–
744, doi:10.3934/ipi.2011.5.731.

[29] L. Oksanen, Inverse obstacle problem for the non-stationary wave equation with an unknown
background, Communications in Partial Differential Equations, 38 (2013), pp. 1492–1518,
doi:10.1080/03605302.2013.804550.

[30] L. Oksanen, Solving an inverse obstacle problem for the wave equation by using the boundary
control method, Inverse Problems, 29 (2013), pp. 035004, 12, doi:10.1088/0266-5611/29/3/
035004.

[31] L. Pestov, V. Bolgova, and A. Danilin, Numerical recovering of a speed of sound by the
BC-method in 3D, in Acoustical Imaging, A. Nowicki, J. Litniewski, and T. Kujawska,
eds., vol. 31 of Acoustical Imaging, Springer Netherlands, 2012, pp. 201–209, doi:10.1007/
978-94-007-2619-2 20.

[32] L. Pestov, V. Bolgova, and O. Kazarina, Numerical recovering of a density by the BC-
method, Inverse Probl. Imaging, 4 (2010), pp. 703–712, doi:10.3934/ipi.2010.4.703.

[33] L. Pestov, G. Uhlmann, and H. Zhou, An inverse kinematic problem with internal sources,
Inverse Problems, 31 (2015), p. 055006.

[34] P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann
map in anisotropic media, Journal of Functional Analysis, 154 (1998), pp. 330 – 358,
doi:10.1006/jfan.1997.3188.

[35] P. Stefanov and G. Uhlmann, Stable determination of generic simple metrics from the
hyperbolic Dirichlet-to-Neumann map, Int. Math. Res. Not., (2005), pp. 1047–1061,
doi:10.1155/IMRN.2005.1047.

[36] P. Stefanov, G. Uhlmann, and A. Vasy, On the stable recovery of a metric from the hyper-
bolic DN map with incomplete data, May 2015, arXiv:1505.02853.

[37] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value
problem, Ann. of Math. (2), 125 (1987), pp. 153–169, doi:10.2307/1971291.

[38] D. Tataru, Unique continuation for solutions to pde’s; between Hörmander’s theorem and
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