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Abstract 

Model Predictive Control is ubiquitous in the chemical industry and offers great 

advantages over traditional controllers. Notwithstanding, new plants are being projected 

without taking into account how design choices affect the MPC’s ability to deliver better 

control and optimization. Thus a methodology to determine if a certain design option 

favours or hinders MPC performance would be desirable. This paper presents the 

economic MPC optimization index whose intended use is to provide a procedure to 

compare different designs for a given process, assessing how well they can be controlled 

and optimised by a zone constrained MPC. The index quantifies the economic benefits 

available and how well the plant performs under MPC control given the plant’s 

controllability properties, requirements and restrictions. The index provides a 

monetization measure of expected control performance. 

This approach assumes the availability of a linear state-space model valid within the 

control zone defined by the upper and lower bounds of each controlled and manipulated 

variable. We have used a model derived from simulation step tests as a practical way to 

use the method. The impact of model uncertainty on the methodology is discussed. An 

analysis of the effects of disturbances on the index illustrates how they may reduce 

profitability by restricting the ability of a MPC to reach dynamic equilibrium near process 

restrictions, which in turn increases product quality giveaway and costs. A case of study 

consisting of four alternative designs for a realistically sized crude oil atmospheric 

distillation plant is provided in order to demonstrate the applicability of the index. 
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1 Introduction and Motivation 

The ultimate goal of any chemical plant is to produce products profitably and thus 

its operation must be stable and optimised. To reach such a goal it is necessary to provide 

the plant with a correctly engineered control system, which must possess a convenient set 

of controlled and manipulated variables, clearly defined control objectives, and optimal 

tuning parameters. MPC control schemes are popular solutions to meet the control 

requirements of complex chemical processes due to their capacity for dealing with 

multivariable problems and inverse response, as well as time delayed and highly 

nonlinear systems. Assuming that the MPC is well engineered, the limitations on its 

ability to control and optimize chemical plants is related to the plant’s own characteristics. 

The maximum number of controlled variables it can keep at their desired values in the 

face of disturbances and saturation of control elements is ultimately defined by process 

dynamics, in turn reflected in the plant’s model. Most published works in MPC control 

theory have been focusing on the development of new algorithms but we believe this field 

has matured and larger gains may be achieved by switching the focus back to the design 

of the process. 

Controllability and resiliency as judged by many published indices (for example 

the Disturbance Cost Index (Lewin (1996), Solovyev and Lewin (2002)) are required but 

by themselves, isolated from process economics analysis, they may be a poor guide for 

selecting a process design. To maximise profitability a controller’s ability to return the 

process to the original operating region is less important than the MPC’s capability to 

operate close to the controlled variables’ restrictions, reducing quality giveaway and 

energy costs and therefore maximizing operating revenue, and doing this without 

producing off spec products or compromising safety. As can be seen from figure 1, which 

presents a simplified scheme to illustrate the economic benefits of MPC, the reduced 

variability allows the process to operate closer to restrictions, maximizing output.  We 

present an approach that explicitly relates the control effort index to plant operational 

revenue.  
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Figure 1 – MPC reduces quality give away. 

Many years of experience with MPC have shown its ability to improve 

performance in this way, but if we can assume this fact how should this affect the 

chemical design process? Given a set of controlled and manipulated variables and their 

bounds, what effect has a certain plant layout modification on MPC performance? Or how 

should changes in product specifications affect the layout if we assume MPC will be 

used? The present work proposes an easy new way to assess those impacts that is valid 

for any zone constrained MPC algorithm. 

The problem being addressed in this work may be summarised as follows: within 

the range of all possible operating points or conditions available for a given plant, which 

has been defined by the MPC control zones, what is the most profitable? Is the path from 

an initial state to this desired state feasible or does it violate soft constraints? Can this 

optimal state be sustained by the plant? If we have a number of different plant designs, 

how does each plant’s optimal operating point compare? In the current work an optimal 

trajectory for each plant is defined, evaluated and inspected by the control engineer who 

then proceeds with a comparison between the process candidate designs.  The approach 

presented in this paper is based on the premise that disturbances are known and estimated 

a priori and follow a given time-dependant profile. 

This paper is organized in 5 sections. Section 2 contains a brief presentation of the 

economic MPC optimization index. Section 3 will feature a case of study concerning the 

assessment of four possible layouts for a crude oil distillation unit for which the new 

methodology will be applied. Section 4 will present and discuss the results obtained 
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through the employment of the described methodology. Section 5 shows how to consider 

model uncertainty and conclusions and future work are presented in section 6. 

1.1 Integrated Process and Control Design Methodologies 

Work on the integration of design and control for chemical processes produced 

analysis such as those found in Mohideen, Perkins and Pistikopoulos (1996) and Perkins 

and Walsh (1996), where methods that possess an explicit economic component were 

presented for optimal plant design involving a classical feedback control structure. This 

involves attributing a cost to a control performance measure such as the integral error, 

e.g., ISE or IAE, performing a worst-case design optimization for tuning one or more PID 

controllers for optimal system response and then varying a number of equipment design 

parameters.  This is repeated until the global solution is found. This avoids equipment 

oversizing and thus decreases costs. Among the indices developed to assess the resilience 

of chemical plants subject to disturbances are Skogestad and Morari (1987), who 

presented a method for obtaining a bound on the magnitude of the worst-case relative 

gain, and Weitz and Lewin (1996) who provided a procedure that relies on a modelling 

strategy that makes use of a linear approximation obtained from steady-state flowsheet 

information. 

Sánchez-Sánchez and Ricardez-Sandoval, (2013b) proposed a method which 

allows the reduction of safety overdesign factors, avoiding an unnecessary level of 

conservatism that leads to expensive designs. Performing dynamic controllability analysis 

of the basic regulatory control loops (i.e. PID controllers) reduces the need for intentional 

equipment oversizing required to guarantee control stability. 

A number of researchers have extended the analysis to large scale systems.  

Alhammadi and Romagnoli (2004) proposed an integrated plantwide framework that 

incorporates not only the usual metrics such as controllability and economic performance, 

but also environmental performance and energy integration, resulting in a multi-objective 

optimisation problem. The method was applied to a large-scale Vinyl Chloride Monomer 

plant.  Bansal et al. (2000) propose an approach for the flexibility analysis and design of 

linear systems, based on parametric programming, and Bansal et al. (2002) generalise and 

unify this approach for the flexibility analysis and design of nonlinear systems. Both 

papers used rigorous binary distillation models as cases for study (2 components, 3 PI 

controllers and 7 subsystems). Ricardez-Sandoval et al. (2011) proposed a methodology 
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used to estimate analytical bounds on the worst-case variability of disturbances and 

parametric model uncertainties suitable for application to large-scale systems (using the 

Tenessee Eastman Problem which has 8 components, 8 PI controllers and 5 subsystems).  

Trainor et al. (2013) presents a methodology for the optimal process and control design 

of large-scale systems under uncertainty that incorporates robust feasibility and stability 

analyses formulated as convex mathematical problems (applied to a ternary distillation 

problem with 2 PI controllers and 6 subsystems). Alvarado-Morales et al. (2010) 

presented an integrated synthesis framework and applied it to two large-scale processes: 

a bioethanol production plant as well as succinic acid production (with 16 components, 2 

PI controllers and 7 subsystems). 

While all systems addressed by works above are genuinely large-scale, oil refining 

processes, such as the set of crude oil distillation plants studied here, presents a particular 

challenge. The phenomenological models used by the papers presented in this section are 

adequate for separation processes of mixtures presenting near-ideal behaviour, i.e., where 

deviation from Raoult's law can be ignored, or mixtures of chemically similar solvents, 

or non-ideal solutions to which Raoult's law applies and fugacity and activity coefficients 

can be easily calculated. But difficulties arise when dealing with petroleum fractions: 

each subsystem has usually dozens of non-ideal hypothetical components; severe 

operating conditions mean that the behaviour of gases, solutions and mixtures is also non-

ideal; multiphase flow is very common and hard to model adequately; and equipment 

designs are intricate. The best simulators for this kind of process do not provide their set 

of equations, which are closed source intellectual property. For all these reasons, and the 

time and engineering effort required for rigorous modelling is always very large and, 

unless models are linearised, even with the optimization solvers and processing power 

available at the time of writing it is doubtful that a solution could be found in reasonable 

time. This paper aims to offer an alternative controllability analysis approach that is better 

suited for the plant-wide design of oil refining processes, and also to include the use of 

Model Predictive Control as main control strategy. 

1.2 Integrated Process Designs using Model Predictive Control 

Adapting this kind of methodology to deal with MPC is a very challenging task 

which has been only recently receiving due attention from researchers. Perhaps the first 

attempt to extend the classical integrated design and control approach using MPC control 

was carried out by Brengel and Seider (1992). Francisco et al. (2011) presented a 
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methodology to provide simultaneously the plant dimensions, the control parameters and 

a steady state working point using an IHMPC formulation with a terminal penalty 

including considering model uncertainty for robustness. The optimization problem is a 

multi-objective nonlinear constrained optimization problem, including capital and 

operating costs and controllability indices.  

A similar method was presented by Bahakim and Ricardez-Sandoval (2014), 

involving the identification of an internal MPC model and solving an optimization 

problem at each time step in which the MPC algorithm rejected stochastic worst-case 

disturbances. The control performance was added to a design cost function that also 

included the capital costs derived from equipment sizing parameters. The methodology 

considers how often the worst-case would occur and the level of significance of constraint 

violations, arguing that it is not reasonable to overdesign the plant with increased costs 

because of extremely rare situations. Chawankul et al. (2007) presented another method 

which attributed a variability cost for controlled variables during dynamic operation.  The 

sum of capital and operating costs are combined into a single objective function. Process 

nonlinearity is represented by the use of a nominal linear model with parameter 

uncertainty in the MPC internal model. The worst-case variability was quantified and its 

associated economic cost was calculated and referred to as the robust variability cost. 

This approach avoided nonlinear dynamic simulations, offering computational 

advantages. 

Sakizlis et al. (2004) presented an extension of the process and control design 

framework that incorporates parametric model-based predictive controllers. Applying 

parametric programming for the controller derivation, the authors removed the need for 

solving an optimization problem on-line by giving rise to a closed-form controller 

structure. Sánchez-Sánchez and Ricardez-Sandoval (2013a) solve layers of optimisation 

problems: dynamic flexibility analysis, a robust dynamic feasibility analysis, a nominal 

stability analysis, and a robust asymptotic stability analysis to determine the optimal 

design. The methodology incorporates structural decisions in the analysis for the selection 

of an optimal process flowsheet, while formulating the analysis as convex problem for 

which efficient numerical algorithms exist. Ricardez-Sandoval et al. (2009) point out that 

the algorithmic framework involving MPC is computationally demanding even when a 

small number of process units are considered.  
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A different approach to access economic performance is needed to deal with the 

multivariable “zone control” problem addressed by most commercial MPC packages. 

This variation of a partial control problem is defined by the existence of “zone 

constraints” in which every controlled variable is bounded by maximum and minimum 

desired values so that the control problem is not to keep each one at a fixed set-point but 

instead to keep all of them bounded. Often the MPC is not able to keep all controlled 

variables within their control zones due to the lack of degrees of freedom, which may lead 

to the violation of some restrictions, which are called ‘soft constraints’. Every 

manipulated variable also has its required maximum and minimum values, or ‘hard 

constraints’ which must never be violated.  It is also a standard feature for industrial 

control applications to perform simultaneous process control and optimization. Several 

MPC packages, including Honeywell™ MPC, Shell-Yokogawa Exa-SMOC™, Emerson 

DeltaV™ Predict and AspenTech DMCplus™ , offer both of these features.  

Most recent academic research has been focusing on robust MPC and other 

schemes with guaranteed stability, which translate into slower control actions, instead of 

real needs and performance (as noted by Bemporad and Morari (1999) robust MPC 

control actions may be excessively conservative). Some examples of research concerning 

zone control are found in González and Odloak (2009), Grosman et al. (2010), Luo et al. 

(2012) and Zhang et al. (2011). Porfírio and Odloak (2011), Gouvêa and Odloak (1998) 

and Adetola and Guay (2010) address the integration of economic optimization and MPC 

control. 

The work presented here aims to provide a workable solution to assess alternative 

designs based on control performance and its economic ramifications for highly complex 

chemical plants controlled by zone control MPC algorithms. The approach makes use of 

the most readily available models, which are usually empirical models identified from 

plant tests, such as step tests. Here a new controllability index is used, the economic MPC 

optimization index, for assessing process plants for which linear state-space models are 

available indicating the best achievable performance by a generic MPC controller. This 

index provides results directly related to process economics, taking into account the 

required control performance in the face of any given disturbance and process constraints 

so as to allow comparison between similar process plants. It will be able to provide a 

measure of how much a plant can be optimized while keeping controlled variables within 

the bounds of the zone control. 

http://en.wiktionary.org/wiki/et_al.#English
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2 Some Definitions and Their Use 

Let us now define an index to evaluate just how much room for optimization exists 

for a given plant when applying a zone constrained model predictive control in the face 

of disturbances and control bounds. The goal is to define which candidate plant design 

has the best, most profitable and yet reachable state, enabling the analysis and comparison 

of slightly different chemical plants in order to find out which one has higher resilience 

to disturbances, better controllability, lesser product quality giveaway and lower costs. 

Details of the concept of state reachability can be found in Vidyasagar (2002). 

In order to be a worthwhile tool for process design the methodology needs to be 

carried out independently of other factors such as future choice of MPC algorithm or set 

of tuning parameters, focusing only on the model response. Minimizing the index for a 

given plant means finding what out what is the best state that can be reached at the end 

of the prediction horizon, while subject to zone control. If several chemical plants are 

being compared with a view to assessing which has better dynamic response, the optimal 

index is closely related to the best achievable performance any MPC package can achieve.  

 The success of the control effort made by an MPC controller is its capacity to 

reject disturbances while optimizing economically the process, and thus the index must 

account for the eventual economic losses due to the necessary control actions. The 

methodology presented here will favour solutions which have smooth transitions to the 

final state and to penalize violations of zone constraints in order to make sure that the 

dynamic trajectory leading to the optimized steady-state is feasible. Also, restrictions 

concerning manipulated variables such as their maximum rate of change and maximum 

and minimum values are incorporated in the analysis.  

The index’s purpose is to compare different process plants independently of the 

MPC algorithm and tuning parameters that will be used to control these plants. 

Considering both the speed of the transient and final values would restrict the validity of 

the analysis to a certain algorithm and set of tuning parameters, rendering the analysis 

useless otherwise. Furthermore, introducing criteria such as speed of dynamic response 

would result in an optimization problem composed of several layers that could be rapidly 

become intractable for larger systems, which are the main subjects of this work.  

The economic MPC optimization index may be used to determine what are the 

best reachable states for a set of chemical plants subject to disturbances and restrictions 
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to inputs and outputs. If these variables, disturbances and restrictions are the same for 

those plants, the index indicates the better plant from a dynamic behaviour standpoint: 

the lower the index, the better the state reachability for a given plant. Since commercial 

MPC packages make use of linear state-space models, which can be identified with 

relative ease through step tests of the manipulated inputs, here we use a generic linear 

state-space model to obtain the prediction of process outputs y at the end of the prediction 

horizon 𝑘 + 𝑝: 

𝑦𝑘 = 𝐶𝑥𝑘                (1) 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵∆𝑢𝑘 + 𝐷∆𝑑𝑘             (2) 

The model represents a process flowsheet that is assumed to be fixed during the 

analysis (this approach does not aim to replace early stage process synthesis usually based 

on steady-state information). The method presents analysis of the most promising 

flowsheets with regard to zone constrained MPC performance. The goal is to assess which 

plant is better placed to accommodate disturbances while being optimized by a MPC. 

The model defined by equations (1) and (2) makes use of deviation variables. At 

an arbitrary time instant 𝑘, it is possible to predict the values of the process outputs using 

the following procedure: 

𝑦𝑘+1 = 𝐶𝑥𝑘+1 = 𝐶𝐴𝑥𝑘 + 𝐶𝐵∆𝑢𝑘 + 𝐶𝐷∆𝑑𝑘 

𝑦𝑘+2 = 𝐶𝑥𝑘+2 = 𝐶𝐴𝑥𝑘+1 + 𝐶𝐵∆𝑢𝑘+1 + 𝐶𝐷∆𝑑𝑘+1 

= 𝐶𝐴2𝑥𝑘 + [𝐶𝐴𝐵 𝐶𝐵] [
∆𝑢𝑘
∆𝑢𝑘+1

] + [𝐶𝐴𝐷 𝐶𝐷] [
∆𝑑𝑘
∆𝑑𝑘+1

] 

                                                         ⋮ 

𝑦𝑘+2 = 𝐶𝐴
2𝑥𝑘 + [𝐶𝐴𝐵 𝐶𝐵] [

∆𝑢𝑘
∆𝑢𝑘+1

] + [𝐶𝐴𝐷 𝐶𝐷] [
∆𝑑𝑘
∆𝑑𝑘+1

] 

𝑦𝑘+𝑝 = 𝐶𝐴
𝑝𝑥𝑘 + [𝐶𝐴

𝑝−1𝐵 𝐶𝐴𝑝−2𝐵…  𝐶𝐴𝑝−𝑚𝐵][∆𝑢𝑘 ∆𝑢𝑘+1… ∆𝑢𝑘+𝑚−1]
𝑇  (3) 

+[𝐶𝐴𝑝−1𝐷 𝐶𝐴𝑝−2𝐷…  𝐶𝐴2𝐷][∆𝑑𝑘 ∆𝑑𝑘+1… ∆𝑑𝑘+𝑝−3]
𝑇
 

where 𝑚 is the number of time increments of the control horizon, which is also the number 

of control actions performed. Here we make the assumption that the number of 

disturbance movements is equal to the prediction horizon. This prediction will later be 

used to define the economic control resilience index.  
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2.1 Index for Control Bound Violations 

 In zone control each controlled variable has a minimum and maximum desired 

variable but some of these constraints may have more importance than others and, for this 

reason, when defining the MPC control problem it is common practice to assign each 

controlled variable a weight value, which establishes the relative priority each bound will 

have in the solution. For example, constraints relative to process, equipment and 

environmental safety normally have precedence over those concerning product 

specifications. Henceforth these weight values will be denominated 𝑊𝑖,𝑢𝑝𝑝𝑒𝑟 and 𝑊𝑖,𝑙𝑜𝑤𝑒𝑟 

meaning respectively the weights for the upper (maximum value) and lower (minimum 

value) bounds of controlled variable 𝑦𝑖, where 𝑖 = 1,… , 𝑛𝑦, and 𝑛𝑦 is the number of 

controlled variables. Initially, let us consider the steady-state achieved by the MPC where 

the plant will operate for much of the time. The questions of smoothness of the transient 

response shall be dealt with in section 2.4, but for now let us just assume that given 

enough time the plant will reach steady-state after a series of control and optimization 

actions. If only the last instant in the prediction is considered, a new problem arises in 

which the goal is to minimize the sum of the predicted deviations from the control zone 

for each process output multiplied by its weight. A cost function for this control problem 

can be defined as follows: 

𝐽𝐶𝑉𝑘+𝑝 = ∑ [|𝑦𝑖,𝑚𝑖𝑛 − 𝑦𝑘+𝑝,𝑖| ∙ 𝑊𝑖,𝑙𝑜𝑤𝑒𝑟 + |𝑦𝑘+𝑝,𝑖−𝑦𝑖,𝑚𝑎𝑥| ∙ 𝑊𝑖,𝑢𝑝𝑝𝑒𝑟]
𝑛𝑦
𝑖=1         (4) 

𝑖𝑓 𝑦𝑖,𝑚𝑖𝑛 ≤ 𝑦𝑘+𝑝,𝑖 ≤ 𝑦𝑖,𝑚𝑎𝑥  ⇒ 𝑊𝑖,𝑢𝑝𝑝𝑒𝑟 = 𝑊𝑖,𝑙𝑜𝑤𝑒𝑟 = 0 

𝑖𝑓 𝑦𝑖,𝑚𝑖𝑛 > 𝑦𝑘+𝑝,𝑖  ⇒ 𝑊𝑖,𝑙𝑜𝑤𝑒𝑟 > 0 

𝑖𝑓 𝑦𝑘+𝑝,𝑖 > 𝑦𝑖,𝑚𝑎𝑥  ⇒ 𝑊𝑖,𝑢𝑝𝑝𝑒𝑟 > 0 

where 𝑖 = 1,… , 𝑛𝑦. In this problem it is of special interest to know if there is a set 

of manipulated variables, or MVs, that leads the system to a state where all outputs are 

within their zone constraints at the end of the prediction horizon, and thus    𝐽𝐶𝑉𝑘+𝑝 = 0, 

or alternatively, if there is no ideal solution for equation 4, what is the final state that 

minimizes the violation of the control bounds and consequently minimizes 𝐽𝐶𝑉𝑘+𝑝. 

2.2 An Economic Optimization Index 

MPC controllers found in the chemical industry frequently possess economic 

optimization functions in addition to the control capabilities. Also recent research has 

shown that process economics can be optimized directly in the dynamic control problem, 

which can take advantage of potentially higher profit transients to give superior economic 
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performance. Examples of this approach include Amrit et al. (2013) and Strutzel et al. 

(2013). The optimization is performed by changing the manipulated process inputs when 

the process finds itself within its control bounds, and degrees of freedom are available to 

be employed in optimization tasks. In oil refining processes, MVs are often related to 

process energy cost. For instance, it may be necessary to burn more natural gas in the 

fired heater in order to increase the temperature of the feed stream to a reactor. If the feed 

temperature is a MV increasing it has a negative impact on process profitability, which 

depends on the price of natural gas. Another example would be diesel production in an 

atmospheric crude oil distillation column. In this process it is often possible to improve 

the quality of the diesel by reducing its output and, consequently, increasing the 

atmospheric residue output. However, diesel has a much higher commercial value, so if 

the flow rate of diesel is a manipulated variable, it is positively correlated to profitability. 

Other MVs are not strongly correlated to energy costs or product prices and can be altered 

freely. In inorganic processes the goal is often to maximize chemical reaction conversion 

and the relation between MV and costs may be less obvious.  

It is thus interesting to define for each MV whether it is positively or negatively 

related to profitability, and to what degree. Let us now define two sets of optimization 

weights, 𝑉𝑗,𝑚𝑖𝑛 and 𝑉𝑗,𝑚𝑎𝑥, where 𝑗 = 1, … , 𝑛𝑢, where 𝑛𝑢 is the number of MVs, which 

illustrate the optimization direction and relative priority among the various MVs for 

economic purposes. If a given MV is positively correlated to profitability and at the 

present moment is not being employed for control actions, it should stay as close as 

possible to its maximum limit or upper bound. Likewise, if it is negatively related to 

profitability, it should stay close to its minimum limit or lower bound. In the single layer 

MPC control scheme, the optimization weights 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 are very small compared 

to the control zone weights 𝑊𝑖,𝑢𝑝𝑝𝑒𝑟 and 𝑊𝑖,𝑙𝑜𝑤𝑒𝑟 in the cost function, and optimization 

is performed without hindering the control objectives. Ferramosca et al. (2014) provide a 

formal proof of convergence for such an approach. 

Concerning the MVs, it is desired to determine how far they stand from the hard 

constraints because, depending on the direction of optimization, this distance denotes how 

much room there is for optimization. A simplified optimization cost function may then 

be established yielding equation 5, which relates the distance between MVs and their 

bounds at the prediction’s end: 
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 𝐽𝑀𝑉𝑘+𝑝 = ∑ [|𝑢𝑘+𝑝,𝑗 − 𝑢𝑗,𝑚𝑖𝑛| ∙ 𝑉𝑗,𝑚𝑖𝑛 + |𝑢𝑗,𝑚𝑎𝑥 − 𝑢𝑘+𝑝,𝑗| ∙ 𝑉𝑗,𝑚𝑎𝑥]
𝑛𝑢
𝑗=1          (5) 

Subject to: 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘+𝑝,𝑗 ≤ 𝑢𝑚𝑎𝑥 

where: 

𝑢𝑘+𝑝,𝑗 = ∑ ∆𝑢𝑘+𝑗
𝑚
𝑗=1         

The optimization weights are subject to: 

𝑉𝑗,𝑚𝑖𝑛 ≥ 0, 𝑉𝑗,𝑚𝑎𝑥 ≥ 0, 𝑉𝑗,𝑚𝑖𝑛 ∙ 𝑉𝑗,𝑚𝑎𝑥 = 0 

 

                  (6) 

where 𝑗 = 1,… , 𝑛𝑢. The set of restrictions defined by equation 6 was included in 

order to guarantee that a single economic optimization direction exists for each variable, 

if there is any: if for a MV of index 𝑗, 𝑉𝑗,𝑚𝑖𝑛 = 𝑉𝑗,𝑚𝑎𝑥 = 0, then the variable doesn’t have 

any optimization direction, being neutral for profitability.  

2.3 Economic MPC Optimization Index 

Adding equations (4) and (5) in a single cost function yields the first form of the 

economic MPC optimization index: 

 

 

 

𝐽𝑘+𝑝 = 𝐽𝐶𝑉𝑘+𝑝 + 𝐽𝑀𝑉𝑘+𝑝  

= ∑ [|𝑦𝑖,𝑚𝑖𝑛 − 𝑦𝑘+𝑝,𝑖| ∙ 𝑊𝑖,𝑙𝑜𝑤𝑒𝑟 + |𝑦𝑘+𝑝,𝑖−𝑦𝑖,𝑚𝑎𝑥| ∙ 𝑊𝑖,𝑢𝑝𝑝𝑒𝑟]
𝑛𝑦
𝑖=1   

+∑ [|𝑢𝑘+𝑝,𝑗 − 𝑢𝑗,𝑚𝑖𝑛| ∙ 𝑉𝑗,𝑚𝑖𝑛 + |𝑢𝑗,𝑚𝑎𝑥 − 𝑢𝑘+𝑝,𝑗| ∙ 𝑉𝑗,𝑚𝑎𝑥]
𝑛𝑢
𝑗=1                  (7) 

Subject to: 

𝑖𝑓 𝑦𝑖,𝑚𝑖𝑛 ≤ 𝑦𝑘+𝑝,𝑖 ≤ 𝑦𝑖,𝑚𝑎𝑥  ⇒ 𝑊𝑖,𝑢𝑝𝑝𝑒𝑟 = 𝑊𝑖,𝑙𝑜𝑤𝑒𝑟 = 0 

𝑖𝑓 𝑦𝑖,𝑚𝑖𝑛 > 𝑦𝑘+𝑝,𝑖  ⇒ 𝑊𝑖,𝑙𝑜𝑤𝑒𝑟 > 0 

𝑖𝑓 𝑦𝑘+𝑝,𝑖 > 𝑦𝑖,𝑚𝑎𝑥  ⇒ 𝑊𝑖,𝑢𝑝𝑝𝑒𝑟 > 0 

𝑉𝑗,𝑚𝑖𝑛 ≥ 0, 𝑉𝑗,𝑚𝑎𝑥 ≥ 0, 𝑉𝑗,𝑚𝑖𝑛 ∙ 𝑉𝑗,𝑚𝑎𝑥 = 0 

 

                   

where i = 1,… , ny and j = 1,… , nu. The prediction of 𝑦 at the time instant 𝑘 + 𝑝 

is given by equation 3, which can be further simplified by defining the following matrices: 
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𝐶𝑢̿̿ ̿ = [𝐶𝐴
𝑝−1𝐵 𝐶𝐴𝑝−2𝐵…  𝐶𝐴𝑝−𝑚𝐵] 𝐶𝑑̿̿ ̿ = [𝐶𝐴

𝑝−1𝐷 𝐶𝐴𝑝−2𝐷…  𝐶𝐴2𝐷] 

∆𝑢𝐾 = [∆𝑢𝑘 ∆𝑢𝑘+1… ∆𝑢𝑘+𝑚−1]
𝑇  ∆𝑑𝐾 = [∆𝑑𝑘 ∆𝑑𝑘+1… ∆𝑑𝑘+𝑝−3]

𝑇
 

Replacing these new terms in equation 3 yields: 

𝑦𝑘+𝑝 = 𝐶𝐴
𝑝𝑥𝑘 + 𝐶𝑢̿̿ ̿ ∆𝑢𝐾 + 𝐶𝑑̿̿ ̿ ∆𝑑𝐾                       (8) 

The vector 𝑢𝑘+𝑝 may be calculated as follows: 

𝑢𝑘+𝑝 = ∑ ∆𝑢𝑘+𝑗 = 𝐼𝑚.𝑛𝑢 ∙ ∆𝑢𝐾
𝑚
𝑗=1              (9) 

where: 

𝐼𝑚.𝑛𝑢 = [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

    
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

   ⋯    
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

]
⏟                        

}𝑛𝑢

𝑚.𝑛𝑢

        (10) 

Applying equations 8 and 9 in the cost function 7, and putting the resultant 

equation into vector form yields a more functional form for the cost function: 

𝐽𝑘+𝑝 = |𝑦𝑚𝑖𝑛 − 𝐶𝐴
𝑝𝑥𝑘 − 𝐶𝑢̿̿ ̿ ∆𝑢𝐾 − 𝐶𝑑̿̿ ̿ ∆𝑑𝐾| ∙ 𝑊𝑙𝑜𝑤𝑒𝑟 

+|𝐶𝐴𝑝𝑥𝑘 + 𝐶𝑢̿̿ ̿ ∆𝑢𝐾 + 𝐶𝑑̿̿ ̿ ∆𝑑𝐾 − 𝑦𝑚𝑎𝑥| ∙ 𝑊𝑢𝑝𝑝𝑒𝑟         (11) 

+|𝐼𝑚.𝑛𝑢 ∙ ∆𝑢𝐾 − 𝑢𝑚𝑖𝑛| ∙ 𝑉𝑚𝑖𝑛 + |𝑢𝑚𝑎𝑥 − 𝐼𝑚.𝑛𝑢 ∙ ∆𝑢𝐾| ∙ 𝑉𝑚𝑎𝑥 

 

For any system described by a state-space model in the form given by equations 

1 and 2, subject to a set of disturbance vectors  ∆𝑑𝐾 ∈ 𝐷𝐾, the economic MPC 

optimization index problem is defined by equation 12. The same restrictions as for 

equation 7 apply. 

               (12) 

2.4 Ensuring Viable Solutions 

The economic cost function defined in equation 12 guarantees that the final state 

will be as close as possible to the economic optimal state without violating the MPC 

constraints but does not consider the transient response. Now we shall modify the cost 

function to ensure that the transition to the final state is as smooth as possible.  In order 

to achieve this we now introduce two new parameters in the cost function that will 
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penalize steep changes in the final predicted values for the states, favouring smooth 

curves for the controlled variables at the end of the prediction. 

These new terms shall be called “soft landing” matrices and will be inversely 

proportional respectively to the first and to the second order derivatives of the controlled 

variables at instant 𝑘 + 𝑝. By multiplying the economic cost function by the inverses of 

the soft landing matrices its value will increase proportionally to the slope of the final 

output prediction. The soft landing matrices will be relevant mostly if 𝑝, the prediction 

horizon,  is small and the system doesn’t have enough time to stabilize. The soft landing 

matrices for the first and second order derivatives are: 

𝑆𝐿1 = 𝐼𝑛𝑦 − 𝑇𝑆𝐿1[𝑑𝑖𝑎𝑔|𝑦𝑘+𝑝 − 𝑦𝑘+𝑝−1| ∙ 𝑑𝑖𝑎𝑔|𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛|
−1]                                   (13) 

𝑆𝐿2 = 𝐼𝑛𝑦 − 𝑇𝑆𝐿2[𝑑𝑖𝑎𝑔|[𝑦𝑘+𝑝 − 𝑦𝑘+𝑝−1] − [𝑦𝑘+𝑝−1 − 𝑦𝑘+𝑝−2]| 𝑑𝑖𝑎𝑔|𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛|
−1]    (14) 

where 𝑇𝑆𝐿1 and 𝑇𝑆𝐿2  are parameter vectors that define the priority of rejecting sharp 

moves for each variable. Higher values favour flatter curves at the expense of a more 

aggressive approach. Values for 𝑇𝑆𝐿1 and 𝑇𝑆𝐿2 must be assigned so that 1SL and 2SL  are 

contained in the unit circle. The first order derivative is the difference between the 

controlled variable’s predictions at 𝑘 + 𝑝 and 𝑘 + 𝑝 − 1, obtained as follows: 

 

 

 

𝑦𝑘+𝑝 − 𝑦𝑘+𝑝−1 = 𝐶𝐴
𝑝𝑥𝑘 + [𝐶𝐴

𝑝−1𝐵 𝐶𝐴𝑝−2𝐵…  𝐶𝐴𝑝−𝑚𝐵] [∆𝑢𝑘 ∆𝑢𝑘+1… ∆𝑢𝑘+𝑚−1]
𝑇 

+[𝐶𝐴𝑝−1𝐷 𝐶𝐴𝑝−2𝐷…  𝐶𝐴2𝐷][∆𝑑𝑘 ∆𝑑𝑘+1… ∆𝑑𝑘+𝑝−3]
𝑇
 

−𝐶𝐴𝑝−1𝑥𝑘 − [𝐶𝐴
𝑝−2𝐵 𝐶𝐴𝑝−3𝐵…  𝐶𝐴𝑝−𝑚−1𝐵][∆𝑢𝑘 ∆𝑢𝑘+1… ∆𝑢𝑘+𝑚−1]

𝑇 

−[𝐶𝐴𝑝−2𝐷 𝐶𝐴𝑝−3𝐷…  𝐶𝐴𝐷][∆𝑑𝑘 ∆𝑑𝑘+1… ∆𝑑𝑘+𝑝−3]
𝑇
= 

[𝐼𝑛𝑦 − 𝐴
−1] = {

𝐶𝐴𝑝𝑥𝑘 + [𝐶𝐴
𝑝−1𝐵 𝐶𝐴𝑝−2𝐵…  𝐶𝐴𝑝−𝑚𝐵] [∆𝑢𝑘 ∆𝑢𝑘+1… ∆𝑢𝑘+𝑚−1]

𝑇

+ [𝐶𝐴𝑝−1𝐷 𝐶𝐴𝑝−2𝐷…  𝐶𝐴2𝐷] [∆𝑑𝑘 ∆𝑑𝑘+1… ∆𝑑𝑘+𝑝−3]
𝑇 }  (15) 

Introducing the matrices defined in equation 8, the derivative given by equation 

15 becomes: 

𝑆𝐿1 = 𝐼𝑛𝑦 −  
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−𝑇𝑆𝐿1[𝑑𝑖𝑎𝑔|[𝐼𝑛𝑦 − 𝐴
−1][𝐶𝐴𝑝𝑥𝑘 + 𝐶𝑢̿̿̿̿  ∆𝑢𝐾 + 𝐶𝑑̿̿̿̿  ∆𝑑𝐾]| ∙ 𝑑𝑖𝑎𝑔|𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛|

−1]         (16) 

A similar procedure may be used to obtain the 2SL , the term related to the second 

order derivative of the controlled variables at 𝑘 + 𝑝, which is the difference between the 

slope at 𝑘 + 𝑝 and the slope at 𝑘 + 𝑝 − 1. The second order derivative may be calculated 

as follows: 

[𝑦𝑘+𝑝 − 𝑦𝑘+𝑝−1] − [𝑦𝑘+𝑝−1 − 𝑦𝑘+𝑝−2] = 𝑦𝑘+𝑝 − 2𝑦𝑘+𝑝−1+𝑦𝑘+𝑝−2 =        (17) 

[𝐼𝑛𝑦 − 2𝐴
−1 + 𝐴−2] {

𝐶𝐴𝑝𝑥𝑘 + [𝐶𝐴
𝑝−1𝐵 𝐶𝐴𝑝−2𝐵…  𝐶𝐴𝑝−𝑚𝐵][∆𝑢𝑘 ∆𝑢𝑘+1… ∆𝑢𝑘+𝑚−1]

𝑇

+[𝐶𝐴𝑝−1𝐷 𝐶𝐴𝑝−2𝐷…  𝐶𝐴2𝐷][∆𝑑𝑘 ∆𝑑𝑘+1… ∆𝑑𝑘+𝑝−3]
𝑇 } 

= [𝐼𝑛𝑦 − 2𝐴
−1 + 𝐴−2][𝐶𝐴𝑝𝑥𝑘 + 𝐶𝑢̿̿̿̿  ∆𝑢𝐾 + 𝐶𝑑̿̿̿̿  ∆𝑑𝐾] 

Then equation 14 becomes: 

𝑆𝐿2 = 𝐼𝑛𝑦 −                (18) 

−𝑇𝑆𝐿2[𝑑𝑖𝑎𝑔|[𝐼𝑛𝑦 − 2𝐴
−1 + 𝐴−2][𝐶𝐴𝑝𝑥𝑘 + 𝐶𝑢̿̿ ̿ ∆𝑢𝐾 + 𝐶𝑑̿̿ ̿ ∆𝑑𝐾]|𝑑𝑖𝑎𝑔|𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛|

−1] 

The soft-landing matrices are incorporated into the cost function, which means 

that if one or more destabilizing sequences of control actions do exist when under 

evaluation they would cause the cost function value to explode and thus these sequences 

would be ignored by the solver. If no smooth solution is available at all the final solution 

would have a high value that should alert the control engineer. 

Besides guaranteeing a smooth transition to steady-state at the prediction’s end, 

we shall now introduce in the cost function a new term that will penalize temporary 

violations of the control bounds that may occur during the trajectory between the initial 

state and the optimal final state. This matrix shall be denoted the “error penalization” 

matrix (EP) and it will increase the cost function value if any of the controlled variables 

stay out of their control zone: 

𝐸𝑃 = 𝐼𝑛𝑦 −              (19) 

𝑇𝐸𝑃∑{[𝑑𝑖𝑎𝑔(𝑝|𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛|)]
−1𝑑𝑖𝑎𝑔(|𝑦𝛼 − 𝑦𝑚𝑎𝑥| ∙ 𝑇𝑢𝑝𝑝𝑒𝑟 + |𝑦𝑚𝑖𝑛 − 𝑦𝛼| ∙ 𝑇𝑙𝑜𝑤𝑒𝑟)}

𝑘+𝑝

𝛼=𝑘

 

where 𝑇𝐸𝑃 is a parameter vector that defines the priority of rejecting overshooting for 

each variable, and 𝛼 is an auxiliary variable that denotes time, whose value varies from 

𝛼 = 𝑘 (beginning of the prediction) to 𝛼 = 𝑘 + 𝑝 (end of the prediction) in equation 19. 
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So 𝑦𝛼 is the vector of controlled variables at time alpha, which is being compared to 𝑦𝑚𝑎𝑥 

and 𝑦𝑚𝑖𝑛, in order to know if any controlled variable left the control zone during the 

transient. The sets of parameters 𝑇𝑢𝑝𝑝𝑒𝑟 and 𝑇𝑙𝑜𝑤𝑒𝑟 must obey the following restrictions: 

𝑖𝑓 𝑦𝑖,𝑚𝑖𝑛 ≤ 𝑦𝑘+𝑝,𝑖 ≤ 𝑦𝑖,𝑚𝑎𝑥  ⇒ 𝑇𝑖,𝑢𝑝𝑝𝑒𝑟 = 𝑇𝑖,𝑙𝑜𝑤𝑒𝑟 = 0 

𝑖𝑓 𝑦𝑖,𝑚𝑖𝑛 > 𝑦𝑘+𝑝,𝑖  ⇒ 𝑇𝑖,𝑙𝑜𝑤𝑒𝑟 > 0 

𝑖𝑓 𝑦𝑘+𝑝,𝑖 > 𝑦𝑖,𝑚𝑎𝑥  ⇒ 𝑇𝑖,𝑢𝑝𝑝𝑒𝑟 > 0 

where 𝑖 = 1,… , 𝑛𝑦. These restrictions guarantee that EP  will decrease if, during the 

transient, any controlled variable overshoots. If that happens, the solution will be 

penalized even if the final state is within its control zone. Matrices 𝑇𝑙𝑜𝑤𝑒𝑟 and 𝑇𝑢𝑝𝑝𝑒𝑟 

indicate how strongly this overshooting will be rejected. 

 Finally, we can reach the final form for the economic MPC optimization index 

by multiplying the cost function given by equation 12 by the inverse of the determinants 

of the soft landing and the error penalization  matrices, 𝑆𝐿1, 𝑆𝐿2 and 𝐸𝑃: 

               (20) 

The new cost function will cause the optimization algorithm to discard 

overshooting solutions that could be otherwise selected if equation 12 was used. 

Evidently, if 𝑝 is sufficiently large all control actions and their effects will have taken 

place at the end of the prediction, 𝑘 + 𝑝, and thus, 𝑆𝐿1 and 𝑆𝐿2 will be identity matrices. 

If however, 𝑝 is small or if the set of control actions results in an unstable response, the 

index cost function will increase and the solution will be penalized. 

The vectors 𝑇𝑆𝐿1, 𝑇𝑆𝐿2, 𝑇𝐸𝑃, 𝑇𝑢𝑝𝑝𝑒𝑟 and 𝑇𝑙𝑜𝑤𝑒𝑟 all require manual tuning. Their 

values should reflect prioritization among controlled variables as well the desired balance 

between steady-state optimization and penalization for eventual issues in the transient 

behaviour. The larger the values, the greater the penalties for lack of a smooth transition 

to the final state and for violations of the control zones. The exact values that should be 

assigned depend on the number of variables (a larger number of variables increases their 

cumulative effect) and the desired penalty. For example, one could tune 𝑇𝐸𝑃, 𝑇𝑢𝑝𝑝𝑒𝑟 and 

𝑇𝑙𝑜𝑤𝑒𝑟 in such a way that |𝐸𝑃|−1 = 1 + 1.5 𝑛𝑦⁄ , if a single variable stays unbounded for 

50% of the transient, and |𝐸𝑃|−1 = 1 + 1.75 ∙ 1.5 𝑛𝑦⁄ , if additionally another variable is 

unbounded for 75% of the transient, and so on. Another possibility is setting 𝑇𝑆𝐿1 and 
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𝑇𝑆𝐿2 in such a way as to provide soft-landing matrices that follow, approximately, 

|𝑆𝐿1|
−1 = ∏ √1+ 𝑦𝑘+𝑝

′ 𝑦𝑘+𝑝⁄
𝑛𝑦

 and |𝑆𝐿2|
−1 = ∏ √1+ 𝑦𝑘+𝑝

′′ 𝑦𝑘+𝑝⁄
𝑛𝑦

. The tuning choices 

ultimately depend on the control engineer’s judgement about the correct balance between 

steady-state and transient performances, both of which are important elements of the 

analysis. The concept of “optimal tuning” does not apply here: what is necessary is that 

the selection of tuning parameters reflects adequately the criteria by which process 

performance is going to be judged. The parameters must be the same for all flowsheets 

resulting in the use of the same criterion. 

2.5 Exploring the Relation between the Regulatory Control Layer, MPC 

Layer and the Economic MPC Optimization Index 

The approach presented in this paper is based on the premise that disturbances are 

known and estimated a priori and follow a given time-dependant profile. While this may 

seem restrictive, this choice reflects the nature of the dual layer control strategy used for 

plant control and also that in many chemical processes often the MPC layer disturbances 

are known and planned ahead of time by operating staff. Examples of MPC layer 

disturbances include events such as changes in the feed composition and product 

specifications, programmed equipment shutdowns, tank switches, and changes in pipeline 

alignment. Here we compare for each plant how planned one-off occurrences, which are 

very frequent and impact process profitability. Disturbances that may be modelled 

stochastically, such as observational noise, are normally dealt with by the regulatory 

control layer, which is much faster. The control engineer must keep in mind that the 

regulatory layer is part of the plant which is being evaluated and modifying it changes the 

model and analysis results.  

In the case study provided in section 3 the linear models that define each plant are 

closed-loop models involving multi-loop feedback controllers. The sample time used for 

the state-space models was 10 minutes while PID controller sample time was set at 1 

second at the simulation. The large difference in speed between MPC and PID variables 

greatly diminishes the index sensitivity to the regulatory control structure: the PIDs could 

easily and rapidly bring its CVs back to their set points, should they be disturbed. Also, 

for all plants those controllers proved themselves easy to tune and had excellent 

performance. So in this case, the effect of the regulatory control layer was small enough 

to be ignored. In other processes however, these effects may be larger, and the index may 
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vary considerably according to the selection of control schemes and tuning parameters. 

For example, if the regulatory control is too slow or difficult to tune, or if its actuators 

run at their saturation limits, then the regulatory layer will have greater impact on the 

models and, consequently, on the index. 

In the following sections the method is applied to candidate flowsheets for an oil 

distillation process unit. For this approach the candidate flowsheets must have their 

stability confirmed before applying the economic MPC optimization index. The classical 

approach is to use the well-known stability theorem which states that a linearly time 

invariant (LTI) system is stable if all eigenvalues of model matrix A have magnitude less 

than one, i.e. lie inside the unit circle. According to this definition all flowsheets discussed 

in sections 3 and 4 are open loop stable. Details concerning MPC and state-space stability 

can be found in Mayne et al. (2000) and Oliveira et al. (1999). 

3 Case of Study - Economic Disturbance Index for an Oil 

Distillation Process Unit 

In order to demonstrate how the economic disturbance cost index may be applied 

to provide solutions to industrial scale problems three possible designs for a crude oil 

distillation plant shall be presented. Also a common set of controlled and manipulated 

variables for the MPC control problem will be defined. As the index is related to the best 

possible solution for this control problem, its value will indicate which plant can be better 

controlled by a well-tuned MPC controller. In section 7, the index will be evaluated for 

each of four different scenarios. 

3.1 Describing the Control Problem 

The models of the plants presented here were obtained through dynamic 

simulation using Honeywell's UniSim® software. They have a very similar design, but 

present key differences. These differences represent significant design decisions that the 

project engineers have to make through the process of specifying the layout and 

dimensions of a chemical plant. The distillation plants are rather simple and have a typical 

configuration. The problem has 36 components, 8 local PI controllers, 21 subsystems and 

the column has 29 trays.  This is considerable larger than the examples reported above.  

The base case, or plant 1, can be seen below in figure 2. 
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The process simulated has a realistically drafted layout for a medium sized crude 

oil distillation process unit. The distillation column generates 5 different product streams 

(Naphtha, Kerosene, Light Diesel, Heavy Diesel and Residue). The Kerosene, Light 

Diesel, Heavy Diesel and Residue product streams are used to preheat the crude oil feed 

from 25 °C to about 220 °C in two series of heat exchangers, yielding high energetic 

efficiency. After the first series the oil reaches an adequate temperature to enter the 

desalter drum where salt is removed from the oil. After passing through the second series 

of exchangers, the pre-heated oil enters a fired heater where its temperature is increased 

to 320-380 °C. The hot crude is then fed to the distillation column where the product 

streams are obtained. The cold light diesel and cold heavy diesel streams are mixed 

together to generate the “Pool Diesel” stream, whose properties will be used to evaluate 

the cost index. 

 

Figure 2 – Plant 1 – Simplified Process Flow Sheet 

There are three different types of crude oil available for processing in the three 

distillations units: medium (29.0 °API), light (32.3 °API) and heavy (26.2 °API) crude 

oils. The light oil provides better yields of the more valuable naphtha, diesel and kerosene 

and lower yield of the less desired atmospheric residue. However, it is the most expensive. 

The heavy oil provides poor yields of the lighter, more valuable products but on the other 

hand it is considerably cheaper. Table 1 provides example costs for the crude oils and the 

prices for the products, which will be used in the simulation to calculate the profitability 
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of the process. Those values are based on the average prices for the Brazilian market in 

2015, which can be found on ANP (National Agency of Petroleum and Natural Gas) 

website. 

Medium Crude Oil US$/m3 452.69 

Heavy Crude Oil US$/m3 419.17 

Light Crude Oil US$/m3 496.76 

Naphtha US$/m3 484.84 

Kerosene US$/m3 557.83 

Diesel US$/m3 551.21 

Residue US$/m3 470.17 

Table 1 – Crude Oil Costs and Product Prices 

The optimization problem for Plant 1, which will be exactly the same for Plants 

2, 3 and 4, consists of maximizing the share of Heavy Crude Oil in the feed while 

minimizing the share of Light Crude Oil, bringing costs down, and at the same time 

increasing the yield of higher priced Diesel and Kerosene in the products. The product 

specifications, which act as restrictions for profit maximization, are shown in table 2: 

  Controlled  Variables Description Unit Maximum Minimum 

𝒚𝟏 Cetane Index DIESEL   - 42 

𝒚𝟐 Flash Point DIESEL C - 55 

𝒚𝟑 ASTM D86 DIESEL 65% C - 250 

𝒚𝟒 ASTM D86 DIESEL 85% C 350 - 

𝒚𝟓 ASTM D86 DIESEL 95% C 370 - 

𝒚𝟔 Freezing Point DIESEL C -15 - 

𝒚𝟕 Density (15 C) DIESEL kg/m3 860 820 

𝒚𝟖 ASTM D86 KEROSENE 100% C 300 - 

𝒚𝟗 Flash Point KEROSENE C - 38 

𝒚𝟏𝟎 Density (15 C) KEROSENE kg/m3 840 775 

𝒚𝟏𝟏 Freezing Point KEROSENE C -47 - 

Table 2 – Description and limits for the controlled variables. 

It is also interesting to control Kerosene’s properties. Table 2 below provides a 

list of the controlled variables whose limits must be enforced by an MPC controller and 

must be taken into account while evaluating the economic disturbance cost index. The 

values below are true specifications for the fuels marketed in the European Union. 

The manipulated variables available to the MPC controller and their limits can be 

found in table 3. The plant has a number of PID feedback controllers and the plant state-

space model is a closed loop model. In a classic two layer control framework, the MPC 

manipulated variables are the PID controllers’ set points. 
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 Manipulated Variables Description Unit Maximum Minimum 

𝒖𝟏 Temperature 01 tray TIC01.SP C 70 40 

𝒖𝟐 Temperature Fired Heater TIC02(B).SP C 380 320 

𝒖𝟑 Light Diesel Output FC02.SP m3/h 270 (*) 0 

𝒖𝟒 Heavy Diesel Output FC03.SP m3/h 65 (*) 0 

𝒖𝟓 Medium Crude Flow Rate FC01A.SP m3/h 800 (**) 0 

𝒖𝟔 Light Crude Flow Rate FC01B.SP m3/h 800 (**) 0 

𝒖𝟕 Heavy Crude Flow Rate FC01C.SP m3/h 800 (**) 0 

Table 3 – Description and limits for the manipulated variables. *Total diesel 

production (sum of 𝑢3 and 𝑢4) must be at least 85 m3/h. **The sum of 𝑢5, 𝑢6 and 

𝑢7 must be equal to 800 m3/h, keeping the total feed flow constant. 

A slop recycle will be used as a measured disturbance. Processes such as 

atmospheric or vacuum distillation produce several main cuts as well as slop cuts. Slop 

oil is the collective term for mixtures of heavy fractions of oil, chemicals and water 

derived from a wide variety of sources in refineries or oil fields, often forming emulsions. 

For example, in a vacuum distillation unit the slop oil and water are separated by gravity 

in the vacuum drum. It is also formed when tank wagons and oil tanks are cleaned and 

during maintenance work or in unforeseen oil accidents. Slop oil formation can be 

reduced but cannot be avoided and the need to dispose of it results in one of the largest 

challenges in the everyday operation of an oil refinery.  

The slop cuts produced during the operation of oil refining are conventionally 

stored in large oil lagoons or tanks to receive chemical treatment so as to enable them to 

be recycled to process units such as fluid catalytic cracking or, very often, atmospheric 

distillation units. Therefore, slop oil must be incorporated into the process feed from time 

to time. In the distillation unit simulated in this work, it is possible to treat the recycle of 

slop oil as a disturbance and measure the impact of changes in its flow rate in the 

controlled variables. The same set of variables was defined for all three plants, and a state 

space model for every pair of input and output has been identified through step tests 

carried out by dynamic simulation. These models are shown in the appendix.  

Plant 2 is essentially the same process as plant 1, with the exception of the 

presence of two product tanks which collect respectively the kerosene and pool diesel 

output streams. The kerosene tank is 616 m3 and the diesel tank is 1692 m3, which implies 

a residence time of 10 hours for both the kerosene and diesel streams if flow rates remain 

at their steady state values.  In plant 2, instead of being concerned about the properties of 

distillation column side streams of diesel and kerosene as in plant 1, it is desired to control 
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the properties of the diesel and kerosene streams exiting the product tanks. Plant 2 is 

presented in figure 4.  The virtual analysers AI01 and AI02 are placed in different 

positions compared to figure 3, i.e., after the diesel and kerosene product tanks instead of 

after the column. 

Figure 3 – Plant 2 – Simplified Process Flow Sheet – Plant with Product Tanks. 

Plant 3 and 4 are also very similar to plant 1, but with distillations columns of 

remarkably different dimensions. Plant 3’s column is of increased size compared to plants 

1 and 2’s, while Plant 4’s has a smaller column accompanied of a pre-flash drum that 

removes the lighter fractions such as C1-C4 gases and light naphtha and an extra fired 

heater. This new fired heater ensures the feed has an appropriate relation between gas and 

liquid phases.  Plant 3’s column may be considered to be slightly oversized for the 

nominal feed flow rate of 800 m3/h, and the interesting point here is the slower dynamic 

response provided by a larger column. Plant 4’s pre-flash drum has a volume of 12.56 m3. 

In section 5 it shall be discussed how these differences may affect the process 

controllability by a MPC controller. The differences in the sizing parameters of the 

columns in plant 1, 2, 3 and 4 (column height and number of trays are the same) are shown 

in table 4: 

 Plant 1 and 2 Plant 3 Plant 4 

Column Diameter (m) 13.7 15 11.62 

Tray Space (m) 0.60 0.70 0.51 

Tray Volume (m3) 88.45 123.7 52.1 
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Weir Height (mm) 50 65 42.40 

Weir Length (m) 10.0 14.0 7.9 

Downcomer Volume (m3) 0.08836 0.1 0.08836 

Internal Type Sieve Bubble Cap Sieve 

Table 4 – Column Sizing Parameters for Plants 1, 2, 3 and 4. 

 

Figure 4 – Plant 4 – Simplified Process Flow Sheet – Plant with Pre-flash Drum. 

3.2 State-Space Model Formulation 

The state-space formulation for this plant is presented in Strutzel et al. (2013) and 

is built upon the transfer functions that can be obtained from the analytical form of the 

step response of the system, a convenient and common way of obtaining the models of a 

chemical plant. Therefore, this formulation was selected for use in the case study 

discussed in this section. More details and further developments about this kind of model 

representation, designated output prediction oriented model (OPOM), which was first 

proposed by Rodrigues and Odloak (2000), can be found in Martins et al. (2013) and 

González et al. (2007). 

3.3 Measuring the Economic Impact of the Control Effort  

In the case of an oil distillation unit, it is necessary to burn more natural gas in the 

fired heater in order to increase the temperature of the feed stream to the column. 

Therefore, since the feed temperature is a manipulated variable increasing it has a 

negative impact on process profitability, which depends on the price of natural gas. Thus, 

2u  is negatively correlated to profitability. 
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The MPC controller also should be able to maintain the diesel output at the 

maximum value that guarantees a specified product, without reducing output 

unnecessarily. The commercial value of the residue stream is much lower than that of the 

diesel, thus transferring hydrocarbons from the diesel to residue decreases revenue. 

Therefore, 𝑢4 is positively correlated to profitability. 

Finally, the composition of the feed is also defined by the MPC controller. It is 

able to manipulate the flow rate of Light, Medium and Heavy oil crudes in order to keep 

specifications within constraints, decreasing the volume of heavy oil and increasing light 

oil when necessary. Once more, there is a trade-off between profitability and product 

specifications, because lighter crudes usually generate better products but also cost more. 

The medium crude will make the bulk of the feed and has properties in between those of 

heavy and light oil. 

3.4 Defining Parameters for measuring Economic Control Cost  

As discussed in section 2, each of the process inputs and outputs requires a 

weighting parameter to which the analysis is highly sensitive. In this section adequate 

values for these shall be defined using market prices for the crude oil feed, product 

streams, energy costs and data from the simulation.  

𝑢1 – Temperature 01 tray (TIC01.SP) 

Concerning the distillation column top temperature control, there is an energetic 

cost to decreasing it due to the fact that more cooling water will be spent in order to 

increase the reflux flow rate. Calculating the cost of generating cooling water is a complex 

task, but it can all nevertheless be assumed that this cost is insignificant compared the 

other costs involved and therefore will be considered equal to zero. Thus, it is assumed 

that 𝑉1,𝑚𝑖𝑛 = 𝑉1,𝑚𝑎𝑥 = 0. 

𝑢2 – Temperature Fired Heater (TIC02.SP / TIC02B.SP) 

It is possible to establish a relation between the crude oil temperature at the fired 

heater outlet and the heat duty for plant 1,2 and 3. At a fixed feed flow of 800 m3/h, the 

simulation provides the values found in table 5 below: 

T (C) Q (Mcal/h) 

330.07 61,066 

334.11 62,406 

335.13 62,676 

336.10 62,966 
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340.00 64,332 

Table 5 – Energy consumption by the fired heater 

where T is the fired heater outlet temperature and Q is the heat duty. From the values 

above we obtain the increase in energy consumption relative to the increase in outlet 

temperature, as shown in table 6: 

ΔT 

(C) 

ΔQ 

(Mcal/h) 

ΔQ/ΔT 

(Mcal/(C.h)) 

4.04 1,339.8 331.4 

1.02 270.8 265.5 

0.97 289.8 299.2 

3.90 1,365.5 349.9 

Table 6 – Increase in energy consumption by the fired heater 

Clearly, the energy cost is dependent on the starting temperature and the 

relationship is nonlinear. It also depends on the feed flow to the column. However, for 

control purposes the values are close enough and an average value can be used without 

any compromises to control performance. The average of ΔQ/ΔT = 311.5 Mcal/(C.h) 

shall be considered at any feed flow rate. Considering the Lower Heating Value (LHV) 

of natural gas equal to 8.747 Mcal/m3 and a natural gas price of 0.33 US$/m3, the cost 

related to 𝑢2 can be calculated as follows:  

𝑉2,𝑚𝑖𝑛 =
∆𝑄 ∆𝑇⁄

𝐿𝐻𝑉
 𝑃𝑁𝐺 =

311.5 𝑀𝑐𝑎𝑙 𝐶. ℎ⁄

8.747 𝑀𝑐𝑎𝑙 𝑚3⁄
 0.33

𝑈𝑆$

𝑚3
= 11.75

𝑈𝑆$

𝐶. ℎ
 

𝑉2,𝑚𝑎𝑥 = 0 

For plant 4 𝑢2 is defined as the temperature at the fired heater B outlet. Because 

the light components are separated from the feed at the pre-flash drum, the feed properties 

and, thus the heat exchange coefficients, are slightly different. However, for the sake of 

simplicity this difference will be ignored since its effects are very small. 

𝑢3/𝑢4 – Light Diesel Output (FC02.SP) and Heavy Diesel Output (FC03.SP) 

In this example the light and heavy diesel streams are combined to produce the 

“pool diesel”. The kerosene output and diesel output are placed sequentially in the boiling 

point curve and therefore transferring hydrocarbons between these streams is part of 

normal of everyday operations. However, the UNISIM simulation used in this example 

considers a fixed kerosene output in order for the simulator to be able to solve the fluid 

flow dynamic equations. However there is a variable flux between the diesel output and 
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the residue output and thus the optimization gain is defined as the price difference 

between these streams: 

𝑉3,𝑚𝑎𝑥 = 𝑉4,𝑚𝑎𝑥 = 𝑃𝑑𝑖𝑒𝑠𝑒𝑙 − 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑒 = 551.21 − 470.17 = 81.04
𝑈𝑆$

𝑚3
 

𝑉3,𝑚𝑖𝑛 = 𝑉4,𝑚𝑖𝑛 = 0 

As discussed at the beginning of this section, increasing heavy diesel output 

reduces the residue output and thus increases profitability. In this case study the 

separation between light and heavy diesel output has no commercial importance but in 

most refineries these hydrocarbon streams have different destinations, such as being fed 

to different hydrotreating or hydrocracking process units, and therefore they may have 

different commercial values. These possibilities are not considered here. 

5u – Medium Crude Oil Feed Flow Rate (FC01A.SP) 

Given a set of flow rate values for each of the crude oils that compose the feed to 

the distillation column, at any given time the average price of the oil processed is given 

by: 

𝑃𝑎𝑣𝑒 =
452.69 𝑢5 + 496.76 𝑢6 + 419.17 𝑢7

𝑢5 + 𝑢6 + 𝑢7
 
𝑈𝑆$

𝑚3
 

The difference between average oil price and the medium crude will provide the 

optimization coefficient. 

∆𝑃𝑚𝑒𝑑𝑖𝑢𝑚 = 𝑃𝑚𝑒𝑑𝑖𝑢𝑚 − 𝑃𝑎𝑣𝑒 

Therefore the following rule may be defined to obtain 𝑉5,𝑚𝑖𝑛 and 𝑉5,𝑚𝑎𝑥: 

𝑖𝑓 ∆𝑃𝑚𝑒𝑑𝑖𝑢𝑚 > 0    ⟹   𝑉5,𝑚𝑎𝑥 = 0,    𝑉5,𝑚𝑖𝑛 = ∆𝑃𝑚𝑒𝑑𝑖𝑢𝑚 

𝑖𝑓 ∆𝑃𝑚𝑒𝑑𝑖𝑢𝑚 < 0    ⟹   𝑉5,𝑚𝑎𝑥 = −∆𝑃𝑚𝑒𝑑𝑖𝑢𝑚,    𝑉5,𝑚𝑖𝑛 = 0 

𝑖𝑓 ∆𝑃𝑚𝑒𝑑𝑖𝑢𝑚 = 0    ⟹   𝑉5,𝑚𝑎𝑥 = 𝑉5,𝑚𝑖𝑛 = 0 

In the third case, all feed is already entirely composed of medium crude and 

average oil price doesn’t change with changes in 𝑢5. 

𝑢6– Light Crude Oil Feed Flow Rate (FC01B.SP) 

In a similar manner to the approach used for 𝑢5, the difference between average 

oil price and the medium crude will provide the optimization coefficient 𝑉6,𝑚𝑖𝑛, and since 

the light oil is the most expensive, the maximization coefficient will always be zero. 
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𝑉6,𝑚𝑖𝑛 = ∆𝑃𝑙𝑖𝑔ℎ𝑡 = 𝑃𝑙𝑖𝑔ℎ𝑡 − 𝑃𝑎𝑣𝑒   𝑉6,𝑚𝑎𝑥 = 0 

𝑢7 – Heavy Crude Oil Feed Flow Rate (FC01C.SP) 

In a similar manner to the approach used for 5u and 6u , the difference between an 

average oil price and the medium crude will provide the optimization coefficient 𝑉7,𝑚𝑎𝑥, 

and since the light oil is the most expensive, the minimization coefficient will always be 

zero: 

𝑉7,𝑚𝑎𝑥 = ∆𝑃ℎ𝑒𝑎𝑣𝑦 = 𝑃𝑎𝑣𝑒−𝑃ℎ𝑒𝑎𝑣𝑦   𝑉7,𝑚𝑖𝑛 = 0 

𝑑 – Disturbance slop recycle 

While in operating refineries slop streams require an expensive previous treatment 

in order to be incorporated into the feed and reprocessed, in this study this element of 

process economics will be ignored.  It will not change the analysis since the MPC is not 

able to determine slop flow rate in first place. Being a disturbance, the slop will not have 

a price tag in the optimization problem, and thus may be considered a feed component 

whose hydrocarbons are available for “free” for they do not need to be acquired and, once 

these slop hydrocarbons replace crude oil in the feed and are recovered and incorporated 

in the product cuts, they cause the overall index to decrease. At the same time, since slop 

is composed mostly of very heavy, difficult to process oil cuts it diminishes the maximum 

quantity of cheap heavy oil that can be processed and increases the energy consumption, 

and in its turn these effects increase the index. The absolute values are not consequential: 

the goal is to evaluate the relative performance of each plant which is going to behave 

differently due to the presence of slop in the feed.  

Controlled Variables  

To avoid having controlled variables out of their control zones due to the 

optimization efforts, the parameters 𝑊𝑢𝑝𝑝𝑒𝑟 and 𝑊𝑙𝑜𝑤𝑒𝑟 must have high enough values 

that the cost generated by one or more process outputs outside their control zone is much 

higher than the cost due to optimization. From an economic perspective, since product 

specifications are requirements for the product to be saleable, the optimization weight for 

each controlled value can be defined as the value of the relevant product stream as 

provided in Table 1. Since 𝑦1 to 𝑦7 are related to diesel specifications, the cost of violating 

their restrictions will be equal to the diesel price multiplied by diesel output, which is 

defined as the sum of 𝑢3 and 𝑢4. In this case study the possibility of selling diesel and 
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kerosene as fuel oil is not being considered, and such a procedure is also very unlikely in 

industrial operations.  

551.21
𝑈𝑆$

𝑚3
(𝑢3 + 𝑢4)

𝑚3

(10 𝑚𝑖𝑛)
= 551.21(𝑢3 + 𝑢4)

𝑈𝑆$

(10 𝑚𝑖𝑛)
 

Similarly, 𝑦8 to 𝑦11 are related to kerosene specifications, and their weight in the 

optimization problem will be equal to the kerosene price multiplied by kerosene output, 

which is kept fixed at 61.29 m3/h, or 10.215 m3/(10 min). 

557.83
𝑈𝑆$

𝑚3
10.215

𝑚3

(10 𝑚𝑖𝑛)
= 5698.23

𝑈𝑆$

(10 𝑚𝑖𝑛)
 

Hence, the set of rules below was adopted for defining the weights of each 

controlled variable in the cost function: 

𝑖𝑓 𝑦𝑖,𝑚𝑖𝑛 ≤ 𝑦𝑘+𝑝,𝑖 ≤ 𝑦𝑖,𝑚𝑎𝑥     ⟹   𝑊𝑖,𝑙𝑜𝑤𝑒𝑟 = 𝑊𝑖,𝑢𝑝𝑝𝑒𝑟 = 0 

𝑖𝑓 𝑦𝑖,𝑚𝑖𝑛 > 𝑦𝑘+𝑝,𝑖     ⟹   𝑊𝑖,𝑙𝑜𝑤𝑒𝑟 = 551.21(𝑢3 + 𝑢4),   𝑖 = 1,2,3,4,5,6,7 

𝑖𝑓 𝑦𝑘+𝑝,𝑖 > 𝑦𝑖,𝑚𝑎𝑥     ⟹   𝑊𝑖,𝑢𝑝𝑝𝑒𝑟 = 551.21(𝑢3 + 𝑢4),   𝑖 = 1,2,3,4,5,6,7 

𝑖𝑓 𝑦𝑖,𝑚𝑖𝑛 > 𝑦𝑘+𝑝,𝑖     ⟹   𝑊𝑖,𝑙𝑜𝑤𝑒𝑟 = 5698.23,   𝑖 = 8,9,10,11 

𝑖𝑓 𝑦𝑘+𝑝,𝑖 > 𝑦𝑖,𝑚𝑎𝑥     ⟹   𝑊𝑖,𝑢𝑝𝑝𝑒𝑟 = 5698.23,   𝑖 = 8,9,10,11 

4 Results and Discussion 

In this section the results obtained through the application of the economic MPC 

optimization index to assessing alternative distillation plant designs are presented. The 

optimization problem was solved using the interior-point routine available in the 

optimization toolbox in Matlab. It is also worth noting that the problem has nonlinear 

constraints and required a solver able to deal with disjunctive programming. However, in 

some cases the results proved to be sensitive to the initial point chosen, and the 

optimization algorithm sometimes reached a local minimum instead of a global one. To 

avoid this shortcoming an iterative “genetic” algorithm strategy was implemented 

consisting of using the previous solution the new starting point, but randomly modifying 

it so as to implement “mutations”, then evaluating the cost function and storing the new 

solution if it was better than the previous one. The random mutations were constrained to 

be within ±25% of the acceptable range for each manipulated variable and 100 iterations 

were permitted using this methodology in each case. While we believe the solutions 

presented are global, no formal proof will be provided. 
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4.1 Scenario 1 – Simultaneous Control and Optimization without 

Disturbance 

The four different plants were given the same starting point, i.e. the same initial 

values for the controlled and manipulated variables. Given this set of values, it is 

necessary to obtain the initial state vector, 𝑥𝑘 for each plant. For the state-space model 

employed, a completely null state vector (𝑥𝑘 = 0) is the model’s origin, or the equivalent 

of having the plant at the exact same steady state used during the step test model 

identification. To test a different starting points equation 21 gives initial states: 

𝑦𝑘 = 𝐶𝑥𝑘  ⟹  𝑥𝑘 = 𝐶
−1𝑦𝑘             (21) 

but there are an infinite number of potential solutions to equation 21 and future states may 

also be affected the choice of 𝑥𝑘, as can be seen by equation 3. To make sure a “coeteris 

paribus” comparison is possible, it is convenient to implement equation 21 as a restriction 

that ensures the selection of a stable state, which satisfies equation 21 while having no 

impact on future states 𝑥𝑘+1, 𝑥𝑘+2, … , 𝑥𝑘+𝑝. The restriction defined by equation 22 

satisfies these criteria: 

0 = ∑ |yk − CA
zxk|

p
z=0                                                        (22) 

For all the plants studied it was possible to obtain kx that satisfied equations 21 

and 22. The same values for the controlled and manipulated variables resulted in distinct 

vectors 𝑥𝑘 since each plant has its own model. Although we recommend several distinct 

starting points to be tested for thorough analysis, due to lack of space our analysis will be 

carried out using the single one given in table 7: 

 𝐲𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝐲𝟓 𝐲𝟔 𝒚𝟕 𝒚𝟖 𝒚𝟗 𝐲𝟏𝟎 𝐲𝟏𝟏 

System 

origin 
44.00 81.76 288.82 319.42 341.42 -25.47 826.79 251.11 49.79 812.88 -68.38 

Starting 

point 
43.28 83.95 292.39 318.69 341.70 -25.60 829.33 251.48 50.82 815.75 -68.62 

Table 7 – New initial values for process outputs. 

The assigned value for controlled variable 𝑦1, the Cetane Index, is set lower than 

its required value of 46. This requires control actions to bring 𝑦1 back to its control zone 

and this control effort may limit the room for optimization. In this first scenario, which 

may serve as a basis of comparison with other cases, the processes are at steady-state and 

there is no disturbance. Optimization was carried out with the restriction of constant total 

feed flow and the set of parameters introduced in section 4 for plants 1, 2, 3 and 4, and 
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using a control horizon 𝑚 = 6, a prediction horizon 𝑝 = 60 (10 hours) and 𝑇𝑆𝐿1 and 𝑇𝑆𝐿2 

equal to unitary vectors multiplied by scalar 5. The weights 𝑇𝑙𝑜𝑤𝑒𝑟 and 𝑇𝑢𝑝𝑝𝑒𝑟 are unitary 

vectors when variables are outside their control zones and null when they are within. The 

MVs in table 8 (only final values are shown) were found to be the best available for each 

plant: 

 Manipulated Variables 

Description 

Unit Max. 

Value 

Min. 

Value 

Initial 

Value 

Final Value 

Plant 

1 

Plant 

2 

Plant 

3 

Plant 

4 

𝒖𝟏 Temperature 01 tray TIC01.SP C 70.0 40.0 42.64 40.00 41.27 69.63 40.01 

𝒖𝟐 Temperature Fired Heater TIC02.SP C 380.0 320.0 335.13 379.99 320.00 380.00 346.06 

𝒖𝟑 Light Diesel Output FC02.SP m3/h 270.0(*) 0.0 135.75 62.00 145.03 58.69 61.22 

𝒖𝟒 Heavy Diesel Output FC03.SP m3/h 65.0(*) 0.0 25.71 49.37 0.00 26.53 64.99 

𝒖𝟓 Medium Crude Flow Rate FC01A.SP m3/h 800 (**) 0.0 550.00 112.09 288.70 1.36 753.47 

𝒖𝟔 Light Crude Flow Rate FC01B.SP m3/h 800 (**) 0.0 250.00 0.11 511.29 11.17 0.07 

𝒖𝟕 Heavy Crude Flow Rate FC01C.SP m3/h 800 (**) 0.0 0.00 687.81 0.01 787.46 46.47 

𝒅𝟏 Slop Oil Feed Recycling Flow Rate m3/h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Table 8 – Inputs for case without disturbance. *u3 + u4 ≥ 85 **u5 + u6 + u7 = 800. 

For these sets of process inputs, the cost function values for each plant are 

provided in table 9. Lower values are better and thus plant 3 presented the best 

performance, closely followed by plant 1, while plants 2 and 4 had worse results. The 

lower values of the index result from larger amount of cheaper heavy crude oil that could 

be processed in plant 3 and 1. Comparing plants 2 and 4, the latter performed better since 

it did not require a large proportion of light oil in order to avoid producing off-spec 

products. 

 Plant 1 Plant 2 Plant 3 Plant 4 

Objective 

Function Value 
5639.5 12693.0 5516.2 8920.14 

                         Table 9 – Cost Function Values for each Plant – Case 1.    

Table 10 provides values for the controlled outputs for each plant. In all three 

cases the algorithm was able to define a set of inputs that guarantee that no output value 

violated its zone bounds during the transient or at their final values. The highlighted 

values show which boundary conditions were active for each plant, which were the 

quality requirements that restricted profitability. 
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 Controlled  Variables Description Unit 
Min. 

Value 

Max. 

Value 

Initial 

Value 

Final Value 

Plant 

 1 

Plant 

2 

Plant 

3 

Plant 

4 

𝒚𝟏 Cetane Index DIESEL  46.0 - 44.00 46.00 46.00 46.00 46.00 

𝒚𝟐 Flash Point DIESEL C 55.0 - 81.76 145.66 89.31 86.48 95.57 

𝒚𝟑 ASTM D86 DIESEL 65% C 250.0 - 288.81 309.46 301.96 307.47 305.82 

𝒚𝟒 ASTM D86 DIESEL 85% C - 350.0 319.42 334.71 346.00 322.23 348.18 

𝒚𝟓 ASTM D86 DIESEL 95% C - 370.0 341.63 355.07 369.94 339.75 355.70 

𝒚𝟔 Freezing Point DIESEL C - -15.0 -25.47 -15.00 -18.75 -15.00 -15.00 

𝒚𝟕 Density (15 C) DIESEL kg/m3 820.0 860.0 826.79 860.00 822.51 859.93 859.11 

𝒚𝟖 ASTM D86 KEROSENE 100% C - 300.0 251.11 242.67 253.33 243.74 292.88 

𝒚𝟗 Flash Point KEROSENE C 38.0 - 49.79 123.76 58.09 129.20 95.41 

𝒚𝟏𝟎 Density (15 C) KEROSENE kg/m3 775.0 840.0 812.88 813.65 816.11 808.40 822.84 

𝒚𝟏𝟏 Freezing Point KEROSENE C - -47.0 -68.38 -67.26 -64.10 -68.95 -70.63 

Table 10 – Output predictions for scenario without disturbance. 

4.2 Scenario 2 – Handling a Measured Disturbance   

In this scenario the process simulations start at the same steady-state and all 

parameters were kept at the same values as in case 1. However, the slop recycling flow 

rate, which acts as a measured disturbance, was increased from zero to 90 m3/h at time 

instant 𝑘, and kept at this value and until 𝑘 + 𝑝. The total crude oil flow rate, composed 

of light, medium and heavy crudes, was decreased from 800 m3/h to 710 m3/h in order to 

accommodate the flow of slop, while keeping total volumetric flow constant. As in case 

1, the minimum limit for the Cetane Index, controlled variable 𝑦1, is 46 and the initial 

value is lower than required. Table 11 presents the inputs for each plant: 

 
Manipulated Variables 

Description 
Unit 

Max. 

Value 

Min. 

Value 

Initial 

Value 

Final Value 

Plant 

1 

Plant 

2 

Plant 

3 

Plant 

4 

𝒖𝟏 Temperature 01 tray TIC01.SP C 70.0 40.0 42.64 40.00 40.00 69.99 40.00 

𝒖𝟐 Temperature Fired Heater TIC02.SP C 380.0 320.0 335.13 379.98 320.00 380.00 332.93 

𝒖𝟑 Light Diesel Output FC02.SP m3/h 270.0(*) 0.0 135.75 68.31 154.92 69.10 140.21 

𝒖𝟒 Heavy Diesel Output FC03.SP m3/h 65.0(*) 0.0 25.71 46.70 0.03 26.56 65.00 

𝒖𝟓 Medium Crude Flow Rate FC01A.SP m3/h 800 (**) 0.0 550.00 0.01 23.59 92.24 603.23 

𝒖𝟔 Light Crude Flow Rate FC01B.SP m3/h 800 (**) 0.0 250.00 146.46 686.41 94.96 0.03 

𝒖𝟕 Heavy Crude Flow Rate FC01C.SP m3/h 800 (**) 0.0 0.00 563.53 0.00 522.81 196.73 

𝒅𝟏 Slop Oil Feed Recycling Flow Rate m3/h 0.00 0.00 0.00 90.00 90.00 90.00 90.00 

Table 11 – Inputs for specification change case. *u3 + u4 ≥ 85 **u5 + u6 + u7 = 800. 

The index values for this scenario can be found in table 12. This time plant 4 had 

the best performance and plant 1 and 3 followed quite closely. Plant 2 had the worst result 

yet again, with significantly higher index due to its slower dynamics which prevented it 

from producing properly specified diesel (see table 13). Compared to plants 1 and 3, plant 

4 could produce more diesel and for this reason had a better index. 
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 Plant 1 Plant 2 Plant 3 Plant 4 

Objective 

Function Value 
7576.9 34718.4 7690.1 6987.23 

Table 12 – Cost Function Values for each Plant – Case 2. 

Direct comparison of index values between cases 1 and 2 should take into account 

that case 2 involves lower crude oil flow rates. Compared to case 1, the index was 34.35% 

higher for plant 1. Plant 2 had an index 173.52% higher; plant 3, 39.41% higher and plant 

4, a 21.66% lower index. Therefore, the performance degradation due to the disturbance 

was relatively small for plants 1 and 3, and very significant for plant 2. The fact that those 

plants had lower indices confirms the expected decrease in profitability due to the need 

to meet quality requirements in the presence of slop in the oil feed, leading to higher crude 

oil acquisition costs (increased demand for expensive light and medium oils). However, 

plant 4 made good use of the “free” raw material provided by the slop, and its performance 

actually improved. Concerning the outputs, we can observe in table 13 that the final 

cetane value, 𝑦1, for plant 2 was not met even with almost all the feed composed of light 

oil. This signifies that plant layout 2 cannot handle a slop recycle of 90 m3/h without 

compromising product quality.  

 Controlled  Variables Description Unit 
Min. 

Value 

Max. 

Value 

Initial 

Value 

Final Value 

Plant 

1 

Plant 

2 

Plant 

3 

Plant 

4 

𝒚𝟏 Cetane Index DIESEL  46.0 - 44.00 46.02 45.78 46.39 46.00 

𝒚𝟐 Flash Point DIESEL C 55.0 - 81.76 115.16 85.75 89.13 89.24 

𝒚𝟑 ASTM D86 DIESEL 65% C 250.0 - 288.81 309.91 280.16 308.18 330.93 

𝒚𝟒 ASTM D86 DIESEL 85% C - 350.0 319.42 335.51 345.97 324.00 350.00 

𝒚𝟓 ASTM D86 DIESEL 95% C - 370.0 341.63 359.02 370.00 345.48 339.34 

𝒚𝟔 Freezing Point DIESEL C - -15.0 -25.47 -15.00 -15.00 -15.00 -15.16 

𝒚𝟕 Density (15 C) DIESEL kg/m3 820.0 860.0 826.79 859.56 821.35 858.32 840.17 

𝒚𝟖 ASTM D86 KEROSENE 100% C - 300.0 251.11 245.71 253.36 252.58 251.60 

𝒚𝟗 Flash Point KEROSENE C 38.0 - 49.79 117.02 59.29 110.37 68.56 

𝒚𝟏𝟎 Density (15 C) KEROSENE kg/m3 775.0 840.0 812.88 816.13 818.29 810.28 819.23 

𝒚𝟏𝟏 Freezing Point KEROSENE C - -47.0 -68.38 -68.31 -66.62 -69.55 -63.76 

Table 13 – Results for specification change case. 

4.3 Selecting the Best Plant 

The results obtained in both scenarios must be considered together in order to 

draw a consistent conclusion about which plant has the better characteristics when it 

comes to MPC zone control. Thus an average index will now be defined. It isn’t necessary 

that all components have the same weight in the averaged index. If for instance the chosen 
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plant will be frequently required to recycle slop, case 2 should be given greater 

prominence in the decision process. In table 14, where the average index is presented, 

case 2 was given double the weight in comparison to case 1. The average index used in 

this section was defined as the geometric mean of each plant’s indices multiplied by the 

weight for each scenario. 

 Plant 1 Plant 2 Plant 3 Plant 4 Case Weight 

Case 1 5639.5 12693.0 5516.2 8920.14 1 

Case 2 7576.9 34718.4 7690.1 6987.23 2 

Geometric Mean 6866.6 24825.3 6883.9 7579.85  

Table 14 – Average index for each plant. 

As can be seen in table 14, plant 1 had the best overall results in this application 

of the Economic Disturbance Cost Index and should provide better MPC controllability 

than other. However plant 3’s result was very close and it is possible that, in a 

comprehensive analysis including capital and maintenance costs, either of them may 

prove a better choice. Plant 2 however is an inadequate design that clearly does not meet 

requirements due to the very poor choice for the instrument locations which had an 

adverse impact on model dynamics and control performance. Plant 4, which is a design 

that also results in slower dynamics because of its pre-flash drum and additional fired 

heater, should be avoided as well since it is highly likely to have increased capital costs 

as well lower performance.  

4.4 Effect of soft landing matrices and error penalization matrices 

The influence of the soft landing matrices in the results, as can be seen from table 

15 which presents the rate by which they increase the index, was small. 

|𝐒𝐋𝟏|
−𝟏|𝐒𝐋𝟐|

−𝟏 Plant 1 Plant 2 Plant 3 Plant 4 

Case 1 1.0067 1.0048 1.0074 1.0070 

Case 2 1.0069 1.0048 1.0074 1.0072 

Table 15 – Effect of SL matrices 

This is as expected because the system is stable and the prediction horizon is 

sufficiently large. However, if not enough time is given to the plant to settle, the impact 

of SL1 and SL2 may be significant and the solutions will be greatly penalized. Figure 5 

shows the index increase for smaller values of 𝑝: 
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Figure 5 – |SL1|
−1|SL2|

−1 for plant 1, scenario 1, for various values of 𝑝. 

Since this work is a steady-state focused analysis, the inclusion of SL matrices can 

be considered a cautionary measure to ensure validity of the results and force the 

optimization algorithm to disregard oscillatory or overshooting solutions if 

possible. However, in some design cases the speed of dynamic response may be key and 

thus it may be necessary to assess the system thoroughly by testing several different 

values for 𝑝.  

The identity matrix was always used for the error penalization matrix - which 

means no bound violations are permitted during the transients – with the exception of 

plant 2 in scenario 2 where |𝐸𝑃|−1 = 1.0104  to allow 𝑦1 < 𝑦𝑚𝑖𝑛,1  over the whole 

predicted range. 

5 Quantifying the Effects of Model Uncertainty 

When designing control systems for robust performance, it is necessary to address 

model uncertainty. Similarly, when performing controllability analysis the evaluation of 

plant performance should be robust to uncertainty in the model parameters. If the 

flowsheets being assessed have very different uncertainty levels in their models, 

conducting integrated design and control analysis using only the nominal model will 

eventually lead to wrong conclusions. 

In this section model uncertainty is embedded in the Economic MPC Optimisation 

Index. As discussed in section 3.2 and also in the appendix, the state-space model used in 

this paper is derived from transfer function models identified from process simulation 
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data. Thus, the state-space model of each CV/MV pair inherited the same level of 

uncertainty of the transfer function from which it is derived. 

We shall now define a model uncertainty measure suitable to represent process 

nonlinearity. Since simulation is the source of process data in the current work, and for 

this reason there are no sensor related issues, model nonlinearity is the major source of 

modelling error (numerical error being the remaining possibility). Since step tests are the 

chosen method of system identification, we are interested in knowing the magnitude of 

uncertainty in the steady-state output change in response to a control action, as shown in 

figure 6: 

 
Figure 6 – Uncertainty in the magnitude of the output steady-state change, given 

a certain input change. 

Let us assume that, for each input/output pair, the test used to identify the linear 

model consists of a series of 𝑛 = 1,… ,𝑁𝑠 steps. After the nominal model is identified, 

we may validate it by comparing its response to the identification data, thereby obtaining 

the model mismatch relative to each one of the steps performed. The model mismatch 

value can be positive or negative, and so can step response amplitude. The relative model 

mismatch of the nth step, 𝜑𝑛, which relates absolute mismatch to response amplitude, can 

be obtained using equation 23: 

𝜑𝑛 = (∆𝑦𝑠𝑛 − ∆𝑦𝑛𝑜𝑛,𝑠𝑛) ∆𝑦𝑠𝑛⁄ = 𝑒𝑠𝑛 ∆𝑦𝑠𝑛⁄           (23) 

where ∆𝑦𝑠𝑛 is the steady-state response amplitude of plant data relative to the nth 

step, ∆𝑦𝑛𝑜𝑛,𝑠𝑛 is the steady-state response amplitude of the nominal model relative to the 

nth step, and 𝑒𝑠𝑖 is the steady-state absolute value of model mismatch, also relative to the 

nth step. Figure 7 illustrates this concept for a model identification test consisting of 𝑁𝑠 =

3 steps: 
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Figure 7 – Representation of model mismatch for a step test. 

It is important to consider that, if the output/input pair is weakly related, the 

denominator in equation 23 is small and 𝜑 might become too large (>1). In this case the 

control engineer should ignore uncertainty for this 𝑦/𝑢 pair and set 𝜑𝑛 = 0 for 𝑛 =

1, … , 𝑁𝑠. It is important to notice that models can be biased to a particular direction, e.g., 

providing always smaller changes in output prediction than plant data, consistently 

resulting in negative model mismatch. Or, alternatively, prediction error may be randomly 

distributed, with a similar number of steps with positive and negative model mismatch. 

For this reason, equations 24 and 25 define 𝛽𝑦𝑖,𝑢𝑗
−  and 𝛽𝑦𝑖,𝑢𝑗

+ , respectively the minimum 

negative relative model mismatch and the maximum positive relative model mismatch 

between 𝑦𝑖 and 𝑢𝑗:  

𝛽𝑦𝑖,𝑢𝑗
− = 𝑚𝑖𝑛

𝑛=1,…,𝑁𝑠
𝜇𝑛 𝜑𝑛,        𝑖 = 1,… , 𝑛𝑦,   𝑗 = 1, … , 𝑛𝑢       (24) 

𝛽𝑦𝑖,𝑢𝑗
+ = 𝑚𝑎𝑥

𝑛=1,…,𝑁𝑠
𝜗𝑛 𝜑𝑛,       𝑖 = 1,… , 𝑛𝑦,   𝑗 = 1,… , 𝑛𝑢       (25) 

where 𝜇𝑛 = 1 and 𝜗𝑛 = 0 if 𝜑𝑛 < 0, 𝜇𝑛 = 0 and 𝜗𝑛 = 1 if 𝜑𝑛 > 0, 𝑁𝑠 is again 

the number of steps, and 𝑛𝑦 and 𝑛𝑢 are respectively the number of CVs and MVs. 

Parameters 𝛽𝑦𝑖,𝑢𝑗
−  and 𝛽𝑦𝑖,𝑢𝑗

+  may be understood as fractions of the nominal model 

response. Similarly, βyi,dj
−  and βyi,dj

+  are respectively the minimum negative and the 
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maximum positive relative model mismatch between 𝑦𝑖 and the disturbance 𝑑𝑗, as defined 

in equations 26 and 27: 

𝛽𝑦𝑖,𝑑𝑗
− = 𝑚𝑖𝑛

𝑛=1,…,𝑁𝑠
𝜇𝑛 𝜑𝑛,        𝑖 = 1,… , 𝑛𝑦,   𝑗 = 1,… , 𝑛𝑑       (26) 

𝛽𝑦𝑖,𝑑𝑗
+ = 𝑚𝑎𝑥

𝑛=1,…,𝑁𝑠
𝜗𝑛 𝜑𝑛,       𝑖 = 1, … , 𝑛𝑦,   𝑗 = 1,… , 𝑛𝑑       (27) 

where 𝑛𝑑 is the number of disturbances. The control engineer should test several 

operating points throughout the control zone and in the vicinity using different step 

amplitudes in order to obtain reliable models and also to ensure that the magnitude of the 

resulting uncertainty parameter is representative of nonlinearity effects. Let us define a 

set of matrices in equation 28, 𝛣𝑢
+, 𝛣𝑢

−, 𝛣𝑑
+ and 𝛣𝑑

−, which are going to store all model 

mismatch data from step tests obtained using equations 24 to 27 for each possible 

coupling of 𝑦/𝑢 and 𝑦/𝑑: 

𝛣𝑢
+ = [

𝛽𝑦1,𝑢1
+ ⋯ 𝛽𝑦𝑛𝑦,𝑢1

+

⋮ ⋱ ⋮
𝛽𝑦1,𝑢𝑛𝑢
+ ⋯ 𝛽𝑦𝑛𝑦,𝑢𝑛𝑢

+
]  ,   𝛣𝑢

− = [

𝛽𝑦1,𝑢1
− ⋯ 𝛽𝑦𝑛𝑦,𝑢1

−

⋮ ⋱ ⋮
𝛽𝑦1,𝑢𝑛𝑢
− ⋯ 𝛽𝑦𝑛𝑦,𝑢𝑛𝑢

−
]  ,           (28) 

𝛣𝑑
+ = [

𝛽𝑦1,𝑑1
+ ⋯ 𝛽𝑦𝑛𝑦,𝑑1

+

⋮ ⋱ ⋮
𝛽𝑦1,𝑑𝑛𝑑
+ ⋯ 𝛽𝑦𝑛𝑦,𝑑𝑛𝑑

+
]   ,  𝛣𝑑

− = [

𝛽𝑦1,𝑑1
− ⋯ 𝛽𝑦𝑛𝑦,𝑑1

−

⋮ ⋱ ⋮
𝛽𝑦1,𝑑𝑛𝑑
− ⋯ 𝛽𝑦𝑛𝑦,𝑑𝑛𝑑

−
] 

The uncertainty related to an output change, ∆𝑦𝑖, which arises due to an input 

movement, ∆𝑢𝑗, may be characterised by the model mismatch. The steady-state output 

change prediction of the uncertain model, ∆𝑦𝑖
′, is contained inside the interval defined by 

the nominal model prediction, ∆𝑦𝑖, multiplied by  1 + 𝛽𝑦𝑖,𝑢𝑗
−  and 1 + 𝛽𝑦𝑖,𝑢𝑗

+ , as shown in 

equation 29: 

∆𝑦𝑖
𝑢 ∈ [∆𝑦𝑖 ∙ (1 + 𝛽𝑦𝑖,𝑢𝑗

− ) , ∆𝑦𝑖 ∙ (1 + 𝛽𝑦𝑖,𝑢𝑗
+ )] , 𝑖 = 1,… , 𝑛𝑦, 𝑗 = 1,… , 𝑛𝑢   (29) 

Likewise, we have for disturbances: 

∆𝑦𝑖
𝑑 ∈ [∆𝑦𝑖 ∙ (1 + 𝛽𝑦𝑖,𝑑𝑗

− ) , ∆𝑦𝑖 ∙ (1 + 𝛽𝑦𝑖,𝑑𝑗
+ )] , 𝑖 = 1,… , 𝑛𝑦, 𝑗 = 1,… , 𝑛𝑑   (30) 

For the calculation procedure presented in the section, it is also useful to define 

the uncertainty related to input changes. For instance, imagine we are able to measure 

plant output and we observe a certain dynamic response, but for some reason the input 

causing the change in the process cannot be measured. We may use the nominal plant 

model to estimate the unknown magnitude of the MV (or disturbance) change, which will 
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be contained in the value interval ∆𝑢𝑗
′ (or ∆𝑑𝑗

′), in a similar way to ∆𝑦𝑖
′. This concept is 

shown in figure 8: 

 
Figure 8 – Uncertainty in the magnitude of an unknown input change, given a 

certain output change. 

Now this concept of uncertainty is clearly defined and we have the understanding 

that it describes input and output rates of change and not absolute values. Given this 

uncertainty definition, if a linear continuous-time state-space model is being used, there 

is a relation of proportionality between ∆yi
u/∆yi and ∆uj

′/∆uj, and also between ∆yi
d/∆yi 

and ∆dj
′/∆dj. 

This proportionality also applies to the bound definition of uncertainty intervals 

(equations 29 and 30). Due to model linearity, if we multiply an MV change, ∆𝑢𝑗, by any 

real number contained in [1 + 𝛽𝑦𝑖,𝑢𝑗
− , 1 + 𝛽𝑦𝑖,𝑢𝑗

+ ], the resulting output change will be 

contained inside ∆𝑦𝑖
𝑢. Similarly, multiplying a disturbance change, ∆𝑑𝑗, by any real 

number contained in [1 + 𝛽𝑦𝑖,𝑑𝑗
− , 1 + 𝛽𝑦𝑖,𝑑𝑗

+ ], the resulting output change will be contained 

inside ∆𝑦𝑖
𝑑. We use this effect to obtain equations 31 and 32, which are respectively the 

interval of control action magnitude of the uncertain model, ∆𝑢𝑗
′, and the interval of 

disturbance magnitude of the uncertain model, ∆𝑑𝑗
′: 

∆𝑢𝑗
′ ∈ [∆𝑢𝑗 ∙ (1 + 𝛽𝑦𝑖,𝑢𝑗

− ) , ∆𝑢𝑗 ∙ (1 + 𝛽𝑦𝑖,𝑢𝑗
+ )] , 𝑖 = 1,… , 𝑛𝑦, 𝑗 = 1,… , 𝑛𝑢    (31) 

∆𝑑𝑗
′ ∈ [∆𝑑𝑗 ∙ (1 + 𝛽𝑦𝑖,𝑑𝑗

− ) , ∆𝑑𝑖 ∙ (1 + 𝛽𝑦𝑖,𝑑𝑗
+ )] , 𝑖 = 1, … , 𝑛𝑦, 𝑗 = 1, … , 𝑛𝑑    (32) 

Let us define two new variables, the uncertainty parameters 𝛾𝑦𝑖,𝑢𝑗 and 𝛾𝑦𝑖,𝑑𝑗, which 

are real numbers that can assume any value inside the limits defined by, respectively, 

[1 + 𝛽𝑦𝑖,𝑢𝑗
− , 1 + 𝛽𝑦𝑖,𝑢𝑗

+ ] and [1 + 𝛽𝑦𝑖,𝑑𝑗
− , 1 + 𝛽𝑦𝑖,𝑑𝑗

+ ], as shown in equations 33 and 34:   

𝛾𝑦𝑖𝑢𝑗 ∈ [1 + 𝛽𝑦𝑖,𝑢𝑗
− , 1 + 𝛽𝑦𝑖,𝑢𝑗

+ ]                     (33) 

𝛾𝑦𝑖𝑑𝑗 ∈ [1 + 𝛽𝑦𝑖,𝑑𝑗
− , 1 + 𝛽𝑦𝑖,𝑑𝑗

+ ]                     (34) 
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Equation 3, which calculates the output prediction of the nominal model, can be 

modified to incorporate these new variables, obtaining new output trajectories as the 

uncertainty parameters assume different values. In order to do that, instead of applying 

the original MV change ∆uk at time k, we apply γyiuj∆uk, where i = 1, …ny, j = 1,… nu. 

At time k + 1 we apply γyiuj∆uk+1 instead of ∆uk+1, and so forth until the end of the 

control horizon, k + m. The same approach can be used for disturbances. We replace ∆dk 

for γyidj∆dk at time k, where i = 1,… ny, j = 1,… nd, and then replace ∆dk+1 for 

γyidj∆dk+1 at time k + 1, and proceed likewise all the way until the end of the prediction 

horizon, k + p. These substitutions yield equation 35, enabling us to calculate a new 

output prediction of the uncertain model, y ,, where y, ∈ (∆yu⋃∆yd). 

𝑦𝑘+1
, = 𝐶𝑥𝑘+1 = 𝐶𝐴𝑥𝑘 + 𝑑𝑖𝑎𝑔(𝐶𝐵𝛤𝛥𝑢𝑘) + 𝑑𝑖𝑎𝑔(𝐶𝐵𝛤𝛥𝑑𝑘) 

𝑦𝑘+2
, = 𝐶𝑥𝑘+2 = 𝐶𝐴𝑥𝑘+1 + 𝑑𝑖𝑎𝑔(𝐶𝐵𝛤𝛥𝑢𝑘+1) + 𝑑𝑖𝑎𝑔(𝐶𝐵𝛤𝛥𝑑𝑘+1) 

= 𝐶𝐴2𝑥𝑘 + 𝑑𝑖𝑎𝑔 ([𝐶𝐴𝐵  𝐶𝐵] [
𝛤𝛥𝑢𝑘
𝛤𝛥𝑢𝑘+1

]) + 𝑑𝑖𝑎𝑔 ([𝐶𝐴𝐷  𝐶𝐷] [
𝛤𝛥𝑑𝑘
𝛤𝛥𝑑𝑘+1

])                  (35) 

                                                   ⋮ 

𝑦𝑘+𝑝
, = 𝐶𝐴𝑝𝑥𝑘 + 𝑑𝑖𝑎𝑔 ([𝐶𝐴

𝑝−1𝐵  𝐶𝐴𝑝−2𝐵 …  𝐶𝐴𝑝−𝑚𝐵][𝛤𝛥𝑢𝑘  𝛤𝛥𝑢𝑘+1 … 𝛤𝛥𝑢𝑘+𝑚−1]
𝑇
) 

+𝑑𝑖𝑎𝑔 ([𝐶𝐴𝑝−1𝐷  𝐶𝐴𝑝−2𝐷 …  𝐶𝐴2𝐷] [𝛤𝛥𝑑𝑘  𝛤𝛥𝑑𝑘+1 … 𝛤𝛥𝑑𝑘+𝑝−3]
𝑇

)       

where: 

𝛤𝛥𝑢𝑘+𝜎,𝜎=0,…,𝑚−1 =

[
 
 
 
 
𝛾𝑦1𝑢1∆𝑢𝑘+𝜎,1   𝛾𝑦2𝑢1∆𝑢𝑘+𝜎,1  ⋯

𝛾𝑦1𝑢2∆𝑢𝑘+𝜎,2   𝛾𝑦2𝑢2∆𝑢𝑘+𝜎,2  ⋯

⋮ ⋮ ⋱

    

  𝛾𝑦𝑛𝑦𝑢1∆𝑢𝑘+𝜎,1

  𝛾𝑦𝑛𝑦𝑢2∆𝑢𝑘+𝜎,2
⋮

𝛾𝑦1𝑢𝑛𝑢∆𝑢𝑘+𝜎,𝑛𝑢 𝛾𝑦2𝑢𝑛𝑢∆𝑢𝑘+𝜎,𝑛𝑢 ⋯     𝛾𝑦𝑛𝑦𝑢𝑛𝑢∆𝑢𝑘+𝜎,𝑛𝑢]
 
 
 
 

 

𝛤𝛥𝑑𝑘+𝜎,𝜎=0,…,𝑝−3 =

[
 
 
 
 
𝛾𝑦1𝑑1∆𝑑𝑘+𝜎,1   𝛾𝑦2𝑑1∆𝑑𝑘+𝜎,1  ⋯

𝛾𝑦1𝑑2∆𝑑𝑘+𝜎,2   𝛾𝑦2𝑑2∆𝑑𝑘+𝜎,2  ⋯

⋮ ⋮ ⋱

    

  𝛾𝑦𝑛𝑦𝑑1∆𝑑𝑘+𝜎,1

  𝛾𝑦𝑛𝑦𝑑2∆𝑑𝑘+𝜎,2
⋮

𝛾𝑦1𝑑𝑛𝑑∆𝑑𝑘+𝜎,𝑛𝑑 𝛾𝑦2𝑑𝑛𝑑∆𝑑𝑘+𝜎,𝑛𝑑 ⋯     𝛾𝑦𝑛𝑦𝑑𝑛𝑑∆𝑑𝑘+𝜎,𝑛𝑑]
 
 
 
 

 

The Economic MPC Optimisation Index procedure will be now updated to 

incorporate model uncertainty. Since equation 35 may be used to obtain the feasible 

intervals of predictions, the optimisation problem can be modified to provide a multilayer 

optimisation problem, enabling us to calculate the “worst” and “best” possible model 

indices. The first step of the new procedure is to solve the nominal model problem 
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described by equation 20, obtaining the optimised output prediction provided by the 

nominal model. The second step is to use equation 35 to solve two new optimisation 

problems in which the model uncertainty parameters vary within their intervals (equations 

33 and 34) in order to maximise (worst case) or minimise (best case) the index cost 

function, while keeping the same set of optimised MVs from the first step, thus obtaining 

new CV values, 𝑦 ,. Let us define the difference between the uncertain (best and worst 

cases) and nominal model’s prediction as ∆𝑦𝐵𝑀
′ = 𝑦𝐵𝑀

′ − 𝑦 and              ∆𝑦𝑊𝑀
′ = 𝑦𝑊𝑀

′ − 𝑦, 

which represents the bounded uncertainty of plant response related to process 

nonlinearity. The third and final step consists in twice solving the nominal problem again 

but with two new starting points defined by equation 36: 

𝑦𝑘
𝐵𝑀 = 𝑦𝑘 + ∆𝑦𝐵𝑀,𝑘+𝑝

′ ,   𝑦𝑘
𝑊𝑀 = 𝑦𝑘 + ∆𝑦𝑊𝑀,𝑘+𝑝

′          (36) 

The initial states must also be updated by solving equation 37: 

0 = ∑ |𝑦
𝑘
𝐵𝑀 − 𝐶𝐴𝑧𝑥𝑘

𝐵𝑀|𝑝
𝑧=0 , 0 = ∑ |𝑦

𝑘
𝑊𝑀 − 𝐶𝐴𝑧𝑥𝑘

𝑊𝑀|𝑝
𝑧=0         (37) 

One of the starting states will be more favourable than the one found using 

equation 20, leading to a lower index value, while the other less favourable, and thus 

leading to a higher index value. The control engineer may interpret this third step as being 

the necessary correction in the control actions a MPC would take when perceiving the 

mismatch between expected and real plant behaviour. The final form of the uncertain 

model economic MPC optimisation index using this 3 step procedure is given by 

equations 38 and 39:  

𝐼𝐸𝑀𝑃𝐶−𝑊𝑀 = min
∆𝑢𝐾3, 𝑦𝑘

𝑊𝑀
{ max
𝛾𝑦,𝑢,𝛾𝑦,𝑑,𝑦

,
[ min
∆𝑢𝐾1,𝑦

(|𝐸𝑃|−1|𝑆𝐿1|
−1|𝑆𝐿2|

−1𝐽𝑘+𝑝)]}      (38) 

𝐼𝐸𝑀𝑃𝐶−𝐵𝑀 = min
∆𝑢𝐾3, 𝑦𝑘

𝐵𝑀
{ min
𝛾𝑦,𝑢,𝛾𝑦,𝑑,𝑦

,
[ min
∆𝑢𝐾1,𝑦

(|𝐸𝑃|−1|𝑆𝐿1|
−1|𝑆𝐿2|

−1𝐽𝑘+𝑝)]}        (39) 

where ∆𝑢𝐾1 ∈ 𝑈, ∆𝑢𝐾3 ∈ 𝑈, 𝛾𝑦,𝑢 ∈  [𝐼𝑛𝑦,𝑛𝑢 + 𝛽𝑦,𝑢
− , 𝐼𝑛𝑦,𝑛𝑢 + 𝛽𝑦,𝑢

+ ], 𝛾𝑦,𝑑 ∈  [𝐼𝑛𝑦,𝑛𝑑 +

𝛽𝑦,𝑑
− , 𝐼𝑛𝑦,𝑛𝑑 + 𝛽𝑦,𝑑

+ ]. The difference between the nominal model index value, found at step 

1, and the value determined using equation 38 represents the increased control effort 

required for the worst model case. The lower control effort required by the best model 

case, provided by equation 39, reduces the index since the new starting point provides 

additional degrees of freedom for economic optimisation. The nominal model value is 

expected to be contained within the interval established by the best and worst cases which 



41 
 

are the limiting cases representing the largest possible performance deviation from the 

nominal model. While the shape of the distribution function is not known for the model 

parameters, it is likely that the real model is much closer to the nominal model than to the 

extreme best and worst case models. By incorporating model uncertainty, the analysis 

now provides for each flowsheet an index interval instead of a single value, bounding the 

expected MPC and optimisation performances of each plant. 

Since model uncertainty and nonlinearity are closely related, equation 38 provides 

the worst case scenario which predicts the maximum damage that model nonlinearity 

effects can cause to the process. This worst case may be either due to a poor plant response 

or the impossibility of meeting specifications. Similarly, equation 39 provides the 

maximum eventual benefits that could be brought by nonlinearity effects. The 

nonlinearity of plant behaviour is bounded if this extended method is used. 

Let us use as example plant 2, scenario 2, which had the worst result (due to space 

limitations model uncertainty will not be evaluated for all cases and flowsheets).  The 

uncertainty matrices 𝛣𝑢
+, 𝛣𝑢

−, 𝛣𝑑
+ and 𝛣𝑑

− for this flowsheet can be found in the appendix 

(tables 27 to 30). Applying the method described in this section it is possible to obtain an 

index interval inside which the real flowsheet will be contained. Tables 16, 17 and 18 

presents the results provided by best and worst flowsheets within model uncertainty limits 

and how they compare to the nominal model. 

Plant 2 

Case 2 

Step 1 Step 2 Step 3 

Nominal  

Model 

Worst  

Case 

Best 

 Case 

Worst  

Case 

Best 

 Case 

𝒚𝟏 45.78 43.76 47.66 41.69 46.03 

𝒚𝟐 85.75 85.82 85.84 87.27 85.73 

𝒚𝟑 280.16 281.29 279.46 278.01 288.35 

𝒚𝟒 345.97 361.89 344.65 341.52 323.93 

𝒚𝟓 370 392.02 370.00 370.00 369.99 

𝒚𝟔 -15 -11.50 -15.01 -15.00 -17.18 

𝒚𝟕 821.35 821.33 821.81 820.09 859.71 

𝒚𝟖 253.36 255.44 255.18 255.08 252.17 

𝒚𝟗 59.29 56.27 57.58 56.38 51.00 

𝒚𝟏𝟎 818.29 818.18 818.20 821.05 820.43 

𝒚𝟏𝟏 -66.62 -67.29 -67.09 -68.13 -76.91 

Table 16 – Uncertain models’ CVs. 
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Plant 2 

Case 2 

Step 1/2 Step 3 

Nominal  

Model 

Worst  

Case 

Best 

 Case 

𝒖𝟏 40.00 40.00 67.94 

𝒖𝟐 320.00 320.00 332.24 

𝒖𝟑 154.92 170.02 72.77 

𝒖𝟒 0.03 12.29 59.91 

𝒖𝟓 23.59 52.76 261.59 

𝒖𝟔 686.41 657.24 434.29 

𝒖𝟕 0.00 0.00 14.11 

𝒅𝟏 90.00 90.00 90.00 

Table 17 – Uncertain models’ MVs 

Plant 2 Nominal 

Model 

Best 

Model 

Worst 

Model 

Case 2 – Step 3 34,718.4 16,744.0 4,342,402.4 

                                     Table 18 – Uncertain models’ indices      

These tables show that inside the range of uncertainty parameters obtained 

through model identification for plant 2, there is a best possible model that would be 

capable of producing diesel within specification, something that the nominal plant 2 is 

not capable of accomplishing. The worst case plant is much further away from acceptable 

performance than the nominal plant. For the worst-case plant 2, there is no opportunity 

for acceptable MPC performance – a MPC package capable of delivering good 

performance does not exist since it is not achievable for these conditions. 

The best and worst case models are situated at the extremes of model uncertainty 

and thus are highly unlikely, if not impossible, to be true. If the user is willing to adopt a 

less rigorous approach in order to obtain a more meaningful index interval, one should 

consider using the standard deviation of negative and positive relative model mismatches 

to calculate parameters 𝛽𝑦,𝑢
+ , 𝛽𝑦,𝑢

− , 𝛽𝑦,𝑑
+  and 𝛽𝑦,𝑑

−  instead of respectively minimum and 

maximum values. The interval thus obtained might enable better comparison between 

plants. 

6 Conclusions and Future work 

The work presented a new method to assess the expected controllability, control 

resilience and profitability of chemical plants where zone constrained or traditional model 

predictive control is to be used. Here we have used models derived from simulation step 
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tests to aid practical implementation and hence encourage its use.  A new economic cost 

index which included elements of controller performance has been developed which 

enables us to compare designs.  The index includes constraint violations, enforcing for 

hard constraints but allowing some leniency where necessary for soft constraints, and 

smoothness of response.  Best and worst case bounds can be obtained to allow for 

nonlinearity of the system. The approach has been demonstrated on a problem of 

considerable complexity, a crude distillation system. 

When making use of linear models it is assumed that the process is nearly linear, 

at least locally, otherwise the model would be invalid when the present values for the 

variables are too distant from the base case where the model parameters were obtained. 

Some error due to linearisation can be tolerated but it is necessary to assess whether or 

not it compromises the whole analysis. If the assumption of a linear model derived from 

process simulation is reasonably valid within the zone constraints of the control problem, 

it won’t compromise the use of the economic MPC optimization index as presented here. 

However, we have provided a method for quantifying the effects of model nonlinearity 

and uncertainty on the index and obtaining an index interval that bounds plant 

performance.  

Nonlinearity effects tend to affect the dynamic response of different flowsheets in 

a similar way. In particular, the final steady state usually moves in the same direction. For 

instance consider figure 6 where we compare the diesel flash point (𝑦2) dynamic response 

for the base and pre-flash plants, following an increase in medium crude oil flow rate 

(∆𝑢5 = +20 𝑚
3). In case 1, both plants were processing a heavy mix of crude oil at a 

high furnace outlet temperature, whereas in case 2 both plants operated with a much 

lighter oil mix at low outlet temperature. Due to process nonlinearity, the significant 

change in operating starting point in effect modified by some degree the size of decrease 

in 2y . However the changes were in the same direction (a lower decrease in case 2 relative 

to case 1 for both plants).  Since all plants are similarly affected by changes in operating 

point and the effects of nonlinearity, they produce smaller changes in the final results and 

the analysis done with linear models should remain valid unless differences in the index’s 

scores are very small. MPC packages in industrial applications make successful use of 

linear models, showing that most of the time these effects can be ignored for control 

purposes. 
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Figure 6 – Comparing nonlinearity for 2 different plants. 

Future work will develop a multi-model approach where multiple linear models 

with different validity zones are used. The use of nonlinear state-space models based on 

phenomenological models and infinite prediction horizon will also be explored.  The 

downside of these alternatives would likely be the increased computational costs which 

will reduce the range of processes for which the approach can be applied.  

At the time of writing, even when linear models are used, solving the economic 

MPC optimisation index involves significant computational cost when dealing with 

complex systems. For example, the problem described in section 3 and 4 was solved using 

MATLAB® R2014a running on a 3GHz quad-core Intel Xeon E5-1607 CPU, of which 

50% of its capacity was available to the solver. Each iteration takes between 25 and 45 

minutes. The computational demand can be much reduced by using smaller control or 

prediction horizons, 𝑚 and 𝑝. Using 𝑚 = 1 reduces the computing time necessary to each 

iteration to only 3-5 minutes. However it is recommend to set 𝑚 as high as possible, 

enabling additional degrees of freedom for the algorithm, which in turn leads to less 

conservative control actions. On the other hand, 𝑘 only needs to be high enough to 

compute the whole transient prediction. 
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Appendix  

Continuous-Time Transfer Functions for the Crude Oil Distillation Process 

As discussed in section 3.2, this work made use of the output prediction oriented 

model (OPOM), a state-space formulation that is built upon the transfer functions that 

define the interaction between each pair of manipulated/disturbance and controlled 

variable. In order to identify these models, a series of step tests was carried using the 

dynamic simulations of the four different designs of the crude oil distillation process 

presented in section 4. Tables from 14 to 21 display parameters to be substituted in 

equation 19 as a means to represent each model as a 5th order transfer function. 
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Table 19 – Plant 1 – Transfer Function Numerator Parameters 

P1 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 -0.00105818 0.00042034 0 0 0 0 0 0 

b4 -0.00056843 -0.00039612 0 0 0 0 0 0 

b3 0.00108421 -0.00003100 -0.00055424 0 0 0 0 0 

b2 0.00006603 0.00010802 -0.00896867 0 0 0 0 0 

b1 0.00000054 0.00000079 -0.00003071 0.02139236 0.00121968 0.00176262 0.00108316 -0.00034149 

b0 0 0 0.00001280 0.00035320 -0.00012844 -0.00017392 -0.00011947 -0.00000220 

y2 

b5 0.00679037 0 0 0 0 0 0 0 

b4 -0.00603944 0 0 0 0 0 0 0 

b3 0.00170123 0.01504257 0 0 0 0 0 0 

b2 0.00048806 -0.01420358 0 0 0 0 0 0 

b1 0.00001045 0.00442552 0.00248820 0.03528191 -0.00224608 -0.00275145 -0.00181754 -0.00179053 

b0 0.00000002 0.00001929 0.00001545 0.00050681 -0.00000431 -0.00000197 -0.00000513 -0.00000782 

y3 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 -0.00040067 0 0 0 0 

b3 0.01553926 0.02977826 0 6.86898674 0 0 0 0 

b2 -0.02796074 -0.02257607 0 4.24330364 0 0 0 0 

b1 0.00831718 0.00640430 -0.09726105 0.54925112 0.02443288 0.03043380 0.01918137 -0.00480119 

b0 0.00013150 -0.00006168 0.01421374 0.00673292 -0.00236608 -0.00287664 -0.00189252 -0.00001670 

y4 

b5 0 0 0 0 0 0 0 0 

b4 0.00781357 0 0 0 0 0 0 0 

b3 -0.00926354 0.02105311 0 0 0 0 0 0 

b2 0.00214191 -0.01587539 0 0 0 0 0 0 

b1 0.00024485 0.00425530 -0.10991325 0.15626595 0.01542513 0.01904798 0.01229491 -0.00371796 

b0 0.00000197 -0.00005474 0.01070043 0.00297900 -0.00176067 -0.00208362 -0.00143810 -0.00001546 

y5 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0 0 0 0 0 0 0 

b2 -0.00245307 0 0 0 0 0 0 0 

b1 0.00024504 0.01313890 -0.03147818 0.12605222 0.00626059 0.00755384 0.00499517 -0.00196314 

b0 0.00017616 -0.00018301 0.00264057 0.00388943 -0.00061168 -0.00070769 -0.00050397 -0.00013213 

y6 

b5 0.00362844 0 0 0 0 0 0 0 

b4 0.00391296 0 0 0 0 0 0 0 

b3 -0.00518816 0.01556868 0 0 0 0 0 0 

b2 0.00187936 -0.01177573 0 0 0 0 0 0 

b1 0.00002980 0.00320614 -0.03571791 0.09379727 0.01108018 0.01385702 0.00860859 -0.00212006 

b0 0 -0.00002768 0.00425902 0.00710740 -0.00099387 -0.00121532 -0.00078800 -0.00000685 

y7 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0.00561809 0 0 0 0 0 0 

b2 0 -0.00410249 0 0 0 0 0 0 

b1 0.00315502 0.00103698 -0.26102578 0.03456394 0.02435825 0.02265670 0.02866951 0.13951032 

b0 0.00003672 -0.00001600 -0.00244054 0.00064642 -0.00062013 -0.00069358 -0.00057060 -0.00098788 

y8 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 -0.01984206 0 0 0 0 0 0 0 

b2 0.01032112 0 0 0 0 0 0 0 

b1 0.00000003 0.00773138 -0.00014980 -0.00014347 0.00832288 0.00964860 0.00631374 -0.00260981 

b0 0.00000009 -0.00015699 0.00013360 0.00000367 -0.00087961 -0.00105437 -0.00065952 -0.00001146 

y9 

b5 0 -0.00059149 0 0 0 0 0 0 

b4 0 0.00049619 0 0 0 0 0 0 

b3 -0.00716071 -0.00026858 0 0 0 0 0 0 

b2 0.00377624 0.00013675 0 0 0 0 0 0 

b1 0.00032277 -0.00000042 0.00008754 -0.00003582 -0.00070503 -0.00092152 -0.00055914 -0.00078310 

b0 0.00000234 -0.00000001 0.00000182 0.00000118 -0.00000049 -0.00000018 -0.00000189 -0.00000523 

y10 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0 0 0 0 0 0 0 

b2 0 0 0 0 0 0 0 0 

b1 0.00396175 0.00276120 0.00005984 0.00000856 0.00987724 0.01017977 0.00916876 -0.00026726 

b0 0.00002691 -0.00006181 -0.00000001 -0.00000002 -0.00071999 -0.00084555 -0.00054283 -0.00000528 

y11 

b5 0 0 0 0 0 0 0 0 

b4 0 0.00015430 0 0 0 0 0 0 

b3 -0.00179741 -0.00010968 0 0 0 0 0 0 

b2 0.00339504 0.00013629 0 0 0 0 0 0 

b1 0.00028796 -0.00000261 0.00004086 -0.00005324 0.00287173 0.00397110 0.00223878 -0.00077358 

b0 0.00000205 -0.00000006 0 0.00000205 -0.00037071 -0.00051908 -0.00027936 -0.00000293 
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Table 20 – Plant 1 – Transfer Function Denominator Parameters 

P1 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 1 1 0 0 0 0 0 0 

a4 1.36366801 0.26264684 0 0 0 0 0 0 

a3 0.09234154 0.04216460 1 0 0 0 0 0 

a2 0.00147621 0.00312024 0.68167658 1 1 1 1 1 

a1 0.00000680 0.00005366 0.03560013 0.37340324 0.31033466 0.34452964 0.35176847 0.02193683 

a0 0 0.00000026 0.00030782 0.00407043 0.00322648 0.00354395 0.00370116 0.00007177 

y2 

a5 1 0 0 0 0 0 0 0 

a4 0.29949751 0 0 0 0 0 0 0 

a3 0.06488160 1 0 0 0 0 0 0 

a2 0.00306087 0.14054801 1 1 1 1 1 1 

a1 0.00002895 0.01763127 0.03620743 0.43866775 0.01528766 0.01367732 0.01666919 0.02230786 

a0 0.00000005 0.00022272 0.00017480 0.00526192 0.00002434 0.00000847 0.00003723 0.00005905 

y3 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 1 0 0 0 0 

a3 1 1 0 46.03110338 0 0 0 0 

a2 0.37554760 0.13570009 1 17.58709116 1 1 1 1 

a1 0.02516782 0.01664963 1.21089344 1.56310701 0.30891927 0.30998539 0.30139694 0.02815219 

a0 0.00021989 0.00035331 0.03459826 0.01624211 0.00785270 0.00778083 0.00785004 0.00007089 

y4 

a5 0 0 0 0 0 0 0 0 

a4 1 0 0 0 0 0 0 0 

a3 0.22287789 1 0 0 0 0 0 0 

a2 0.02825536 0.12988569 1 1 1 1 1 1 

a1 0.00057221 0.01387728 1.13116353 0.38330062 0.34581491 0.33921567 0.34447801 0.01855660 

a0 0.00000268 0.00016161 0.01587600 0.00436194 0.00437167 0.00425213 0.00442939 0.00004917 

y5 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 

a3 1 0 0 0 0 0 0 0 

a2 0.18435735 1 1 1 1 1 1 1 

a1 0.03079164 0.05226808 0.36874216 0.53383295 0.17203977 0.16586337 0.17312671 0.06442452 

a0 0.00024846 0.00043811 0.00357386 0.00508517 0.00150286 0.00143274 0.00153275 0.00041912 

y6 

a5 1 0 0 0 0 0 0 0 

a4 0.37737981 0 0 0 0 0 0 0 

a3 0.19790672 1 0 0 0 0 0 0 

a2 0.01217853 0.14981125 1 1 1 1 1 1 

a1 0.00012641 0.01813079 0.93067637 0.80316627 0.25988499 0.26252973 0.25255726 0.03198192 

a0 0 0.00046621 0.03645834 0.03933381 0.00865629 0.00860474 0.00864419 0.00007701 

y7 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 

a3 0 1 0 0 0 0 0 0 

a2 1 0.10820676 1 1 1 1 1 1 

a1 0.03860094 0.01385937 0.76285742 0.38462990 0.62609412 0.53592590 0.79156012 3.68800514 

a0 0.00026153 0.00020083 0.01086380 0.00454312 0.01119549 0.00949914 0.01428156 0.04281448 

y8 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 

a3 1 0 0 0 0 0 0 0 

a2 0.01125625 1 1 1 1 1 1 1 

a1 0.00000908 0.06213082 0.53419340 0.04302812 0.21492739 0.21375936 0.21397409 0.01718509 

a0 0.00000010 0.00063973 0.00510207 0.00034629 0.00225498 0.00221746 0.00225901 0.00004192 

y9 

a5 0 1 0 0 0 0 0 0 

a4 0 0.37650807 0 0 0 0 0 0 

a3 1 0.06332451 0 0 0 0 0 0 

a2 0.12833073 0.00623091 1 1 1 1 1 1 

a1 0.00206372 0.00012364 0.08671226 0.16918886 0.00749110 0.00715718 0.01098416 0.02361598 

a0 0.00000679 0.00000045 0.00046283 0.00081333 0.00000412 0.00000056 0.00002285 0.00006049 

y10 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 

a3 0 0 0 0 0 0 0 0 

a2 1 1 1 1 1 1 1 1 

a1 0.02159885 0.09590390 0.01255660 0.00102691 0.71893254 0.66024677 0.73703103 0.01790781 

a0 0.00008608 0.00120329 0 0 0.00755526 0.00696963 0.00779396 0.00007437 

y11 

a5 0 1 0 0 0 0 0 0 

a4 0 0.40106484 0 0 0 0 0 0 

a3 1 0.06563132 0 0 0 0 0 0 

a2 0.09943133 0.00682578 1 1 1 1 1 1 

a1 0.00206009 0.00019807 0.01363191 0.08976900 0.33146117 0.36683151 0.32300744 0.02239869 

a0 0.00001011 0.00000152 0.00000111 0.00125016 0.00542167 0.00584097 0.00535404 0.00005439 
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Table 21 – Plant 2 – Transfer Function Numerator Parameters 

P2 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 -0.00018774 0.00147645 0 0 0 0 0 0 

b4 -0.00000214 0.00014399 0 0 0 0 0 0 

b3 0.00000166 0.00001765 0.00006663 0 0 0 0 0 

b2 0 0.00000027 -0.00001160 0 0 0 0 0 

b1 0 0 0.00000046 0.00004259 0.00000418 0.00000595 0.00000450 -0.00002998 

b0 0 0 0.00000008 0.00000087 -0.00000075 -0.00000091 -0.00000060 -0.00000008 

y2 

b5 -0.00604111 0 0 0 0 0 0 0 

b4 -0.00055015 0 0 0 0 0 0 0 

b3 -0.00000014 0.00058977 0 0 0 0 0 0 

b2 0.00000048 -0.00030489 0 0 0 0 0 0 

b1 0.00000001 0.00004494 -0.00001157 0.00007577 -0.00000032 0.00000321 0.00000323 -0.00002018 

b0 0 0.00000065 0.00000230 0.00000001 -0.00000181 -0.00000218 -0.00000147 0.00000004 

y3 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 -0.00343149 0 0 0 0 

b3 0.00207776 -0.00543070 0 0.00049288 0 0 0 0 

b2 0.00005860 0.00058305 0 0.00003009 0 0 0 0 

b1 0.00003830 0.00000057 -0.00006850 0.00000019 0.00007767 0.00008932 0.00008184 -0.00062480 

b0 0.00000054 -0.00000007 0.00001848 0 -0.00001248 -0.00001503 -0.00001028 -0.00000336 

y4 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 -0.00132885 0 0 0 0 0 0 

b2 0.00268940 -0.00018634 0 0 0 0 0 0 

b1 0.00014403 0.00006126 -0.00013679 0.00068009 0.00007461 0.00008422 0.00007217 -0.00021301 

b0 0.00001479 -0.00000082 0.00001653 0.00001510 -0.00000910 -0.00001096 -0.00000746 -0.00000280 

y5 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0 0 0 0 0 0 0 

b2 -0.00047125 0 0 0 0 0 0 0 

b1 0.00001740 0.00044177 -0.00015009 0.00037935 0.00012115 0.00012678 0.00010285 -0.00014484 

b0 0 -0.00000577 0.00001293 0.00001324 -0.00000646 -0.00000780 -0.00000531 -0.00000265 

y6 

b5 -0.00571228 0 0 0 0 0 0 0 

b4 -0.00032045 0 0 0 0 0 0 0 

b3 0.00002251 0.00052189 0 0 0 0 0 0 

b2 0.00000087 -0.00031259 0 0 0 0 0 0 

b1 0.00000001 0.00004551 -0.00010539 0.00004944 0.00008004 0.00009605 0.00007625 0.00001400 

b0 0 -0.00000040 0.00001275 0.00004390 -0.00000760 -0.00000914 -0.00000628 -0.00003246 

y7 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0.00567759 0 0 0 0 0 -0.00286620 

b2 0 -0.00410884 0 0 0 0 0 0.06918149 

b1 0.00315703 0.00103824 -0.26074940 0.03467888 0.02423986 0.02263684 0.02888788 -0.00009883 

b0 0.00003633 -0.00001601 -0.00243858 0.00064345 -0.00061709 -0.00069309 -0.00057488 -0.00000185 

y8 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 -0.01982822 0 0 0 0 0 0 0 

b2 0.01031364 0 0 0 0 0 0 0 

b1 0.00000003 0.00773426 -0.00014768 -0.00014429 0.00832686 0.00965079 0.00631434 -0.00292617 

b0 0.00000010 -0.00015699 0.00013260 0.00000367 -0.00087983 -0.00105450 -0.00065968 -0.00001558 

y9 

b5 0 0.00006324 0 0 0 0 0 0 

b4 0 -0.00001981 0 0 0 0 0 0 

b3 -0.00552608 0.00000592 0 0 0 0 0 0 

b2 0.00003670 -0.00000004 0 0 0 0 0 0 

b1 0.00000400 0 0.00000103 0.00000114 -0.00000837 -0.00000779 -0.00000414 -0.00005138 

b0 0 0 0.00000005 0 -0.00000131 -0.00000163 -0.00000094 -0.00000037 

y10 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0 0 0 0 0 0 0 

b2 0 0 0 0 0 0 0 0 

b1 0.00396161 0.00276129 0.00005970 0.00000854 0.00987424 0.01017849 0.00922054 -0.00024472 

b0 0.00002689 -0.00006180 -0.00000001 -0.00000002 -0.00071961 -0.00084560 -0.00054567 -0.00000796 

y11 

b5 0 0 0 0 0 0 0 0 

b4 0 0.00002798 0 0 0 0 0 0 

b3 0.00109664 -0.00000455 0 0 0 0 0 0 

b2 0.00006766 0.00000192 0 0 0 0 0 0 

b1 0.00000707 -0.00000005 0.00000012 0.00000106 0.00003534 0.00002000 0.00001609 -0.00001741 

b0 0.00000023 0 0.00000007 0.00000003 -0.00000207 -0.00000248 -0.00000152 0.00000005 
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Table 22 – Plant 2 – Transfer Function Denominator Parameters 

P2 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 1 1 0 0 0 0 0 0 

a4 0.01714772 0.11294159 0 0 0 0 0 0 

a3 0.00005084 0.01412991 1 0 0 0 0 0 

a2 0.00000050 0.00006624 0.10680783 1 1 1 1 1 

a1 0 0.00000004 0.00130945 0.01303862 0.01284120 0.01292737 0.01302207 0.00251888 

a0 0 0 0.00000193 0.00001958 0.00001892 0.00001897 0.00001944 0.00000282 

y2 

a5 1 0 0 0 0 0 0 0 

a4 0.12412928 0 0 0 0 0 0 0 

a3 0.00391192 1 0 0 0 0 0 0 

a2 0.00004761 0.14063439 1 1 1 1 1 1 

a1 0.00000007 0.00253530 0.04425476 0.00183187 0.01788072 0.01741509 0.01830251 0 

a0 0 0.00000411 0.00007389 0.00000013 0.00002620 0.00002571 0.00002731 0.00000026 

y3 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 1 0 0 0 0 

a3 1 1 0 0.04797087 0 0 0 0 

a2 0.06203264 0.03188063 1 0.00033828 1 1 1 1 

a1 0.00062186 0.00027210 0.02741094 0.00000053 0.02559482 0.02515364 0.02624496 0.01041877 

a0 0.00000089 0.00000037 0.00004411 0 0.00003960 0.00003883 0.00004113 0.00000349 

y4 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 

a3 0 1 0 0 0 0 0 0 

a2 1 0.12310097 1 1 1 1 1 1 

a1 0.01341609 0.00159427 0.01573947 0.01439703 0.01481716 0.01466346 0.01500543 0.00671748 

a0 0.00001956 0.00000240 0.00002407 0.00002200 0.00002201 0.00002171 0.00002255 0.00000885 

y5 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 

a3 1 0 0 0 0 0 0 0 

a2 0.01705386 1 1 1 1 1 1 1 

a1 0.00002035 0.00915569 0.01163580 0.01160280 0.01099575 0.01086539 0.01111255 0.00636816 

a0 0 0.00001440 0.00001724 0.00001732 0.00001618 0.00001582 0.00001648 0.00000831 

y6 

a5 1 0 0 0 0 0 0 0 

a4 0.11480197 0 0 0 0 0 0 0 

a3 0.00286161 1 0 0 0 0 0 0 

a2 0.00002125 0.12008429 1 1 1 1 1 1 

a1 0.00000003 0.00425409 0.06397040 0.21872143 0.04051925 0.03956747 0.04214022 0.25722627 

a0 0 0.00000714 0.00011094 0.00038591 0.00006576 0.00006407 0.00006928 0.00026217 

y7 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 

a3 0 1 0 0 0 0 0 1 

a2 1 0.10828070 1 1 1 1 1 1.42914642 

a1 0.03846274 0.01387072 0.76201213 0.38478220 0.62306946 0.53563021 0.79758883 0.03383366 

a0 0.00025870 0.00020105 0.01085486 0.00452169 0.01114221 0.00949230 0.01438864 0.00008011 

y8 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 

a3 1 0 0 0 0 0 0 0 

a2 0.01125410 1 1 1 1 1 1 1 

a1 0.00000920 0.06213124 0.53034874 0.04302060 0.21497917 0.21378488 0.21402466 0.02060087 

a0 0.00000010 0.00063978 0.00506432 0.00034658 0.00225555 0.00221773 0.00225956 0.00005659 

y9 

a5 0 1 0 0 0 0 0 0 

a4 0 0.14695206 0 0 0 0 0 0 

a3 1 0.00245709 0 0 0 0 0 0 

a2 0.00941951 0.00001660 1 1 1 1 1 1 

a1 0.00000759 0.00000008 0.01011649 0 0.00924142 0.00907954 0.00885333 0.00381538 

a0 0 0 0.00001189 0.00000028 0.00001081 0.00001079 0.00001083 0.00000434 

y10 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 

a3 0 0 0 0 0 0 0 0 

a2 1 1 1 1 1 1 1 1 

a1 0.02159305 0.09591554 0.01254107 0.00100962 0.71853627 0.66029395 0.74081993 0.02447674 

a0 0.00008602 0.00120310 0 0 0.00755120 0.00696994 0.00783462 0.00011159 

y11 

a5 0 1 0 0 0 0 0 0 

a4 0 0.39354906 0 0 0 0 0 0 

a3 1 0.04280596 0 0 0 0 0 0 

a2 0.06007570 0.00107141 1 1 1 1 1 1 

a1 0.00077089 0.00000320 0.01523808 0.01041895 0.01915250 0.01859453 0.01913125 0 

a0 0.00000113 0 0.00002304 0.00001148 0.00003061 0.00002825 0.00002939 0.00000028 
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Table 23 – Plant 3 – Transfer Function Numerator Parameters 

P3 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 -0.00161290 0.00008043 0 0 0 0 0 0 

b4 -0.00001942 0.00000408 0 0 0 0 0 0 

b3 0.00039506 -0.00012489 -0.00054449 0 0 0 0 0 

b2 0.00002450 0.00007704 -0.00884968 0 0 0 0 0 

b1 0.00000033 0.00000079 -0.00001294 0.02024509 0.00112454 0.00153559 0.00096894 -0.00026309 

b0 0 0 0.00000782 0.00025084 -0.00013057 -0.00016574 -0.00011712 -0.00000148 

y2 

b5 -0.00218441 0 0 0 0 0 0 0 

b4 0.01040511 0 0 0 0 0 0 0 

b3 -0.00799950 0.01532212 0 0 0 0 0 0 

b2 0.00252486 -0.01151497 0 0 0 0 0 0 

b1 0.00013528 0.00299862 0.00201796 0.03148049 -0.00191849 -0.00234263 -0.00156138 -0.00157588 

b0 0.00000094 0.00001234 0.00000927 0.00033056 -0.00000605 -0.00000564 -0.00000660 -0.00000764 

y3 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0.00019890 0 0 0 0 

b3 0.01095129 0.02010699 0 4.58116571 0 0 0 0 

b2 -0.02483896 -0.01335635 0 2.98617164 0 0 0 0 

b1 0.00820037 0.00363976 -0.09200937 0.44223885 0.02100254 0.02610078 0.01658650 -0.00424600 

b0 0.00009258 -0.00004286 0.01091960 0.00440818 -0.00213627 -0.00259634 -0.00170705 -0.00001550 

y4 

b5 0 0 0 0 0 0 0 0 

b4 0.00682135 0 0 0 0 0 0 0 

b3 -0.00816945 0.01036191 0 0 0 0 0 0 

b2 0.00188302 -0.00820750 0 0 0 0 0 0 

b1 0.00021007 0.00225827 -0.11009818 0.14720726 0.01300538 0.01604061 0.01049799 -0.00349863 

b0 0.00000160 -0.00003513 0.00871862 0.00214211 -0.00164513 -0.00194120 -0.00133927 -0.00002119 

y5 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0 0 0 0 0 0 0 

b2 -0.00192037 0 0 0 0 0 0 0 

b1 0.00018122 0.00856747 -0.03127132 0.11498499 0.00505431 0.00604381 0.00407196 -0.01213690 

b0 0.00015405 -0.00014082 0.00214370 0.00263465 -0.00050539 -0.00058055 -0.00041487 -0.01756267 

y6 

b5 -0.00075758 0 0 0 0 0 0 0 

b4 0.00575897 0 0 0 0 0 0 0 

b3 -0.00520181 0.01155428 0 0 0 0 0 0 

b2 0.00169798 -0.00744122 0 0 0 0 0 0 

b1 0.00009839 0.00187977 -0.03313173 0.11388954 0.00958047 0.01191169 0.00748200 -0.00189899 

b0 0.00000047 -0.00001988 0.00321106 0.01219921 -0.00088504 -0.00107870 -0.00070246 -0.00000632 

y7 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0.00121229 0 0 0 0 0 0 

b2 0 -0.00178098 0 0 0 0 0 0 

b1 0.00267801 0.00049209 -0.25565186 0.03173403 0.03292907 0.02799681 0.04160051 9.39293016 

b0 0.00002573 -0.00000964 -0.00193167 0.00041422 -0.00074972 -0.00078082 -0.00072543 -0.05676959 

y8 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0.09205938 0 0 0 0 0 0 0 

b2 0.00620517 0 0 0 0 0 0 0 

b1 0.00003672 0.00437241 -0.00013281 0.00005851 0.00585489 0.00675517 0.00442002 -0.00165014 

b0 0.00000002 -0.00012916 0.00005328 -0.00000002 -0.00062297 -0.00075644 -0.00046743 -0.00000489 

y9 

b5 0 -0.00059059 0 0 0 0 0 0 

b4 0 0.00041521 0 0 0 0 0 0 

b3 -0.00598629 -0.00010556 0 0 0 0 0 0 

b2 0.00318122 0.00004742 0 0 0 0 0 0 

b1 0.00036420 -0.00000031 0.00005921 -0.00001364 -0.00059423 -0.00076368 -0.00045953 -0.00069813 

b0 0.00000240 0 0.00000100 0.00000055 -0.00000009 -0.00000020 -0.00000115 -0.00000529 

y10 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0 0 0 0 0 0 0 

b2 0 0 0 0 0 0 0 0 

b1 0.00310277 0.00173269 0.00004467 0.00000963 0.00963113 0.00705205 0.00904038 -0.00051427 

b0 0.00001797 -0.00006038 -0.00000001 0.00000041 -0.00066352 -0.00058644 -0.00048999 -0.00000358 

y11 

b5 0 0 0 0 0 0 0 0 

b4 0 0.00007460 0 0 0 0 0 0 

b3 -0.00037588 0.00003362 0 0 0 0 0 0 

b2 0.00267446 0.00003877 0 0 0 0 0 0 

b1 0.00050490 -0.00000037 -0.00002233 -0.00004926 0.00224305 0.00415768 0.00181170 -0.00058252 

b0 0.00000265 -0.00000009 0.00001965 0.00000297 -0.00030195 -0.00051715 -0.00023705 -0.00000194 
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Table 24 – Plant 3 – Transfer Function Denominator Parameters 

P3 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 1 1 0 0 0 0 0 0 

a4 0.60616366 0.26006504 0 0 0 0 0 0 

a3 0.04003953 0.04040114 1 0 0 0 0 0 

a2 0.00083667 0.00285457 0.67672652 1 1 1 1 1 

a1 0.00000422 0.00004973 0.02802616 0.34553608 0.39651350 0.41650526 0.43808977 0.01669236 

a0 0 0.00000023 0.00019015 0.00290484 0.00327246 0.00341690 0.00367504 0.00004821 

y2 

a5 1 0 0 0 0 0 0 0 

a4 0.73338773 0 0 0 0 0 0 0 

a3 0.30252888 1 0 0 0 0 0 0 

a2 0.03196168 0.13151790 1 1 1 1 1 1 

a1 0.00055550 0.01411709 0.02875371 0.37612675 0.01499550 0.01383684 0.01664834 0.02144646 

a0 0.00000227 0.00014080 0.00010432 0.00342748 0.00003450 0.00002557 0.00004824 0.00005771 

y3 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 1 0 0 0 0 

a3 1 1 0 30.57056552 0 0 0 0 

a2 0.48323275 0.12222426 1 12.99983459 1 1 1 1 

a1 0.02350459 0.01333325 1.15251139 1.24281174 0.34386181 0.34402516 0.33617157 0.02582544 

a0 0.00015477 0.00024303 0.02663119 0.01061586 0.00711138 0.00704405 0.00710418 0.00006556 

y4 

a5 0 0 0 0 0 0 0 0 

a4 1 0 0 0 0 0 0 0 

a3 0.24682552 1 0 0 0 0 0 0 

a2 0.02911368 0.10920344 1 1 1 1 1 1 

a1 0.00052769 0.01078674 1.16076062 0.35068568 0.40412591 0.39464666 0.40185801 0.02103288 

a0 0.00000218 0.00010262 0.01295549 0.00313854 0.00409003 0.00396640 0.00413259 0.00006688 

y5 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 

a3 1 0 0 0 0 0 0 0 

a2 0.19728464 1 1 1 1 1 1 1 

a1 0.03373426 0.04940690 0.37952403 0.46431275 0.17888196 0.17098216 0.17959950 9.65369794 

a0 0.00021699 0.00033173 0.00289534 0.00343470 0.00123983 0.00117319 0.00126066 0.05530446 

y6 

a5 1 0 0 0 0 0 0 0 

a4 0.65957664 0 0 0 0 0 0 0 

a3 0.22269097 1 0 0 0 0 0 0 

a2 0.02250019 0.13949382 1 1 1 1 1 1 

a1 0.00051595 0.01467835 0.86032882 1.07844538 0.28219311 0.28348602 0.27530588 0.02936023 

a0 0.00000196 0.00033151 0.02757344 0.06770926 0.00773520 0.00766312 0.00773408 0.00007096 

y7 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 

a3 0 1 0 0 0 0 0 0 

a2 1 0.08725273 1 1 1 1 1 1 

a1 0.03312328 0.01017913 0.73885014 0.33524447 0.94763699 0.75232933 1.26428402 276.11678502 

a0 0.00018177 0.00012047 0.00858640 0.00288218 0.01360218 0.01074938 0.01827899 2.39957106 

y8 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 

a3 1 0 0 0 0 0 0 0 

a2 0.01057821 1 1 1 1 1 1 1 

a1 0.00004423 0.06299703 0.25806181 0.00496132 0.19510464 0.19640850 0.19460712 0.01029938 

a0 0.00000001 0.00052878 0.00205527 0 0.00163304 0.00162326 0.00163627 0.00001868 

y9 

a5 0 1 0 0 0 0 0 0 

a4 0 0.26640812 0 0 0 0 0 0 

a3 1 0.04281507 0 0 0 0 0 0 

a2 0.17198260 0.00341701 1 1 1 1 1 1 

a1 0.00250734 0.00006023 0.05626396 0.07767206 0.00599493 0.00616802 0.00885345 0.02489282 

a0 0.00000701 0.00000019 0.00025698 0.00041129 0 0.00000066 0.00001368 0.00006095 

y10 

a5 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 

a3 0 0 0 0 0 0 0 0 

a2 1 1 1 1 1 1 1 1 

a1 0.01741610 0.10980178 0.00917391 0.02118988 0.83101837 0.55217599 0.83145014 0.01907029 

a0 0.00005770 0.00117154 0 0.00013578 0.00700103 0.00471769 0.00707324 0.00004898 

y11 

a5 0 1 0 0 0 0 0 0 

a4 0 0.28079827 0 0 0 0 0 0 

a3 1 0.04833173 0 0 0 0 0 0 

a2 0.19768300 0.00445632 1 1 1 1 1 1 

a1 0.00353637 0.00019380 0.54226850 0.13936678 0.33816196 0.46152256 0.34547457 0.01687142 

a0 0.00001309 0.00000247 0.00646498 0.00174467 0.00440564 0.00595548 0.00453658 0.00003605 
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Table 25 – Plant 4 – Transfer Function Numerator Parameters 

P4 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

 

b5 0.00043288 -0.00042324  0  0  0  0  0  0 

b4 -0.00012997 -0.00014724  0  0  0  0  0  0 

b3 -0.00005906 0.00026506 -0.00038292  0  0  0  0  0 

b2 0.00001985 -0.00000808 -0.01085542  0  0  0  0  0 

b1 0.00000636 -0.00000001 0.00022437 0.02584718 0.00039002 0.00060525 0.00019113 0.00001456 

b0 0.00000014  0 0.00000524 0.00050729 -0.00004249 -0.00006348 -0.00002933 -0.00001560 

y2 

b5 0.00748264  0  0  0  0  0  0  0 

b4 -0.00732130  0  0  0  0  0  0  0 

b3 0.00149776 -0.15270749  0  0  0  0  0  0 

b2 0.00045168 0.03307379  0  0  0  0  0  0 

b1 0.00006083 0.00011826 0.00307673 0.05870695 0.00739350 0.01995306 0.00341213 0.00109194 

b0 0.00000106 -0.00003475 0.00003781 0.00145047 -0.00062422 -0.00151898 -0.00036390 -0.00016813 

y3 

b5  0  0  0  0  0  0  0  0 

b4  0  0  0 0.04816343  0  0  0 0.08076511 

b3 -0.06485669 -0.32827011  0 0.19584792  0  0  0 -0.00619779 

b2 0.00937300 0.06612935  0 0.00986393  0  0  0 0.00016669 

b1 0.00381077 -0.00016854 -0.12703380 0.00076320 0.03543603 0.05761104 0.02885386 -0.00002911 

b0 0.00003582 -0.00007007 0.02879057 0.00000912 -0.00354053 -0.00578245 -0.00335789 -0.00000026 

y4 

b5  0  0  0  0  0  0  0  0 

b4 -0.01084749  0  0  0  0  0  0  0 

b3 -0.00401664 -0.16106886  0  0  0  0  0  0 

b2 0.00261844 0.02277745  0  0  0  0  0  0 

b1 0.00005947 0.00144328 -0.16795744 0.27042419 0.00991176 0.01836889 0.00481536 0.00309991 

b0 0.00000018 -0.00007981 0.02239373 0.00698732 -0.00115866 -0.00199521 -0.00079413 -0.00048102 

y5 

b5  0  0  0  0  0  0  0  0 

b4  0  0  0  0  0  0  0  0 

b3  0  0  0  0  0  0  0  0 

b2 -0.00636195  0  0  0  0  0  0  0 

b1 0.00175894 0.05291509 -0.07136034 0.32368719 0.00342056 0.00736602 0.00163129 0.00260190 

b0 0.00004425 -0.00164852 0.00816364 0.01561208 -0.00063047 -0.00090142 -0.00045527 -0.00029303 

y6 

b5 0.00882574  0  0  0  0  0  0  0 

b4 -0.00787106  0  0  0  0  0  0 -0.04571486 

b3 0.00089650 -0.15479664  0  0  0  0  0 -0.00599902 

b2 0.00075197 0.03394245  0  0  0  0  0 -0.00088396 

b1 0.00006102 -0.00006556 0.00507948 0.14924099 0.01770524 0.02990788 0.01561167 -0.00003584 

b0 0.00000050 -0.00003599 0.00070214 0.00585941 -0.00169702 -0.00283140 -0.00172972  0 

y7 

b5  0  0  0  0  0  0  0  0 

b4  0  0  0  0  0  0  0  0 

b3  0 -0.05924095  0  0  0  0  0  0 

b2  0 0.01000714  0  0  0  0  0  0 

b1 0.00765392 0.00032933 -0.29734723 0.06588804 0.01448028 0.01965943 0.01441531 0.02723419 

b0 0.00005839 -0.00002389 -0.00325086 0.00177505 -0.00077638 -0.00118539 -0.00071736 -0.00061958 

y8 

b5  0  0  0  0  0  0  0  0 

b4  0  0  0  0  0  0  0  0 

b3 -0.00909860  0  0  0  0  0  0  0 

b2 0.00234450  0  0  0  0  0  0  0 

b1 0.00292877 0.07580051 0.00115489 -0.00218057 0.01005627 0.01786067 0.00945423 0.00490081 

b0 0.00006589 -0.00255974 -0.00002838 0.00008663 -0.00064841 -0.00119367 -0.00056697 -0.00030644 

y9 

b5  0 0.03765047  0  0  0  0  0  0 

b4  0 0.01481212  0  0  0  0  0  0 

b3 -0.01369149 0.00089190  0  0  0  0  0  0 

b2 0.00543157 -0.00003713  0  0  0  0  0  0 

b1 0.00117493 0.00000018 0.00052760 0.00034975 0.01515417 -0.00307455 0.02016082 0.00450260 

b0 0.00001611 -0.00000001 -0.00001931 -0.00000022 -0.00061802 -0.00041995 -0.00082775 -0.00022896 

y10 

b5  0  0  0  0  0  0  0  0 

b4  0  0  0  0  0  0  0  0 

b3  0  0  0  0  0  0  0  0 

b2  0  0  0  0  0  0  0  0 

b1 0.01940940 0.04746217 0.00066295 -0.00163601 0.01669626 0.02623611 0.01140498 0.01031737 

b0 0.00014096 -0.00185563 -0.00002042 0.00008011 -0.00096968 -0.00182250 -0.00067438 -0.00035287 

y11 

b5  0  0  0  0  0  0  0  0 

b4  0 -0.00687319  0  0  0  0  0  0 

b3 -0.00668084 0.00186677  0  0  0  0  0  0 

b2 0.00224987 -0.00008524  0  0  0  0  0  0 

b1 0.00042371 -0.00000002 0.00005242 -0.00032051 -0.00083542 -0.00114122 -0.00063267 0.00011694 

b0 0.00000125  0 -0.00000261 0.00001386 -0.00000780 -0.00000831 -0.00000504 -0.00001677 
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Table 26 – Plant 4 – Transfer Function Denominator Parameters 

P4 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 1 1  0  0  0  0  0  0 

a4 0.23296424 0.07863813  0  0  0  0  0  0 

a3 0.08208049 0.00430576 1  0  0  0  0  0 

a2 0.00758918 0.00005046 0.73141937 1 1 1 1 1 

a1 0.00027850 0.00000006 0.02366003 0.41143877 0.06512178 0.08150280 0.05821337 0.04183427 

a0 0.00000193  0 0.00016993 0.00508471 0.00064549 0.00082135 0.00056422 0.00038562 

y2 

a5 1  0  0  0  0  0  0  0 

a4 0.23708439  0  0  0  0  0  0  0 

a3 0.06591165 1  0  0  0  0  0  0 

a2 0.00480229 0.05239921 1 1 1 1 1 1 

a1 0.00020995 0.00222654 0.03984005 1.27894468 0.10426372 0.20629258 0.08168182 0.05338634 

a0 0.00000144 0.00001732 0.00098598 0.01041943 0.00109114 0.00224910 0.00083210 0.00051304 

y3 

a5  0  0  0  0  0  0  0  0 

a4  0  0  0 1  0  0  0 1 

a3 1 1  0 0.43818533  0  0  0 0.06735221 

a2 0.09688217 0.05125249 1 0.02483772 1 1 1 0.00416706 

a1 0.00555968 0.00273708 0.92474185 0.00141974 0.24707656 0.31464865 0.30851965 0.00010757 

a0 0.00003700 0.00003040 0.05252992 0.00001331 0.00481350 0.00663588 0.00583065 0.00000058 

y4 

a5  0  0  0  0  0  0  0  0 

a4 1  0  0  0  0  0  0  0 

a3 0.11694337 1  0  0  0  0  0  0 

a2 0.00578770 0.05029504 1 1 1 1 1 1 

a1 0.00006439 0.00278323 1.22673630 0.50232417 0.10301513 0.14395772 0.09151188 0.07403663 

a0 0.00000016 0.00002836 0.02585690 0.00679653 0.00125117 0.00182626 0.00108903 0.00085042 

y5 

a5  0  0  0  0  0  0  0  0 

a4  0  0  0  0  0  0  0  0 

a3 1  0  0  0  0  0  0  0 

a2 0.10104154 1 1 1 1 1 1 1 

a1 0.00379845 0.04898411 0.43152954 0.79996287 0.06432041 0.06504308 0.05700327 0.04468609 

a0 0.00002731 0.00043381 0.00587453 0.00937255 0.00053787 0.00059174 0.00047837 0.00037514 

y6 

a5 1  0  0  0  0  0  0  0 

a4 0.21972097  0  0  0  0  0  0 1 

a3 0.06659150 1  0  0  0  0  0 0.05154411 

a2 0.00442000 0.05491795 1 1 1 1 1 0.01303801 

a1 0.00019950 0.00300581 0.08144899 0.73302066 0.24001571 0.30546798 0.32850680 0.00021094 

a0 0.00000132 0.00003921 0.00422347 0.01847968 0.00588219 0.00835938 0.00771513  0 

y7 

a5  0  0  0  0  0  0  0  0 

a4  0  0  0  0  0  0  0  0 

a3  0 1  0  0  0  0  0  0 

a2 1 0.05272244 1 1 1 1 1 1 

a1 0.04281203 0.00313944 1.01082640 0.55796812 0.26007935 0.31059134 0.32064062 0.45341583 

a0 0.00024024 0.00003952 0.02169965 0.00805290 0.00431904 0.00543513 0.00522737 0.00718090 

y8 

a5  0  0  0  0  0  0  0  0 

a4  0  0  0  0  0  0  0  0 

a3 1  0  0  0  0  0  0  0 

a2 0.12351264 1 1 1 1 1 1 1 

a1 0.00484536 0.05383596 0.02844148 0.06383918 0.04919364 0.08293772 0.05958454 0.04818289 

a0 0.00003158 0.00045160 0.00035422 0.00041686 0.00041126 0.00068875 0.00048580 0.00037573 

y9 

a5  0 1  0  0  0  0  0  0 

a4  0 0.03660570  0  0  0  0  0  0 

a3 1 0.00286174  0  0  0  0  0  0 

a2 0.10169929 0.00002187 1 1 1 1 1 1 

a1 0.00410603 0.00000033 0.06022577 0.00394322 0.14853279 0.14177080 0.30637232 0.16425635 

a0 0.00001749  0 0.00049377  0 0.00102863 0.00074390 0.00197746 0.00093493 

y10 

a5  0  0  0  0  0  0  0  0 

a4  0  0  0  0  0  0  0  0 

a3  0  0  0  0  0  0  0  0 

a2 1 1 1 1 1 1 1 1 

a1 0.03593174 0.08606306 0.03073281 0.12177017 0.19248980 0.29722990 0.18198729 0.14743131 

a0 0.00015891 0.00097574 0.00057639 0.00097667 0.00208356 0.00329687 0.00192737 0.00151117 

y11 

a5  0 1  0  0  0  0  0  0 

a4  0 0.25190654  0  0  0  0  0  0 

a3 1 0.01188150  0  0  0  0  0  0 

a2 0.09248629 0.00035869 1 1 1 1 1 1 

a1 0.00401231 0.00000029 0.01313662 0.04725453 0.01729359 0.01863502 0.01702169 0.02135520 

a0 0.00001712  0 0.00068071 0.00179233 0.00017796 0.00016128 0.00015325 0.00075203 
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Table 27 – Manipulated Variables Positive Uncertainty Parameters  

 

Table 28 – Disturbance Positive Uncertainty Parameters  

 

Table 29 – Manipulated Variables Positive Uncertainty Parameters  

 

Table 30 – Disturbance Negative Uncertainty Parameters  

 
 


