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Abstract 

We present density functional calculations investigating two different nanomaterials: a titanium 

carbide nanocluster and few-layered black phosphorus. The titanium carbide nanocluster, Ti8C12, 

has properties that are well suited to applications in hydrogen storage, while few-layered black 

phosphorus has recently been used in the fabrication of novel field effect transistors. Chapter 1 

provides some background information regarding hydrogen storage and electronic devices, with 

Chapter 2 introducing the computational methods used throughout subsequent chapters.  

In Chapter 3, we investigate the thermodynamic and kinetic profile of H2 dissociation by Ti8C12 

under a range of conditions. Our results show that that Ti8C12 is able to reversibly dissociate H2 

with an unusually low activation barrier. In Chapter 4, we introduce few-layered black 

phosphorus, dubbed phosphorene. The use of black-phosphorus exfoliates in FETs is potentially 

important given the fast approaching limits of transistor miniaturization using current 

technologies. Phosphorene appears to have properties necessary for use in next generation FETs, 

and has therefore attracted enormous experimental and theoretical attention. Our work on 

phosphorene contributes to an ever growing body of information, with Chapter 5 investigating the 

effects of deforming monolayer and bilayer phosphorene and Chapter 6 investigating the 

properties of phosphorene nanoribbons.  

In Chapter 5, we show that compressing bilayer phosphorene normal to its surface dramatically 

increases n-type mobility and modulates the band gap. The compressions required to increase       

n-type mobility by a factor of 102 are modest, meaning that our results are experimentally relevant. 

We also investigate the effects of bending of phosphorene, which has a highly anisotropic bending 

modulus.  

Our work on phosphorene nanoribbons in Chapter 6 shows that in-plane quantum confinement 

effects lead to a significant increase in the band gap. We replicate this effect by applying periodic 

boundary conditions to the bulk and derive a formula relating the band gap of phosphorene 

nanoribbons to phosphorene’s band edge effective masses. We also show that the band gap and 

mobility of phosphorene nanoribbons can be modified through the application of linear strain. 
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Chapter 7 concludes the main body of this thesis, summarising its outcomes and giving a direction 

for future work. We also include an brief investigation into a family of semiconducting quaternary 

oxynitride compounds in the Appendix. These compounds are of interest given that their band 

gaps fall within the visible light region. 
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Chapter 1 

Background 

This chapter introduces the broad areas of research relevant to the investigations described in this 

thesis. Section 1.2 reviews progress towards the development of hydrogen storage materials for 

vehicular use, relating our study of the dissociation of H2 by titanium metallocarbohedrene in 

Chapter 3. Meanwhile, Section 1.4 describes the operation of field effect transistors and other 

electronic devices, relating to the work on few-layered black phosphorus in Chapters 4, 5 and 6. 

Finally, Section 1.5 introduces a number of computational approaches that can used to investigate 

a system’s properties. 

1.1 Hydrogen storage 

At present, our ever increasing demand for energy is primarily satisfied by burning fossil fuels. 

However, not only are fossil fuels a finite resource, but their combustion produces harmful 

greenhouse gases. Therefore, the development of a cleaner, more sustainable energy supply is one 

of the greatest challenges of the 21st Century. While an increasing proportion of electricity is 

generated by renewable energy sources [1], the use of renewable energy in automobiles is highly 

limited. While the use battery power has been moderately successful, current technology is 

limiting in terms of range, charging time and affordability [2]. Another approach is to develop 

more efficient fuel cell vehicles (FCVs), which use H2 as a fuel source.  However, even though 

burning H2 is environmentally harmless, the majority of H2 is currently produced using energy 

derived from polluting fossil fuels [3]. In order for the transition from fossil fuel powered 

automobiles to FCVs to be of net environmental benefit, non-polluting methods of producing large 

quantities of H2 must be developed. Given that the vast majority of hydrogen exists in the form of 

H2O, efficient methods of producing H2 from H2O are key [4]. Alongside issues surrounding the 

production of H2, there are a number of other challenges to be overcome before the widespread 

use of FCVs is feasible. Affordable and reliable hydrogen fuel cells must also be developed 
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alongside the mass scale infrastructure necessary to distribute H2. Vehicles must also be able to 

store hydrogen safely on-board at a high volumetric and gravimetric density.  

The U.S Department of Energy (DoE) has outlined target metrics that future hydrogen storage 

materials (HSMs) for use in automotive applications should fulfil. In terms of capacity, HSMs 

should be able to store hydrogen at a gravimetric density of 7.5 wt% and at a volumetric density 

of 70 g/L [4]. Furthermore, the kinetics of charging and discharging are also extremely important, 

with DoE targets stating that depleted hydrogen storage materials should be able to adsorb 

hydrogen at temperatures of between -40 and 85°C [4]. Therefore, hydrogen storage materials 

which have a high kinetic barrier to recharging or discharging are not viable for the majority of 

applications. Targets related to the material’s affordability, availability and stability are also vital. 

To date, none of the hydrogen storage materials investigated has been able to meet DoE targets in 

their entirety [5-7]. 

1.1.1 Mechanical storage 

In order to increase the volumetric density of molecular hydrogen, H2 can be compressed or 

cryogenically cooled. Traditionally, compressed hydrogen has been stored in heavy metal tanks, 

leading to issues surrounding weight, cost and safety [8]. Even the most advanced storage vessels, 

which are made from lightweight carbon fibre reinforced plastic (CFRP), fall short of DoE cost 

and capacity targets [9]. Furthermore, although the volumetric energy density of cryogenic H2 is 

almost double that of gaseous H2 at 690 ATM [8], liquid H2 must be cooled to 20 K, using 35% 

of the fuel’s energy [10]. Liquid H2 also evaporates quickly during delivery and pressurizes 

quickly when on-board and thus requires frequent venting. 

The newest hydrogen storage technologies combine both cryogenic storage and compression to 

produce cryocompressed H2. Not only does compressing liquid H2 from 1 ATM to 237 ATM 

increases its density from 70 g/L to 87 g/L, but cryocompressed vessels can be vented at higher 

temperatures than uncompressed storage tanks [11]. However, while gravimetric storage 

capacities of cryocompressed systems meet DOE targets, volumetric capacities fail to meet the 

ultimate target of 70 g/L. Furthermore, the manufacturing costs of cryocompressed systems are 

roughly 2 times higher than DOE targets, and well-to-tank efficiency is low. Despite these 

shortcomings, cryocompressed H2 storage systems are among the most promising developed to 

date, and have been used in a number of prototype systems. 



3 
 

1.1.2 Adsorption materials 

Molecular H2 can also be adsorbed by materials which are porous and have a high surface area, 

including metal organic frameworks (MOF), carbon and other nanostructures [12]. Given the lack 

of chemical bonds formed upon physisorption, low temperatures and high pressures must be used 

in order to achieve reasonable storage capacities [3]. For example, while MOF NU-100 can 

reportedly store 9 wt% H2, temperatures of 77 K and pressures of 56 bar are required [13], making 

it unsuitable for use in light duty FCVs. At room temperature, MOFs have low H2 storage 

capacities, typical;;y less than 1 wt% and  15 g / L, falling well short of DOE targets  [14, 15]. 

Activated carbons and carbon nanotubes have similar H2 adsorption properties, only adsorbing 

significant quantities of H2 under low temperature, high pressure conditions. For example, while 

the most effective activated carbon system adsorbs 8 wt% H2 at 77K / 39 ATM,  the same material 

requires enormous pressures of 493 ATM to adsorb just 6.8 wt% at room temperature [16]. 

1.1.3 Chemisorption materials 

In terms of thermodynamics, systems which chemisorb H2 are more likely to have high storage 

capacities under ambient conditions due to the formation of strong chemical bonds [17]. While 

physisorbed hydrogen has a binding energy of around 0.1 eV, the binding energies of systems 

which chemisorbed hydrogen can reach values an order of magnitude higher [7, 18]. 

Metal hydrides have been widely investigated due to their high volumetric and gravimetric storage 

capacities. For example, MgH2 stores H2 at a gravimetric capacity of 7.6 wt%, while AlH3 stores 

10.1 wt% H2. However, simple metal hydrides often exhibit an undesirably high thermodynamic 

stability and slow kinetics, hindering the desorption of H2 at the point of use. While strategies to 

overcome these problems, including nanostructuring, alloying and doping with catalytic additives, 

have been successful, none have resulted in a practically useful system [7]. Meanwhile, the lower 

thermodynamic stability of intermetallic hydrides is better suited to vehicular use, allowing for 

the adsorption and desorption of H2 under more moderate conditions [7, 19]. Despite the fact that 

its gravimetric capacity falls short of DoE targets, sodium alanate is the most heavily investigated 

intermetallic hydride. While its thermodynamic profile is good, the kinetics of hydrogen 

desorption and adsorption in un-doped NaAlH4 are slow, and the material’s cost is relatively high. 

Borohydrides have a much higher storage capacity, with LiBH4 storing 18 wt% H2. However, as 
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with binary metal hydrides, their thermodynamic stability means that H2 is only released at high 

temperatures. 

Non-metal hydrides, which typically consist of boron, carbon, nitrogen or oxygen in combination 

with hydrogen, often have high hydrogen storage capacities. For example, ammonia borane has a 

storage capacity of 19.6 wt% [20]. However, its thermal decomposition requires temperatures in 

excess of 470 K and results in unwanted borazine by-products. Furthermore, the direct 

hydrogenation of (NHBH)∞ to form NH3BH3 is slow, proceeding with an activation barrier of  

1.89 eV. This is primarily driven by the high activation barrier required for the heterolytic 

dissociation of H2, with the isolated dissociation of H2 into H+ and H- proceeding with a huge 

barrier of 16.9 eV [21]. Given this issue, metal amidoboranes such as LiNH2BH3 have been 

suggested as an alternative, and can be synthesised by reacting amidoborane with lithium [22, 23]. 

Meanwhile, two component systems such as LiH + LiNH2 have been shown to release H2 with a 

good thermodynamic profile [24]. However, such systems suffer from a similar problem to that 

of as NH3BH3, requiring high temperatures for charging and discharging owing to the high 

activation energies needed to heterolytically dissociate H2 [25, 26].  

It is possible to use catalysts to improve the hydrogen adsorption and desorption profiles of 

hydrogen storage materials with high kinetic barriers. For example, doping sodium alanate with 

titanium has been shown to improve significantly the kinetics of hydrogen desorption [27], while 

transition metal clusters act as a source of atomic hydrogen for the chemisorption of hydrogen 

onto carbon surfaces [28]. For the generation of proton-hydride systems, catalysts should lower 

the activation energy required for dissociation of H2 into H+ and H-. Complexes containing group 

VIII to X transition metals with phosphine or amine ligands have succeed in this respect, although 

the ability of such systems to cooperate with prospective HSMs is limited due to their reliance on 

proper solvation and their instability in highly reducing environments [29, 30]. Furthermore, the 

cost of precious transition metals such as Ir, Ru, Pd, Ru and Re is prohibitively high. 

If we assume that hydrogenation catalysts dissociate H2 entirely before acting as a source of 

atomic or ionic hydrogen, they must adsorb H2 with a less exothermic binding energy than any 

cooperating HSM. Meanwhile, it is important that the hydrogenation of HSMs is 

thermodynamically reversible with respect to free H2 over a modest range of conditions. The 

Gibbs free energy change when hydrogen is adsorbed by a prospective hydrogenation catalyst 

should therefore be zero at some point over the same modest range. This allows the catalyst to be 

hydrogenated by H2 and dehydrogenated by any depleted HSM which adsorbs H2 more strongly. 
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Furthermore, any hydrogenation catalyst must also dissociate H2 into atomic or ionic hydrogen 

with fast kinetics. We investigate the properties of Ti8C12 with respect to this profile in Chapter 3.  

1.2 Materials for electronic devices 

It is difficult to overstate the impact of electronic devices over the last 50 years. Such progress has 

been made possible through the continued miniaturization of transistors, with channel regions as 

small as 14 nm now commercially available [31]. Microprocessors contain billions of silicon 

based metal oxide semiconductor field-effect transistors (MOSFETs), with Moore’s law 

predicting that the number of transistors per square inch on integrated circuits should 

approximately double every two years. Moore’s prediction was made in 1965 [32], and has proved 

surprisingly accurate up until now [33]. Housing more transistors per chip results not only in 

increased processing power, but also in improved efficiency. The Dennard scaling law states that 

the power density of transistors stays constant as their size is scaled downwards, meaning that 

chips which are densely packed with transistors are able to produce more computations power per 

watt of power [34]. However, it is widely acknowledged that the feasibility of Moore’s law is 

reaching a fundamental limit in the absence of a paradigm shift [35]. The continued advancement 

of processing power depends either on the discovery of novel high performance materials or on 

the development of new operating principles.  

1.2.1 Field Effect Transistors 

The concepts behind field effect transistors were proposed in 1925 [36], although it was not until 

1960 that the first functioning metal-oxide-semiconductor FET (MOSFET) was fabricated by 

Kahng and Atalla [37][38]. Transistors are typically used to amplify and switch signals in 

electronic circuits, with FETs consisting of three terminals: the source, the drain and the gate. The 

source and drain contacts are connected via a semiconductor, and the gate electrode is separated 

from the semiconductor by an electrically insulating gate-dielectric. The gate electrode couples 

capacitively with the semiconductor and controls the electrostatic potential at the semiconductor 

– dielectric interface [39].  
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Figure 1.1: A simplified representation of a field-effect transistor. 

The drain current can be controlled by varying the electric potentials applied to the three terminals, 

with the conductivity of the semiconducting channel region modulated by both the gate-source 

voltage and the drain-source voltage. According to the Drude model, the current along the 

semiconducting channel, ID, can be expressed in terms of the cross-sectional area of the 

conducting channel, 𝐴, the channel length, 𝐿, the charge-carrier mobility, 𝜇, the number of free 

charge carriers, 𝑛, the voltage applied between the source and drain terminals, 𝑉𝐷𝑆, and the 

elementary charge, 𝑞 [40]: 

ID =
𝐴

𝐿
. 𝑛. 𝜇. 𝑞. 𝑉𝐷𝑆 

While 𝜇 is an inherant property of the channel material, 𝑛 depends on the energy difference 

between the Fermi level, 𝐸𝐹, and the valence and conduction band edges in the channel. For 

example, the number of free electrons in the conduction band under thermal equilibrium can be 

expressed as follows: 

𝑛𝑒,0 = 𝑁𝐶 . 𝑒𝑥𝑝 (−
𝐸𝐶𝐵 − 𝐸𝐹

𝑘𝐵𝑇
) 

A gate voltage can be applied to vary 𝑛 by means of ‘bending’ the valence and conduction band 

edges at the semiconductor-gate interface, with Figure 1.2 showing the effect of a negative gate 

potential V𝐺.   
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Figure 1.2: The operation of a FET in terms of channel region valence and conduction band edges, 

in the absence of a gate voltage (left) and when a gate voltage is applied (right). 

When 𝑉𝐺  is negative, both valence and conduction states in the channel are destabilized leading 

to an increase in p-type charge carriers and a decrease in the number of n-type charge carriers. 

The opposite occurs when a positive V𝐺 is applied, with a decrease in p-type charge carriers and 

an increase in n-type charge carriers. Depending on which are the majority charge carriers in the 

source and drain terminals, this modulates the drain current. The change in the number of free 

charge carriers can be calculated using the following expression, where ΦS is the electrostatic 

potential at the semiconductor / gate interface [39]: 

𝑛𝑒,0 = 𝑁𝐶 . 𝑒𝑥𝑝 (−
𝐸𝐶𝐵 − 𝜇𝑐 + 𝑞ΦS

𝑘𝐵𝑇
) = 𝑛𝑒,0. 𝑒𝑥𝑝 (−

𝑞. ΦS

𝑘𝐵𝑇
) 

In order to minimize power consumption, it is desirable for the drain current to be close to zero 

when the device is idle, at which point the device is said to be in its ‘off’ state. This can only be 

achieved by using a semiconducting channel region with a moderate band gap, and is particularly 

important in integrated circuit devices. However, channel regions with a lower band gap can be 

used in amplifying devices where idle power consumption is less of an issue. 

Metal–oxide–semiconductor FETs (MOSFETs) form the basis of complementary metal–oxide–

semiconductor (CMOS) logic, and have been used in the vast majority of integrated circuits over 

the past 30 years. In the most commonly used MOSFET devices, the source and drain terminals 
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are made of a highly doped semiconductor of opposite polarity to the channel region. This 

arrangement ensures that when no gate voltage is applied, no change carriers pass between the 

source and channel regions. However, a gate voltage can be applied to change the polarity of the 

channel region near at the gate-channel interface. This forms an inversion layer through which 

charge carriers can flow, inducing the MOSFET’s ‘on’ state [41]. 

Unlike MOSFETs, Schottky barrier FETs have metallic source and drain terminals. As the 

semiconducting channel region comes into contact with a metal terminal, charge flows across 

junction, creating an electric field that aligns the two Fermi levels. This buildup of charge results 

in a potential energy barrier known as the Schottky barrier, which prevents further charge flowing 

between the source and channel regions [42]. The Schottky barrier can be estimated as being the 

difference between the metal’s work function and the vacuum electron affinity or ionization 

energy of the semiconductor using the Schottky – Mott rule [43, 44]. However, in reality surface 

states at the interface result in Fermi pinning, which means that Schottky barriers are largely 

independent of the metal’s work function [45, 46]. Applying a gate voltage can change the 

channel’s valence and conduction band energies through band bending, allowing charge to flow 

between the source and drain terminals.  

1.2.2 Device Performance 

The response of FETs to variations in V𝐺  largely defines device performance. For MOSFETs, the 

transistor is in its off state, I𝐷𝑆 = I𝑜𝑓𝑓,  when V𝐺  = 0 and in its on state, I𝐷𝑆 = I𝑜𝑛, when V𝐺 =

V𝑚𝑎𝑥. The value of V𝐺  at which the FET is on the verge of turning on is known as the threshold 

voltage (V𝑇), and its transfer characteristics relate to the variation in I𝐷𝑆 with V𝐺. The subthreshold 

swing measures the change in log (I𝐷𝑆) with V𝐺  when approaching the threshold voltage, while 

the terminal transconductance measures the change in I𝐷𝑆 with V𝐺  when V𝐺  > V𝑇. Both are 

important measures in assessing the switching capabilities of a give FET. Furthermore, 

I𝑜𝑓𝑓 should be as low as possible in order to minimize static power dissipation, with desirable on-

off ratios, I𝑜𝑛/I𝑜𝑓𝑓, ranging between 104 and 107. On-off ratios of this magnitude typically require 

channel regions with a sizeable bandgap of 0.4 eV or more [41, 47]. 

Given that I𝐷𝑆 is proportional not only to 𝑛, but also to 𝜇 and 𝐿−1, it follows that its response to 

V𝐺  is optimized by short, high mobility channel regions. However, ubiquitously used silicon FETs 

suffer from a number of problems at channel lengths less than 10 nm [48]. 
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1.2.3 Silicon and short-channel effects 

While germanium was the favored transistor material up until the 1960s, silicon now dominates 

the electronics industry. Commercial integrated circuit devices are based around silicon alone, 

with both p-type and n-type silicon easily fabricated. Pure silicon has a band gap of around 1.1 

eV, providing a good balance between static power dissipation and response to moderate gate 

voltages [49]. Furthermore, transistors based around silicon have so far been able to satisfy 

Moore’s law, with channel lengths now measured on a nanometer scale.  However, such progress 

appears to be unsustainable due to the occurrence of so-called short-channel effects in silicon 

FETs with sub 10 nm gates [48][50].  

In small-geometry MOSFETS, the electrostatic potential throughout the channel region is not only 

controlled by 𝑉𝐺, but also by 𝑉𝐷𝑆. This effect is known as drain induced barrier lowering (DIBL), 

and means that the conductivity of the channel region is modulated by 𝑉𝐷𝑆 as well as 𝑉𝐺, which 

ultimately leads to a loss of control of 𝐼𝐷𝑆 by the gate. Meanwhile, velocity saturation limits the 

velocity of charge carriers in short-geometry MOSFETS. Under normal circumstances, electron 

velocity rises linearly with longitudinal electric field through the relation 𝜈𝑦 = 𝜇𝑦𝜀𝑦. However, 

behaviour in short channels does not obey this relation due to scattering effects, limiting 𝜈𝑦 to a 

certain velocity. This effect is known as velocity saturation, with the velocity of charge carriers in 

silicon limited to ~105 m2/s. In n-channel enhancement MOS devices, high 𝜀𝑦 also results in 

impact ionization, where atoms in the channel are ionized by high velocity electrons. While the 

resulting electrons travel towards the drain, holes pass into the substrate and towards the source 

terminal. The corresponding current causes a voltage drop in the substrate, allowing electrons to 

pass from the source into the substrate, potentially damaging other devices on the chip. 

Furthermore, ‘hot electrons’ can also enter and become trapped in the gate dielectric, with the 

resulting buildup of charge degrading performance and ultimately resulting in device failure. 

Finally, miniaturization below ~10 nm also means that more charge carriers tunnel through the 

channel, increasing subthreshold leakage and thus power consumption.  
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1.2.4 2D Materials 

Scaling theory predicts that thin channel regions are immune to the majority of short-channel 

effects discussed above. However, when ultrathin films of traditional materials such as silicon are 

used, fluctuations in thickness and surface roughness lead to unpredictable behavior. Exfoliates 

of layered materials therefore represent a logical choice for use in next generation devices. So-

called 2D materials are ultrathin yet uniform, and maintain the electrostatic integrity necessary for 

sub-10nm transistors. They also have a number of unique properties, allowing for the exploration 

of new operating principles and device functionality. 

The most widely investigated 2D material is graphene, which was first fabricated in 2004 through 

the mechanical exfoliation of bulk graphite. The mobility of charge carriers in graphene is very 

high, with a theoretical limit of 200,000 cm2/s/V at room temperature [51], suggesting a huge 

potential for use in ultrafast electronic devices. However, while graphene has been used to make 

efficient radiofrequency devices, its  lack of band gap means that graphene’s future use in 

integrated circuits is unlikely [49]. One possible solution lies in the fabrication of graphene 

nanostructures, some of which have band gaps in excess of 0.2 eV [52]. However, as the band gap 

of graphene is increased through nanostructuring, its charge carrier mobility falls, with the charge 

carrier mobility in 10 nm graphene nanoribbons less than 200 cm2V-1s-1, lower than in doped 

silicon. It appears that carbon nanotubes are more likely to replace silicon in semiconducting 

applications, with IBM recently reporting progress towards the manufacture of computer chips 

based on carbon nanotubes [53]. 

Another promising 2D material investigated in recent years is MoS2. In its bulk form, MoS2 is a 

layered material with an indirect bad gap of 1.29 eV, while monolayer MoS2 has a direct band gap 

of around 1.9 eV [54]. As a result of its sizeable band gap, both single and multilayered FETs 

have high on/off ratios of order 108 and good transfer characteristics [55, 56]. However, ultimate 

charge carrier mobilities in MoS2 are approximately three orders of magnitude lower than those 

of graphene [57]. 

In Chapters 4, 5 and 6 we investigate the properties of phosphorene. The first phosphorene FET 

devices were reported in 2014, resulting in an explosion of interest in the compound. The 

performance of early phosphorene devices is discussed in Chapter 4. 
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1.3 Computational Methods 

Computational chemistry can be used to investigate a system’s structural, energetic, electronic 

and chemical properties. It can be predictive, providing a direction for experimental efforts or 

analytical, explaining misunderstood phenomena. A number of different computational 

approaches are available, with the suitability of each depending on the size of the system and its 

properties of interest.  

Force field methods treat materials as an array of mechanically connected atoms [58]. Electrons 

are not treated explicitly but instead in terms of their effect on the attraction between nuclei. 

Molecular mechanics or energy minimization methods are used to investigate the structure of 

materials, predicting equilibrium geometries, transition states and the relative energies of different 

isomers or allotropes. Energy is calculated in terms of parametrized forces between atoms, which 

are usually fitted to experimental data. While force field methods are computationally 

undemanding, they come with a number of limitations. Particular force fields are only accurate 

for a certain systems, which are usually related to those used for parametrization [59]. While force 

field methods do not give any information regarding chemical or electronic properties, they are 

powerful in exploring the structure and dynamics of large, complex systems.  

The simplest electronic structure method is the tight-binding model, which is able to approximate 

a material’s electronic structure with little computational effort. In the tight-binding model, the 

wavefunction of solid-state materials is predicted based on the superposition of the wavefunctions 

of isolated atoms in a process analogous to the linear combination of atomic orbitals (LCAO) [60]. 

To calculate energies, an approximate form of the Hamiltonian is used, which is expressed in 

terms of a combination of overlap and on-site matrix elements. 

For a more robust description of a system’s electronic structure, quantum mechanical (QM) 

methods known as ab initio (“from the beginning”) methods can be used. In their purest form, ab 

initio methods require no empirical parameters. Hartree-Fock theory directly solves the 

Schrodinger equation in the absence of correlation between electrons [61, 62]. However, the 

results obtained using Hartree-Fock tend to be inaccurate in systems where electron correlation is 

important. Post- Hartree-Fock methods introduce correlation, relativistic and spin-orbit effects, 

improving the accuracy of HF solutions at the expense of increased computational cost [63].  
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Density Functional Theory (DFT) calculates single particle wavefunctions using the system’s 

electron density [64]. While DFT is generally considered to be an ab initio method, in reality the 

majority of functionals are to some extent derived from empirical data [65]. Nevertheless, 

solutions obtained using DFT are often more accurate than those obtained using standard Hartree-

Fock or tight binding methods, and can be achieved at a very reasonable computational costs [66]. 

The explicit treatment of electrons means that DFT can calculate the electronic structure of solid 

state materials and assess systems’ chemical reactivity. We have used DFT extensively throughout 

this thesis, and thus it is described in more detail in Chapter 2. 
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Chapter 2 

Theoretical Background 

This chapter will discuss the principles of Density Functional Theory along with aspects of 

electronic structure theory, thermodynamics and kinetics. The information contained is relevant 

to many of the subsequent chapters of this thesis. A number of standard texts have been referenced 

throughout, and should be consulted where more details are required [1-5]. 

2.1 Density Functional Theory 

2.1.1 The Many-Body Schrödinger Equation 

The properties of matter are governed by the laws of quantum mechanics, with the non-relativistic 

Schrödinger Equation used to determine a system’s behavior. The ultimate aim of ab-initio 

methods is to solve the many-body Schrödinger equation, thereby determining the system’s 

ground state wavefunction and energy. The Schrödinger equation can be written as follows: 

𝑖
𝜕

𝜕𝑡
 𝜓(𝒓, 𝑡) = 𝐻̂𝜓(𝒓, 𝑡) 

where 𝐻̂ is the Hamiltonian and 𝜓(𝒓, 𝑡) is the wavefunction expressed in terms of spatial 

coordinates and time. When considering a static system, the Schrödinger equation can be 

separated into spatial, 𝜓(𝑟), and time dependent, 𝛷(𝑡), components. 

𝛹(𝒓, 𝑡) =  𝛷(𝑡)𝜓(𝑟) 

𝑖
𝑑𝛷(𝑡)

𝑑𝑡
= 𝐸𝛷(𝑡) 
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𝐻̂𝜓(𝑟) = 𝐸𝜓(𝑟) 

Throughout this work, we have investigated the properties of ground state systems, and therefore 

only consider time independent solutions of the Schrödinger equation. The time-independent 

Schrödinger equation (TISE) can be solved in order to find the ground state wavefunction and 

energy of a system by using the following Hamiltonian: 

𝐻̂ = −
1

2
∑ 𝛻𝑖

2 

𝑖

−
1

2𝑚𝐴
∑ 𝛻𝐴

2 

𝐴

+ ∑
𝑍𝐴𝑍𝐵

𝑅𝐴𝐵
   

𝐴>𝐵

− ∑
𝑍𝐴

𝑟𝐴𝑖
  

𝐴,𝑖

+ ∑
1

𝑟𝑖𝑗
𝑖>𝑗

  

The first term calculates the kinetic energy of electron 𝑖, while the second term calculates the 

kinetic energy of nucleus 𝐴 with mass 𝑚𝐴. The third term calculates the energy of the interaction 

between nucleus 𝐴 and nucleus 𝐵, which have charges 𝑍𝐴  and 𝑍𝐵 respectively and are separated 

by the distance 𝑅𝐴𝐵. The fourth term calculates the energy of the interaction between the 

nucleus 𝐴 of charge 𝑍𝐴 and electron 𝑖, which are separated by the distance 𝑟𝐴𝑗. The fifth term 

calculates the energy of the interaction between electrons 𝑖 and 𝑗, which are separated by the 

distance 𝑟𝑖𝑗.  

Under the Born Oppenheimer approximation, both the above Hamiltonian and corresponding 

many-body wavefunction can be simplified. The Born Oppenheimer approximation allows 

electronic and nuclear degrees of freedom to be decoupled under the assumption that electrons 

respond instantaneously to the movement of nuclei. Therefore, the TISE can be solved for a set of 

electrons with a wavefunction depending on both electronic and nuclear positions, 𝜓({𝒓𝒊}; {𝑹𝑨}), 

surrounding a set of static nuclei with wavefunction 𝛷({𝑹𝑨}). 

𝜓({𝒓𝒊}, {𝑹𝑨}) =  𝜓({𝒓𝒊}; {𝑹𝑨})𝛷({𝑹𝑨}) 

𝐻̂ = −
1

2
∑ 𝛻𝑖

2 

𝑖

− ∑
𝑍𝐴

𝑟𝐴𝑖
  

𝐴,𝑖

+ ∑
1

𝑟𝑖𝑗
𝑖>𝑗

   

While the above Hamiltonian can be solved analytically, for all but the simplest systems the 

computational effort required to do so is enormous given the complexity of many-body electronic 

wavefunctions and the two electron operator, 
1

𝑟𝑖𝑗
. The complexity of both 𝜓 and 

1

𝑟𝑖𝑗
 arises as a 
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result of the coupling between electrons required to account for exchange and correlation effects. 

While the variational principle allows for the solution of the TISE for simple atomic systems, 

more efficient methods are required to model systems of a practically useful size. 

2.1.2 Variational Principle 

The variational principle is a simple but very important concept utilised by the majority of 

computational methods that set out to solve the many-body problem. The variational principle 

states that the best guess ground state wavefunction is the wavefunction which produces the lowest 

energy when acted on by the Hamiltonian. 

𝐸𝑚𝑖𝑛 = ⟨𝜓0|𝐻̂|𝜓0⟩ ≤ ⟨𝜓|𝐻̂|𝜓⟩ 

The above expression justifies trying a large number of wavefunctions and choosing the one which 

gives the lowest energy as the ground state wavefunction. 

2.1.3 Hartree-Fock Theory 

As discussed in Section 2.2.1, the main difficulties in solving the TISE are a result of the 

complexity of the many-electron wavefunction, 𝜓(𝑟1 … 𝑟𝑁) and the two electron operator, 
1

𝑟𝑖𝑗
. 

Hartree-Fock theory manages to simplify both 𝜓(𝑟1 … 𝑟𝑁) and 
1

𝑟𝑖𝑗
, and was proposed by Douglas 

Hartree in 1927 before being modified by Vladimir Fock in 1930 [6].  

As a basis for the simplification of 𝜓(𝑟1 … 𝑟𝑁), Hartree theory assumes that the full N-body 

wavefunction can be written as a product of N single-electron wavefunctions, 𝛷𝑘(𝒓𝑁), in an 

expression known as a Hartree-Product: 

𝜓(𝑟1 … 𝑟𝑁) =  𝛷𝑖(𝒓1) … 𝛷𝑘(𝒓𝑁) 

In contrast with true many-body wavefunctions, the resultant single electron probability 

distributions are not interdependent and are relatively simple to work with. However, 

wavefunctions represented in this way are not correlated and are asymmetric with respect to 

fermion exchange, disobeying the Pauli Exclusion Principle.  
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For example, in a two electron case: 

𝜓(𝑟2, 𝑟1) ≠ −𝜓(𝑟1, 𝑟2) 

The Pauli Exclusion Principle can be satisfied if a linear combination of each of the allowed 

Hartree products is taken, resulting in a Slater Determinant which is asymmetric with respect to 

electron exchange [7]: 

𝜓(𝑟1, 𝑟2) =
1

√2
{𝛷1(𝒓1)𝛷2(𝒓2) − 𝛷1(𝒓2)𝛷2(𝒓1)} =

1

√2
|
𝛷1(𝒓1) 𝛷1(𝒓2)

𝛷1(𝒓2) 𝛷2(𝒓2)
| 

Furthermore, the Hartree-Fock method rewrites the Hamiltonian in order to account for electron-

electron interactions in a mean field way, eliminating the troublesome 
1

𝑟𝑖𝑗
 term in the TISE 

Hamiltonian [8, 9]. 

𝐻̂ = −
1

2
∑ 𝛻𝑖

2 − ∑
𝑍𝐴

𝑟𝐴𝑖
  

𝐴,𝑖

 

𝑖

 +  ∑
𝑍𝐴𝑍𝐵

𝑅𝐴𝐵
 +  

𝐴>𝐵

∑ ∫ 𝑑𝑟′
|𝛹𝑗(𝑟′)|

𝟐

|(𝑟 − 𝑟′)|
 

𝑖,𝑗

− ∑ 𝜎𝑖𝜎𝑗 ∫ 𝑑𝑟′
|𝛹𝑗

∗(𝑟′)𝛹𝑖(𝑟′)|

|(𝑟 − 𝑟′)|
 

𝑖,𝑗

 

where 𝑟 and 𝑟’ represent the spatial coordinates of electrons 𝑖 and 𝑗 respectively, 𝑍𝐴 is the charge 

of ionic core 𝐴,  𝑅𝐴𝐵   is the distance between ionic cores 𝐴 and 𝐵 and 𝑟𝐴𝑖 is the distance between 

ionic core 𝐴 and electron 𝑖.  The first, second and third terms account for the kinetic energy, 

electron-ion potential and the ion-ion potential respectively. The fourth term accounts for the 

electron-electron potential, and includes an unphysical self-interaction of electrons when 𝑖 = 𝑗.  

This error is cancelled by the fifth term, known as the exchange term, which ensures that electrons 

of equivalent spin avoid one another. The 𝜎𝑖𝜎𝑗 term equals zero when the spins of electrons 𝑖 and 

𝑗 are opposite and one when they are equal.  

The variational principle can be used to determine the ground state wavefunction and 

corresponding energy of the Hartree-Fock Hamiltonian. Minimization of the Hartree-Fock 

Hamiltonian is carried out under the constraint of orbitals orthogonality, ⟨𝛷𝑖|𝛷𝑗⟩ = 𝛿𝑖𝑗 , in order 

to ensures that the total number of electrons in the system remains constant. While the Hartree-
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Fock method allows for the investigation of systems far larger than would be solvable using the 

TISE and full wavefunction, the computational effort required still scales as approximately N4. 

More importantly, Hartree-Fock theory neglects electron correlation entirely, meaning that the 

solutions obtained are limited when correlation effects are significant. Most notably, the 

wavefunctions obtained using Hartree-Fock are highly localized, resulting in the considerable 

overestimation of the band gap in semiconductors. 

2.1.4 Thomas-Fermi Theory  

In the same year that Hartree-Fock theory was proposed, Llewellyn Thomas and Enrico Fermi 

developed the first electronic structure theory to use the electron density, 𝜌(𝒓), as the central 

variable as opposed to the wavefunction [10, 11]. The energy functional in Thomas-Fermi theory 

is as follows: 

𝐸𝑇𝐹[𝜌(𝒓)] =  𝐶𝐹 ∫ 𝜌(𝒓)5 3⁄ 𝑑𝐫 + ∫ 𝜌(𝒓)𝑣𝑒𝑥𝑡(𝒓)𝑑𝐫 + 
1

2
∫ ∫

𝜌(𝒓)𝜌(𝒓′)

|𝒓 − 𝒓′|
𝑑𝐫𝑑𝐫′  

where 𝑣𝑒𝑥𝑡(𝒓) is the external potential felt by electrons, typically the result of surrounding ionic 

cores, and 𝐶𝐹 is a constant. The first term accounts for the non-interacting kinetic energy, and is 

derived through the integration of the kinetic energy density of a homogeneous electron gas. The 

second term is the classical Coulomb interaction between 𝜌(𝒓) and 𝑣𝑒𝑥𝑡(𝒓). Finally, the third term 

accounts for electron-electron repulsions, resulting in the Hartree energy.  

To obtain the ground state, the Tomas-Fermi functional can be minimized using the variational 

principle subject to the constraint of constant 𝜌(𝒓). However, the Thomas-Fermi model yields 

poor results, failing to reproduce even the most basic features such as shell structures in atoms. 

While the main source of error in Thomas-Fermi theory is the poor approximation of kinetic 

energy, electron correlation and exchange energies are also neglected entirely. Despite the 

addition of an exchange energy functional by Paul Dirac in 1928, Thomas-Fermi-Dirac theory 

remains inaccurate in the majority of instances [12]. 
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2.1.5 The Hohenberg-Kohn Theorems 

Density Functional Theory originated in 1964 when Pierre Hohenberg and Walter Kohn proved 

that all of a system’s properties can be calculated through knowledge of its ground state electron 

density [13]. This assertion is based on two theorems, which are outlined below.  

Theorem I:    A particular external potential can only give rise to one ground state electron density. 

Conversely, a particular ground state electron density must be the result of one external potential 

(for example, a fixed arrangement of nuclei). Therefore, the external potential is a unique 

functional of electron density. 

Proof:    Assume the existence of two potentials, 𝑉𝑒𝑥𝑡
(1)(𝒓) and 𝑉𝑒𝑥𝑡

(2)(𝒓), which differ by more than 

a constant factor. Assume also that 𝑉𝑒𝑥𝑡
(1)(𝒓) and 𝑉𝑒𝑥𝑡

(2)(𝒓) give rise to the same ground state electron 

density, 𝜌0(𝒓). Two distinct Hamiltonians, 𝐻𝑒𝑥𝑡
(1)

(𝒓) and 𝐻𝑒𝑥𝑡
(2)

(𝒓) also exist, along with two distinct 

wavefunctions, 𝜓𝑒𝑥𝑡
(1) (𝒓) and 𝜓𝑒𝑥𝑡

(2)
. According to the variational principle: 

E(1) =  ⟨𝜓(1)|𝐻(1)|𝜓(1)⟩ <  ⟨𝜓(2)|𝐻(1)|𝜓(2)⟩ 

<  ⟨𝜓(2)|𝐻(1) + 𝐻(2) − 𝐻(2)|𝜓(2)⟩ 

<  ⟨𝜓(2)|𝐻(1) − 𝐻(2)|𝜓(2)⟩ + ⟨𝜓(2)|𝐻(2)|𝜓(2)⟩ 

E(1) <  ∫ 𝑑𝐫 [𝑉𝑒𝑥𝑡
(2)(𝒓) −  𝑉𝑒𝑥𝑡

(1)(𝒓)] 𝜌0(𝒓) + E(2) 

This can be repeated, exchanging (1) and (2) to give: 

E(2) <  ∫ 𝑑𝐫 [𝑉𝑒𝑥𝑡
(1)(𝒓) −  𝑉𝑒𝑥𝑡

(2)(𝒓)] 𝜌0(𝒓) + E(1) 

Combining the above equations, we arrive at the following contradiction, thus proving Theorem I 

by reductio ad absurdum.  

E(1) +  E(2) <  E(2) +  E(1) 
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There cannot be two 𝑉𝑒𝑥𝑡 that result in the same 𝜌0(𝒓), and each 𝑉𝑒𝑥𝑡 therefore must give a 

unique 𝜌0(𝒓). 

Theorem II:    A universally applicable energy functional can be defined in terms of 𝜌(𝒓), and is 

independent of the external potential, 𝑉𝑒𝑥𝑡. Furthermore, the electron density that minimizes this 

functional, 𝐸[𝜌(𝒓)], is the ground state density.  

Proof:    A universal functional, 𝐹[𝜌(𝒓)], can be written as follows: 

𝐹[𝜌(𝒓)] = 𝑇[𝜌(𝒓)] +  𝐸𝑖𝑛𝑡[𝜌(𝒓)] 

where 𝑇[𝜌(𝒓)] is the kinetic energy functional and 𝐸𝑖𝑛𝑡[𝜌(𝒓)] is the functional which calculates 

the electron interaction energy. Meanwhile, the energy functional defined in terms of the 

wavefunction can be written as follows: 

𝐸[𝜓(1)] =  ⟨𝜓(1)|𝐻(1)|𝜓(1)⟩ = ⟨𝜓(1)|𝑇̂ + 𝑉̂𝑖𝑛𝑡 + 𝑉̂𝑒𝑥𝑡|𝜓(1)⟩ 

According to Theorem I, 𝜓(1) corresponds to a specific electron density 𝜌(1)(𝒓) and a specific 

external potential 𝑉𝑒𝑥𝑡
(1)

(𝒓). Therefore, 𝐸[𝜓(1)] is a functional of 𝜌(1)(𝒓).  

𝐸[𝜓(1)] =  ⟨𝜓(1)|𝑇̂ + 𝑉̂𝑖𝑛𝑡 + 𝑉̂𝑒𝑥𝑡|𝜓(1)⟩ 

= 𝐸[𝜌(1)(𝒓) ] 

= ∫ 𝑑𝐫 [𝑉𝑒𝑥𝑡
(1)(𝒓)] 𝜌(1)(𝒓) + 𝐹[𝜌(1)(𝒓)] 

≥ 𝐸[𝜓0] 

= ∫ 𝑑𝐫 [𝑉𝑒𝑥𝑡
(1)(𝒓)] 𝜌0(𝒓) + 𝐹[𝜌0(𝒓)] 

= 𝐸[𝜌0(𝒓)] 

This proves that the energy functional 𝐸[𝜌(𝒓)] is lower in energy when evaluated using the ground 

state density 𝜌0(𝒓) than when it is evaluated using any other density, 𝜌(𝒓). Therefore, minimizing 

the total energy functional with respect to 𝜌(𝒓) results in the correct ground state electron density 

and the correct ground state energy. 
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2.1.6 The Kohn-Sham Equations  

The Hohenberg-Kohn theorems justify the minimization of energy with respect to electron density 

as a means to solving the many-body Schrödinger equation. However, the practical framework 

used by the majority of DFT codes was introduced by Walter Kohn and Lu Jeu Sham in 1965 

[14]. Kohn-Sham density functional theory (KS-DFT) proposes that the real many-body system 

can be represented by a reference system of non-interacting wavefunctions, 𝜓𝑖, with the same 

ground state density as the true, interacting electronic system. 

𝜌𝐾𝑆(𝒓) =  ∑|𝜓𝑖(𝒓)|𝟐

𝑵

𝒊

= 𝜌(𝒓) 

where 𝜓𝑖 are the single electron orbitals of the non-interacting system, 𝜌𝐾𝑆(𝒓) is the density of 

the non-interacting system, and 𝜌(𝒓) is the actual electron density of the many-body system. In 

KS-DFT, energy is calculated as a functional of particle density: 

𝐸𝐾𝑆[𝜌(𝐫)] = 𝑇𝐾𝑆[𝜌(𝐫)] + 𝐸𝑒𝑥𝑡[𝜌(𝐫)] + 𝐸ℎ𝑎𝑟[𝜌(𝐫)] + 𝐸𝑥𝑐[𝜌(𝐫)] 

While the exact form of the kinetic energy functional, 𝑇[𝜌(𝐫)], is unknown, KS-DFT calculates 

the kinetic energy of the non-interacting system as a proxy. This approach is a significant 

improvement on the approached used in the Thomas-Fermi model, where kinetic energy is 

calculated by integrating the kinetic energy density of a homogenous electron gas.  

𝑇𝐾𝑆[𝜌(𝐫)] =  −
1

2
∑⟨𝜓𝑖|𝛻2|𝜓𝑖⟩

𝑁

𝑖

 

𝐸𝑒𝑥𝑡[𝜌(𝐫)] accounts for interactions with the external potential, 𝑉𝑒𝑥𝑡. In the majority of cases, 𝑉𝑒𝑥𝑡 

is the result of ionic cores of charge 𝑍𝐴. The strength of the interaction between 𝜌(𝐫) and 𝑍𝐴 

depends on the magnitude of 𝑍𝐴 and the distance between 𝒓 and 𝑍𝐴, 𝒓𝑨𝒊. 
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𝐸𝑒𝑥𝑡[𝜌(𝐫)] = ∫ 𝑉𝑒𝑥𝑡𝜌(𝒓)𝑑𝒓 =  − ∫ ∑
𝑍𝐴

𝒓𝑨𝒊

𝑀

𝐴

𝜌(𝒓)𝑑𝒓 

The Hartree interaction, 𝐸ℎ𝑎𝑟[𝜌(𝒓)], can be calculated explicitly using the same technique as is 

used in Thomas-Fermi theory, see Section 2.1.4. 

𝐸ℎ𝑎𝑟[𝜌(𝒓)] =
1

2
∫ ∫

𝑝(𝒓′)𝑝(𝒓)

|𝒓 − 𝒓′|
𝑑𝐫𝑑𝐫′ 

𝐸𝑥𝑐[𝜌(𝐫)] is formally defined as the sum of the errors induced through the neglect of many-body 

correlation and exchange effects. While 𝐸𝑥𝑐[𝜌𝐾𝑆(𝒓)] has no explicitly solvable form, a wide array 

of approximate functionals have been proposed [5], which are discussed in detail in Section 2.3.1. 

𝐸𝑥𝑐[𝜌(𝐫)] = (𝑇[𝜌(𝐫)] − 𝑇𝐾𝑆[𝜌𝐾𝑆(𝐫)]) + (𝐸𝑒−𝑒[𝜌(𝐫)] − 𝐸ℎ𝑎𝑟[𝜌𝐾𝑆(𝒓)]) 

The Kohn-Sham equations can be minimized using the variational principle under the constraint 

of orthonormality of the single electron orbitals. In order to maintain orthonormality, the following 

Lagrangian expression is obtained: 

𝛺𝐾𝑆[𝜌(𝐫)] =  𝐸𝐾𝑆[𝜌(𝐫)] − 2 ∑ ∑ 𝜀𝑖𝑗 (∫ 𝛷𝑖(𝒓)𝛷𝑗(𝒓)𝑑𝐫 −  𝛿𝑖𝑗)

𝑁/2

𝑗

𝑁/2

𝑖

 

For information on Lagrangian expressions, see the Appendix at the end of this Chapter. The 

above Lagrangian can be minimized with respect to 𝛷𝑗 using the following chain rule: 

𝛿𝛺𝐾𝑆

𝛿𝛷𝑗(𝒓)
=

𝛿𝛺𝐾𝑆

𝛿𝜌(𝐫)
.

𝛿𝜌(𝐫)

𝛿𝛷𝑗(𝒓)
=

𝛿𝛺𝐾𝑆

𝛿𝜌(𝐫)
. 2𝛷𝑗(𝒓) 

𝛿𝛺𝐾𝑆

𝛿𝛷𝑗(𝒓)
= 2

𝛿𝑇𝐾𝑆

𝛿𝛷𝑗(𝒓)
+ 2 [

𝛿𝐸𝐻

𝛿𝜌(𝐫)
+  

𝛿𝐸𝑒𝑥𝑡

𝛿𝜌(𝐫)
+

𝛿𝐸𝑥𝑐

𝛿𝜌(𝐫)
] − 2 ∑ 𝜀𝑖𝑗𝛷𝑗(𝒓)

𝑁/2

𝑖=1

= 0 

The derivative of 𝐸𝐻 with respect to 𝜌(r) gives the Hartree potential, 𝑉ℎ𝑎𝑟, while the derivative 

of 𝐸𝑋𝐶  gives the exchange correlation potential, 𝑉𝑥𝑐.  
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𝑉ℎ𝑎𝑟 =
𝛿𝐸𝐻

𝛿𝜌(𝐫)
=  ∫

𝑝(𝒓′)

|𝒓 − 𝒓′|
𝑑𝐫′ 

𝑉𝑥𝑐 =
𝛿𝐸𝑥𝑐

𝛿𝜌(𝐫)
 

This leaves us with a set of potentials, 𝑉ℎ𝑎𝑟, 𝑉𝑒𝑥𝑡 and 𝑉𝑥𝑐, the sum of which equals the Kohn-Sham 

potential, 𝑉𝐾𝑆. The Kohn-Sham potential accounts for both interactions with external charges and 

inter-electronic interactions. Furthermore, the Kohn-Sham equations can be expressed as shown 

below, where single electron wavefunctions exist under the influence of 𝑉𝐾𝑆.  

[
ℏ2

2𝑚𝑒
𝛻𝑖

2 + 𝑉𝐾𝑆] 𝜓𝑖 =  𝜀𝑖𝜓𝑖 

The N single electron wavefunctions are effectively coupled through 𝑉ℎ𝑎𝑟 and 𝑉𝑥𝑐. Given that 𝑉ℎ𝑎𝑟 

and 𝑉𝑥𝑐 both depend on 𝜓𝑖 and vice versa, the Kohn-Sham equations are best solved using a self-

consistent loop, as ilustrated in Figure 2.1.  

 

Figure 2.1: The self-consistency scheme used to solve the Kohn Sham equations 
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The self-consistent procedure begins with an initial guess at the system’s ground state 

wavefunction, usually a superposition of the wavefunctions of the system’s constituent atoms. 

The resulting charge density is used to calculate the KS potential, allowing the solution of N single 

particle equations. The charge density of the N single particle wavefunctions is calculated and 

used to define a new KS potential and a new set of N single particle wavefunctions. If the energies 

of the old and new set of N single particle wavefunctions are similar to within a predefined 

threshold, the calculation is considered to be converged and the final properties of the system are 

returned. If the energies of the old and new wavefunctions are not similar to within the said 

threshold, a new charge density is calculated and the self-consistent loop continues.  

The upshot of KS-DFT is that highly demanding N electron problems are transformed into N 

single electron problems, greatly increasing computationally affordability. KS-DFT is used by the 

vast majority of DFT codes, including VASP, the code used throughout this thesis. 

2.2 Implementation of Density Functional Theory 

2.2.1 Functionals 

The exchange correlation energy, 𝐸𝑥𝑐, accounts for the errors induced through the neglect of 

many-body exchange and correlation effects. While the exact form of the functional which 

calculates 𝐸𝑥𝑐 is not known, a number of different approaches have been developed. [15, 16]  

The local density approximation (LDA) is the simplest approach used to calculate 𝐸𝑥𝑐. Developed 

by Kohn and Sham [17], the LDA assumes that 𝐸𝑥𝑐(𝒓) is equal to the exchange correlation energy 

of an electron gas with a uniform density, 𝐸𝑥𝑐
𝑢𝑛𝑖𝑓

. This approximation is surprisingly accurate for 

systems which have a uniform electron density, e.g. metals. However, the LDA fails when 

𝜌(𝒓) changes more rapidly. 

𝐸𝑥𝑐
𝐿𝐷𝐴[𝜌(𝒓)] = ∫ 𝜌(𝒓)𝐸𝑥𝑐

𝑢𝑛𝑖𝑓
𝜌(𝒓) 𝑑𝒓 
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While the form of exchange for a uniform electron gas has been known since 1930, Monte Carlo 

simulations of the uniform gas have been used to parametrize correlation effects [18]. Widely 

used correlation functionals have been developed by Vosko and Perdew [19, 20]. 

𝐸𝑥
𝑢𝑛𝑖𝑓

= −
4

3
. (

3

𝜋
)

1 3⁄

∫ 𝜌4 3⁄ 𝑑𝒓 

While LDA has not been used in this work, it provides a vital basis for semi-local techniques such 

as the generalized gradient approximation (GGA), which includes a gradient expansion describing 

a varying electron gas. Simple expansions in terms of the dimensionless reduced gradient, 𝑥 =

𝛻𝜌 𝜌4 3⁄⁄ , work well in systems where 𝜌(𝒓) varies slowly and consistently.  

𝐸𝑥
𝐺𝐸𝐴 = − ∫ 𝜌4 3⁄ [

4

3
. (

3

𝜋
)

1 3⁄

+
7

432𝜋(3𝜋2)1/3
+ ⋯ ] 𝑑𝒓 

However, in chemical problems 𝑥 becomes poorly defined. Towards atomic tails, 𝜌(𝒓) decays 

exponentially and 𝑥 →  ∞, causing the approximation to break down. The solution was the 

development of the GGA. 

𝐸𝑥
𝐺𝐺𝐴[𝑝, 𝑥] = ∫ 𝜌4 3⁄ 𝐹(𝑥)𝑑𝒓 

There are many forms of 𝐹(𝑥), but the one used throughout this work was developed by Perdew, 

Burke and Ernzerhof (PBE) [21]:  

𝐸𝑥
𝑃𝐵𝐸 = − ∫ 𝜌4 3⁄ [

4

3
. (

3

𝜋
)

1 3⁄

+
𝜇𝑠2

1 + 𝜇𝑠2/𝜅
] 𝑑𝒓 

Correlation contributions are more complex, and there are two main functionals which are used; 

LYP and PBE [21, 22]. 

Relaxing structures using local and semi-local functionals often results in very accurate 

geometries and relative energies. However, LDA and GGA both fail to accurately describe a 

number of important properties. Namely, and of particular importance to this work, they tend 



30 
 

underestimate reaction barriers and electronic band gaps. Both issues are caused by delocalization 

errors [16, 23], which are the result of dominating Coulomb forces forcing electrons apart.  

The way in which delocalization errors manifest in electronic gaps larger than the true band gap 

of a system can be understood through the consideration fractional charges. The energies of 

systems with fractional electrons  have been calculated exactly [24], with the energy of a system 

with a fractional number of electrons, 𝐸(𝑁 + 𝛿),  found to be a linear interpolation between 𝐸(𝑁) 

and 𝐸(𝑁 + 1): 

𝐸(𝑁 + 𝛿) = (1 − 𝛿)𝐸(𝑁) + 𝛿𝐸(𝑁 + 1) 

Furthermore, the band gap of a material, the difference between the ionization energy, 𝐼, and the 

electron affinity, 𝐴, can also be expressed in terms of 𝐸 and 𝑁. 

𝐸𝑔𝑎𝑝 = 𝐼 − 𝐴 = [𝐸(𝑁 − 1) − 𝐸(𝑁)] − [𝐸(𝑁) − 𝐸(𝑁 + 1)] 

For functionals which correctly replicate the linear interpolation of fractional charges, the band 

gap can be accurately expressed in terms of derivatives at 𝑁. 

𝐸𝑔𝑎𝑝 = 𝐸𝑔𝑎𝑝
𝑑𝑒𝑟𝑖𝑣 =

𝑑𝐸(𝑁)

𝑑𝑁
|

𝑁+𝛿
−

𝑑𝐸(𝑁)

𝑑𝑁
|

𝑁−𝛿
 

The derivative of total energy with respect to 𝑁 equals the chemical potential, μ, which is linear 

with a discontinuity at integer values of 𝑁. In KS-DFT, systems are described either by a set of 

orbitals and occupation numbers, {𝛷𝑖, 𝑛𝑖}, or in terms of the local potential and total number of 

particles, {𝑣𝑟, 𝑁}. Given that when energy is minimized 𝑑𝐸[𝑣𝑟, 𝑁] 𝑑𝑣𝑟⁄ = 0, 

𝜇 = (
𝑑𝐸[𝑣𝑟, 𝑁]

𝑑𝑁
)

𝑣𝑔𝑠

= (
𝑑𝐸[{𝛷𝑖, 𝑛𝑖}]

𝑑𝑛𝑓
)

{𝛷𝑖}

 

where only the frontier level occupation, 𝑛𝑓, is allowed to change with 𝛿 = 𝛿𝑛𝑓. When 𝛿 > 0, 

𝑛𝑓 = 𝑛𝐿𝑈𝑀𝑂 and when 𝛿 < 0, 𝑛𝑓 = 𝑛𝐻𝑂𝑀𝑂. Assuming KS-DFT functionals satisfy the exact 

linearity condition: 



31 
 

𝜀𝐻𝑂𝑀𝑂 = −𝐼 = (
𝑑𝐸[{𝛷𝑖, 𝑛𝑖}]

𝑑𝑛𝐻𝑂𝑀𝑂
)

{𝛷𝑖}

 

𝜀𝐿𝑂𝑀𝑂 = −𝐴 = (
𝑑𝐸[{𝛷𝑖, 𝑛𝑖}]

𝑑𝑛𝐿𝑂𝑀𝑂
)

{𝛷𝑖}

 

However, studies investigating fractional charges have repeatedly shown that LDA and GGA 

functionals do not satisfy the exact linearity condition. Instead, erroneously convex behaviour as 

a function of fractional charge is observed, and can be explained through the effects of 

delocalization errors [25]. 

 

Figure 2.2. A graphical representation of the delocalization errors inherent in DFT when using 

local and semi-local functionals. 

By inspection of Figure 2.2, it can clearly be seen that, at N: 

(
𝑑𝐸[{𝛷𝑖, 𝑛𝑖}]

𝑑𝑛𝐻𝑂𝑀𝑂
)

{𝛷𝑖}

< 𝐼 
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(
𝑑𝐸[{𝛷𝑖, 𝑛𝑖}]

𝑑𝑛𝐿𝑂𝑀𝑂
)

{𝛷𝑖}

> 𝐴 

As fractional charge (either positive or negative) is added to the system, it is erroneously 

delocalised, leading to an overestimation of electron affinity and an underestimation of ionization 

energy. The net effect of such errors is the underestimation the band gap of semiconductors. 

In contrast to local density functionals, the Hartree-Fock approximation has a tendency to localise 

electrons. This results in electron affinity being underestimated and ionization energy being 

overestimated, effects which are in directly opposition to the errors experienced when using local 

and semi-local functionals. Localization errors can also be expressed in terms of the exact linearity 

condition, and when energy is plotted as a function of fractional charge, erroneously concave 

behaviour is observed. 

Given the opposite effects of the errors induced when using standard DFT and the Hartree-Fock 

approximation, hybrid density functionals combine the two methods in order to achieve an 

accurate degree of charge localization. This rationale is formalised through the adiabatic 

connection, an integral which describes the exchange-correlation energy in terms of the ‘turning 

on’ of the coulomb repulsion between electrons [26].  

𝐸𝑥𝑐 = ∫ 𝑈𝑥𝑐
𝜆

1

0

𝑑𝜆 

where 𝑈𝑥𝑐
𝜆  is the potential energy of exchange and correlation at intermediate coupling constant 

strength λ. At λ=0, 𝑈𝑥𝑐
𝜆  is the pure exchange energy with no electron correlation whatsoever, as is 

the case in Hartre-Fock. However, while LDA and GGA are constructed to be accurate for fully 

interacting systems (λ=1), the λ=0 limit is misrepresented. Therefore, a weighted sum of Exc at λ=1 

(GGA or LDA) and at λ=0 (Hartree-Fock exchange) is used to approximate the integral. 

𝐸𝑥 = 𝑎𝐸𝐹𝑜𝑐𝑘 + 𝑏𝐸𝐺𝐺𝐴 
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The B3LYP functional, which combines a fraction of exact exchange energy with the B88 gradient 

correction for exchange and the PW91 gradient coaction for correlation [26], is often used to 

model chemical processes. 

𝐸𝑥𝑐
𝐵3𝐿𝑌𝑃 = 𝐸𝑥𝑐

𝐿𝑆𝐷𝐴 + 𝑎0(𝐸𝑥
𝑒𝑥𝑎𝑐𝑡 − 𝐸𝑥

𝐿𝑆𝐷𝐴) + 𝑎𝑥𝛥𝐸𝑥
𝐵88 + 𝑎𝑐𝛥𝐸𝑐

𝑃𝑊91 

However, functionals such as B3LYP, which calculate exact exchange between each possible 

electron pair, are prohibitively expensive when using a plane-wave basis set (see Section 2.2.3), 

especially when dealing with larger systems. The modelling of bulk systems is particularly 

expensive due to long-range Hartree Fock interactions. Screened hybrid functionals, such as the 

Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional (HSE), allow more efficient 

calculations in bulk systems as they do not calculate long range exchange energies exactly [27]. 

The HSE06 functional has been found to significantly improve the band gap prediction for a wide 

range of solids with accuracy comparable to more expensive methods [28]. 

𝐸𝑥𝑐
𝐻𝑆𝐸03 =

1

4
𝐸𝑥

𝑠𝑟,𝑒𝑥𝑎𝑐𝑡 +
3

4
𝐸𝑥

𝑠𝑟,𝑃𝐵𝐸 + 𝐸𝑥
𝑙𝑟,𝑃𝐵𝐸 + 𝐸𝑐

𝑃𝐵𝐸 

2.2.2 Calculating Forces 

While the ground state electronic wavefunction can be calculated using the electronic relaxation 

scheme shown in Figure 2.1, the forces between individual atoms must be calculated in order to 

determine the ground state atomic structure. Inter atomic forces, 𝑭, are defined through the 

following expression, where 𝐸(𝑹) is the ground state energy of the system with atomic spatial 

coordinates 𝑹.  

𝑭 = −𝛻𝑅𝐸(𝑹) 

In DFT, the Hellman-Feynman theorem can be used to calculate an expression for the force at 

given spatial coodinates [29]. 
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𝜕𝐸

𝜕𝑅
= ⟨𝜓|

𝜕𝐻̂
𝜕𝑅

|𝜓⟩ 

Hellman-Feynman theorem is valid when the wavefunction, 𝜓, is an exact eigenstate of the 

Hamiltonian, 𝐻̂. It is important to note that if the basis functions are dependent on atomic 

positions, 𝑹, then Pulay forces will be included in the form of additional terms and inaccuracies 

when relaxing unit cell volumes. It is therefore advisable to relax the volume of unit cells using a 

Murnaghan fitting scheme. 

2.2.3 Basis Sets 

In order to be computationally solvable, single-electron wavefunctions are expanded in terms of 

a basis. A basis set may take a number of forms, with real space, atom-centered functions most 

commonly during studies of molecular systems [30]. However, using real space basis sets to study 

bulk materials requires the simulation of enormous systems containing a vast number of electrons. 

This necessity can be avoided by simulating a periodically repeating unit cell using a plane-wave 

basis set [31]. Bloch’s theorem states that the wavefunctions of electrons in a periodic potential 

can be written as the product of a cell periodic function modulated by a plane wave [32]. 

𝜓𝑛,𝑘 = 𝑒𝑖𝑘𝑟𝑢𝑛,𝑘 

where the Bloch function, 𝑢𝑛,𝑘, has the same periodicity as the crystal and 𝑒𝑖𝑘𝑟 is the equation of 

a plane wave. As is the case with all periodic functions, 𝑢𝑛,𝑘 can be expanded into a Fourier series 

of plane waves. 

𝑢𝑛,𝑘 =  ∑ 𝑢̃𝐺,𝑛,𝑘𝑒𝑖𝐺.𝑟

𝐺

 

where G are reciprocal lattice vectors defined through 𝐺 =
2𝜋𝑚

𝑎𝑖
, where 𝑎𝑖 is a real space lattice 

vector. The electronic wavefunction can be written as a linear combination of plane waves. 
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𝜓𝑛,𝑘 = ∑ 𝑢̃𝐺,𝑛,𝑘𝑒𝑖(𝑘+𝐺).𝑟

𝐺

 

 

While 𝐺 can take an unlimited number of values corresponding to increasingly small wavelengths, 

high frequency components are less important due to their high kinetic energy. The series can 

therefore by truncated in accordance with the below condition:  

|𝑘 + 𝐺|2
ℏ2

2𝑚𝑒
< 𝐸𝑐𝑢𝑡 

It is important that the cut-off energy is large enough so as not to compromise the accuracy of 

results, and therefore the properties of interest should be carefully converged with respect to 𝐸𝑐𝑢𝑡.  

While imposing a cutoff energy limits the range of 𝐺 at a given 𝑘-point, modelling an infinitely 

large periodic solid theoretically requires wavefunctions to be calculated over an infinite number 

of 𝑘-points. The Born von Karmen boundary conditions can be used to circumvent this issue [33]. 

𝜓(𝒓 + 𝑁𝑖𝑎𝑖) = 𝜓(𝑟)  

where 𝑁𝑖 is the number of lattice points considered. Therefore, wavefuncitons must satisfy the 

condition: 

𝜓(𝒓 + 𝑁𝑖𝑎𝑖) =  𝑒𝑖𝑁𝑖𝑘𝑖.𝑎𝑖  𝜓(𝒓) 

The only 𝑘-points for which this is true give the exponential an argument value equal to 2nπ, 

where n is an integer. 

𝑘𝑖 =
2𝜋𝑛

𝑁𝑖
 

When 𝑁𝑖  →  ∞, an infinitely dense set of 𝑘-points emerges. However, given that energy is a 

smooth functional with respect to 𝑘 and that Bloch wave solutions are only unique within the first 

Brillouin zone, it suffices to take a weighted average over a finite number of 𝑘-points within the 

first Brillouin zone provided the measured properties are converged with respect to 𝑘 [34]. It is 
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important to note that when energy changes rapidly with respect to  𝑘 (e.g. in metals), a much 

finer sampling of k-space is required to reach convergence. 

2.2.4 Pseudopotentials 

The strong Coulomb potentials felt in regions closely surrounding nuclei give rise to extremely 

high kinetic energies. This means that a very large basis set is required in order to converge a 

system’s properties. The basis sets required correspond to a high 𝐸𝑐𝑢𝑡 and result in prohibitively 

expensive calculations. However, core electrons are almost entirely independent of the 

surrounding environment and are not involved in the bonding or properties of the parent 

compound. This means that they do not have to be modelled explicitly in every calculation.  

Pseudopotentials have been constructed for each atomic species in order to reduce computational 

cost. The use of pseudopotentials assumes that core electrons in any system have the same 

distribution as those in an isolated atom. Ideally, pseudopotential should precisely reproduce the 

effect of core electrons on those involved in bonding across a range of environments.  Using 

pseudopotentials not only means that calculations can be converged with a smaller basis set, but 

also means that less eigenstates need to be calculated for any given system. 

While there are several different types of pseudopotential, the work presented in this thesis uses 

the projector augmented wave (PAW) method [35, 36]. The PAW method uses a linear 

transformation to transform the fictitious pseudo-wavefunction (𝜓̃) onto the all electron 

wavefunction (𝜓).  

𝛵𝜓̃ = 𝜓 

𝛵 = 1 + ∑ 𝑆̂𝑅

𝑅

 

The operator 𝛵 transforms the smooth pseudo-wavefunctions used in the pseudopotential onto 

the true, all electron wavefunction. Given that 𝜓̃ and 𝜓 should only differ near the ion cores, 𝛵 

can be expressed in terms of a sum of 𝑆̂𝑅 which are zero outside a spherical augmentation region 

𝛺𝑅 enclosing atom R. 
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2.3.5 The Vienna Ab initio Simulation Package 

The Vienna Ab initio Simulation Package (VASP) is the code used most frequently throughout 

this thesis [35, 37]. Using a plane-wave basis set and periodic boundary conditions, VASP can 

solve the Kohn-Sham equations using standard DFT, hybrid DFT and other post-DFT techniques 

such as GW and RPA [38, 39]. VASP models the interaction between ionic cores and valence 

electrons using either ultra-soft Vanderbilt (US-PP) or PAW pseudopotentials [40][41]. While 

designed to be used to study bulk systems, the nature of periodic boundary conditions means that 

isolated systems can also be studied provided a sufficient vacuum region between images is used 

VASP calculates the electronic ground state using a self-consistent loop, see Figure 2.1, with 

initial charge densities taken as a superposition of constituent atomic charge densities. Within 

each loop, wavefunctions are optimized iteratively until they closely resemble the ground state 

wavefunction of the Hamiltonian. The algorithms used to optimize wavefunctions are based on 

iterative matrix-diagonalization schemes, and include the Block Davidson scheme, the conjugate 

gradient scheme, or residual minimization scheme-direct inversion in the iterative subspace 

(RMM-DIIS) [42][43]. Old and new charge densities are mixed using efficient Broyden and Pulay 

mixing schemes. Once the electronic ground state is determined, geometry optimization is 

performed by self-consistently modifying structures until all forces fall below a predefined 

threshold. Forces are calculated using Hellmann-Fenyman theorem, and geometries are relaxed 

using either a conjugate gradient relaxation scheme or a RMM-DIIS scheme. 

VASP performs well on massively parallel machines such as ARCHER, the current UK high end 

computing system, given that it is possible to parallelize the code over bands, plane wave 

coefficients and 𝑘-points. 
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2.3 Electronic Structure 

Once the ground state wavefunctions have been determined, the electronic properties of the 

system can be calculated [33]. According to Bloch’s theorem, the wavefunctions of a periodic 

solid can be written as a function of the reciprocal space coordinate, 𝑘. 

𝜓𝑛,𝑘 = 𝑒𝑖𝑘𝑟𝑢𝑛,𝑘 

𝐻̂𝜓𝑛,𝑘 = 𝐸𝜓𝑛,𝑘 

The electronic band structure is a useful way of visualizing the allowed energy states of a given 

system. The band structure plots the energies of allowed electronic states along reciprocal space 

vectors running between highly symmetric points in the Brillouin zone. The energy of 𝜓𝑛  varies 

smoothly with 𝑘, forming a band of allowed electronic states along reciprocal space vectors. The 

band gap of an 𝑁 electron system is simply the energy difference the top of band 𝑁/2 and the 

bottom of band 𝑁 2⁄ + 1. Furthermore, the dispersion of energy bands is also important, giving 

insights into the mobility of occupant charge carriers. The relationship between band dispersion 

and charge carrier mobility is formalized through the calculation of effective mass, which, along 

with scattering time, τ, can be used to estimate charge carrier mobility, 𝜇: 

𝜇 =
𝑞

𝑚 ∗
 τ 

2.3.1 Effective mass theory 

The effective mass is a convenient way of describing the motion of a band of electrons subject to 

an external force.  In Bloch theory, the electronic wavefunction is defined as a superposition of a 

set of plane waves, known as a wavepacket. The concept of a group velocity, 𝐯g, can be used to 

calculate the effective mass. Group velocity describes the velocity at which a wave propagates 

through space via the following relation: 

𝐯g =
1

ℏ
. 𝛻𝑘𝐸(𝒌) 
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where  𝐸(𝒌) is a function of energy with respect to 𝒌. When an external force, 𝐹𝑒𝑥𝑡, is applied to 

a band electron the force will do work. 

𝛿𝐸 = 𝐹𝑒𝑥𝑡𝛿𝑥 = 𝐹𝑒𝑥𝑡𝐯g𝛿𝑡 

From the equation for group velocity, 𝛿𝐸 can also be expressed as follows: 

𝛿𝐸 = ℏ𝐯g𝛿𝒌 

Combining the above two equations, dividing through by 𝛿𝑡 and considering the limit 𝛿𝑡 → 0: 

𝐹𝑒𝑥𝑡 = ℏ
𝛿𝒌

𝛿𝑡
= ℏ

𝑑𝒌

𝑑𝑡
 

Given that, classically, 𝐹𝑒𝑥𝑡 = 𝑑𝑝 𝑑𝑡⁄ , ℏ𝒌 is known as the crystal momentum. This result relates 

the rate of change in 𝒌 to the external force acting on an electron, and provides the basis for 

effective mass theory. The rate of change of velocity with time is: 

𝑎 =
𝑑𝐯g

𝑑𝑡
=

1

ℏ
.

𝑑2𝐸

𝑑𝒌𝑑𝑡
=

1

ℏ
.
𝑑2𝐸

𝑑𝒌2
.
𝑑𝒌

𝑑𝑡
 

Combining with the expression for 𝐹𝑒𝑥𝑡 gives: 

𝐹𝑒𝑥𝑡 =
𝑑𝐯g

𝑑𝑡
. ℏ2. (

𝑑2𝐸

𝑑𝒌2)

−1

 

Given that classically 𝐹 = 𝑚𝑎, we can define the ‘effective mass’ as:  

𝑚∗ = ℏ2. (
𝑑2𝐸

𝑑𝒌2)

−1

 

 

 



40 
 

2.3.2 Scattering and the deformation potential approximation 

When under an electric field, charge carriers are ballistically accelerated according their effective 

mass until an external event leads to a change in direction or energy. These external events are 

known as scattering, and are most commonly the result of ionized impurities or coupling with 

phonons.  The scattering rate, 𝑃𝑖,𝑘, for the electronic state (𝑖, 𝑘) can be described by Fermi’s 

golden rule [44]: 

𝑃𝑖,𝑘 =
2𝜋

ℎ
∑|𝑀(𝑖𝑘, 𝑗𝑘)|2

𝑗,𝑘

𝛿[𝜀𝑖(𝑘) − 𝜀𝑖(𝑘′)] 

where the matrix element 𝑀(𝑖𝑘, 𝑗𝑘) =  ⟨𝑗, 𝑘|𝛥𝑉|𝑖, 𝑘⟩,  which describes scattering from state 

(𝑖, 𝑘) to state (𝑗, 𝑘′) by a perturbation of the periodic potential, 𝛥𝑉. Such perturbations can arise 

as a result of atomic displacements associated with a phonon, or due to the presence of a charged 

defect or impurity. The scattering time, τ, is defined as being 1/𝑃𝑖,𝑘. Throughout this thesis, we 

assume a defect free structure and consider scattering as a result of electron-phonon coupling only.  

The deformation potential approximation (DPA) was proposed by Bardeen and Shockley in the 

1950s to describe charge transport in non-polar semiconductors [45], and has since been adapted 

for use in low-dimensional materials [46]. The DPA is based around a comparison of the 

wavelength of charge carriers and the wavelength of typical lattice phonons. The wavelength of 

charge carriers with energy 𝑘𝑏𝑇 can be calculated using the de Broglie relation, 𝜆 = ℏ 𝑚𝑣⁄ . At 

room temperature, 𝜆 = 7 nm, much larger than a typical lattice constant. Therefore, the DPA 

assumes that charge carriers are scattered only by acoustic phonons, and do not couple to higher 

frequency optical phonons.  

The DPA also assumes that perturbations to the lattice potential as a result of acoustic 

phonons, 𝛥𝑉(𝒓), are linearly dependent on the accompanying volume change, 𝛥(𝒓), through the 

relation: 

𝛥𝑉(𝒓) =  𝐸1𝛥(𝒓) 

where 𝐸1 is the deformation potential constant.  
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The displacement associated with the acoustic phonon with wavevector 𝒒 is: 

𝑢(𝒓) =
1

√𝑁
𝒆𝒒[𝑎𝒒𝑒𝑖𝒒𝒓 + 𝑎𝑞

∗ 𝑒−𝑖𝒒𝒓] 

where 𝑁 is the number of lattice sites per unit volume, and 𝑒𝒒 and 𝑎𝒒 are the unit vector and 

amplitude of the phonon 𝒒 respectively. Furthermore, the relative volume change, 𝛥(𝒓) can be 

expressed in terms of the displacement function 𝑢(𝒓): 

𝛥(𝒓) =
𝑑𝑢(𝒓)

𝑑𝒓
=

𝑖

√𝑁
𝒒. 𝒆𝑞[𝑎𝒒𝑒𝑖𝒒𝒓 − 𝑎𝑞

∗ 𝑒−𝑖𝒒𝒓] 

Only longitudinal acoustic (LA) phonons contribute to the deformation 𝛥(𝒓). The matrix lattice 

element for electrons to be scattered from Bloch state |𝑖, 𝑘⟩ to |𝑖, 𝑘′⟩ can be calculated using the 

formula: 

|𝑀(𝑖𝑘, 𝑖𝑘′)|2 = |⟨𝑖𝑘|𝛥𝑉|𝑖𝑘′⟩|2 =
1

𝑁
𝐸1

2𝑞2𝑎𝑞
2 

where 𝑞 = ±(𝑘 − 𝑘′). When the lattice is fully excited, the amplitude of the phonon wave is given 

by 𝑎2 = 𝑘𝐵𝑇 2𝑚𝑞2𝑣𝑎
2⁄ , where 𝑚 is the total mass of the unit cell and 𝑣𝑎 is the velocity of the 

phonon. It follows that the average scattering probability and relaxation time are: 

〈|𝑀(𝑖𝑘, 𝑖𝑘′)|2〉 =
𝑘𝐵𝑇𝐸1

2

𝑁𝑚𝑣𝑎
2

=
𝑘𝐵𝑇𝐸1

2

𝐶𝛽
 

1

𝜏
=

2𝜋𝑘𝐵𝑇𝐸1
2

ℏ𝐶𝛽
∑ 𝛿[𝜀𝑖(𝑘) − 𝜀𝑖(𝑘′)]

𝑘′

[1 −
𝑣𝛽(𝑖, 𝑘′)

𝑣𝛽(𝑖, 𝑘)
] 

where 𝐶𝛽 = 𝑁𝑚𝑣𝑎
2, the elastic constant for the longitudinal strain in the direction of propagation 

of the LA wave. Meanwhile, [1 −
𝑣𝛽(𝑖,𝑘′)

𝑣𝛽(𝑖,𝑘)
] describes the scattering angle weighting factor, which, 

assuming parabolic bands can be replaced with (1 − cos(𝜃)). The expression can be further 

simplified using the effective mass approximation. Given that band edge energies can be written 

in terms of the band edge energy and the effective mass, 𝑚∗.  
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𝜀(𝑘) − 𝜀0 =
ℏ2𝑘2

2𝑚∗
 

In the 2D systems that are studied extensively throughout this thesis, the expression for scattering 

time derived using the DPA is as follows: 

𝜏𝑖 =
ℏ3𝐶2𝐷,𝑖

𝑘𝐵𝑇𝑚𝑑𝐸1,𝑖
2  

 where 𝑚𝑑  is the equivalent density-of-state mass, 𝑚𝑑 = √𝑚𝑥𝑚𝑦. 

2.4 Stability and Reactivity 

Using DFT to solve the Schrodinger equation gives information about the electronic ground state 

properties of a material. However, given that time-independent DFT only directly calculates 

electronic energies, relative stabilities are valid at 0 K only. At non-zero temperatures, the 

assessment of a compound’s stability requires the calculation of its Gibbs free energy. The Gibbs 

free energy includes electronic, vibrational, rotational and translational energy and entropy and 

can be calculated using statistical mechanics, as described in Section 2.4.1. 

Meanwhile, the assessment of a compound’s reactivity requires knowledge of the energy barrier 

between reactant and product states. The basic concepts of transition state theory (TST) and the 

implementation of TST in VASP will be discussed in Section 2.4.2. 

2.4.1 Statistical Mechanics 

While VASP and most other DFT codes only calculate electronic energies, 𝛥𝐸𝑒𝑙𝑒𝑐, other 

contributions to 𝛥𝐺𝑠𝑦𝑠 can be calculated using statistical mechanics. The starting point for this 

process is to calculate the relevant partition function, 𝑞. The partition function is also the 

normalization constant in the Boltzmann distribution: 

𝑝𝑖 =
𝑒−𝜀𝑖 𝑘𝐵𝑇⁄

𝑞
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𝑞 = ∑ 𝑒−𝜀𝑗 𝑘𝐵𝑇⁄

𝑗

 

where 𝜀𝑖 is the energy of microstate 𝑖 and 𝑝𝑖  is the probability of the system being in 

microstate 𝑖. The partition function can be used to calculate all macroscopic properties of the 

system, including energy and entropy. For example, the average energy is: 

〈𝐸〉 = ∑ 𝜀𝑖𝑝𝑖 =

𝑖

∑ 𝜀𝑖𝑒−𝜀𝑖 𝑘𝐵𝑇⁄
𝑖

∑ 𝑒−𝜀𝑗 𝑘𝐵𝑇⁄
𝑗

 

= 𝑘𝐵𝑇2 (
𝜕ln (𝑞)

𝜕𝑇
)

𝑉
 

However, calculating entropy from the partition function is less trivial. First, one must determine 

the number of ways of arranging microstates within the ensemble. Overall, the ensemble has 𝑣  

copies and 𝑣𝑖 copies in the 𝑖𝑡ℎ microstate, so the number of ways of arranging these, 𝛺𝑣 is: 

𝛺𝑣 =
𝑣!

𝑣1! 𝑣2! 𝑣3! …
 

Using Stirling’s approximation, ln(𝑥!) = 𝑥𝑙𝑛(𝑥) − 𝑥: 

𝑙𝑛(𝛺𝑣) = 𝑣𝑙𝑛(𝑣) − 𝑣 − ∑ (𝑣𝑖 ln(𝑣𝑖) − 𝑣𝑖)
𝑖

 

= − ∑ 𝑣𝑖(ln(𝑣) − ln (𝑣𝑖)
𝑖

) 

= − ∑ (𝑣𝑖 ln(𝑣𝑖/𝑣))
𝑖

 

= −𝑣 ∑ 𝑝𝑖 ln(𝑝𝑖)
𝑖

 

Therefore, the ensemble entropy is 𝑆𝑣 = −𝑘𝐵 ∑ 𝛺𝑣𝑖 , and thus the system entropy is: 

〈𝑆〉 = −𝑘𝐵 ∑ 𝑝𝑖 ln(𝑝𝑖)

𝑖
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For systems at a constant temperature: 

〈𝑆〉 = −𝑘𝐵 ∑ 𝑝𝑖(−

𝑖

𝜀𝑖𝑘𝐵𝑇 − ln (𝑞)) 

= −𝑘𝐵(〈𝐸〉𝑘𝐵𝑇 + ln (𝑞)) 

=
〈𝐸〉

𝑇
+ 𝑘𝐵ln (𝑞) 

Apart from 𝛥𝐸𝑒𝑙𝑒𝑐  which is calculated using DFT, the above equations for energy and entropy can 

be used to calculate vibrational, rotational, translational and electronic energies and entropies. The 

specific equations can be found in Table 1.1, and while their derivations are not shown here they 

can be found in a number of standard texts [1-5]. All terms for energy and entropy can be derived 

simply by substituting the appropriate partition function, 𝑞𝑥, into the equations derived above, 

with energy equal to  𝑘𝐵𝑇2 (
𝜕ln (𝑞)

𝜕𝑇
)

𝑉
 and entropy equal to 

〈𝐸〉

𝑇
+ 𝑘𝐵ln (𝑞). Among the non-standard 

terms, θr,x, used in the calculation of the rotational partition function, qr, is equal to 
h2

8π2IkB
, where 

I is the moment of intertial about the 𝑥-axis and σr is the rotational symmetry factor. Meanwhile, 

Θv,K is the vibrational temperature of vibrational mode K, and is used in the calculation of the 

vibrational partition function, qv. Finally, 𝑤𝑖, used in the calculation of the electronic partition 

function, qe , is simply the degeneracy of electronic state 𝑖. 

Table 2.1: The equations used to calculate the total internal energy and entropy of a system. 

  Energy, Ex Entropy, Sx Partition function, qx 

Translational, t 
3

2
𝑘𝑏𝑇 𝑅 𝑙𝑛 (𝑞𝑡 +

5

2
) (

2𝜋𝑚𝑘𝑏𝑇

ℎ2
)

3/2 𝑘𝑏𝑇

𝑃
 

Rotational, r 𝑘𝑏𝑇 𝑅 𝑙𝑛(𝑞𝑟 + 3/2) 
𝜋1/2

𝜎𝑟

(
𝑇3/2

(𝜃𝑟,𝑥𝜃𝑟,𝑦𝜃𝑟,𝑧

) 

Electronic, e 𝐸𝑒 𝑅 (𝑙𝑛 (𝑞𝑒) + 𝑇 (
ԁ 𝑙𝑛(𝑞𝑒)

ԁ𝑇
)

𝑉

) ∑ 𝑤𝑖𝑒
−𝜀0

𝑘𝐵𝑇⁄

𝑖

 

Vibrational, v 

𝑅 ∑ 𝛩𝑣,𝐾 (
1

2
𝐾

+
1

𝑒𝛩𝑣,𝐾 𝑇⁄ − 1
) 

𝑅 ∑ (
𝛩𝑣,𝐾 𝑇⁄

𝑒𝛩𝑣,𝐾 𝑇⁄ − 1
− 𝑙𝑛 (1

𝐾

− 𝑒𝛩𝑣,𝐾 𝑇⁄ )) 

∏
1

1 − 𝑒𝛩𝑣,𝐾 𝑇⁄

𝐾
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2.4.2 Transition State Theory 

The rate at which a reaction proceeds can be estimated using the Eyring equation [47], which 

assumes that all reactions proceed via the transition state, R#, the highest energy state encountered 

during the transition between reactants and products. The rate at which the product, P, is formed 

depends on the concentration of R# and the rate at which R# is turned into P. 

ԁ[𝑃]

𝑑𝑡
 =  𝑘[𝑅#] 

 

Figure 2.3: A graphical representation of the energy profile of a chemical reaction. 

If we assume that a pre-equilibrium between R and R# is established, where 𝐾# = [𝑅#]/[𝑅], we 

can write the rate equation in terms of [R].  

ԁ[𝑃]

𝑑𝑡
 =  𝑘[𝑅] =  𝑘. 𝐾#[𝑅] 

Furthermore, 𝐾# =
𝑞′#

𝑞
= 𝑒−

∆𝐺0
#

𝑅𝑇
⁄

, where 𝑞# and 𝑞 are the partition functons of 𝑅# and 𝑅 

respectively and ∆𝐺0
# is the difference in Gibbs free energy between 𝑅# and 𝑅. 
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ԁ[𝑃]

𝑑𝑡
 = 𝑘. 𝑒−

∆𝐺0
#

𝑅𝑇
⁄

[𝑅] 

The rate at which R# is converted into P and thus 𝑘 can be estimated by assuming that the reaction 

coordinate is representative of a vibrational mode, and that the reaction is attempted with a 

frequency equal to that of the vibration. As the vibrational mode representing the reaction 

coordinate is extremely low in energy in the transition state complex, the partition function of this 

mode can be approximated as 
𝑘𝐵𝑇

ℎ
.  

ԁ[𝑃]

𝑑𝑡
=

𝑘𝐵𝑇

ℎ
𝑒−

∆𝐺0
#

𝑅𝑇
⁄

[𝑅] 

In order to identify the transition state, VASP uses the nudged elastic band (NEB) method [48]. 

The NEB method finds the minimum energy path (MEP) by relaxing a set of images, derived by 

a linear interpolation between reactant and product structures, under the constraint of spring forces 

between successive images.  

The original elastic band (EB) method suffers from two critical problems. When the spring 

constant between images is low, the true potential force parallel to the MEP means that the 

distance between images becomes high around the saddle point, resulting in a problematically low 

image resolution. However, when higher spring constants are used, the spring force component 

perpendicular to the path pulls the images away from the true MEP. This effect is known as ‘corner 

cutting’, and results in the EB method missing the MEP. It is not possible to avoid both problems 

at once, and therefore the NEB method was developed.  

In the NEB method, the perpendicular component of the spring force and the parallel component 

of the true force are projected out. In NEB, the total force on each image is the sum of the true 

potential force perpendicular to the local tangent and the spring force parallel to the local tangent. 

Once the spring forces are minimized, the mimicked elastic band is the true MEP. Furthermore, 

the climbing image modification drives the highest energy image up to the saddle point. Climbing 

image nudged elastic band (CI-NEB) takes the highest energy image and removes the spring force 

and inverts the true potential force along the path, thus relaxing the image to its local maxima 

[49]. 
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2.5.3 Heitler-London model 

The Heitler-London model expresses the energy of bonding and antibonding states in H2 

according to the following equations: 

𝐸𝑏𝑜𝑛𝑑𝑖𝑛𝑔 = 2𝐸0 +  
𝑒2

𝑅
+

𝐾 + 𝐻

1 + 𝑆2
 

𝐸𝑎𝑛𝑡𝑖𝑏𝑜𝑛𝑑𝑖𝑛𝑔 = 2𝐸0 +  
𝑒2

𝑅
+

𝐾 − 𝐻

1 − 𝑆2
 

where 𝐸0 is the atomic energy, 𝐾 is the sum of classical electron-electron and electron-ion 

Coulomb energies, 𝑆 is the overlap between atomic orbitals and 𝐻 is the exchange integral term. 

The magnitude of S must be smaller than 1, with the square of S is even smaller. Furthermore, in 

general, the magnitude of the coulomb energy is small, with changes in 𝐻 dominating trends in 

energy. 

𝐻 = ∫ ∫ 𝜓𝑎
∗(𝑟1)𝜓𝑏

∗ (𝑟2) (
1

𝑟12
−

1

𝑟2𝑎
−

1

𝑟1𝑏
) × 𝜓𝑏(𝑟1)𝜓𝑎(𝑟2)𝑑𝑟1𝑑𝑟2 

where non-classical electron-electron (
1

𝑟12
) contributions are positive and electron-ion interactions 

(−
1

𝑟12
 and −

1

𝑟12
) are negative. In all non-localized cases, the electron-ion contributions dominate 

over electron-electron contributions. As the bond length shortens, 𝐻 decreases and vice versa. 

Although developed for H2 specifically, the implications of the the Heitler-London hold true for 

more complex bonding arrangements; bond shortening through  the application of compressive 

strain stabilises 𝐸𝑏𝑜𝑛𝑑𝑖𝑛𝑔 and destabilises 𝐸𝑎𝑛𝑡𝑖𝑏𝑜𝑛𝑑𝑖𝑛𝑔, whereas bond lengthening through the 

application of tensile strain destabilises  𝐸𝑏𝑜𝑛𝑑𝑖𝑛𝑔 and stabilises 𝐸𝑎𝑛𝑡𝑖𝑏𝑜𝑛𝑑𝑖𝑛𝑔. These effects are 

relevant to work in Chapters 5 and 6. 
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2.5 Appendix: Lagrange Multipliers 

It is often necessary to find the extrema of a function or functional under particular constraints. 

This can be achieved by using Lagrange multipliers. For example, to find the minimum of a 

function 𝑓(𝑥, 𝑦) under the condition 𝑔(𝑥, 𝑦) = 0. 

𝑓(𝑥, 𝑦) = 𝑥 + 2𝑦 

𝑔(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 1 

A new function can be written which consists of the old ln. function plus the function which is 

subject to numerical constrains multiplied by a number called a Lagrange multiplier. 

ℎ(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝜆𝑔(𝑥, 𝑦) 

To find the extrema of our new function with respect to either 𝑥 or 𝑦, simple derivatives can be 

taken. 

𝜕ℎ

𝜕𝑥
= 1 + 2𝜆 𝑥 = 0 

𝜕ℎ

𝜕𝑦
= 1 + 2𝜆 𝑦 = 0 

Along with the constraint 𝑔(𝑥, 𝑦) = 0, this gives us three equations and three unknowns, 𝑥, 𝑦 and 

𝜆, and thus can solve the minimization problem. Furthermore, functionals can be minimized in an 

analogous way. 
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Chapter 3 

Hydrogen adsorption by Ti8C12 

3.1 Background 

In this chapter, we investigate the reversible hydrogenation of titanium metallocarbohedrene, 

Ti8C12. We show that when all contributions to the Gibbs free energy are considered, Ti8C12 can 

reversibly dissociate H2 with fast kinetics over a modest range of conditions to form a variety of 

products. While our results suggest that the ultimate H2 storage capacity of Ti8C12 is lower than 

previously reported, its ability to reversibly dissociate H2 with a low kinetic barrier suggests its 

potential use as a catalyst to regenerate depleted HSMs. 

As discussed in Chapter 1, it is important to find materials that are able to reversibly store H2. 

However, high capacity HSMs usually chemisorb hydrogen, meaning that their regeneration is 

often prohibitively slow given the high activation energy needed to dissociate H2. Materials which 

dissociate H2 with a low activation barrier are therefore potentially useful for the catalytic 

regeneration of high capacity HSMs. However, potential catalysts must bind hydrogen less 

strongly than the HSM itself, implying that they must reversibly dissociate hydrogen over a range 

of practical operating conditions. 

In the search for a catalyst fitting this profile, Maj and Grochala  investigated the hydrogenation 

of cubane like M4Nm4H8 (M=V,Ti, Zr, Hf, Nm= Si, C, B, N) nanoparticles [1]. They found that 

their properties can be tailored to have low activation energies and Gibbs free adsorption energies 

close to zero. However, experimental studies have shown that clusters with an M4Nm4 

stoichiometry are unstable [2].  It is for this reason that we have investigated the closely related 

Ti8C12 metal-carbon cluster.  M8C12 (M = Ti, V) clusters have been experimentally and 

theoretically shown to be exceptionally stable following the synthesis of Ti8C12 in 1992 [3-10]. 

Both ionic and neutral forms of M8C12 can be synthesized through plasma reactions between 

metals and small hydrocarbon molecules including methane, ethane, ethane and propane using 
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laser vaporization techniques. The ground state of Ti8C12 is thought to resemble a distorted 

tetrahedron  [11-14]. 

Previous Density Functional studies have suggested that Ti8C12 has the potential to be used as a 

hydrogen storage material (HSM), with reported hydrogen storage capacities ranging between 2.5 

and 15 wt%. Akman et al. reported a storage capacity of 5.8% in 2006 based around the 

physisorbtion of 16 × H2 molecules, each bound to a titanium atom with an average electronic 

binding energy of 0.28 eV [15]. However, not only did this study neglect important entropic 

effects, but its calculations used a GGA exchange-correlation functional known to overestimate 

charge transfer binding energies. More recently, Banerjee et al. used ab-initio molecular dynamics 

to show that at 0 K Ti8C12 adsorbs 15.06 wt% of H2, with a 10.06 wt% reversible storage capacity 

[16]. However, at higher temperatures storage capacities were lower, less than 3 wt%, and 

furthermore an inaccurate GGA exchange-correlation functional was used to model H2 

physisorption.  

Most relevant to our work is a study by Zhou et al which reports that H2 is dissociated by Ti8C12 

with a very low electronic activation energy of around 0.2 eV relative to the physisorbed state 

[17]. However, this study also used a GGA exchange-correlation functional, which, as well as 

having a tendency to overestimate charge transfer binding energies, are also known to 

significantly underestimate activation barriers. Furthermore, Zhou et al. also described the 

behaviour of Ti8C12 + H2 at zero temperature only, neglecting translational, rotational and 

vibrational energy and entropy. Regardless of the issues cited, the low energy dissociation of H2 

reported is still potentially important, and therefore we have carried out a more extensive 

investigation into the hydrogenation of Ti8C12.  

3.2 Methodology 

Density functional calculations were performed using the VASP code. We used a plane-wave 

basis set truncated at 400 eV and PAW pseudopotentials to treat core electrons. More information 

about plane-wave DFT and pseudopotentials can be found in Section 2.2.  Exchange and 

correlation contributions to the electronic energy, Exc, are accounted for using the B3LYP hybrid 

functional.  Hybrid exchange-correlation functionals such as B3LYP generally provide more 

accurate activation barriers than local and semi-local functionals, see Section 2.2.1. Meanwhile, 
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we found that additional inclusion of van der Waals corrections made little difference to either 

physisorption or chemisorption energies, with differences in H2 binding energies less than 3 meV. 

We used a conjugate gradient algorithm to relax structures until all interatomic forces fell below 

0 .01 eV/Å, with Ti8C12Hx relaxed within a 25 × 25 × 25 Å3 box. This provided a large separation 

between images of Ti8C12 to ensure that the interaction between neighbouring images remained 

negligible. Furthermore, the Brillouin zone was sampled at the Г point only.  

Full entropic, translational, vibrational and rotational contributions to the Gibbs free energy were 

calculated using equations derived using statistical mechanics, see Section 2.4.1. The required 

vibrational analyses were performed by calculating the Hessian matrix, which includes the second 

derivatives of energy with respect to atomic positions. To ensure that atomic displacements fell 

within the harmonic region, we used a small ionic displacement of 0.015Å.To calculate activation 

barriers, we used NEB, see Section 2.4.2. When performing NEB calculations, the forces between 

consecutive images were minimized to less than 0.01 eV/Å. The climbing image method was used 

to ensure that the true activation energy was found.  

3.3 Ground state Ti8C12 

Previous studies have consistently reported that Ti8C12 has approximate Td symmetry, and 

therefore we used a Td structure as a starting point for our investigations. The Td form of Ti8C12, 

shown in Figure 3.1, is based around a pair of interlocking tetrahedra with titanium atoms 

positioned at each vertex. The tetrahedra are arranged so that the titanium atoms at the vertices of 

the smaller tetrahedron cap the faces of the larger tetrahedron. Throughout this study, we refer to 

titanium atoms at the vertices of the larger tetrahedron as Tiα and titanium atoms at the vertices of 

the smaller tetrahedron as Tiβ. Six C2 units run parallel to the edges of the large tetrahedron, with 

Tiα and Tiβ coordinated to three and six carbon atoms respectively.  
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Figure 3.1: Two representations of Td Ti8C12, with highlighting the tetrahedron with Tiα (left) at 

its vertices and highlighting the tetrahedron with Tiβ at its vertices (right) 

When relaxed under the constraints of Td symmetry, Ti8C12 has a degenerate electronic 3T2 ground 

state. Jahn-Teller theorem says that structures with a degenerate electronic state are unstable with 

respect to structural distortions. Indeed, in the absence of symmetry constraints ground state Ti8C12 

is stabilised by 0.12eV with respect to the Td isomer. Upon inspection, ground state Ti8C12 is 

distorted with respect to the Td isomer through a compression along one of four C3 symmetry axes, 

resulting in a structure with approximate C3v symmetry. We found that this distortion lifts the 

degeneracy of the T2 valence orbital and results in the emergence of a 3E frontier orbital. 

Meanwhile, elongating along the same C3 axis also stabilises the structure with respect to the Td 

isomer, lifting the degeneracy of the T2 valence orbital through the emergence of a 1A electronic 

ground state. 

 Term Symbol Relative Energy 

Td 3T2 0.00 eV 

C3v 1A1 -0.05eV 

C3v 
3E -0.12 eV 

Table 3.1: The relative energy and electronic term symbols of structural isomers of Ti8C12. 

We note that the average carbon-carbon bond length of 1.32Ǻ is comparable to that of a typical 

carbon-carbon double bond. Carbon - α-titanium distances, meanwhile, are only marginally 

elongated with respect to bulk titanium carbide, with carbon - β-titanium distances elongated by 

a further 10%.   
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Figure 3.2: The structure of C3v Ti8C12 with the C3 symmetry axis and key bond lengths labelled: 

(a) C-C, (b) Tiα and (c) Tiβ. 

The decomposed density of states (DoS), see Figure 3.3, shows that both the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) predominantly 

consist of titanium orbital character. The fact that titanium orbitals dominate both HOMO and 

LUMO states suggests the favourable formation of dihydrogen complexes centred around 

titanium. In dihydrogen complexes, H2 acts simultaneously as a σ-donor and a σ-acceptor, 

meaning that it is favourable to have a high energy HOMO and a low energy LUMO based around 

the same species. The electronic structure of Ti8C12 fits this criteria well given that the HOMO – 

LUMO gap is very small. 

The DoS also reveals that the lowest energy occupied states predominantly consist of carbon 

orbital character, whereas there is more titanium orbital character in unoccupied states. The 

unequal distribution of occupied and unoccupied states manifests in an unequal charge distribution 

between titanium and carbon species. Bader charge analysis confirms this, with carbon atoms 

carrying, on average, a -0.87 𝑒 charge, Tiβ atoms carrying a +1.37 𝑒 charge and Tiβ atoms carrying 

a +1.24 𝑒 charge. Such heterogeneous charge distribution between titanium and carbon species 

suggests a suitability for heterolyitc splitting of H2.   
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Fig 3.3: The species decomposed density of states of C3v Ti8C12. 

3.4 Thermodynamics of hydrogen adsorption 

3.4.1 Physisorption 

In order to model the physisorption of H2 by Ti8C12, we coordinated H2 to the Td isomer of Ti8C12 

before allowing the structure to relax with unrestricted symmetry. This approach greatly reduces 

the number of possible starting configurations, which grows exponentially as more H2 molecules 

are added. H2 can be physisorbed at either of the two unique titanium positions present in Td Ti8C12 

to form either α-Ti8C12−H2 or β-Ti8C12−H2.  

We found that H2 is physisorbed at Tiα with an exothermic electronic binding energy, ΔEelec, of 

−0.235 eV/H2. Meanwhile, H2 is physisorbed at the more coordinated Tiβ species with a far less 

exothermic ΔEelec of −0.038 eV/H2. Both of these binding energies are significantly less 

exothermic than those reported in previous studies, −0.39 eV/H2 and −0.24 eV/H2 when H2 is 

physisorbed at Tiα and Tiβ respectively [15]. This discrepancy can be attributed to the 
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overestimation of charge transfer binding energies when using semi-local exchange-correlation 

functionals. 

 

Figure 3.4: The relaxed structure of Ti8C12 with H2 physisorbed at Tiα (left) and Tiβ (right). 

In order to ascertain the thermodynamic stability of α-Ti8C12−H2 and β-Ti8C12−H2 with respect to 

Ti8C12 and H2, we calculated the Gibbs free energy change, 𝛥𝐺𝑝ℎ𝑦𝑠, at temperatures of between 

170 K and 370 K and at pressures of between 0.1 ATM and 100 ATM. Table 3.2 shows the 

contributing changes in electronic, rotational, vibrational and translational energy and entropy 

when H2 is physisorbed to form  α-Ti8C12−H2 at standard conditions (298 K / 1 ATM), 170 K / 

100 ATM and 370K / 0.1 ATM. 

 170 K / 100 ATM 298 K / 1 ATM 370 K / 0.1 ATM 

𝛥𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 -0.235 eV -0.235 eV -0.235 eV 

𝑇 × 𝛥𝑆𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 0.0 eV -0.0 eV -0.0 eV 

𝛥𝐸𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 -0.022 eV -0.039 eV -0.048 eV 

𝑇 × 𝛥𝑆𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 -0.119 eV -0.363 eV -0.541 eV 

𝛥𝐸𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 0.135 eV 0.165 eV 0.186 eV 

𝑇 × 𝛥𝑆𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 0.046 eV 0.117 eV 0.170 eV 

𝛥𝐸𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 -0.022 eV -0.039 eV -0.048 eV 

𝑇 × 𝛥𝑆𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 -0.014 eV -0.039 eV -0.055 eV 

𝛥𝐺𝑝ℎ𝑦𝑠,𝛼 -0.057 eV 0.137 eV 0.281 eV 

Table 3.2: The contributions to the Gibbs free energy change when H2 is physisorbed at Tiα. 
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Overall, entropy is lost when H2 is adsorbed, meaning that decreasing temperature favours H2 

adsorption. This is primarily driven by the decrease in translational entropy when H2 is adsorbed 

and loses its translational independence. Given that the translational entropy of H2 is highest at 

low pressures, high pressure conditions also favour H2 adsorption. The corresponding fall in 

translational energy when H2 is adsorbed is low and independent of pressure, just 
3

2
𝑘𝑇. 

Meanwhile, vibrational entropy and energy both increase when H2 is adsorbed as a new bond is 

formed between Ti8C12 and H2. Changes in rotational energy and entropy are both small and 

slightly negative given the loss of hydrogen’s rotational independence. 

Overall, 𝛥𝐺𝑝ℎ𝑦𝑠,𝛼  is endothermic under standard conditions, +0.137 eV, and therefore the 

formation of α-Ti8C12−H2 is not thermodynamically favourable. However, 𝛥𝐺𝑝ℎ𝑦𝑠,𝛼 can be made 

exothermic by increasing pressure and lowering temperature. For example, at 170 K / 100 ATM, 

𝛥𝐺𝑝ℎ𝑦𝑠,𝛼  = -0.057 eV. Figure 3.5 shows 𝛥𝐺𝑝ℎ𝑦𝑠,𝛼  over the range of temperatures and pressures 

investigated; red areas signify that 𝛥𝐺𝑝ℎ𝑦𝑠,𝛼  is endothermic and that the physisorption of H2 at Tiα 

is not thermodynamically favourable, whereas green areas signify that 𝛥𝐺𝑝ℎ𝑦𝑠,𝛼  is exothermic and 

that the physisorption of H2 at Tiα is thermodynamically favourable. While α-Ti8C12−H2 is only 

stable under high pressure / low temperature conditions, any increase in pressure and decrease in 

temperature increases the stability of α-Ti8C12−H2, an intermediate in the chemisorption process 

discussed later. 
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Figure 3.5: The Gibbs free energy change when H2 is physisorbed at Tiα under various 

conditions. 

We also calculated the Gibbs free energy change when H2 is physisorbed at Tiβ to form               β-

Ti8C12−H2, 𝛥𝐺𝑝ℎ𝑦𝑠,𝛽. Table 3.3 shows the contributions to the Gibbs free energy and Figure 3.6 

shows 𝛥𝐺𝑝ℎ𝑦𝑠,𝛽 over a range of temperatures and pressures. In contrast with 𝛥𝐺𝑝ℎ𝑦𝑠,𝛼,  𝛥𝐺𝑝ℎ𝑦𝑠,𝛽 

remains endothermic over the entire range of conditions studied given that 𝛥𝐸𝑒𝑙𝑒𝑐 is almost 0.2 

eV more endothermic than when H2 is physisorbed at Tiα. Most of the other contributions 

to 𝛥𝐺𝑝ℎ𝑦𝑠,𝛽 are similar to those contributing to 𝛥𝐺𝑝ℎ𝑦𝑠,𝛼, although changes in vibrational energy 

are slightly lower and changes in vibrational entropy are higher as a result of a weaker Tiβ – H2 

bond.  
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 170 K / 100 ATM 298 K / 1 ATM 370 K / 0.1 ATM 

𝛥𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 -0.038 -0.038 -0.038 

𝑇 × 𝛥𝑆𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 -0.010 -0.018 -0.022 

𝛥𝐸𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 -0.022 -0.039 -0.048 

𝑇 × 𝛥𝑆𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 -0.119 -0.363 -0.541 

𝛥𝐸𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 0.108 0.148 0.174 

𝑇 × 𝛥𝑆𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 0.072 0.175 0.249 

𝛥𝐸𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 -0.022 -0.039 -0.048 

𝑇 × 𝛥𝑆𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 -0.014 -0.039 -0.055 

𝛥𝐺𝑡𝑜𝑡𝑎𝑙 0.087 0.259 0.387 

Table 3.3: The contributions to the Gibbs free energy change when H2 is physisorbed at Tiβ. 

 

Figure 3.6: The Gibbs free energy change when H2 is physisorbed at Tiβ under various 

conditions 
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The fact that 𝛥𝐺𝑝ℎ𝑦𝑠,𝛽 is moderately endothermic even under low temperature / high pressure 

conditions means that no appreciable quantities of β-Ti8C12−H2 will exist at any conditions of 

interest. Therefore, we did not investigate the physisorption of subsequent H2 molecules at any 

Tiβ site. We found that subsequent H2 molecules are barely bound to hydrogenated Tiα species, 

with  𝛥𝐸𝑒𝑙𝑒𝑐  = −0.06 eV and −0.04 eV for the second and third H2 physisorption, with 

corresponding changes in Gibbs free energy highly endothermic even under low temperature / 

high pressure conditions. Our findings are in contrast to previous studies which reported electronic 

binding energies of −0.32 eV and −0.13 eV for the second and third H2 physisorption, a difference 

that can again be attributed to the overestimation of charge transfer binding energies when using 

semi-local exchange-correlation functionals. Meanwhile, we did find that H2 binds exothermically 

to non-hydrogenated Tiα sites in α-Ti8C12−H2; under standard conditions, ΔG𝑝ℎ𝑦𝑠,𝛼 = +0.142, and 

at 170K / 100 bar ΔG𝑝ℎ𝑦𝑠 = -0.027 eV, similar to physisorbtion of Tiα by α-Ti8C12, +0.137 eV and 

-0.057 eV. 

Our investigations into the physisorbtion of H2 by Ti8C12 suggest that the high storage capacities 

reported in previous studies, which are reliant on the mass physisorbtion of H2, are unrealistic. 

We found that even at low temperature, high pressure conditions, each Tiα species can only 

physisorb one H2 molecule, and that H2 is not physisorbed at all by Tiβ at all. 

3.4.2 Chemisorption 

In this section we investigate the stability of the isomers of Ti8C12H2 resulting from the 

chemisorption 2 × H2 molecules by Ti8C12. In each case, we used a stable physisorbed state as a 

starting configuration before dissociating H2 between neighbouring atoms. When H2 physisorbed 

at Tiα is dissociated between Tiα and carbon, α-Ti8C12H2 is formed, whereas when H2 physisorbed 

at Tiβ is dissociated between Tiβ and carbon, β-Ti8C12H2 is formed. Both structures are shown in 

Figure 3.7. 



64 
 

 

Figure 3.7: The relaxed structure of α-Ti8C12H2 (left) and β-Ti8C12H2 (right). 

The formation α-Ti8C12H2 is energetically favourable over the formation of β-Ti8C12−H2, with 

ΔEelec = −0.447 eV when forming α-Ti8C12H2 and ΔEelec = −0.063 eV when forming                         

β-Ti8C12−H2. The weak binding of atomic hydrogen to Tiβ is consistent with the weak binding of 

H2 to Tiβ, with both atomic hydrogen and H2 binding much more strongly to Tiα, see Section 3.4.1. 

We calculated the changes in Gibbs free energy when H2 is chemisorbed. The change in Gibbs 

free energy when H2 is chemisorbed by Tiα and carbon to form α-Ti8C12H2, 𝛥𝐺𝑐ℎ𝑒𝑚,𝛼, will be 

discussed first. Non-electronic contributions to the Gibbs free energy follow a similar pattern to 

those when H2 is physisorbed: upon chemisorption, translational entropy falls while vibrational 

entropy and energy increase. However, in addition, electronic entropy is also lost as the spin 

degeneracy of Ti8C12 is lifted. Full contributions to 𝛥𝐺𝑐ℎ𝑒𝑚,𝛼 are shown in Table 3.4. 

As can be seen in Figure 3.8, 𝛥𝐺𝑐ℎ𝑒𝑚,𝛼  is exothermic over a wide range of conditions, reaching 

to -0.180 eV at 170 K / 100 ATM. Under standard conditions ΔG𝑐ℎ𝑒𝑚 = +0.068 eV, and 

thus becomes exothermic when pressure is slightly increased and/or temperature is slightly 

decreased. Thus, in terms of thermodynamics, Ti8C12 can be reversibly hydrogenated to form α-

Ti8C12H2 over a very modest range of conditions. 
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 170 K / 100 ATM 298 K / 1 ATM 370 K / 0.1 ATM 

𝛥𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 -0.447 -0.447 -0.447 

𝑇 × 𝛥𝑆𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 -0.020 -0.036 -0.044 

𝛥𝐸𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 -0.022 -0.039 -0.048 

𝑇 × 𝛥𝑆𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 -0.119 -0.363 -0.541 

𝛥𝐸𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 0.155 0.174 0.190 

𝑇 × 𝛥𝑆𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 -0.003 0.019 0.042 

𝛥𝐸𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 -0.022 -0.039 -0.048 

𝑇 × 𝛥𝑆𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 -0.014 -0.039 -0.055 

𝛥𝐺𝑡𝑜𝑡𝑎𝑙 -0.180 0.068 0.245 

Table 3.4: The contributions to the Gibbs free energy change when H2 is chemisorbed by Tiα and 

carbon. 

 

Figure 3.8: The Gibbs free energy change when H2 is chemisorbed by Tiα and carbon under 

various conditions. 
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We also calculated the Gibbs free energy change when H2 is chemisorbed by Tiβ and carbon, 

ΔG𝑐ℎ𝑒𝑚,𝛽. Given the magnitude of 𝛥𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐, it is unsurprising that ΔG𝑐ℎ𝑒𝑚,𝛽  remains positive 

over the entire range of conditions studied. Even when ΔG𝑐ℎ𝑒𝑚,𝛽 is minimized at 170 K / 100 

ATM, ΔG𝑐ℎ𝑒𝑚,𝛽 is still highly endothermic, +0.211 eV. We conclude that no appreciable quantity 

of β-Ti8C12H2 will exist under the conditions of interest, and have ignored the possibility of the 

chemisorption of subsequent H2 by β-Ti8C12H2. 

We did, however, investigate the subsequent hydrogenation of α-Ti8C12H2 to Ti8C12H4. The 

hydrogenation of α-Ti8C12H2 can proceed to form five possible isomers, as shown in Figure 3.9.  

We found that isomer A is significantly more stable than any other isomer, with 𝛥𝐸𝑒𝑙𝑒𝑐  far more 

exothermic than when Ti8C12 is hydrogenated to form α-Ti8C12H2. This implies the relative 

instability of partially hydrogenated C2 units, C2H, relative to fully hydrogenated C2 units, C2H2. 

If C2 units are assumed to be similar to alkenes, see Section 3.3, then partially hydrogenated C2H 

species have unstable dangling bonds that are not present in C2H2.  However, while the carbon-

carbon bond length in hydrogenated C2H2 units is elongated with respect to C2 (1.39 Å vs.              

1.32 Å), it does not approach the length of a typical carbon-carbon single bond (~1.5 Å). 

Interestingly, our results suggest that partially hydrogenated C2H species are stabilised when 

positioned adjacently, as in isomer C, the next most stable isomer of Ti8C12H4.  

 

Figure 3.9: Structural isomers of Ti8C12H4 
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 T8C12  Ti8C12H4 T8C12H2  Ti8C12H4 

 ΔEelec  (eV/H2) ΔGads  (eV/H2) ΔEelec (eV) ΔGads (eV) 

A −0.558 −0.112 -0.669 -0.292 

B −0.330 +0.117 -0.213 0.166 

C −0.487 −0.028 -0.527 -0.124 

D −0.317 +0.130 -0.187 0.192 

E −0.344 +0.102 -0.240 0.136 

Table 3.5. The electronic and Gibbs free changes for the adsorption of (i) 2 ×H2 by Ti8C12 and 

(ii) H2 by Ti8C12 to form the isomeric forms of Ti8C12H4 (a) – (e). 

We calculated the Gibbs free energy change for the formation of isomer A from both Ti8C12 and 

α-Ti8C12H2, see Figure 3.10. The formation of isomer A from Ti8C12, 𝛥𝐺𝑐ℎ𝑒𝑚 / H2 can be 

exothermic or endothermic depending on the conditions. For example, while the formation of 

isomer A from Ti8C12 is exothermic under standard conditions (𝛥𝐺𝑐ℎ𝑒𝑚 = -0.112 eV / H2), at 370 

K / 0.1 ATM it is endothermic (𝐺𝑐ℎ𝑒𝑚 = +0.054 eV / H2). Therefore, we conclude the 

chemisorption of 2 × H2 is thermodynamically reversible between 298 K / 1.0 ATM and 370 K / 

0.1 ATM. 

While the stability of α-Ti8C12H4 with respect to α-Ti8C12H2 only amounts to a kinetic barrier to 

the full dehydrogenation of α-Ti8C12H4, if α-Ti8C12H4 were to be used as a hydrogenation catalyst 

it would severely limit the range of compatible HSMs. Compatible HSMs must bind H2 with a 

more exothermic Gibbs free energy than Ti8C12H2. Therefore, under standard conditions, 

compatible HSMs must bind H2 with 𝛥𝐺 < -0.246 eV.  

One possible solution would be to prevent the formation for Ti8C12H4 through the blocking of Tiα 

sites, preventing the formation of α-Ti8C12H4. Zhao et al. suggest that Ti8C12 dimerizes with a 

binding energy of 1.8 eV / molecule. The same study suggests that larger polymeric structures are 

likely to form, with certain surfaces leaving exposed desirable Tiα-C units.  
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Figure 3.10: The Gibbs free energy change per H2 when 2 × H2 are chemisorbed by Ti8C12 to 

form isomer A under various conditions. 

 

Figure 3.11: The Gibbs free energy change when H2 is chemisorbed by Ti8C12H2 to form isomer 

A under various conditions. 
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3.5 Kinetics of hydrogen adsorption 

In order to understand the kinetics of H2 dissociation by Ti8C12, we used the nudged elastic band 

(NEB) method, which finds the minimum energy pathway (MEP) between reactants and products 

in terms of the system’s electronic energy. We investigated the hydrogenation of Ti8C12 to 

Ti8C12H4 by performing NEB relaxations between five different intermediates: [Ti8C12 + 2 × H2], 

[α-T8C12−H2 + H2], [α-T8C12H2 + H2], [α-T8C12H2−H2] and [α-T8C12H2]. Figure 3.12 shows the 

reaction profile for the hydrogenation of Ti8C12 to Ti8C12H4 in terms of electronic energy.  

Figure 3.12: The reaction profile in terms of electronic energy for the consecutive chemisorption 

of two H2 molecules by Ti8C12. 

Between images 0 and 3, H2 is physisorbed at Tiα with no electronic energy barrier to form the 

stable intermediate α-T8C12−H2. Between images 3 and 8, H2 is dissociated between Tiα and 

carbon to form α-T8C12H2 with an electronic activation battier of 0.387 eV, significantly higher 

than previously reported results obtained using the PBE functional, a GGA functional known to 

underestimate activation barriers. Between images 8 and 11, H2 is physisorbed at Tiα with no 
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electronic energy barrier. Between images 11 and 15, H2 is dissociated between Tiα and carbon to 

form α-T8C12H2 with an electronic energy battier of 0.460 eV. 

However, reaction kinetics are not determined by the electronic energy barrier alone. The Eyring 

equation uses the Gibbs free energy barrier, ∆𝐺#, to calculate pre-exponential factors. Figure 3.13 

which shows MEP between Ti8C12 and Ti8C12H4 in terms of the intermediates’ Gibbs free energy 

at 170 K / 100 ATM, 298 K / 1.0 ATM and 370 K / 0.1 ATM. 

/

 

Figure 3.13: The reaction profile in terms of the Gibbs free energy for the consecutive 

chemisorption of two H2 molecules by Ti8C12. 

Under standard conditions, physisorbed states (i.e. α-T8C12-H2 and α-T8C12H2-H2, images 3 and 

11) are not stable intermediates. Therefore, ∆𝐺# for the hydrogenation of T8C12 is the barrier 

between images 1 and 8 (0.480 eV) and ∆𝐺# for the hydrogenation of α-Ti8C12H2 is the barrier 

between images 8 and 15 (0.522 eV). 

However, high pressure / low temperature conditions (170 K / 100 ATM) minimise ∆𝐺# for both 

hydrogenations. Under these conditions, both physisorbed states are stable intermediates, and 
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therefore ∆𝐺# for the hydrogenation of T8C12 is the barrier between images 3 and 8      (0.316 eV) 

and ∆𝐺# for the hydrogenation of α-Ti8C12H2 is the barrier between images 11 and 15 (0.329 eV). 

Both barriers are far lower than those under standard conditions, 0.480 eV and 0.522 eV 

respectively. Therefore, high pressure, low temperature conditions not only thermodynamically 

favour the formation Ti8C12H4 but also minimise the activation barrier. 

Meanwhile, for the dehydrogenation of Ti8C12H4 and Ti8C12H2, ∆𝐺# = 0.768 eV and 0.412 eV 

respectively under standard conditions. Given that the number of independent particles and total 

bonds are unchanged in the transition state with respect to Ti8C12H4 and Ti8C12H2, ∆𝑆𝑡𝑟𝑎𝑛𝑠
#  and 

∆𝑆𝑣𝑖𝑏 
# are both low, and so changes in temperature and pressure do not significantly affect ∆𝐺# 

Figure 3.13 also reiterates some of our results discussed in Section 3.4.  Under standard conditions, 

the Gibbs free energy of α-T8C12H4 (image 15) is lower than that of Ti8C12 (image 0), meaning 

that α-T8C12H4 is stable with respect to dehydrogenation. However, at 370 K / 0.1 ATM, the Gibbs 

free energy of α-T8C12H4 is higher than that of Ti8C12, meaning that α-T8C12H4 is unstable with 

respect to dehydrogenation.  

While the relative Gibbs free energy of the hydrogenated and dehydrogenated species determines 

their thermodynamic stability, ∆𝐺# determines kinetic stability. The rate at which hydrogen is 

adsorbed and desorbed can be calculated using the Eyring equation, see Section 2.4.2: 

𝑘𝑇𝑆𝑇 =
𝑘𝐵𝑇

ℎ
𝑒−∆𝐺#

𝑅𝑇⁄
  

Table 3.6 shows 𝑘𝑇𝑆𝑇 and ∆𝐺# for all hydrogenation and dehydrogenation processes described 

below: 

Ti8C12 (M) 
1
⇌

−1
  Ti8C12H2 (MH2) 

Ti8C12H2  
2
⇌

−2
  Ti8C12H4 (MH4) 
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 170 K / 100 ATM 298 K / 1.0 ATM 370 K / 0.1 ATM 

 ∆𝐺# 𝐤𝐱 ∆𝐺# 𝐤𝐱  ∆𝐺# 𝐤𝐱  

1 0.316 1.52 × 103 s-1 0.480 4.73 × 104 L/mol/s 0.646 1.22 × 104 L/mol/s 

-1 0.439 3.43 × 10-1 s-1 0.412 6.69 × 105 s-1 0.401 2.66 × 107 s-1 

2 0.329 6.25 × 102 s-1 0.522 9.23 × 103 L/mol/s 0.685 3.60 × 103 L/mol/s 

-2 0.752 1.80 × 10-10 s-1 0.768 6.38 × 10-1 s-1 0.763 3.16 × 102 s-1 

Table 3.6: The Gibbs free transition energy and rate constants for the hydrogenation of Ti8C12 

and the dehydrogenation of reactions of Ti8C12H4. 

Given that the initial hydrogenation of Ti8C12 and dehydrogenation of Ti8C12H2 are both fast under 

standard conditions compared with the hydrogenation of Ti8C12H2, we can assume that Ti8C12 (M) 

and Ti8C12H2 (MH2) form a pre-equilibrium prior to formation of α-T8C12H4 (MH4). Under this 

approximation, the rate of formation of α-T8C12H4 is: 

𝑑[MH4]

𝑑𝑡
= 𝑘2[MH2][H2] − 𝑘−2[MH4] 

= 𝑘2.
𝑘1

𝑘−1
. [M][H2][H2] − 𝑘−2[MH4] 

Unless [MH4] is very large (i.e. close to equilibrium under standard conditions), 𝑘−2[MH4] is 

small compared to 𝑘2.
𝑘1

𝑘−1
. [M][H2][H2], and therefore: 

 
𝑑[MH4]

𝑑𝑡
= 𝑘2.

𝑘1

𝑘−1
. [M][H2]2 

= 𝑘′. [M][H2]2 

where 𝑘′ = 6.52 × 102 s-1 L2 mol-2 under standard conditions.  This effective rate constant is very 

high, and thus Ti8C12H4 will form quickly under standard conditions. The inclusion of 
𝑘1

𝑘−1
 in the 

expression for  𝑘′ reflects the fact that the rate of hydrogenation of Ti8C12 is limited by the supply 

of [MH2].  
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Meanwhile, at 370 K / 0.1 ATM, α-T8C12H4 is unstable with respect to dehydrogenation. Under 

these conditions, the initial dehydrogenation of Ti8C12H4 to Ti8C12H2 is the rate determining step, 

with Ti8C12H2 forming slowly. Under the steady state approximation, we assume that Ti8C12H2 

exists in a steady concentration: 

𝑑[M𝐻2]

𝑑𝑡
= 0 = 𝑘1[M][𝐻2] + 𝑘−2[MH4] − 𝑘−1[MH2] − 𝑘2[MH2][H2] 

[MH2] =
𝑘1[M][𝐻2] + 𝑘−2[MH4]

𝑘−1 + 𝑘2[H2]
 

Furthermore, the rate of formation of Ti8C12 + 2 × H2 from Ti8C12H4 is: 

𝑑[M]

𝑑𝑡
= 𝑘−1[MH2] − 𝑘1[M][𝐻2] 

= 𝑘−1 (
𝑘1[M][𝐻2] + 𝑘−2[MH4]

𝑘−1 + 𝑘2[H2]
) − 𝑘1[M][𝐻2] 

Given that 𝑘−1 ≫ 𝑘2: 

𝑑[M]

𝑑𝑡
= 𝑘−1 (

𝑘1[M][𝐻2] + 𝑘−2[MH4]

𝑘−1
) − 𝑘1[M][𝐻2] 

= 𝑘−2[MH4] 

The dehydrogenation of α-T8C12H4 is determined solely by 𝑘−2, which is considerably lower than 

the effective rate constant for the hydrogenation of Ti8C12. This suggests that α-T8C12H4 is not only 

thermodynamically stable but also kinetically stable with respect to dehydrogenation. However, 

for catalytic purposes, the direct desorption of H2 is not desirable. The catalytic hydrogenation of 

HSMs would proceed via an alternative pathway, making use of the fast, low energy dissociation 

of H2 by Ti8C12.  
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3.6 Fully hydrogenated Ti8C12  

While Sections 3.4 and 3.5 have investigated the behavior of Ti8C12 + 2 × H2, we are ultimately 

interested in the behavior of Ti8C12 in an excess of H2. Assuming that hydrogen dissociates 

between Tiα and neighbouring carbon atoms only, Ti8C12H8 is the most hydrogenated form of 

Ti8C12 achievable. Using α-T8C12H4 centred around a Td Ti8C12 interior as a starting point, we 

identified four possible isomers of Ti8C12H8, shown in Figure 3.14. 

 

Figure 3.14: Structural isomers of Ti8C12H6 (F-H) and Ti8C12H8 (I-K). 
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  𝛥𝐺𝑐ℎ𝑒𝑚 (eV/H2) 

 
𝛥𝐸𝑐ℎ𝑒𝑚 

(eV / H2) 
170 K / 100 ATM 298 K / 1 ATM 370 K / 0.1 ATM 

F -0.079 0.168 0.400 0.569 

G -0.077 0.170 0.402 0.571 

H -0.350 -0.103 0.129 0.298 

I -0.279 -0.053 0.163 0.324 

J -0.249 -0.002 0.230 0.399 

K -0.207 0.040 0.272 0.441 

L -0.135 0.112 0.344 0.513 

Table 3.7: The electronic and Gibb’s free energy changes for the formation of isomers of Ti8C12H6 

and Ti8C12H8 from α-Ti8C12H4. 

We found that isomer I is the most stable isomer of Ti8C12H8, with the hydrogenation of α-T8C12H4 

proceeding with  𝛥𝐸𝑒𝑙𝑒𝑐  = -0.280 eV / H2 and 𝛥𝐺 = +0.163 eV / H2 under standard conditions and 

-0.053 eV at 170 K / 100 ATM. Importantly, the dehydrogenation of isomer I to form either isomer 

F or isomer G proceeds with an endothermic 𝛥𝐺 = +0.07 eV under standard conditions. Thus, in 

terms of thermodynamics, isomer I ideally fits the Gibbs free energy requirements for a 

hydrogenation catalyst, hydrogenating any HSM which adsorbs H2 with 𝛥𝐺 < -0.07 eV under 

standard conditions. However, the formation of isomer I requires the formation Ti8C12H6 as an 

intermediate, with only isomers F and G suitable (see Figure 3.14). Both are highly unstable with 

respect to α-T8C12H4, even at 170 K / 100 ATM when 𝛥𝐺 = +0.17 eV. Therefore, the formation 

of the required isomers of Ti8C12H6 acts as a significant barrier to the formation of isomer I. We 

carried out an NEB calculation to profile the transition barrier between α-T8C12H4 and isomer I, 

with the electronic energy profile shown in Figure 3.15 and the same profile shown in terms of 

Gibbs free energy profile in Figure 3.16. 
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Figure 3.15: The reaction profile in terms of electronic energy for the consecutive chemisorption 

of two H2 molecules by Ti8C12H4 to form isomer I. 

 

Figure 3.16: The reaction profile in terms of electronic energy for the consecutive chemisorption 

of two H2 molecules by Ti8C12H4 to form isomer I. 
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We calculated the Gibbs free activation barriers and the corresponding rate constants for the 

conversion of Ti8C12H4 to isomer I via isomer G. 

Ti8C12 (M) 
1
⇌

−1
  Ti8C12H2 (MH2) 

2
⇌

−2
  Ti8C12H4 (MH4) 

 
170 K / 100 ATM 298 K / 1.0 ATM 370 K / 0.1 ATM 

 

∆𝐺# 𝐤𝐱 (s-1) ∆𝐺# 𝐤𝐱 (s-1) ∆𝐺# 𝐤𝐱 (s-1) 

1 0.504 3.92 × 10-3 s-1 0.663 3.86 × 101 L/mol/s 0.829 3.99× 101 L/mol/s 

-1 0.273 2.81× 104 s-1 0.262 2.28× 108 s-1 0.260 2.20× 109 s-1 

2 0.315 1.58× 103 s-1 0.490 3.25× 104 L/mol/s 0.653 9.93× 103 L/mol/s 

-2 0.548 1.99× 10-4 s-1 0.580 9.59× 104 s-1 0.584 8.52× 104 L/mol/s 

Table 3.8: The Gibbs free transition energy and rate constants for the hydrogenation of Ti8C12H4 

and the dehydrogenation of reactions of Ti8C12H8. 

Given that the rate of the formation of isomer G is significantly slower than the reverse process, 

we assume that assume that isomer F exists at a stable concentration throughout and utilise the 

steady state approximation: 

𝑑[M𝐻6]

𝑑𝑡
= 0 = 𝑘1[M𝐻6][𝐻2] + 𝑘−2[MH8] − 𝑘−1[MH6] − 𝑘2[MH6][H2] 

[MH6] =
𝑘1[M𝐻4][𝐻2] + 𝑘−2[MH8]

𝑘−1 + 𝑘2[H2]
 

Furthermore, the rate of formation of isomer I is: 

𝑑[M𝐻8]

𝑑𝑡
= 𝑘2[MH6] − 𝑘−2[M𝐻8] 

= 𝑘2 (
𝑘1[M𝐻4][𝐻2] + 𝑘−2[MH8]

𝑘−1 + 𝑘2[H2]
) − 𝑘−2[M𝐻8] 
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At 170 K / 100 ATM, the only conditions which thermodynamically favour the formation of 

isomer I, 𝑘1 ≫ 𝑘−2, and 𝑘−1 ≪ 𝑘2: 

𝑑[M𝐻8]

𝑑𝑡
= 𝑘2 (

𝑘1[M𝐻4][𝐻2]

𝑘−1
) 

= 𝑘′′[M𝐻4][𝐻2] 

The above equation reflects that the rate of reaction is limited by the reversible hydrogenation of 

Ti8C12H4 to Ti8C12H6 given that 𝑘1/𝑘−1 is very small.  

Meanwhile, while isomers F and G are both unstable over the entire range of conditions studied, 

the most stable form of Ti8C12H6, isomer  H, forms with 𝛥𝐺 = +0.129 eV under standard conditions 

and 𝛥𝐺 = -0.103 eV at 170 K / 100 ATM. The subsequent hydrogenation of isomer H to form 

isomers J, K and L has an endothermic Gibbs free energy over the entire range of conditions 

studied, meaning that at 170 K / 100 ATM isomer H is stable with respect to both hydrogenation 

and dehydrogenation. Furthermore, isomer H catalytically compatible with HMSs which adsorb 

hydrogen with a room temperature 𝛥𝐺  < +0.129 eV (-0.103 eV at 170 K / 100 ATM).  

Ti8C12H4 (MH4) 
1
⇌

−1
  Ti8C12H6 (MH6) 

NEB calculations show that the hydrogenation of α-T8C12H4 to isomer H proceeds with a Gibbs 

free activation barrier of 0.504 eV at 170 K / 100 ATM. The rate equation for the formation of 

Isomer H (MH6) from Ti8C12H4 is simple: 

𝑑[M𝐻6]

𝑑𝑡
= 𝑘1[M𝐻4] − 𝑘−1[M𝐻6] 

Given that 𝑘1 ≫  𝑘−1: 

𝑑[M𝐻6]

𝑑𝑡
= 𝑘1[M𝐻4] 
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where 𝑘1 = 1.25 s-1 at 170 K / 100 ATM, suggesting that isomer H will form far more rapidly than 

Ti8C12H8 (isomer I), where the effective rate constant is over an order of magnitude lower. 

 

Figure 3.17: The reaction profile in terms of electronic energy (left) and Gibb’s free energy (right) 

for the chemisorption of H2 by Ti8C12H4 to form isomer H. 

3.6.1 Equilibrium populations 

The relative populations of hydrogenated forms of Ti8C12 can be calculated according to their 

Boltzmann populations. 

𝑝𝑖 =
𝑒−𝐺𝑖/𝑘𝑇

∑ 𝑒−𝐺𝑗/𝑘𝑇
𝑗

 

where 𝑝𝑖  is the population of species 𝑖 and 𝐺𝑖 is the absolute Gibb’s free energy of species 𝑖, as 

calculated using the equations in Table 2.1. We found that in an excess of H2, only Ti8C12, 

Ti8C12H2, Ti8C12H4 (isomer A), Ti8C12H4 (isomer C), Ti8C12H6 (isomer H) and Ti8C12H8 (isomer I) 

exist in any appreciable equilibrium concentration at the conditions studied. 
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 Ti8C12 Isomer A Isomer C Isomer H Isomer I 

170 K / 100 ATM 0.00% 0.04% 0.00% 44.88% 55.08% 

298 K / 1.0 ATM 0.02% 99.13% 0.20% 0.65% 0.00% 

370 K / 0.1 ATM 99.64% 0.35% 0.00% 0.00% 0.00% 

Table 3.9: The equilibrium populations of Ti8C12 and its most stable hydrogenated forms. 

Under standard conditions, isomer A exists in a large excess, whereas Ti8C12 is fully 

dehydrogenated under high temperature / low pressure conditions. Under low temperature / high 

pressure conditions, isomers H and I (Ti8C12H6 and Ti8C12H8) exist in roughly equal quantities. 

However, as discussed above their production is slow compared to isomer A, which is the kinetic 

product under such conditions.  

3.7 Summary 

In summary, we have investigated the thermodynamics and kinetics involved in the dissociation 

of H2 by Ti8C12 nanoclusters over a range of desirable operating temperatures and pressures using 

hybrid density functional theory. The dissociation of H2 by Ti8C12 and its partially hydrogenated 

forms proceeds with an exceptionally low activation barrier. Given the difference in charge 

between carbon and titanium species in Ti8C12, the dissociation of H2 by Ti8C12 is heterolyitc, and 

therefore is a potential source of hydrogen for the regeneration of heterolyitc HSMs. 

We have shown that, under standard conditions, Ti8C12 is rapidly hydrogenated to form Ti8C12H4, 

which can be dehydrogenated by increasing temperature and/or reducing pressure. Furthermore, 

in terms of thermodynamics Ti8C12H4 would hydrogenate any depleted HSM which binds H2 with 

a standard Gibbs free energy less than -0.246 eV / H2 

The subsequent hydrogenation of Ti8C12H4 is less favourable, with no isomers of Ti8C12H6 or 

Ti8C12H8 stable under standard conditions. However, isomer H (Ti8C12H6) and isomer I (Ti8C12H8) 

are both stable at 170 K / 100 ATM and other low temperature / high pressure conditions. 

Although isomer H and isomer I are similarly stable, isomer I forms much more slowly 

Furthermore, isomer I is thermodynamically compatible with HSMs which adsorb hydrogen a 
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standard Gibbs free energy less than -0.07 eV while isomer H is compatible with HSMs with a 

standard Gibbs free energy less than +0.129 eV. However, it is the fast kinetics of H2 dissociation 

that are most interesting. Electronic activation barriers for the dissociation of H2 by Ti8C12Hx (x = 

0, 2, 4, 6) are consistently < 0.3 eV with respect to free H2 and < 0.5 eV with respect to physisorbed 

H2.  
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Chapter 4  

Phosphorenes 

4.1 Background 

Few-layered black phosphorus has been the subject of huge attention since the exfoliation of bulk 

black phosphorus in early 2014 and the subsequent assembly of the first black phosphorus field 

effect transistors (BP-FETs). The performance of early BP-FETs is encouraging, with their 

performance satisfying many of the requirements for next generation FETs discussed in Chapter 

1. A theoretical understanding of the properties of black phosphorus exfoliates is important not 

only to aid the optimization of BP-FETs, but also to explore other potentially useful properties 

relating to optoelectronic, photovoltaic, thermoelectric and battery applications. 

In this Chapter, we review the performance of early black phosphorus devices and investigate the 

ground state properties of bulk and few-layered black phosphorus using DFT. Our findings are 

generally in excellent agreement with results published elsewhere, and provide a context for the 

investigations discussed in Chapters 5 and 6. 

4.1.1 Black phosphorus 

Black phosphorus is the most thermodynamically and kinetically stable allotrope of elemental 

phosphorus under standard conditions [1, 2]. It has an orthorhombic structure consisting of 

puckered layers of interlinked six membered rings, as shown in Figure 4.1. The buckled layers of 

black phosphorus are in contrast with the planar layers of graphite. While graphite contains planar 

sp2 carbon atoms and a delocalized network of π bonds, atoms in black phosphorus are sp3 

hybridized with lone pair electrons, with the geometric arrangement around each phosphorus 

atoms similar to the trigonal pyramidal structure of ammonia [3]. 
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Figure 4.1: Side view of bulk black phosphorus (left) and the top view of one layer of bulk 

black phosphorus (right). 

In terms of electronic structure, black phosphorus is a narrow-gap semiconductor with an 

experimentally determined band gap of between 0.31 and 0.33 eV [4, 5]. Theoretical and 

experimental studies have found that both conduction and valence band edges are located at Z in 

the Brillouin zone corresponding to the primitive unit cell of bulk black phosphorus. At room 

temperature, its average hole and electron mobilities are 350 cm2 V-1 s-1 and 220 cm2 V-1 s-1 

respectively [5, 6]. Both hole and electron mobilities vary with 𝑇−2 3⁄ , suggesting that scattering 

occurs mainly as a result of lattice vibrations. Furthermore, many studies have highlighted the 

anisotropic mobility of charge carriers in black phosphorus [7-9]. Charge carriers travelling 

perpendicular black phosphorus’s quasi-planar layers (i.e. in the z-direction) show the lowest 

mobility, while charge carriers travelling in the y-direction (the ‘armchair’ direction) show the 

highest mobility.  However, the low mobility of charge carriers in the z-direction does not tally 

with experimental or theoretical measurements of effective mass [10]. The effective masses of 

charge carriers travelling in the z-direction are significantly lower than of those travelling in the 

x, or ‘zigzag’, direction, despite showing lower mobility.  

Early syntheses of black phosphorus involved heating white phosphorus to approximately 473 K 

under ~12 kilobars of pressure [11-13]. A later synthesis reported the preparation of single crystals 
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of black phosphorus by slowly cooling a solution of white phosphorus in liquid bismuth from 

673K to room temperature [4, 14]. However, the most recently reported synthesis uses Au3SnP7 

to catalyze the conversion of red phosphorus to black phosphorus under low pressure, high 

temperature conditions [15]. So, while it is still challenging to produce yields of black phosphorus 

large enough for industrial applications, the recent interest in the compound will no doubt 

stimulate research into more efficient syntheses. 

4.1.2 Early black phosphorus devices 

The first BP-FETs were simultaneously reported by Liu et al. and Li et al. in 2014. Both devices 

used a back gate configuration with metal terminals, a Si / SiO2 substrate and an exfoliated black 

phosphorus channel region [16, 17]. Samples of few-layered black phosphorus were collected 

using mechanical exfoliation techniques similar to those used to obtain graphene from graphite. 

The thickness of exfoliate used ranged between 2 and 50 nm, corresponding to between 4 and 

~100 layers. Both studies found that the thickness of the black phosphorus channel had an 

enormous impact on device performance. Liu et al. reported that the on/off ratio decreased linearly 

with increasing channel thickness, from 105 at 2nm to 101 at 20 nm. Li et al. reported similar 

results, with the on/off also reaching 105 for samples thinner than 7.5 nm. The decrease in on/off 

ratio with increasing thickness can be easily explained; the back-gate configuration means that 

carrier concentrations are only changed in the bottom layers of the channel as gate voltages are 

applied, meaning that charge carriers are ever present in the upper layers of thicker channels. 

Furthermore, the band gap of few-layered black phosphorus decreases with increased thickness, 

also contributing to a decline in the on-off ratio [18, 19]. While the highest on-off ratios achieved 

to date are three order of magnitude lower than those reported for transition metal dichalcogenide 

(TMD) devices, they are far higher than those achieved in graphene devices, where semi-metallic 

character leads to on/off ratios in the order of 101.  

In terms of charge carrier mobility, BP-FETs already outperform TMD devices. Even the best 

performing TMD devices have a modest n-type charge carrier mobility of 200 cm2 V-1 s-1, limiting 

their potential usefulness [20]. Meanwhile, BP-FETs have a much higher p-type charge carrier 

mobility, with Li et al reporting a field-effect mobility of 1,000 cm2 V-1 s-1 at 120 K and a room 

temperature mobility of 600 cm2 V-1 s-1. Meanwhile, Liu et al. and a number of other studies report 

a peak room temperature mobility of ~300 cm2 V-1 s-1 for devices with a channel thickness of ~10 

nm. As the channel thickness is increased past 10 nm, the interlayer resistance steadily reduces 
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net mobility, an effect that is particularly pronounced in back-gated devices where charge carriers 

must travel between layers in order to reach the gated layers. When the channel thickness is less 

than 10 nm, it has been postulated that scattering by charge impurities at the gate interface limits 

mobility [21]. 

While mobility in ~10 nm thick devices is already reasonable, there is a consensus that 

performances can be significantly improved through tuning. In order to increase mobility in 

thinner channels, it may be possible to use a top-gate configuration in conjunction with a capping 

high-k dielectric to screen charge impurities  [22]. Furthermore, it has been suggested that charge 

carrier mobility is also adversely affected by chemisorbed species, contact resistance and the 

electronic anisotropy of black phosphorus. Liu et al. also reported a strong angular dependence 

on drain current, with a 50% anisotropy between orthogonal directions. Along with a similar trend 

in transconductance, this obervation suggests a large mobility variation in the x-y plane, and 

therefore careful channel orientation is necessary to ensure optimal mobility. 

Interestingly, BP-FETs exhibit ambipolar behavior. Li et al. reported p-type conductance at gate 

voltages < -20 V and n-type mobility at gate voltages > 40 V. The ambipolar behavior observed 

is attributed to the narrow band gap of 8 nm thick black phosphorus used. While the Schottky 

barrier at the valence band edge is smaller than at the conduction band edge, both can be overcome 

through the application of a sufficient gate voltage. A later study investigating the effect of channel 

lengths and contact resistances on device performance found that n-type mobility is significantly 

enhanced at short channel lengths [23]. Ultimately, there is hope that the ambipolar nature of BP-

FETs could be used to construct single material CMOS devices.  

Overall, FET devices based around a black phosphorus channel show great promise. Charge 

carrier mobility and drain currents surpass those achieved in TMD devices, with the resulting fast 

operation meaning that gigahertz frequency levels have been achieved [24]. Furthermore, their on 

/ off ratios and current saturation characteristics are vastly superior to those achieved using 

graphene. However, the future development of black phosphorus FETs faces a number of 

significant challenges. From a practical standpoint, the biggest problem faced is the surface 

instability of black phosphorus. Several studies have shown that few-layered black phosphorus 

samples degrade over time, wrecking device performance [25, 26][27]. The exact mechanism of 

this degradation remains unclear, with degradation pathways involving water, oxidation and 

photo-oxidation all suggested [28-30]. The most promising solution thus far has been to cap the 
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channel region with an air-stable material. For example, recent studies have shown that device 

lifetimes can be lengthened by capping the channel with Al2O3 or 2D compounds such as graphene 

and boron nitride [31-33]. This early progress suggests that the stability issues encountered are not 

insurmountable, and furthermore new fabrication methods are likely to improve the quality of 

phosphorenes, reducing instability with respect to defect nucleated degradation [34]. Another 

consideration in optimizing phosphorene devices is the balance between mobility and the on/off 

ratio. Theoretically, thin flakes of black phosphorus in combination with a screening dielectric to 

counteract scattering by charge impurities should provide the best overall performance [35], and 

thus it is sensible to focus theoretical effects on the properties of phosphorenes with a low number 

of layers.  

4.2 Simulations of bulk black phosphorus 

While it is few-layered black phosphorus that has been the subject of so much recent attention, 

we began by investigating the bulk. It is important to understand which properties are inherent to 

the bulk and which emerge as a result of quantum confinement and other nanoscale effects when 

black phosphorus is exfoliated. Furthermore, given that bulk black phosphorus has been well 

characterized experimentally, we used simulations of the bulk to ascertain the accuracy of 

different exchange-correlation functionals. We worked under the assumption that methodologies 

which accurately reproduce the structure and electronic properties of bulk black phosphorus are 

likely to be more accurate in predicting the properties of its few-layered derivatives. 

4.2.2 Methodology 

Density functional calculations were performed using the VASP code, a plane-wave basis set 

truncated at 400 eV and PAW pseudopotentials to treat core electrons. More information about 

plane-wave DFT and pseudopotentials can be found in Section 2.2. We relaxed internal 

geometries using a conjugate gradient relaxation scheme until all interatomic forces were < 0.01 

eV/Å, while lattice parameters were obtained using a Murnaghan fitting scheme [36]. For seven 

cell volumes between 91.2% and 109.2% of experiment, we relaxed the cell shape and internal 

geometry. The ground state cell volume was then obtained by fitting a parabola to the plot of 

energy versus cell volume. Regardless of the functional used, we found that the properties of bulk 

black phosphorus where converged when sampling k-space using a Monkhorst-Pack mesh of 
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8×8×3 [37]. For electronic structure calculations, a k-point density equivalent to that of a 

100×100×50 Monkhorst-Pack mesh.  

4.2.3 Comparison of functionals 

We tested three exchange-correlation functionals: PBE [38], which uses the generalized gradient 

approximation (GGA) to calculate Exc, PBEsol [39], a modified version of the PBE functional 

tailored for use in the solid state, and HSE06 [40], a screened hybrid functional which has been 

shown to predict accurately the electronic structure of semiconducting solids. A more detailed 

discussion of exchange-correlation functionals can be found in Chapter 2. 

We found that relaxing the structure of black phosphorus using PBEsol underestimates the cell 

volume by over 7% with respect to experiment, while PBE and HSE06 overestimate cell volume 

by 10.5% and 5.7% respectively. However, in the case of PBE and HSE06, the majority of error 

in cell volume can be attributed to the overestimation of the 𝑐0 lattice parameter, which is likely 

due to the neglect of van der Waals in standard DFT. Given the layered structure of bulk black 

phosphorus, it is reasonable to assume that van der Waals forces play an important role in 

determining the length of 𝑐0. Given that standard time-independent DFT functionals do not 

account for van der Waals forces, we tested the effect of two different dispersion correction 

schemes. The D3 method of Grimme at al. provides an empirical energy correction, 𝐸𝑑𝑖𝑠𝑝, for a 

given structure through the summation of empirical pair potentials between increasingly distant 

atomic pairs until convergence is reached [41]. Meanwhile, the vdW-DF functional of Langreth, 

Lundqvist et al. introduces a non-local, long-range part of the correlation functional, expressed in 

terms of a density-density interaction formula [42]. It is important to note that while both 

dispersion corrections can influence the geometry relaxation of a compound, once the structure’s 

geometry is fully relaxed they do not affect electronic structure. 
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Figure 4.2: The relaxed structure of bulk black phosphorus. 

Table 4.1: The structural parameters and electronic band gap of bulk black phosphorus using a 

variety of functionals. 

As seen in Table 4.1, structural relaxation using either PBE or HSE06 in conjunction with the 

DFT-D3 dispersion correction scheme (referred to as PBE-D3 and HSE-D3 respectively) 

accurately reproduced the experimentally measured geometry of bulk black phosphorus [43], with 

all parameters precise to within 1%. The use of the DFT-D3 correction scheme particularly 

 PBE PBEsol HSE06 
PBE-

D3 

HSE-

D3 

PBE-

DF 

HSE-

DF Exp. 

a (Å) 3.31 3.33 3.29 3.32 3.29 3.34 3.32 3.31 

b (Å) 4.54 4.11 4.47 4.44 4.39 4.45 4.51 4.38 

c (Å) 11.18 10.31 10.92 10.47 10.52 10.68 10.80 10.48 

d1 (Å) 2.23 2.23 2.23 2.22 2.21 2.22 2.23 2.22 

d2 (Å) 2.26 2.27 2.26 2.26 2.23 2.26 2.26 2.24 

Angle 

(°) 
103.4 103.4 103.4 102.6 102.8 103.1 103.2 102.1° 
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improved the accuracy of the 𝑐0 lattice parameter, mainly as a result of a decreased interlayer 

spacing. While the vdW-DF correction scheme also improved the accuracy of the 𝑐0 lattice 

parameter it did not perform as well as DFT-D3, with PBE-DF and HSE-DF overestimating 𝑐0 by 

2% and 3% respectively. We therefore decided to use the DFT-D3 correction scheme throughout 

this study.  

Given the potential applications of black phosphorus derivatives in electronic devices it is vital to 

calculate their electronic structure accurately. We tested the performance of PBE and HSE06 

functionals in predicting the band gap of bulk black phosphorus. We found that using PBE-D3 to 

relax both the geometry and electronic structure of black phosphorus fails to recognize it as a 

semiconductor. Meanwhile, using HSE-D3 to perform the same calculations results in a band gap 

of 0.31 eV, which is in excellent agreement with the experimentally measured value of    0.30 eV. 

The contrasting performance of PBE and HSE06 in determining the electronic structure of black 

phosphorus is an example of the systematic errors that occur when ones assumes the equivalence 

of the Kohn-Sham gap calculated using local and semi-local functionals and the true band gap. 

Our findings are in contrast with those initially reported in the literature, which suggest that an 

accurate band gap can only be obtained by increasing the proportion of exact exchange used in 

the HSE06 functional. However, we suggest that as long as an accurate geometry is obtained 

through the inclusion of dispersion corrections, the HSE06 functional with its default exchange 

contribution performs well. 

While using HSE-D3 to relax both the geometry and the electronic structure of bulk black 

phosphorus provides a reassuringly accurate band gap, it is important to recognize the accuracy 

of the geometry obtained using PBE-D3 and to question whether it makes practical sense to use a 

computationally more expensive hybrid functional to obtain a very similar structure. Indeed, we 

found that using HSE06 to calculate the electronic structure of the geometry obtained using PBE-

D3 correctly identifies the compound’s semiconducting nature and returns a reasonable band gap 

of 0.36 eV. Moreover, aside from a rigid shift in the relative energies of valence and conduction 

bands, the nature of the bands obtained using PBE-D3 and HSE-D3 derived geometries are very 

similar, with Table 4.2 showing that the effective masses calculated using the two methods are 

similar to within 4%.  
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HSE-D3 / 

HSE06 

PBE-D3 / 

HSE06 

𝒎𝒉,𝒙 0.643 0.651 

𝒎𝒉,𝒚 0.111 0.107   

𝒎𝒉,𝒛 0.272 0.271 

𝒎𝒆,𝒙 1.110 1.109 

𝒎𝒆,𝒚 0.123 0.119 

𝒎𝒆,𝒛 0.133 0.130 

gap (eV) 0.314 0.356 

Table 4.2: The hole and electron effective masses and band gap of bulk black phosphorus 

relaxed using HSE-D3. 

Overall, we consider that in the interests of computational efficiency it is, in most cases, a 

reasonable compromise to perform geometry relaxations using PBE-D3 before using the HSE06 

functional to investigate the structure’s electronic properties. For larger systems, we will use the 

PBE functional to calculate both structural and electronic properties with the understanding that  

band gaps will be significantly underestimated.  

4.2.4 Geometry and stacking effects 

While the experimental ground state of black phosphorus has its layers arranged in an 

alternating AB arrangement, it is important to test the stability of other stacking arrangements. We 

identified a total of four likely arrangements, AA, AB, AC and AD, as shown in Figure 4.3. In the 

AA arrangement, the second layer is simply a replica of the first, rigidly shifted in the z-direction. 

In the ground state AB arrangement, the second layer is offset relative to the first by half a unit 

cell in the x-direction. In the AC arrangement, the second layer is reflected in the xy plane relative 

to the first, meaning that the zigzag channels in neighboring layers are directly opposing one 

another. This is the equivalent of offsetting the second layer by half a unit cell in both the x and 

y-directions. In the AD arrangement, the second layer is offset relative to the first by half a unit 

cell in the y-direction only.  
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We relaxed the both the unit cell and atomic coordinates of each stacking arrangement using PBE-

D3. In each case, the initial stacking arrangement persisted following relaxation, suggesting that 

all of the arrangements tested are kinetically stable. 

Table 4.3: The structural parameters of four different stacking arrangements of black 

phosphorus. 

 

Figure 4.3: The lattice parameters, interlay spacing and relative energy of four stacking 

arrangements of bulk black phosphorus. 

Our calculations confirm that the AB stacking arrangement is the most stable configuration, with 

the next most stable AD configuration 15 meV/atom higher in energy than AB. 

The AA configuration is the next most stable, 26 meV/atom higher in energy than AB. The 

AC configuration is the least stable, 40 meV/atom higher in energy than AB. There is a clear linear 

trend between relative stability and interlayer separation, and thus we conclude that there is more 

interlayer bonding in the AB structure than in any other structure.  

 AA AB AC AD 

𝒂𝟎 (Å) 3.31 3.32 3.31 3.32 

𝒂𝟎 (Å) 4.42 4.44 4.50 4.46 

Interlayer 3.44 3.09 3.70 3.29 

ΔE (eV / atom) 0.026 0.000 0.040 0.015 
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By comparing the energies of pairs of configurations with respective layers offset by either       ½ 

𝑎 or ½ 𝑏, it appears that offsetting the top layer by ½ 𝑎 with respect to the bottom layer has a 

stabilizing effect of ~0.025 eV / atom, and that offsetting the top layer by ½ 𝑏 with respect to the 

bottom layer has a consistent destabilizing effect of ~0.015 eV / atom. Overall, given that the 

absolute differences in energy between stacking arrangements are small, we predict a degree of 

stacking disorder in bulk black phosphorus. Furthermore, while we have studied only the most 

stable AB configuration, we suggest that fully investigating the effects of stacking disorder would 

be a useful exercise.  

4.2.3 Density of states and band structure 

The density of states (DoS), shown in Figure 4.4, shows that states around the valence band 

maximum (VBM) mainly comprise 𝑝𝑧 orbital character, whereas states around the conduction 

band minimum (CBM) comprise a relatively even mixture of 𝑝𝑥,𝑦,𝑧 and 𝑠 character. Meanwhile, 

the total density of states rises more rapidly when moving away from the CBM than when moving 

away from the VBM. A higher density of states around the CBM is potentially important given 

that current is directly proportional to the density of carrier states (see Section 2.3) favoring n-

type conductivity over p-type conductivity.  

 
Figure 4.4: The orbital decomposed density of states of bulk black phosphorus. 
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The band structure of black phosphorus, shown in Figure 4.5, reveals that black phosphorus’ band 

edges are more dispersive between Γ  and Y/ Z than between Γ  and X. This reflects the 

compound’s structural and electronic anisotropy, and results in the highly anisotropic effective 

masses shown in Table 4.2. Electron and hole effective masses are low in the y and z directions, 

with 𝑚ℎ equal to 0.107 and 0.271 𝑚0 and 𝑚𝑒 equal to 0.119 and 0.130 𝑚0 respectively. However, 

x direction effectively masses are far higher, with 𝑚ℎ equal to 0.651 and 𝑚𝑒 equal to 1.109 𝑚0, 

suggesting low zigzag direction charge carrier mobility. The average effective mass 

(𝑚𝑥𝑚𝑦𝑚𝑧) 1/3 of electrons is 0.258 𝑚0 and 0.266 𝑚0 for holes.  

 

Figure 4.5: The band structure of bulk black phosphorus, calculated using the HSE06 functional. 

Overall, our calculations are in good agreement with theoretical and experimental reports of 

effective masses in black phosphorus. They do not, however, directly correspond with 

measurements of charge carrier mobility in the z-direction. Under the assumption that scattering 

times are constant with respect to the direction of charge transport, our results imply that the 

conductivity is lower in the x direction than it is the y and z directions. However, experimental 

charge carrier mobilities are lower in the z-direction than in the x-direction, which suggests that 

scattering times are anisotropic and play an important role in determining overall mobility. 
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Meanwhile, the implications of the high band dispersion between Γ and Z extend beyond low z-

direction effective masses. It suggests that the layers in black phosphorus are chemically coupled, 

which has important implications regarding the electronic structure of black phosphorus 

exfoliates. The manifesting quantum confinement effects are central to the properties of few-

layered black phosphorus, as will be explored in Section 4.3. 

4.3 Few layered black phosphorus 

Monolayer black phosphorus has been dubbed phosphorene, something of a misnomer given the 

absence of π-bonding. The devices discussed in Section 4.1.2 used few-layered black phosphorus 

flakes between 2 and 50 nm thick, corresponding to between approximately 4 and 100 layers of 

phosphorene. However, it is likely that thinner channels will ultimately result in the best device 

performance, and therefore we have investigated one, two and three layered phosphorene 

compounds.  

4.3.1 Methodology 

As in Section 4.2, we performed DFT calculations using VASP with a plane-wave basis set 

truncated at 400 eV and PAW pseudopotentials to treat core electrons, see Chapter 2. Following 

our investigation of bulk black phosphorus, we used PBE-D3 to perform structural relaxations of 

few-layered phosphorenes and HSE06 to investigate their electronic properties. When relaxing 

crystal lattices and internal atomic positions, we used a conjugate gradient algorithm until all 

interatomic forces fell below 0.01 eV/Å. A vacuum region of over 20 Å was maintained 

perpendicular to the xy plane, with an additional 20 Å vacuum region separating the periodic 

images of PNRs within the plane. The geometries obtained were fully converged when k-space 

was sampled using a 9×9×1 Monkhorst-Pack mesh. For electronic structure calculations, a k-point 

density equivalent to that of a 100×100×1 Monkhorst-Pack mesh. Absolute band energies were 

calculated by subtracting the total local potential found directly in the middle of the vacuum region 

from the eigenvalues computed using DFT. 
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4.3.2 Geometry 

The geometry of few-layered phosphorene remains similar to that of bulk black phosphorus, as 

can be seen in Table 4.4. The lattice constant running in the ‘armchair’ direction changes the most 

as the number of layers is decreased, with 𝑏0 3% longer in phosphorene than in bulk black 

phosphorus. Meanwhile, all bond lengths remained constant when rounded to the nearest 0.01 Å, 

while the marked bond angle increased slightly when the number of layers is decreased. 

 

Figure 4.6: The structure of monolayer black phosphorus, phosphorene, relaxed using the PBE-

DF functional. 

Table 4.4: The structural parameters of few-layered phosphorenes. 

 

 Monolayer Bilayer Trilayer Bulk 

a (Å) 3.294 3.304 3.309 3.320 

b (Å) 4.604 4.523 4.479 4.441 

d1 (Å) 2.223 2.221 2.221 2.218 

d2 (Å) 2.264 2.262 2.260 2.258 

Angle (°) 103.9 103.2 102.9 102.6 

Interlayer ( Å) N/A 3.223 3.207 3.010 
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4.3.3 Exfoliation energy 

In order to ascertain the exfoliation energy of black phosphorus, we calculated the relative 

energies of n-layered black phosphorus compounds, 𝐸𝑛, varying n between 1 and 7. The 

exfoliation energy for n-layered black phosphorus was calculated using the following formula: 

𝐸𝑒𝑥,𝑛 = (𝐸𝑛−1 + 𝐸1) − 𝐸𝑛 

Our results show that 𝐸𝑒𝑥 tends towards 0.322 eV per unit cell as n → ∞, equating to exfoliation 

energy of 0.339 Jm-2, comparable to the exfoliation energy of graphene, 0.390 Jm-2. When 

dispersion forces are neglected, the exfoliation energy of black phosphorus is found to be an 

unrealistic 0.05 Jm-2, highlighting the importance of van der Waals effects when modelling black 

phosphorus derivatives. 

4.3.4 Band Gap 

While the geometry of phosphorenes remains relatively similar to that of the bulk, their electronic 

properties change dramatically due to quantum confinement effects. We calculated the electronic 

structure of n-layered black phosphorus compounds for n = 1 – 6, and found that the band gap 

increases exponentially as 𝑛 → 1.  

As shown in Figure 4.7, bulk black phosphorus has a band gap of 0.36 eV and monolayer black 

phosphorus has a band gap is 1.53 eV, close to the experimentally measured optical gap of     1.55 

eV. However, optical gaps also include exciton binding effects, which are considerable in quasi-

2D compounds but are in not accounted for in standard DFT. The actual band gap of phosphorene 

is therefore likely to be significantly higher than 1.55 eV, and indeed state of the art GW 

calculations report that phosphorene’s band gap is around 2.2 eV, with an exciton binding energy 

of around 0.6 eV predicted using the Bethe-Salpeter Equation (BSE) [44]. The band gap of black 

phosphorus exfoliates can therefore be tailored to be between 0.30 and 2.2 eV, suggesting a 

suitability for use in number of electronic and optoelectronic applications.  
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Figure 4.7: The band gap of n-layered black phosphorus (n = 1-6). The dotted green line marks 

the band gap of bulk black phosphorus (n = ∞). 

Exfoliating bulk black phosphorus to produce N-layered phosphorene effectively confines 

electronic wavefunctions along the 𝑧 axis between 𝑧 and 𝑧 + 
𝑁

2
𝑐0. We explored the effect of 

confining bulk wavefunctions by applying periodic boundary conditions (PBCS). When the bulk 

is confined between 𝑧 and 𝑧 + 
𝑁

2
𝑐0, only electronic states at k-points defined by the below equation 

are allowed:1  

𝑘𝑧 =
𝜋

𝑐0
.

𝑛

N/2
        𝑛 = 1 … N/2 

We sampled the Brillouin zone of bulk black phosphorus at the k-points allowed according to the 

above condition. For each value of N, the highest energy valence state and the lowest energy 

conduction state were found when n = 1, which is unsurprising given that both band edges of bulk 

black phosphorus are located at the Γ-point (𝑘 = 0). We found that applying PBCs to the bulk 

                                                           
1 Note that the factor of 1/2 arises as each unit cell of black phosphorus consists of two layers 



100 
 

results in a significantly higher band gap than is calculated by directly modelling N-layered 

phosphorene, see Figure 4.8. 

 

Figure 4.8: The band gap of n-layered black phosphorus (n = 1-6), calculated using DFT and 

PBCs. The dotted green line marks the band gap of bulk black phosphorus (n = ∞). 

The differences between band gaps calculated by directly modelling few-layered phosphorenes 

and those calculated by applying PBCs to the bulk can, however, be explained.  When PBCs are 

applied to the bulk, confined wavefunctions are zero at 𝑧 and 𝑧 +  
𝑁

2
𝑐0, whereas in few-layered 

compounds the wavefunction tends to zero as the vacuum level is approached. Also, the structure 

of the bulk is slightly different from that of few layered compounds, see Table 4.4. Both effects 

are more considerable when N is small, and hence as N increases the difference between the band 

gap predicted using PBCs and the band gap predicted by directly modelling   N-layered 

phosphorene becomes smaller. We therefore suppose that applying PBCs to the bulk represents a 

good way of predicting the band gap of many-layered black phosphorus, particularly given that 

the direct modelling of large systems can be computationally demanding. 
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4.3.5 Band structure and effective mass 

The band structure of few-layered phosphorene reveals a direct band gap located at the Γ-point. 

As can be seen in Figure 4.9, both conduction and valence band edges are relatively flat moving 

from Γ to X but are highly dispersive moving from Γ to Y, leading to the highly anisotropic 

effective masses. 

 

Figure 4.9: The band structures of monolayer, bilayer and trilayer phosphorenes, with band 

energies aligned to the vacuum level. 

As seen in Table 4.5, both electron and hole effective masses are low in the armchair direction in 

monolayer, bilayer and trilayer phosphorene, ranging between 0.16 and 0.19 𝑚0. While these 

masses are slightly higher than the corresponding bulk effective masses, it is clear that the high 

charge carrier mobility in the armchair direction is maintained when exfoliating down from the 

bulk to monolayer phosphorene. Moreover, effective masses < 0.2 𝑚0 are very low when 

compared to other quasi-2D compounds: studies of monolayer MoS2 report that electron and hole 

effective masses are both higher, 0.54  𝑚0 and 0.44 𝑚0 respectively [45]. 

Zigzag direction effective masses are significantly higher than armchair direction effective 

masses. Our results are not only in good agreement with a number of other theoretical studies, but 

also with the experimentally reported angular dependence of charge carrier mobility. Electron 



102 
 

effective masses in the zigzag direction were relatively consistent regardless of the number of 

layers, ranging between 1.21 𝑚0 in monolayer phosphorene to 1.16𝑚0 in trilayer phosphorene 

and 1.11 𝑚0 in the bulk. However, the hole effective mass in the zigzag direction, 𝑚ℎ,𝑥 , increases 

dramatically when N is small. In agreement with other calculations [44], this effect is most 

dramatic in monolayer phosphorene, where 𝑚ℎ,𝑥 ~ 6 𝑚0. Such a high effective mass is the result 

of an unusually flat region around the VBM, as shown in Figure 4.10. In bilayer and trilayer 

phosphorene, 𝑚ℎ,𝑥  falls towards the bulk value of 𝑚ℎ,𝑥  = 0.68 𝑚0. The fact that 𝑚ℎ,𝑥  falls with 

increasing N is important, particularly given that black phosphorus is naturally p-type. Our results 

suggest that, subject to isotropic scattering times, the degree of anisotropy in charge carrier 

mobility is likely to increase as the number of layers is reduced and 𝑚ℎ,𝑥  rises. 

 Monolayer  Bilayer  Trilayer  Bulk  

𝒎𝒉,𝒙 (VBM) 6.12 𝑚0 1.213 𝑚0 1.01 𝑚0 0.651 𝑚0 

𝒎𝒉,𝒚 (VBM) 0.17 𝑚0 0.16 𝑚0 0.16 𝑚0 0.107  𝑚0 

𝒎𝒆,𝒙 (CBM) 1.21 𝑚0 1.18 𝑚0 1.16 𝑚0 1.109 𝑚0 

𝒎𝒆,𝒚 (CBM) 0.19 𝑚0 0.19 𝑚0 0.18 𝑚0 0.119 𝑚0 

Table 4.5: The hole and electron effective masses of monolayer and bilayer phosphorene 

. 

 

Figure 4.10: The band structure of monolayer black phosphorus at high resolution between Γ 

and 0.1 × X. 
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Other recent studies not only calculated the effective mass but also predicted charge carrier 

mobility using the deformation potential approximation.  Despite the high corresponding effective 

mass, Qiao et al. reported an enormous room temperature hole mobility of            26,000 cm2V-

1s-1  in the zigzag direction of phosphorene, a result attributed to an extremely low acoustic phonon 

scattering [44]. Meanwhile, in the armchair direction, μh,y = 700 cm2V-1s-1 despite a much lower 

hole effective mass. For multi-layered phosphorenes, hole mobilities μh,y and μh,x were found to be 

similar, reaching 2,800 and 2,200 cm2V-1s-1 respectively. In terms of electron mobilities at the 

CBM, μe,y and μe,x  have been calcualted in the range of 1,100 – 2,100 and 80 – 200 cm2V-1s-1 

respectively [44, 46]. 

4.3.6 Density of states 

The DoS of monolayer phosphorene is relatively similar to that of bulk black phosphorus, albeit 

with a significantly enlarged band gap. The composition of valence states closely resembles that 

of the bulk, with a strong contribution from the 𝑝𝑧 orbitals. However, 𝑝𝑧 orbitals also contribute 

most strongly to phosphorene’s shallow conduction states, whereas in the bulk all three 𝑝 states 

contribute equally. 

 

Figure 4.11: The orbital decomposed density of states of monolayer phosphorene. 
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The orbital decomposed contributions to wavefunctions at the VBM and CBM reveal that both 

band edges are indeed dominated by 𝑝𝑧 character, with smaller contributions from 

 𝑝𝑦 and 𝑠 orbitals. There is no contribution whatsoever from  𝑝𝑥  orbitals at either band edge, which 

helps to explain phosphorene’s high 𝑥 direction charge carrier masses. The site decomposed phase 

factors of the  𝑝𝑧 orbitals, as shown in Figure 4.12, reveal that orbitals making up the VBM are 

bonding in the z-direction whereas the orbitals making up the CBM are anti-bonding in the z-

direction. The importance of the relative bonding character of electronic states at the VBM and 

CBM will become apparent in Chapter 5.  

 

Figure 4.12: The charge density of electronic states at phosphorene’s VBM (bottom) and CBM 

(top) viewed along the zigzag (left) and armchair (right) directions. The phase factors of the 

constituent 𝑝𝑧 orbitals are also marked, + or −. 
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4.4 Summary 

We tested various exchange-correlation functionals on their ability to reproduce the 

experimentally measured properties of bulk black phosphorus. We found that using the PBE 

functional in combination with the DFT-D3 van der Waals correction scheme accurately 

reproduces the geometry of bulk black phosphorus. However, the PBE functional predicts that 

black phosphorus is a metal, whereas the HSE06 functional accurately predicts a band gap in the 

region of 0.3 eV. We therefore used PBE-D3 to perform structural relaxations and HSE06 to 

calculate electronic structure when investigating few-layered phosphorenes. 

The band gaps of few-layered phosphorenes are increased with respect to the bulk and can be 

tuned by varying the number of layers. The range within which the band gap can be tuned, from 

~0.3 eV in the bulk to 1.53 eV in monolayer phosphorene, is potentially useful for an array of 

applications. 

The low armchair direction charge carrier effective masses of bulk black phosphorus are 

maintained upon exfoliation. However, zigzag direction hole effective mass increases 

dramatically from 0.65 𝑚0 in bulk black phosphorus to > 6 𝑚0 in monolayer phosphorene, 

suggesting that anisotropy increases as the number of layers is decreased. 

Given the recent advent of interest in few-layered black phosphorus compounds, many of their 

properties remain unexplored, making it a rich new field of research. The next two chapters of 

this thesis therefore focus on few-layered black phosphorus, with Chapter 4 investigating the 

effects of deforming few-layered phosphorenes and Chapter 5 investigating the properties of 

phosphorene nanoribbons. 
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Chapter 5  

Deforming Phosphorenes 

5.1 Background 

In this chapter, we investigate the response of phosphorene to different types of strain. Our work 

complements a number of studies investigating the effects of in-plane strain on phosphorene 

which studies report that, by virtue of its puckered structure, phosphorene can be strained with 

relative ease and has a large critical strain [1-3].  

The structural anisotropy of phosphorene results in an orientation dependent Young’s modulus of 

44 GPa in the armchair direction and 166 GPa in the zigzag direction, with corresponding in-plane 

stiffness of 105.2 GPa nm and 22.4 GPa nm respectively [4]. While this observation suggests that 

strain is easier to apply in the armchair direction than in the zigzag direction, both Young’s moduli 

are significantly lower than the Young’s moduli of graphene (1000 GPa) [5], monolayer MoS2 

(330 GPa) [6], and monolayer h-BN (250 GPa) [7]. Furthermore, phosphorene’s reported critical 

strain is large: 27% in the armchair direction and 30% zigzag directions – much higher than the 6 

– 11% reported for MoS2 [1] [8]. 

Phosphorene’s structural anisotropy also leads to interesting electronic effects on straining. Peng 

et al. found that a direct to indirect band gap transition can be induced through the application of 

strains ε < -2 % or ε > 8% in the zigzag direction and ε < -8% or ε > 8% in the armchair direction 

[3]. The same study also reported the variation in phosphorene’s band gap under uniaxial strains 

in the range -12% < ε < +12%. Phosphorene’s band gap can be varied between 0.05 eV and 1.00 

eV through the application of zigzag direction strains, and between 0.2 eV and 1.1 eV through the 

application of armchair direction strains.  The fact that the band gap can be modulate by ~ 1 eV 

through the application of uniaxial strain suggests that straining could be used to tailor 

phosphorene for use in different electronic devices. 
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However, it is not only the size of the phosphorene’s band gap that can be modified through the 

application of strain. The changing nature of its valence and conduction band edges means that 

both hole and electron charge carrier mobilities can be varied. For example, Fei and Yang 

investigated the properties of a new conduction band edge that emerges when phosphorene is 

strained by more than +3% in the zigzag direction [4]. At the emergent CBM, the zigzag direction 

effective mass is almost an order of magnitude lower than the armchair direction effective mass. 

This anisotropy is the exact opposite of the anisotropy observed in ground state phosphorene, and 

results in an accompanying change in orientation dependent electron mobility. In ground state 

phosphorene, the zigzag direction electron mobility, 𝜇𝑒,𝑥, is < 200 cm2V-1s-1 and the armchair 

direction electron mobility, 𝜇𝑒,𝑦, is > 2000 cm2V-1s-1. In strained phosphorene,  𝜇𝑒,𝑥 rises to almost 

2000 cm2V-1s-1 and 𝜇𝑒,𝑦 falls to < 200 cm2V-1s-1. Given that hole transport remains unaffected, 

strains greater than +3% in the zigzag direction rotate the preferred direction for electron transport 

by 90° with respect to the preferred direction for hole transport. 

While the literature has focussed on the effects of in-plane straining, it is important to consider 

other, lower energy responses to in-plane forces. Furthermore, we have investigated a possible 

phase transformation when phosphorene is subject to extensive strain in Section 5.4, and an 

alternative response to compressive strain, bending, in Section 5.3. However, first of all, we look 

at the effects of subjecting bilayer phosphorene to normal compression.  

5.2 Compressing Bilayer Phosphorene 

Despite the interesting effects of in-plain straining on the electronic properties of phosphorene, 

the application of such strains is experimentally challenging. Meanwhile, compressions 

perpendicular to the surface of few-layered materials are more easily realised. We therefore 

investigated the effects of normal strain on bilayer phosphorene. 

5.2.1 Methodology 

Density functional calculations were performed using the VASP code. We used a plane-wave 

basis set truncated at 400 eV and PAW pseudopotentials to treat core electrons. More information 

about plane-wave DFT and pseudopotentials can be found in Section 2.2. Having shown in 

Chapter 4 that it is not necessary to use computationally expensive hybrid functionals in order to 
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obtain accurate geometries, we used the PBE functional in combination with the DFT-D3 

dispersion correction scheme to relax crystal lattices and internal atomic positions. Furthermore, 

we used a conjugate gradient algorithm to relax structures until all interatomic forces fell below 

0.01 eV/Å, with a vacuum region of over 20 Å maintained perpendicular to the xy plane in order 

to avoid spurious interactions between images. The geometries obtained were fully converged 

when k-space was sampled using a 10×10×1 Monkhorst-Pack mesh. Meanwhile, when 

investigating bilayer phosphorene’s electronic structure, we used the HSE06 functional. For these 

calculations, we used a k-point density equivalent to that of a 100×100×1 Monkhorst-Pack mesh. 

Absolute band energies were obtained by subtracting the total local potential found directly in the 

middle of the vacuum region from the eigenvalues computed using DFT [9].  

5.2.2 Ground state bilayer phosphorene 

We investigated the stability of four different stacking arrangements of bilayer phosphorene, AA, 

AB, AC and AD. These arrangements, shown in Figure 5.1, are analogous to the bulk stacking 

arrangements investigated in Section 4.3. In the AA arrangement, the second layer is a replica of 

the first layer, rigidly translated along the 𝑧 axis. In the AB arrangement, the second layer is offset 

relative to the first by half a unit cell in the x-direction. In the AC arrangement, the second layer is 

offset relative to the first by half a unit cell in both the x-direction and the y-direction, meaning 

that the zigzag channels in neighboring layers are directly opposing one another. In the AD 

arrangement the second layer is offset relative to the first by half a unit cell in the y-direction only. 

The relaxed 𝑎0 lattice parameter is similar across all four stacking arrangements, varying by just 

0.003 Å. The 𝑏0 lattice parameter is, however, slightly lower in the AA and AB stacking 

arrangements than in the AC and AD stacking arrangements.  

We found that bilayer phosphorene is most stable in its AB stacking arrangement, which is 8.5 

meV per atom more stable than the next most stable AD stacking arrangement, with the AA 

arrangement 9.3 meV per atom less stable and the AC stacking arrangement 16.3 meV per atom 

less stable. The relationship between interlayer distance and stability is approximately linear, with 

less stable stacking arrangements having a higher interlayer spacing. For example, the ground 

state interlayer spacing in bilayer phosphorene is lowest in the most stable AB arrangement, 3.20 

Å, and rises to 3.82 Å in the AC arrangement where 𝛥𝐸 = 16.3 meV. This is consistent with the 

assumption that the relative stability of stacking arrangements is determined by the extent of 

interlayer bonding. Given that the AB arrangement is not only the most stable arrangement of 
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bilayer phosphorene but is also the produced through the exfoliation of bulk black phosphorus, 

we will disregard other stacking arrangements for the remainder of this investigation. 

 

Figure 5.1: The structure of four stacking arrangements of bilayer phosphorene: AA, AB, AC, 

AD (from left to right). 

Table 5.1: The structural parameters and relative energy of four stacking. arrangements of 

bilayer phosphorene. 

The electronic structure of ground state bilayer phosphorene was investigated in Chapter 3. In 

summary, we found that bilayer phosphorene has a direct band gap of 1.05 eV, with anisotropic 

electron and hole effective masses of 𝑚ℎ,𝑥/𝑦 = 1.213 / 0.160 𝑚0 and  𝑚𝑒,𝑥/𝑦 = 1.187 /  𝑚0 

respectively.  The ground state band structure is later in Figure 5.6. 

 

 AA AB AC AD 

a (Å) 3.299 3.302 3.299 3.300 

b (Å) 4.511 4.503 4.554 4.541 

Interlayer (Å) 3.519 3.204 3.815 3.461 

ΔE / atom 9.3 meV 0 meV 16.3 meV 8.5 meV 
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5.2.3 Normal Compression of bilayer phosphorene 

We investigated the effects of compressing bilayer phosphorene by varying the bilayer distance, 

d and fixing the 𝑧 coordinate of the top and.bottom phosphorus atoms. For each value of d, we 

relaxed both in-plane lattice parameters and unfixed internal atomic positions. 

 

Figure 5.2: The structure of bilayer phosphorene with the bilayer distance, d, marked. 

5.2.4 Energetics 

We found that the ground state energy of bilayer phosphorene at 1.00 d0 is 0.32 eV lower per unit 

cell (8 atoms) than the energy of two isolated monolayers. Van der Waals interactions dominate 

interlayer bonding; when bilayer phosphorene was relaxed without including van der Waals 

effects, we found that the binding energy was less than 0.10 eV. The changes in energy as d is 

varied are typical of a layered material, and are shown in Figure 5.3. Approximately parabolic 

behaviour is observed close to 1.00 d0 before 𝛥𝐸 tends towards zero as d is increased.   
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Figure 5.3: The change in energy of bilayer black phosphorus relative to two infinitely 

separated phosphorene monolayers as d1 is varied. 

Given that we are most interested in experimentally realisable compressions, we calculated the 

surface pressures necessary to compress bilayer phosphorene by calculating the stress, σ, at strains 

of between d0 =1.00 d0 and 0.92 d0  using the following formula: 

𝜎 = 𝐹𝑁 . 𝐴−1 =
𝜕𝐸

𝜕𝑑
. 𝐴−1 

where 𝐹𝑁 is the normal force component, 𝐴 is the surface area of bilayer phosphorene, 𝐸 is energy 

and d is the bilayer distance. Given that the change in energy with compressive strain is parabolic 

between 1.00 and 0.92 d0, the resulting stress-strain relationship is linear, as shown in Figure 5.4. 

We found that a pressure of around 1.2 GPa is required to compress 𝑑 by 2%, with pressures of 

just under 5 GPa resulting in an 8% compression. While gigapascal pressures are high, the effects 

of applying pressures approaching 40 GPa normal to a material’s surface have been investigated 

experimentally [10]. 
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Figure 5.4: The stress induced in bilayer phosphorene under a range of compressions of d. 

5.2.5 Geometry 

We found that when bilayer phosphorene is compressed, it is mainly the interlayer distance that 

changes as opposed to the intralayer distance. For example, when d is compressed from 1.00 d0 to 

0.96 d0, the interlayer distance is reduced by 8.32% and the intralayer distance is reduced by only 

0.73%. This is because reducing the intralayer distance results in the shortening of chemical bonds 

and reducing the interlayer distance does not, with van der Waals bonds far weaker and therefore 

easier to distort than chemical bonds. 

Meanwhile, the ground state surface area, a × b, increases when bilayer phosphorene is 

compressed, as shown Figure 5.5. On further inspection, it is primarily the b lattice parameter 

which increases, reaching 4.62 Å when d = 0.90 d0 compared to 4.50 Å in the ground state.  The 

zigzag direction lattice parameter, a, varies by less than 0.01 Å across all investigated 

compressions. Our findings tally with the Young’s moduli calculated in the armchair and zigzag 

directions: the strain induced when bilayer phosphorene is compressed normal to its surface is 

released through an increase in b, which corresponds to the direction with a lower Young’s 

modulus. 
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Figure 5.5: The surface area, a1 × b1, of bilayer phosphorene under a range of compressions 

of d. 

5.2.6 Band Gap 

We found that as d is compressed from 1.00 to 0.92 d0, the overall band gap of bilayer phosphorene 

decreases from 1.05 to 0.59 eV. Meanwhile, when d is increased from 1.00 to 1.20 d0, the band 

gap increases to 1.34 eV.  

The trend in band gap with changing d can be understood by inspection of Figure 5.6, which 

shows the energy of two valence to conduction band transitions, both of which originate at the 

VBM (ΓVB). At values of d > 0.98 d0, the band gap is direct, from ΓVB – ΓCB, but when d ≤ 0.98 

d0, the band gap becomes indirect as a new CBM emerges at X*, [0.3, 0.0, 0.0].(2π/a) m-1. The CB 

at X* is stabilised with normal compressive strain, and between d = 1.00 and 0.92 d0, ΓVB - X*
CB 

falls from 1.19 to 0.59 eV.  Over the same range, there is a concurrent increase in the ΓVB – ΓCB 

gap, from 1.05 to 1.24 eV.  
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Figure 5.6: The variation of VBΓV- CBΓ (green) and VBΓ-CBM (orange) transition energies 

under a range of compressions of d (left) and the electronic band structure of ground state 

bilayer phosphorene (right). 

On first inspection, the direct to indirect band gap transition appears to be analogous to the 

direct to indirect band gap transition that occurs as bulk black phosphorus is compressed along 

the c0 lattice parameter [11]. However, in that case the emergent CBM is located between Z and 

U in reciprocal space and therefore corresponds to electronic states which do not exist in quasi-

2D black phosphorus derivatives. 

In order to understand the origins of the behaviour seen in Figure 5.6, we calculated the absolute 

band energies of the VB and CB at Γ (ΓVB and ΓCB) and the CB at X* (X*
CB). We found that X*

CB 

is stabilised and ΓCB is destabilised with compressive strain. While ΓVB is also destabilised with 

compressive strain, ΓCB is destabilised more rapidly meaning that the ΓVB – ΓCB band gap rises. 

Given that X*
CB is stabilised and ΓVB is destabilised with compressive strain, the ΓVB – X*

CB band 

gap quickly decreases.  
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The spd- and site-projected phase factors of the electronic states at X*
CB, ΓCB and ΓVB explain their 

changes in energy with compressive strain. Both ΓCB and ΓVB consist predominantly of pz orbitals, 

which, as can be seen by looking at the phase factors of these orbitals in Figure 5.7 are arranged 

in a manner that manifests an anti-bonding interlayer interaction. As bilayer phosphorene is 

compressed and the interlayer distance decreases, the anti-bonding ΓCB and ΓVB orbitals are 

destabilised.  

Meanwhile, the X*
CB consists of 𝑝𝑥  and 𝑝𝑦 orbitals in equal measure. Their arrangement manifests 

a bonding interlayer interaction, with Figure 5.7 showing the bonding interaction between both 

the 𝑝𝑦 and 𝑝𝑥 components.  

 

 

Figure 5.7: The charge density of the electronic states at VBΓ (top left) and CBΓ (top right) and 

CBX* (bottom left and right). The phase factors of constituent 𝑝𝑧 orbitals are also marked, + or −. 
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Despite the fact that the overall band gap falls as d is compressed, the imaginary part of the 

dielectric constant, ϵzz, is blue shifted as a result of the rising Γ- Γ direct band gap, as seen in 

Figure 5.8, implying an increased optical band gap. While the indirect Γ- X* band gap falls with 

compression, indirect optical excitations are forbidden in the absence of phonon coupling. 

Furthermore, indirect radiative recombination is also forbidden, and therefore electron-hole 

recombination is far slower in indirect semiconductors.  

 

Figure 5.8: The imaginary dielectric constant, εyy, for bilayer phosphorene when d = 0.94 d0 and 

d = 1.00 d0. 
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5.2.7 Effective Mass 

In uncompressed bilayer phosphorene, both band edges are located at the Γ-point. We calculated 

hole effective masses of 𝑚ℎ,𝑥 = 1.21 𝑚0 and 𝑚ℎ,𝑦 = 0.16 m0 and electron effective masses of 

𝑚𝑒,𝑥 = 1.18 𝑚0 and 𝑚𝑒,𝑦 = 0.19 m0. Furthermore, given that the VBM remains at the Γ-point at 

all times, hole effective masses vary smoothly as d is compressed. Between d = 1.03 d0 and    0.95 

d0, 𝑚ℎ,𝑥 falls from 1.38 𝑚0 to 1.00 𝑚0, while 𝑚ℎ,𝑦 rises from 0.16 𝑚0 to 0.18 𝑚0. These trends 

can be seen in Figure 5.9.  

  

Figure 5.9: The hole effective masses, mh,x and mh,y, in bilayer phosphorene under a range 

of compressions of d. 

Given that the CBM moves from Γ to X* when d  < 0.99 d0, electron effective masses change more 

abruptly. In particular, 𝑚𝑒,𝑥 is far lower at X* than it is at the Γ-point, and therefore when d is 

reduced from 1.00 d0 to 0.98 𝑚0, 𝑚𝑒,𝑥 falls from 1.17 𝑚0to 0.32 𝑚0. Meanwhile, 𝑚𝑒,𝑦 is slightly 

higher at X* then it is at Γ, and when d is reduced from 1.00 d0 to 0.98 d0 𝑚𝑒,𝑦 rises from 0.18 

𝑚0 to 0.25 𝑚0.  As discussed in Section 5.2.6, the CBX* is made up of both px and py orbitals and 

therefore there is strong overlap in both x- and y- directions. This means that the energy dispersion 
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of the CB around X* is isotopically high and 𝑚𝑒,𝑥/𝑚𝑒,𝑦  = 1.29 𝑚0. The changing nature of the 

CBM upon compression can be appreciated by inspection of Figure 5.11. 

 

Figure 5.10: The electron effective mass, me,x and me,y, in bilayer phosphorene at reciprocal 

space points Γ and X  under a range of compressions of d. 
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Figure 5.11: The energy of the first conduction band with respect to k when d = 1.00 (top) and 

0.96 d0 (bottom). 
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5.2.8 Mobility 

Given the changing nature of the CBM under compression, we also investigated the overall 

mobility of electrons using a simplistic model that assumes that charge carrier velocity is 

randomised after each scattering event. Under this assumption, the charge carrier mobility, 𝜇, can 

be expressed as: 

𝜇 =  
𝑞

𝑚𝑒
𝜏       

where 𝜏 is equal to the average time between scattering events. We used the deformation potential 

approximation (DPA), as discussed in Chapter 2, to calculate scattering times:  

𝜏 =
ℏ3𝐶2𝐷

𝑘𝐵𝑇𝑚𝑑𝐸1
2 

where the deformation potential constant, 𝐸1, is the rate of change in the absolute energy of the 

CBM as the lattice is deformed, 𝐶2𝐷 is the elastic modulus of longitudinal strain in the transport 

direction, and 𝑚𝑑 is the average effective mass, (𝑚𝑥𝑚𝑦)
1

2. In uncompressed bilayer phosphorene, 

we calculated Γ-point electron scattering times of 𝜏𝑥  = 126 fs and 𝜏𝑦 = 137 fs, findings that are in 

good agreement with a number of other studies of few-layered black phosphorus. Meanwhile, we 

found that scattering times at the competing band minima at X* are significantly longer as a result 

of low values of 𝐸1 and 𝑚𝑑, with 𝜏𝑥  = 1,041 fs and 𝜏𝑦 = 15,713 fs. In the x direction, both 𝐸1 and 

𝑚𝑑 are approximately halved at X* with respect to Γ, reflecting lower electron-phonon coupling 

and a greater average band dispersion. Meanwhile, in the y direction 𝐸1 is over an order of 

magnitude lower at X* than it is at Γ, 0.28 eV versus 3.66 eV. As discussed in Chapter 2, 𝐸1 is 

calculated by straining the lattice parameter corresponding to the direction of charge transport 

between 0.99 𝑙0 and 1.01 𝑙0 and looking at the rate at which the electronic state of interest changes 

energy.  
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Figure 5.12: The energies of CBΓ and CBX* under armchair direction strains of between 0.99 

and 1.01. 

As can be seen in Figure 5.12, the electronic state at X* changes energy less rapidly when bilayer 

phosphorene is strained along 𝑏0 than the electronic state at Γ, suggesting that there is less 

coupling between the electronic state at X* and the y direction LA phonon. Examining the values 

of 𝐸1 for conduction states around X* gives insight into why 𝐸1 is so low at X* specifically. When 

𝑘𝑥  < X*, 𝐸1 is negative as the conduction band at 𝑘𝑥  is stabilised when the lattice is stretched in 

the y direction. Meanwhile, when 𝑘𝑥 > X*, 𝐸1 is positive as the conduction band at 𝑘𝑥 is 

destabilised when the lattice is stretched in the y direction. Therefore, at X*, the CB is neither 

stabilised nor destabilised when the lattice is stretched in the y direction and 𝐸1 is close to zero. 

Furthermore, the lack of coupling can be qualitatively understood by inspection of Figure 5.7, 

where it is apparent that the bulk of bonding character at X* occurs between the layers rather than 

in the armchair direction along which the acoustic phonon propagates. While such a low value of 

E1 is surprising, it is not unprecedented; an even lower deformation potential constant of ~0.15 

eV was previously calculated for holes at the VBM of monolayer phosphorene.  
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Figure 5.13: The electronic deformation potential constant of bilayer phosphorene at reciprocal 

points around X*. 

As bilayer phosphorene is compressed, we found that electron scattering times at both X* and the 

Γ-point remain relatively constant. However, as discussed extensively in Section 5.2.6, the 

conduction band at X* is stabilised with respect to the conduction band at the Γ-point with 

compression.  By calculating the relative occupancy of states X* and the Γ-point, we predicted 

the overall electron mobility using the following equation: 

 𝜇𝑥/𝑦,𝑒(𝑇) =  
∑  𝜇𝑥/𝑦,𝑘  . 𝑛𝑘 . 𝑒

−𝐸𝑘
𝑘𝐵𝑇⁄

𝑘

∑ 𝑒
−𝐸𝑘

𝑘𝐵𝑇⁄
𝑘

  

where  𝜇𝑥/𝑦,𝑘 is the electron mobility in the x / y direction at k-point k, 𝑛𝑘 is the degeneracy of k 

and 𝐸𝑘  is the energy of the electronic state at k relative to the CBM. We found that when calculated 

using the above formula, both x- and y- direction electron mobilities increase dramatically when 

d is decreased.  

When d = 1.00 d0, μe,x(298K) = 219 cm2V-1s-1 and μe,y (298K) = 1,362 cm2V-1s-1, numbers which 

are comparable to the literature. As d is compressed, μe,y(298K) rises rapidly as the occupancy of 
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the conduction band valley around X* is increased, plateauing around 60,000 cm2V-1s-1 when    d 

= 0.98 d0. At X* specifically, electron mobility reaches an enormous 2.38×105 cm2/V/s, almost an 

order of magnitude higher than the upper limit of phosphorene’s hole mobility calculated by Qiao 

et al. [12]. Meanwhile, μe,x(298K)  plateaus between 4,000 and 5,000 cm2V-1s-1 as X* is stabilised, 

higher than any room temperature electron mobility calculated for a black phosphorus derived 

structure. 

 

Figure 5.14: The electron mobility of bilayer phosphorene under a range of compressions of d. 

It is, however, important to reiterate that mobility calculated using the DPA is limited solely by 

coupling to LA phonons. The viability of this approximation becomes more questionable when 

the acoustic phonon scattering time is very high and other forms of scattering are likely to 

dominate. Therefore mobility calculated using the DPA should be considered as an upper limit. 
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5.2.9 Compressing bilayer phosphorene: Summary 

We have that a new CBM emerges when bilayer phosphorene is subjected to a modest 

compression. The effective electronic mass at X* is far more isotropic than it is at Γ, with me,x = 

0.32 m0 and me,y = 0.25  m0. We have also shown that the electronic states around X* are scarcely 

coupled to acoustic phonons in the armchair direction, with the mobility of states at X* peaking 

at 2.38×105 cm2V-1s-1. Through the stabilisation of these highly mobile states located in the vicinity 

of X*, we have shown that relatively small compressions can increase the overall mobility of 

bilayer phosphorene by approaching two order of magnitude, reaching               7×104 cm2V-1s-1 

in the armchair direction and 5×103 cm2V-1s-1 in the zigzag direction. 

5.3 Phase transformation to blue phosphorus 

While previous studies have reported that phosphorene has very high critical strains of 27% in the 

armchair direction and 30% in the zigzag direction [12], it is possible that some of the states 

identified as being stable are not the global minimum structures. Given the recent identification 

of a number of new forms of monolayer phosphorus, it is important to consider the stability of 

strained phosphorene with respect to other phases with the same lattice parameters. In this section, 

we compare the stability of strained phosphorene to that of monolayer blue phosphorus. 

5.3.1 Methodology 

As in Section 5.2, we performed DFT calculations using VASP with a plane-wave basis set 

truncated at 400 eV and PAW pseudopotentials to treat core electrons, see Chapter 2. Given that, 

in this section, we are only interested in the structural and energetic properties of monolayer blue 

phosphorus and phosphorene, we have used the PBE functional in combination with the DFT-D3 

dispersion correction scheme throughout. We relaxed the structure of both monolayer blue 

phosphorus and monolayer phosphorene using a conjugate gradient algorithm until all interatomic 

forces fell below 0.01 eV/Å. A vacuum region greater than 20 Å was maintained perpendicular to 

the xy plane in order to avoid spurious interactions between images. We found that sampling k-

space using a 10×10×1 Monkhorst-Pack mesh fully converged the geometry and energy of both 

compounds. 
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5.3.2 Blue Phosphorus 

Following the isolation of few-layered black phosphorus, an alternative layered phase of 

phosphorus was theoretically identified [13]. The compound, named blue phosphorus, has an  in-

plane hexagonal structure, and when calculated using the PBE functional, its monolayer has an 

indirect band gap of approximately 2 eV. These properties are in contrast with those of 

phosphorene, which has a direct band gap of around 0.9 eV and in-plane rectangular symmetry. 

Despite these differences, monolayer blue phosphorus and phosphorene are energetically 

equivalent to within 1 meV per atom, with phosphorene only marginally more stable. In light of 

this, it is important to determine the circumstances where phosphorene is unstable with respect to 

monolayer blue phosphorus. Given that the in-plane surface area per atom in monolayer blue 

phosphorus is significantly higher than it is in phosphorene, it is likely that phosphorene is 

unstable with respect to monolayer blue phosphorus when subjected to in-plane extensive strains.   

 

Figure 5.15: The relaxed structure of monolayer blue phosphorus. 

While the primitive unit cells of monolayer blue phosphorus and phosphorene are not 

commensurate, it is possible to represent that structure of monolayer blue phosphorus using a 

cubic unit cell, as shown in Figure 5.16. Under this representation, the 𝑎0 parameters of the two 

phases are similar, whereas the 𝑏0 lattice parameter in monolayer blue phosphorus is around 20% 

greater than in phosphorene. We therefore investigated the effect of applying strain along the 

𝑏0 lattice parameter on the relative stability of phosphorene and monolayer blue phosphorus. 
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Figure 5.16: The relaxed structure of phosphorene (left) and monolayer blue phosphorus (right), 

both represented using a cubic unit cell. 

Table 5.2 A comparison of the cubic unit cells of phosphorene and monolayer blue phosphorus. 

5.3.3 Straining Monolayer Phosphorus 

Phosphorene and monolayer blue phosphorus are energetically equivalent to within 1 meV  per 

atom when both are relaxed to their ground state, 𝑏𝑏𝑙𝑎𝑐𝑘 = 𝑏0,𝑏𝑙𝑎𝑐𝑘 and 𝑏𝑏𝑙𝑢𝑒 = 𝑏0,𝑏𝑙𝑢𝑒. If we 

stretch 𝑏𝑏𝑙𝑎𝑐𝑘, phosphorene becomes less stable, and if we compress 𝑏𝑏𝑙𝑢𝑒, monolayer blue 

phosphorus becomes less stable. Given that 𝑏0,𝑏𝑙𝑢𝑒 >  𝑏0,𝑏𝑙𝑎𝑐𝑘, there must exist a shared lattice 

parameter, 𝑏1, where monolayer blue phosphorus and phosphorene are energetically equivalent 

and furthermore when 𝑏𝑏𝑙𝑎𝑐𝑘 >  𝑏1 phosphorene is unstable with respect to monolayer blue 

phosphorus. The position of 𝑏1 between 𝑏0,𝑏𝑙𝑢𝑒 and  𝑏0,𝑏𝑙𝑎𝑐𝑘 depends on relative in-plane stiffness 

of phosphorene and monolayer blue phosphorus. 

Given that 𝑏𝑏𝑙𝑎𝑐𝑘 < 𝑏1 < 𝑏𝑏𝑙𝑢𝑒, we investigated the extension of phosphorene and the 

compression of monolayer blue phosphorus along the 𝑏 lattice parameter. In both cases we 

calculated the in-plane stiffness, 𝐶2𝐷, using the following formula:  

 Phosphorene Monolayer Blue Phosphorus 

a (Å) 3.294 Å 3.310 Å 

b (Å) 4.602 Å 5.671 Å 

Area / atom 3.790  Å2 4.692  Å2 

Energy / atom 0 meV 1 meV 
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𝐶2𝐷 =
1

𝐴0
(

𝜕2𝐸

𝜕𝜀2 ) 

where E, ε and A0 correspond to energy, linear strain and the equilibrium surface area respectively. 

𝐶2𝐷 is related to the Young’s modulus, 𝐶3𝐷, through the relationship 𝐶3𝐷 =  
𝐶2𝐷

𝑐0
, where c0 is the 

lattice parameter perpendicular to the plane on which the monolayer lies, and therefore quantifies 

the relationship between strain and energy.  

In good agreement with previous studies, we found that in the case of phosphorene, 𝐶2𝐷,𝑦 = 17.07 

GPa nm. Such a low in-plane stiffness confirms that is it exceptionally easy to stretch phosphorene 

in the armchair direction. In the case of monolayer blue phosphorus, we found that 𝐶2𝐷,𝑦 = 58.58 

GPa nm. While the in-plane stiffness of monolayer blue phosphorus is still low compared to other 

monolayer compounds, the fact that it is significantly higher than it is for phosphorene implies 

that  𝑏1 is closer to 𝑏𝑏𝑙𝑢𝑒 than 𝑏𝑏𝑙𝑎𝑐𝑘 .  

While the 𝑎0 lattice parameters of phosphorene and monolayer blue phosphorus are similar, it is 

important to consider how 𝑎 changes when 𝑏 is extended or compressed. When strain is applied 

along one lattice parameter, it is often possible to release some of the induced surface tension by 

relaxing other lattice parameters. In 2D, this effect is quantified by the Poisson ratio, 𝜈: 

𝜈𝑏 =  −
𝑑𝜀𝑎

𝑑𝜀𝑏
 

where 𝜀𝑏 is the applied strain along 𝑏 and 𝜀𝑎  is the spontaneous change along 𝑎. We found that 

the Poisson ratio is much lower in phosphorene that it is in monolayer blue phosphorus, with 

𝜈𝑏,𝑏𝑙𝑎𝑐𝑘 = 0.10 and 𝜈𝑏,𝑏𝑙𝑢𝑒 = 0.24.  

5.3.4 Phase transition 

For both phases of monolayer phosphorus, we varied the 𝑏 lattice parameter between 

𝑏0,𝑏𝑙𝑎𝑐𝑘  and 𝑏0,𝑏𝑙𝑢𝑒, relaxing both the internal atomic coordinates and the 𝑎 lattice parameter in 

each instance. By plotting the energy of both phases versus 𝑏, we identified the value of 𝑏1 and 

furthermore the range of 𝑏 within which phosphorene is thermodynamically stable.  
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Figure 5.17 shows that  𝑏1 = 5.32 Å, and that phosphorene is stable when 𝑏 < 5.32 Å, 

corresponding to values of 𝜀 < 16%. When 𝜀 > 16%, phosphorene becomes unstable with respect 

to a phase transition to monolayer blue phosphorus. Importantly, this critical strain is significantly 

lower than phosphorene’s previously reported ultimate strain of 31%. 

 

Figure 5.17: The energies of phosphorene and monolayer blue phosphorus, relative to ground 

state phosphorene when the b lattice parameter is varies between 4.7 and 5.7 Å. 

5.4 Bending Phosphorene 

When modelling the response of 2D materials to compressive in-plane forces, it is important to 

consider the release of tension through surface buckling. For example, it has been shown 

experimentally that graphene buckles under compressions > 0.7% [14]. Furthermore, suspended 

2D materials may also ripple spontaneously at non-zero temperatures, as was recently found to be 

the case in a study of suspended graphene [15]. Given the importance of rippling and buckling in 

other 2D materials, we have investigated the analogous bending of phosphorene.  
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5.4.1 Methodology 

As in Sections 4.2 and 4.3, we performed DFT calculations using VASP with a plane-wave basis 

set truncated at 400 eV and PAW pseudopotentials to treat core electrons, see Chapter 2. Given 

the large size of the systems investigated, we used the PBE functional in combination with the 

DFT-D3 dispersion correction scheme not only during structural relaxations but also when 

investigating the electronic properties of PNTs. This compromise is necessary in the interest of 

computational affordability, and means that the band gaps calculated are likely to be 

underestimated. Despite this caveat, we are confident that the reported trends are representative 

of the system’s true behaviour, with the underestimation of the band gap a relatively consistent 

effect. When relaxing crystal lattices and internal atomic positions, we used a conjugate gradient 

algorithm until all interatomic forces fell below 0.01 eV/Å. A vacuum region greater than 20 Å 

was maintained between periodic images of PNTs in order to avoid spurious interactions A 

Monkhorst-Pack mesh of 1×9×1 was used when modelling z-PNTs and 9×1×1 when modelling 

a-PNTs. Absolute band energies were obtained by subtracting the total local potential found 

directly in the middle of the vacuum region from the eigenvalues computed using DFT. 

5.4.2 Geometry and energetics 

Given the structural anisotropy of phosphorene, we investigated two principle curvatures: 

curvature in the zigzag direction and curvature in the armchair direction. A convenient way to 

investigate bending in 2D materials is to look at the properties of nanotubes [16]: to investigate 

bending in the zigzag direction we modelled zigzag nanotubes (z-PNTs), and to investigate 

bending in the armchair direction we modelled armchair nanotubes (a-PNTs). All nanotubes have 

a constant surface curvature, with the highest curvatures found in nanotubes with smaller radii, 𝑟. 

Therefore, throughout this chapter, we use  𝑟−1 as a measure of curvature, comparing the 

properties of PNTs to those of flat phosphorene, where 𝑟−1 = 0. 

5.4.2.1 Armchair PNTs 

We relaxed eight a-PNTs with circumferences between 8 × 𝑏0 and 80 × 𝑏0, where 𝑏0 is the 

armchair direction lattice parameter of monolayer phosphorene. Following relaxation, 𝑟−1 ranged 

between 0.017 Å-1 (𝑟 = 58.5 Å) and 0.190 Å-1 (𝑟 = 5.2 Å). We measured the internal geometry of 

each a-PNT and found that three parameters varied considerably over the range of nanotubes 
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studied: 𝑑1, 𝑑2 and 𝑎1, as shown in Figure 5.18. We found that, even for high curvature a-PNTs, 

all bond lengths remained constant to within 1.2% of the bulk values. 

 

Figure 5.18: The structure of a-PNT with a radius of 8.08 Å viewed along the length of the tube 

with key structural parameters labelled (left) and from above (right) 

Atoms Radius, 𝒓 Curvature, 𝒓−𝟏 𝒅𝟏 𝒅𝟐 𝒂𝟏
 Energy 

32 5.25 0.190 4.48 3.12 113.16 0.073 

48 8.08 0.124 4.13 3.22 109.81 0.048 

64 10.965 0.091 3.96 3.28 108.26 0.033 

80 13.88 0.072 3.87 3.33 107.36 0.019 

96 16.815 0.059 3.82 3.36 106.87 0.012 

128 22.84 0.044 3.77 3.42 106.36 0.009 

160 28.995 0.034 3.76 3.49 105.82 0.006 

320 58.525 0.017 3.64 3.50 105.11 0.004 

∞ ∞ 0 3.54 3.54 104.1 0.000 

Table 5.3: The structural parameters of a-PNTs with radii between 5.25 and 58.53 Å. 
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In bulk phosphorene, 𝑑1 and 𝑑2 are equivalent by symmetry, measuring 3.54 Å. As surface 

curvature is increased, 𝑑1 increases and 𝑑2 decreases. For example, when 𝑟−1 = 0.017 Å-1, 𝑑1 = 

3.64 Å and 𝑑2 = 3.50 Å, whereas when 𝑟−1 = 0.190 Å-1, 𝑑1 = 4.48 Å and 𝑑2 = 3.12 Å. We found 

that 𝑑1 increases linearly with 𝑟−1 over the range of a-PNTs studied, whereas changes in  𝑑2are 

not linear with 𝑟−1. Meanwhile, the external bond angle does increase linearly with 𝑟−1, with 𝑎1 = 

104.1° in the bulk, 105.1° when 𝑟−1 = 0.017 Å-1, and 113.2° when 𝑟−1 = 0.190 Å-1. 

5.4.2.2 Zigzag PNTs 

We relaxed eight a-PNTs with circumferences ranging between 12 × 𝑎0 and 80 × 𝑎0. Following 

relaxation, 𝑟−1 ranged between 0.025 Å-1 (𝑟 = 40.16 Å) and 0.167 Å-1 (𝑟 = 5.99 Å). In contrast 

with the changes in geometry seen in a-PNTs, two bond lengths varied significantly with surface 

curvature, 𝑑3 and 𝑑4. 

In bulk phosphorene, 𝑑3 and 𝑑4 are both 2.22 Å, and are equivalent by symmetry. As surface 

curvature is increased, 𝑑3 rises and 𝑑4 falls. We note that 𝑑3 rises more rapidly than 𝑑4 falls as 

𝑟−1 is increased. For example, in the z-PNT with highest surface curvature, 𝑟−1 = 0.167 Å-1 , 𝑑3 

= 2.48 Å (+0.26 Å) and 𝑑4 = 2.17 Å (-0.05 Å). At low curvatures, the magnitude of the changes 

in 𝑑3 and 𝑑4 are more comparable. For example, when 𝑟−1 = 0.025 Å-1, 𝑑3 = 2.25 Å (+0.03 Å) 

and 𝑑4 = 2.19 Å (+0.03 Å).  

 

Figure 5.19: The structure of z-PNT with a radius of 4.96 Å from the side, viewed along the 

length of the tube with key structural parameters labelled (left) and from above (right). 
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Atoms Radius,  Curvature 𝒅𝟑 𝒅𝟒 Energy 

48 5.986 0.167 2.481 2.173 0.247 

64 7.931 0.126 2.416 2.173 0.161 

80 9.943 0.101 2.372 2.176 0.111 

96 11.980 0.083 2.344 2.178 0.081 

128 15.993 0.063 2.308 2.184 0.048 

160 20.012 0.050 2.287 2.189 0.031 

320 40.192 0.025 2.246 2.194 0.011 

∞ ∞ 0 2.224 2.224 0 

Table 5.4: The structural parameters of z-PNTs with radii between 5.99 and 40.19 Å. 

5.4.2.3 Bending Moduli 

We quantified the bending stiffness of phosphorene by calculating bending rigidities, 𝐵𝑀. The 

energy of a 2D material or membrane which follows the contours of a cylinder or sphere of radius 

𝑟 is governed by the Helfirch Hamiltonian, which was originally developed for the study of lipid 

bilayers [17, 18]. In the Helfrich Hamiltonian, the configurational energy of a rippled surface is 

expressed in terms of the energy of a unitary flat surface, 𝛾, the material’s bending rigidity, 𝐵𝑀, 

its mean curvature,  𝐶𝑀, its spontaneous curvature, 𝐶0, its Gaussian curvature, 𝐶𝐺, and finally its 

Gaussian rigidity, 𝐵𝐺 , through the following equation: 

𝐸 = ∫[𝛾 + 2𝐵𝑀(𝐶𝑀 − 𝐶0/2)2 + 𝐵𝐺𝐶𝐺]𝑑𝑆 

Both 𝐶𝑀 and 𝐶𝐺 can be expressed in terms of principle curvatures 𝑘1 and 𝑘2, which are equal to 

the inverse radius of curvature along the x and y axis respectively.  

𝐶𝑀 =  
(𝑘1 + 𝑘2)

2
=

1

2𝑟1
+

1

2𝑟2
 

𝐶𝑀 =  𝑘1𝑘2 
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The bending rigidity of graphene has previously been calculated by modelling graphene nanotubes 

of varying radii. When a 2D material is deformed to form a nanotube, curvature is non-zero in one 

direction only, and therefore either 𝑘1 or 𝑘2 must equals zero. Furthermore, under the the 

approximation  𝐶0 = 0: 

𝐸 = ∫ [𝛾 + 2𝐵𝑀 (
𝑘1

2
⁄ )

2

] 𝑑𝑆 

𝐸𝑎𝑡𝑜𝑚
𝑃𝑁𝑇 − 𝐸0 = 𝑆0𝐵𝑚𝑟−2/2 

where 𝐸0 is the energy per atom in ground state phosphorene, and 𝑆0 is the planar footprint of 

each phosphorus atom in phosphorene. We calculated bending rigidity by plotting atomic energy 

with respect to bulk phosphorene vs.  𝑆0𝑟−2/2 for both a-PNTs and z-PNTs, as shown in Figure 

5.20. We found that 𝐵𝑚 is lower for a-PNTs than z-PNTs, with 𝐵𝑚,𝑎𝑐  = 1.11 eV and 𝐵𝑚,𝑧𝑧 = 5.28 

eV, implying that it is harder to bend phosphorene in the zigzag direction than in the armchair 

direction. This finding is consistent with the fact that bending phosphorene in the armchair 

direction does not lead to any large changes in bond length, whereas bending phosphorene in the 

zigzag direction results in large changes in 𝑑3 and 𝑑4.  

Despite the fact that 𝐵𝑚,𝑧𝑧 is large compared to 𝐵𝑚,𝑎𝑐, is still lower than the bending rigidities 

calculated for other quasi-2D compounds such as monolayer MoS2, where 𝐵𝑚 = 9.61 eV. 

Furthermore, 𝐵𝑚,𝑎𝑐 is lower than the bending rigidity calculated for graphene using the same 

methodology, where 𝐵𝑚 = 1.45 eV. Given that experimental studies have shown that suspended 

graphene is intrinsically rippled, our findings suggest that suspended phosphorene is also likely 

to show spontaneous rippling, and that buckling is likely to be the primary response to 

compressive in-plane forces. 
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Figure 5.20: The energy of z-PNTs and a-PNTs under a range of values of 𝑆0𝑟−2/2. 

5.4.3 Electronic Structure 

We investigated the effects of surface curvature on the band gap of phosphorene by calculating 

the electronic structure of PNTs. In bulk phosphorene, both band edges are located at the Γ-point, 

where 𝑘𝑥 = 0 and 𝑘𝑦 = 0. In contrast to the hard-wall boundary conditions imposed on 

nanoribbons, see Chapter 6, 𝑘 = 0 is an allowed k-point when wavefunctions are confined to the 

circumference of a tube:  

𝑘𝑛 =
2𝜋

𝑎
.

𝑛

𝑁
        𝑛 = −𝑁, −𝑁 + 1, … , 𝑁 − 1, 𝑁 

We are therefore confident that the main trends in band gap that occur as the radii of PNTs are 

varied are the result of changes in surface curvature rather than changes in the extent of quantum 

confinement.  
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5.4.3.1 Armchair PNTs 

As shown in Figure 5.21, the band gaps of a-PNTs generally fall when surface curvature is 

increased. For example, the band gap of a-PNT where 𝑟−1 = 0.034 Å−1 (𝑟 = 58.5 Å) is 0.89 eV, 

whereas when surface curvature is high, 𝑟−1 = 0.123 Å−1 (𝑟 = 8.1 Å), the band gap falls to     0.29 

eV. 

Between 𝑟−1 = 0.034 Å−1 and 0.123 Å−1, the variation in band gap with 𝑟−1 is roughly linear. 

However, when 𝑟−1 < 0.034 Å−1, the band gap plateaus. In fact, a-PNTs with low surface 

curvature have band gaps which are slightly higher than that of the bulk. For example, when 

𝑟−1 0.017 Å-1, the band gap is 0.92 eV, 0.03 eV higher than the bulk value of 0.89 eV. While the 

increases in band gap with respect to the bulk are marginal, the abrupt plateauing of the band gap 

when 𝑟−1 < 0.034 Å−1 is unequivocal. In summary, it appears that curvatures 𝑟−1 < 0.034 Å−1  

have a limited effect on band gap, whereas higher curvatures lead to a significant and linear 

decreases in the band gap of phosphorene. 

 

Figure 5.21: The electronic band gap of a-PNT under a range of values of 𝑟−1. 
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The somewhat unusual changes in band gap with increased surface curvature can be understood 

by examining at the absolute energies of the VBM and CBM. As can be seen in Figure 5.21, the 

energy of the CBM stays relatively constant, varying by less 0.05 eV over the range of curvatures 

studied. The changes in band gap are predominantly driven by the destabilisation of the VBM, 

which rises by 0.67 eV over the same range of curvatures. However, between 𝑟−1 = 0 and 0.123 

Å−1, neither the VBM nor the CBM is destabilised with surface curvature.  

 

Figure 5.22: The absolute energy of the VBM and CBM under a range of values of 𝑟−1. 

We examined the character of the electronic state at the VBM by projecting the wavefunction onto 

s, p and d orbitals at each ionic site. Figure 5.23 shows the phase factors of the 𝑝𝑧 orbitals, which 

account for the majority of the valence band wavefunction. We see that the orbitals separated by 

𝑑1 and 𝑑2 are out of phase, manifesting in a π anti-bonding interaction, which means that as 𝑑1 and 

𝑑2 decrease, the electronic state is destabilised and vice versa. As shown in Table 5.3, 𝑑1 increases 

and 𝑑2 decreases with curvature, stabilizing and destabilizing the VBM respectively. 
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Figure 5.23: The charge density at the VBM of a-PNT with the phase factors of the constituent  

𝑝𝑧 orbitals (top) and the absolute energy of the VBM and CBM of a-PNT versus 𝑟−1 (bottom). 

It is important to note that the atoms separated by 𝑑1 and 𝑑2 are not chemically bonded, with 

𝑑1 and 𝑑2 significantly larger than a typical P-P bond, 3.54 Å vs. 2.22 Å. This separation means 

that in flat phosphorene, the overlap between orbitals is minimal and 𝜓𝑎
∗(𝑟1)𝜓𝑏

∗ (𝑟2) is low. Given 

that 𝑑1 increases with 𝑟−1, the interaction between the 𝑝𝑧 orbitals quickly becomes negligible. 

Meanwhile, as 𝑑2 falls with surface curvature the overlap between orbitals separated by 

𝑑2 becomes more significant. Therefore, when  𝑟−1 is high the effect of decreasing 𝑑2 dominates 

over the effect of increasing 𝑑1. However, when curvature is low and 𝑑1 and 𝑑2 are comparable, 

the effect of increasing 𝑑1 negates the effect of decreasing 𝑑2, and the energy of the VBM remains 

constant. Aside from decreasing the band gap, the destabilisation of the VBM is practically 

important, destabilising phosphorene/ with respect to oxidation, a factor critical to its air stability. 



143 
 

5.4.3.2 Zigzag PNTs 

When examining the band structure of z-PNTs, we see that there are two competing band gaps: z-

PNTs with high curvature have an indirect band gap, from VBΓ – CBY*, whereas z-PNTs with low 

curvature have a direct band gap, from VBΓ – CBΓ. While VBΓ and CBΓ are both located at the Γ-

point, CBY* is located at around [0, 0.3, 0] 2𝜋/𝑙. As can be seen in Figure 5.24, VBΓ – CBΓ rises 

and VBΓ – CBY* falls as the curvature increases. The band gap remains direct between 𝑟−1  = 0 

Å-1, when the band gap is 0.89 eV, until around 𝑟−1  = 0.03 Å-1, when the band gap is 1.09 eV. 

When 𝑟−1  > 0.03 Å-1, the band gap becomes indirect, from VBΓ – CBY*. The VBΓ – CBY* band 

gap falls with increasing surface curvature, from 1.08 eV when 𝑟−1  = 0.034 Å-1 to 0.21 eV when 

𝑟−1  = 0.123 Å-1. It should be noted that for higher curvature CBΓ does not necessarily correspond 

to the lowest Γ-point conduction band, but instead to the electronic state at the CBM in ground 

state phosphorene.  

 

Figure 5.24: The two competing band gap of z-PNT, VBΓ – CBY* and VBΓ – CBΓ versus 𝑟−1. 

The fact that both band gaps originate from the same valence state, VBΓ, suggests that CBΓ is 

destabilised with respect to CBY* with increased curvature. This is confirmed in Figure 5.25, 
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which plots the absolute band energies of CBΓ, CBY* and VBΓ vs. 𝑟−1. The electronic state at CBΓ 

is destabilised while CBY* and VBΓ are both stabilised as surface curvature is increased. 

 

 

Figure 5.25: The absolute energy of the VBΓ, CBY* and CBΓ of z-PNT versus 𝑟−1. 

Examining the phase factors of the atomic orbitals which make up the electronic state at CBΓ, the 

constituent pz orbitals are separated by 𝑑3 and 𝑑4 in-phase, resulting in a bonding interaction. 

Therefore, when 𝑑3 and 𝑑4  are increased, CBΓ is destabilised and when they are decreased CBΓ 

is stabilised. Over the range of z-PNTs studied, 𝑑3 increases and 𝑑4 decreases with increased 

curvature, and thus the effects of changes in 𝑑3 and 𝑑4  are in direct opposition. However, while 

𝑑3 increases by over 10% with respect to the bulk over the range of curvatures studied, 𝑑4 falls 
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by less than 2%. There is therefore a net separation of bonding pairs as 𝑟−1 is increased, 

meaning that the overall effect of increasing curvature is to destabilise CBΓ. Conversely, 

considering the electronic state at VBΓ, the pz orbitals separated by 𝑑3 and 𝑑4 are out-of-phase, 

resulting in a bonding interaction. Therefore, increasing  𝑟−1 stabilises VBΓ in an analogous 

manner, as can be seen in Figure 5.25. 

Meanwhile, the stabilisation of CBY with  𝑟−1 can also be explained by considering the bonding 

arrangement of the electronic state’s constituent atomic orbitals. While the electronic states at CBΓ 

and VBΓ are dominated by 𝑝𝑧 character, the electronic state at CBY consists mainly of 𝑝𝑦 orbitals 

separated by 𝑑3. By inspection of Figure 5.26, the orbitals appear to be in-phase. However, in 

reality the staggered configuration of atoms around the circumference of z-PNT means that the 

𝑝𝑦 components separated by 𝑑3 are anti-bonding. Therefore, as 𝑑3 rises with  𝑟−1, CBY* is 

stabilised.  

5.4.4 Bending phosphorene: Summary 

We have shown through calculation of phosphorene’s anisotropic bending moduli that it is far 

easier to bend phosphorene in the armchair direction than in the zigzag direction. Bending in either 

direction has a significant effect on the band gap of phosphorene.  

When zigzag direction surface curvature is low ( 𝑟−1  < 0.05 Å-1) the band gap rises steadily with 

 𝑟−1 as VBM is stabilised and the CBM is destabilised. The simultaneous stabilisation of the VBM 

and destabilisation of the VBM would protect z-PNTs against both oxidation and reduction 

relative to the bulk. However, past a critical strain of  𝑟−1  = 0.05 Å-1, the band gap of z-PNTs 

becomes indirect following the emergence of a new CBM at reciprocal point Y*. CBY* is stabilised 

with  𝑟−1, resulting in a falling band gap. Meanwhile, bending in the armchair direction has little 

effect on the band gap when surface curvature is low ( 𝑟−1  < 0.04 Å-1), with the absolute energy 

of both band edges remaining relatively constant. At curvatures  𝑟−1  >     0.04 Å-1, the band gap 

falls rapidly with increased curvature due to the destabilisation of the VBM. The destabilisation 

of the VBM makes phosphorene more susceptible to oxidation. 
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Chapter 6 

Phosphorene nanoribbons 

6.1 Background 

Many of phosphorene’s exciting properties are the result of quantum confinement effects, with 

phosphorene’s wavefunction confined perpendicular to the 2D plane on which the compound lies. 

As has been demonstrated through investigations of other 2D materials such as graphene and 

monolayer MoS2, further interesting electronic properties arise when 2D compounds are 

terminated to form quasi-1D nanoribbons [1, 2]. Furthermore, the fact that graphene nanoribbons 

can now be synthesised and isolated on a large scale suggests that the routine use of such heavily 

nanostructured materials is close to becoming a reality [3].  

We have studied the change in phosphorene’s electronic structure when it is terminated to form 

phosphorene nanoribbons (PNRs), investigating two different orientations along which 

phosphorene can be cut in order to form ‘armchair’ PNRs (a-PNRs) and ‘zigzag’ PNRs (z-PNRs). 

We have shown that z-PNRs in particular demonstrate strong quantum confinement effects which 

increase the magnitude of the band gap relative to monolayer phosphorene. We explain the origins 

of these effects by applying periodic boundary conditions to monolayer phosphorene, and 

ultimately derive a formula relating phosphorene’s band edge effective masses to the band gap of 

PNRs. We also demonstrate that both the band gap and transport properties of PNRs can be 

modified by applying uniaxial strain along the length of the ribbon. 

6.1.1 Graphene nanoribbons 

The properties of graphene nanoribbons have been widely investigated. Unlike phosphorene, 

graphene is a semi-metal with no intrinsic band gap, severely limiting its usage in electronic 

devices. Two types of graphene nanoribbons exist, namely zigzag graphene nanoribbons (ZGNRs) 

and armchair graphene nanoribbons (AGNRs). 
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The electronic properties of AGNRs depends on the ribbon’s width, measured in terms of the 

number of atoms (m) along the cross-ribbon direction. Using the tight binding approximation, 

when m = 3p + 2 (where p is any integer) AGNRs are metallic [4], with all other widths 

semiconducting. However, when using DFT or the GW approximation to calculate electronic 

structure, all AGNRs are semiconducting with band gaps following the hierarchy 3p+1 > 3p > 

3p+2 [5, 6].  In all cases, there is a consistent inverse relationship between the band gap and ribbon 

width, with the band gap opening primarily a result of quantum confinement. Meanwhile, ZGNRs 

have localised electronic states at their edges [7]. Nearest neighbour sites are coupled 

antiferromagnetically throughout the lattice, giving rise to a small band gap which varies inversely 

with ribbon width [1].  

The most common way to make GNRs is by top-down plasma etching, where resists, metals or 

nanowires are used as masks and plasma is used to etch away exposed graphene regions. Using 

this technique, sub-20 nm GNRs can be made, with Bai et al. producing 8 nm wide GNR [8]. 

However, the edge quality of etched nanoribbons can be poor, degrading the electronic properties 

of sub- 20nm GNRs [9]. Furthermore, chemical approaches have been used to synthesize 

nanoribbons as narrow at 2 nm with band gaps approaching 400 meV [10]. High quality GNRs 

have also been made by unzipping carbon nanotubes CNTs by means of plasma etching, 

sonication, metal nanoparticle cutting and oxidation and reduction. 

Experimentally, there is good agreement with theoretically predicted band gaps and their width 

dependence. The opening of a band gap is vital if graphene is to be used in logic devices, with 

sub-5nm GNRs required to obtain a reasonable on/off ratio. GNRs produced through chemical 

sonication deliver an on/off ratio of 106, although mobility is limited by edge scattering and is less 

than 200 cm2 V-1
 s-1, somewhat defeating the object of using graphene in logic devices [10]. 

However, research into the field is still very much ongoing, with a multitude of other quantum 

devices currently under investigation. 

6.1.2 MoS2 nanoribbons 

While GNRs remain by far the most widely studied 1D nanostructures, MoS2 nanoribbons have 

been well theoretically characterized [2] . As with GNRs, MoS2 nanoribbons can exist in two 

forms depending on their edge termination, zigzag MoS2 nanoribbons and armchair MoS2 

nanoribbons. Armchair nanoribbons are non-magnetic and semiconducting, with band gaps rising 
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as ribbon width is increased. Interestingly, the band gap of nanoribbons does not rise steadily, 

fluctuating below the band gap of monolayer MoS2. Meanwhile, zigzag nanoribbons show 

ferromagnetic and magnetic behaviour, irrespective of the ribbon’s width. 

6.1.3 Un-passivated phosphorene nanoribbons 

Prior to the publication of our work on passivated phosphorene nanoribbons, Guo et al. reported 

the behaviour of un-passivated PNRs [11]. Their study investigated ‘zigzag’ un-passivated PNRs 

(z-PNRs) and armchair un-passivated PNRs (a-PNRs). While z-PNRs are metallic regardless of 

ribbon width [12], a-PNRs have an indirect band gap which decreases as the width of ribbon is 

increased. In z-PNRs, it is edge states that result in metallic behaviour. In a-PNRs, the CBM is an 

edge state whereas the VBM is located towards the ribbon’s interior. 

6.2 Methodology 

Density functional calculations were performed using the VASP code. We used a plane-wave 

basis set truncated at 400 eV and PAW pseudopotentials to treat core electrons. More information 

about plane-wave DFT and pseudopotentials can be found in Chapter 2. Given the size of the 

largest PNRs studied, we used the same approach as in Section 5.3, with the PBE functional in 

combination with the DFT-D3 dispersion correction scheme used not only to perform structural 

relaxations but also to investigate electronic structures. While we acknowledge that this method 

is likely to underestimate the absolute size of band gaps, we are confident that the effect is 

relatively consistent and that the reported trends are representative of the true behaviour. When 

relaxing crystal lattices and internal atomic positions, we used a conjugate gradient algorithm until 

all interatomic forces fell below 0.01 eV/Å. A vacuum region of over 20 Å was maintained 

perpendicular to the xy plane, with an additional 20 Å vacuum region separating the periodic 

images of PNRs within the plane. The geometries obtained were fully converged when k-space 

was sampled using a 9×1×1 Monkhorst-Pack mesh for z-PNRs and a 1×9×1 Monkhorst-Pack 

mesh for a-PNRs. For electronic structure calculations, a k-point density equivalent to that of a 

100×1×1 Monkhorst-Pack mesh was used for z-PNRs and that of a 1×100×1 Monkhorst-Pack 

mesh was used for a-PNRs. Absolute band energies were obtained by subtracting the total local 

potential found directly in the middle of the vacuum region from the eigenvalues computed using 

DFT. 
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6.3 Simulations of Phosphorene Nanoribbons 

6.3.1 Geometry of z-PNR and a-PNR 

We identified two different directions along which monolayer phosphorene can be cut in order to 

form nanoribbons. As shown in Figure 6.1, cutting along the [010] direction results in zigzag 

nanoribbons, z-PNRs, while cutting along the [100] direction results in armchair nanoribbons, a-

PNRs. The formation of each nanoribbon involves breaking one P-P bond per edge phosphorus 

atom, leaving dangling bonds. Given that dangling bonds are highly reactive and will bond with 

impurities, we passivated edge phosphorus atoms with atomic hydrogen.  

We relaxed the structure of 12 different widths of each PNR, containing between 4 and 16 unit 

cells corresponding to widths of between 13 and 75 Å. The internal geometry of PNRs remained 

very close to that of the bulk, with central regions of all but the narrowest PNRs indistinguishable 

from monolayer phosphorene. The lattice parameters along the length of PNRs, 𝑎0 in z-PNRs and 

𝑏0 in a-PNRs, also remained similar to those of bulk monolayer phosphorene. Compared to the 

bulk values of 𝑎0 = 3.298 Å and 𝑏0 = 4.619 Å, z-PNR4 had a length of 3.301 Å and y-PNR4 had 

a length of 4.620 Å. 

Figure 6.1: A representation of the structure of z-PNRs (left) and a-PNRs (right) with respect to 

phosphorene. 
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We checked the stability of both a-PNRs and z-PNRs with respect to Peirels distortions, which 

are symmetry breaking distortions of the one dimensional periodic lattice. For ribbon widths of 4, 

6 and 10 unit cells, we compared the ground state energies of supercells containing one, two and 

four unit cells along the ribbon’s length.  Supercells containing two and four unit cells were not 

stabilised with respect to the unit cell, and we therefore conclude that passivated PNRs do not 

undergo Peirels distortions. 

6.3.2 Formation Energy 

For each PNR, we calculated the formation energy per unit edge using the following formula: 

𝐸𝑓𝑜𝑟𝑚 =
1

2
(𝐸𝑟𝑖𝑏𝑏𝑜𝑛 − 𝑁𝑃𝐸𝑏𝑢𝑙𝑘 −

𝑁𝐻

2
𝐸𝐻2

) 

where Eribbon is the energy of the PNR, Ebulk is the atomic energy of monolayer phosphorene, 𝐸𝐻2
is 

the energy of a H2 molecule, NP is the number of phosphorus atoms in the ribbon and NH is the 

number of hydrogen atoms. As can be seen in Table 6.1, formation energies of z-PNRs are slightly 

exothermic whereas formation energies of a-PNRs are slightly endothermic. We propose that there 

are two dominant contributions to 𝐸𝑓𝑜𝑟𝑚: 𝐸𝑐𝑜𝑛𝑓 and 𝐸𝑐ℎ𝑒𝑚.  

Wavefunctions confined within the width of a PNR are energetically different to unconfined 

wavefunctions in the bulk, with the difference between the two equal to 𝐸𝑐𝑜𝑛𝑓. One would expect 

an unconfined wavefunction to be more stable than a confined one, and we indeed found that 

𝐸𝑓𝑜𝑟𝑚 becomes more exothermic with increasing ribbon width. In other words, as the extent of 

confinement decreases 𝐸𝑓𝑜𝑟𝑚 also decreases, proving that confinement has an endothermic effect.  

Meanwhile, 𝐸𝑐ℎ𝑒𝑚 is simply the change in bond energies which occurs when PNRs are formed 

from monolayer phosphorene and H2. For every two P – H bonds formed,  𝐸𝑐ℎ𝑒𝑚 = 2 ×  𝐸𝑃−𝐻 −

( 𝐸𝐻−𝐻 +  𝐸𝑃−𝑃). Extrapolating to find 𝐸𝑓𝑜𝑟𝑚 for a PNR of infinite width results in an exothermic 

formation energy for both z-PNRs and a-PNRs. This approach effectively sets 𝐸𝑐𝑜𝑛𝑓 to zero, and 

assuming that  𝐸𝑓𝑜𝑟𝑚 = 𝐸𝑐𝑜𝑛𝑓+ 𝐸𝑐ℎ𝑒𝑚, this means that 𝐸𝑐ℎ𝑒𝑚 is exothermic for both types of 

PNR. This finding is supported by reference data, where  𝐸𝑃−𝑃 = 2.08 eV,  𝐸𝐻−𝐻 = 4.48 eV and 

 𝐸𝑃−𝐻 = 3.34 eV, giving the net formation energy of a P – H bond in -0.05 eV.  
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 z-PNRs a-PNRs 

Width, 

uc. 

Width, 

Å 

𝑬𝒇𝒐𝒓𝒎, 

eV 

Gap, 

eV 

Width, 

Å 

𝑬𝒇𝒐𝒓𝒎, 

eV 

Gap, 

eV 

4 18.69 -0.051 1.554 13.32 0.056 1.077 

5 23.29 -0.051 1.393 16.64 0.054 1.017 

6 27.89 -0.051 1.290 19.96 0.052 0.985 

7 32.49 -0.052 1.213 23.28 0.050 0.966 

8 37.08 -0.053 1.156 26.6 0.048 0.952 

9 41.68 -0.054 1.114 29.92 0.046 0.944 

10 46.28 -0.054 1.082 33.24 0.044 0.938 

11 50.88 -0.055 1.057 36.56 0.042 0.933 

12 55.48 -0.055 1.037 39.88 0.040 0.929 

13 60.07 -0.056 1.021 43.2 0.038 0.926 

14 64.67 -0.057 1.007 46.52 0.036 0.923 

15 69.27 -0.058 0.996 49.84 0.035 0.920 

16 73.87 -0.058 0.986 53.16 0.033 0.917 

Table 6.1: The width in Å, formation energy and band gap of z-PNRs and a-PNRs with widths of 

between 4 and 16 unit cells. 

In addition to 𝐸𝑐𝑜𝑛𝑓 and 𝐸𝑐ℎ𝑒𝑚, we also acknowledge that 𝐸𝑓𝑜𝑟𝑚 will include contributions due 

to geometry relaxations and changes in local potential. However, we assume that these 

contributions are small given the similarity of the internal geometries of PNRs and monolayer 

phosphorene. We emphasize that the energies calculated are zero temperature electronic energies 

only and do not account for entropy. We would expect Gibbs free energies to be significantly 

endothermic given the high entropy of gaseous H2 , which is in excess of 0.4 eV  under standard 

conditions. 
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6.3.3 Band Gaps 

For each width of PNR investigated, we calculated the electronic band gap. In all a-PNRs, both 

band edges are located at the Γ-point whereas in z-PNRs the VBM is offset slightly in the X 

direction. As seen in Figure 6.2, the band gaps of both a-PNRs and z-PNRs increase with 

decreasing ribbon width. This effect is more dramatic when narrowing z-PNRs (confining 

wavefunctions in the armchair direction) than it is when narrowing a-PNRs (confining 

wavefunctions in the zigzag direction).  For example, the band gap of 18.7 Å wide z-PNR is 1.55 

eV whereas the band gap of 16.6 Å wide a-PNR is 1.02 eV. Given that we are using the PBE 

functional to investigate electronic structure, the reference band gap for bulk monolayer 

phosphorene is that which is calculated using the PBE functional, 0.89 eV, rather than that which 

is calculated using HSE06, 1.55 eV. This means that ~2 nm passivated a-PNR has a band gap 

which is 0.66 eV higher than that of the monolayer, whereas ~2nm passivated z-PNR has a band 

gap which is only 0.13 eV higher than that of the monolayer. 

 

Figure 6.2: The band gaps of a-PNRs and z-PNRs of various widths. The dotted line at ~0.89 eV 

represents the band gap of ‘bulk’ monolayer phosphorene. 
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Examining the absolute band energies of PNRs relative to the vacuum level, we see that the VBM 

is stabilised and the CBM is destabilised in equal measure relative to the bulk. Stabilising the 

VBM and destabilising the CBM has a significant effect on stability and reactivity, with PNRs 

stabilised with respect to both oxidation and reduction. Furthermore, the changes in the absolute 

band edge energies also increase photocatalytic power. Electrons excited to a less stable CBM 

have more reductive power and the resulting holes left in a more stable VBM have more oxidative 

power. 

6.3.4 Density of states 

We calculated the density of states (DoS) for 10 unit cell wide PNRs, decomposing the 

contributions of ‘middle’ and ‘edge’ phosphorus atoms, as shown in Figures 6.3 and 6.4. We 

found that for both z-PNR and a-PNR, the inner twenty phosphorus atoms contribute to both band 

edges more than the outer twenty phosphorus atoms. Hydrogen orbitals, meanwhile, do not 

contribute to any near edge electronic states.  

The unequal contribution of middle and edge phosphorus atoms is also demonstrated by the site 

decomposed contribution of phosphorus atoms to the band edge electronic states. Figures 6.3(c) 

and 6.4(c) show the relative contribution of phosphorus atoms to electronic states at the CBM and 

VBM versus their position along the ribbon’s width. While data are only reported to 3 significant 

figures in the VASP code, the plots clearly follow a half sinusoidal wave, with atomic 

contributions tending towards zero at either edge of the ribbon. This observation is important 

given that it defines the boundary conditions which can be used to explain quantum confinement 

effects, see Section 6.3.5. 

Furthermore, the DoS calculated for passivated PNRs are in contrast to those of un-passivated 

PNRs reported in the literature. The literature reports that un-passivated z-PNRs are metallic, with 

states around the Fermi level consisting entirely of edge phosphorus character, with the CBM of 

un-passivated a-PNRs also being located towards the ribbon’s exterior. Meanwhile, the nature of 

the VBM in un-passivated a-PNRs appears similar to the VBM in passivated a-PNRs. We also 

looked at the spd- decomposed DoS of passivated PNRs, finding that the relative contributions 

phosphorus s and px/y/z orbitals are very similar to those reported for monolayer phosphorene in 

Section 3. Electronic states at both band edges appear to predominantly consist of pz orbitals which 

appear to be bonding in the z direction at the VBM and anti-bonding in the z direction at the CBM.   
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Figure 6.3: The density of states of a-PNR10, with the contributions ‘edge’ and ‘middle’ 

phosphorus atoms decomposed (top), the structure of a-PNR10 with ‘edge’ and ‘middle’ regions 

labelled (middle) and the contribution of phosphorus atoms to the VBM and CBM versus the 

atomic position (bottom). 
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Figure 6.4: The density of states of z-PNR10, with the contributions ‘edge’ and ‘middle’ 

phosphorus atoms decomposed (top), the structure of z-PNR10 with ‘edge’ and ‘middle’ regions 

labelled (middle) and the contribution of phosphorus atoms to the VBM and CBM versus the 

atomic position (bottom). 
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6.3.5 Band gap prediction  

Under the assumption that the charge density falls to zero beyond the edges of PNRs, we can 

assume that that their wavefunctions are confined within the ribbon’s width. Therefore, periodic 

boundary conditions can be applied to deduce the bulk wavefunctions corresponding to the 

electronic states that can exist in PNRs. In the below formula, 𝑘𝑛 is the set of allowed k-points 

when wavefunctions are confined within the width 𝑁 × 𝑙0, where 𝑙0 is a bulk lattice vector and N 

is an integer [13]. 

𝑘𝑛 =
𝜋

𝑙0
.
𝑛

N
        𝑛 = 1 … N 

We sampled the Brillouin zone of bulk phosphorene at the k-points allowed according to the above 

condition. In each instance, both the highest energy valence state and the lowest energy conduction 

state sampled were found when n = 1. This is unsurprising given that both the VBM and CBM of 

phosphorene are located at the Γ-point (𝑘 = 0), and that 𝑘𝑛 is minimised when n = 1. The Bloch 

wave returned when 𝑘 = 𝑘1 has the form of a half sinusoidal wave spanning 𝑁 × 𝑙0, and therefore 

the implied contribution of phosphorus atoms along the length  𝑁 × 𝑙0 bears a striking 

resemblance to the band edge contributions of phosphorus atoms shown in Figures 6.3 and 6.4.  

By taking the difference between the valence and conduction band energies when 𝑘 = 𝑘1, we 

calculated the band gaps of wavefunctions confined within  𝑁 × 𝑙0. We assume that these 

wavefunctions resemble the wavefunctions of PNRs with a width of 𝑁 unit cells, and therefore 

can be used to predict their band gaps. As can be seen in Figure 6.5, the band gaps predicted follow 

a similar trend to the actual band gaps of PNRs, and are particularly accurate for ribbons with a 

width greater than 10 unit cells.  

The differences between the band gaps calculated for PNRs directly and those calculated by 

applying PBCs are, however, significant for narrow ribbons. Bulk wavefunctions confined within 

 𝑁 × 𝑙0 and wavefunctions found in PNRs of a similar width differ in a number of ways.  Perhaps 

most importantly, PNR wavefunctions are not truly confined within the ribbon’s width, but instead 

tend to zero as the vacuum level is approached. Furthermore, the geometries and local potentials 

found in the bulk are different from those found in nanoribbons. In the bulk, there are infinite 

periodic repetitions of the unit cell beyond the area of confinement, whereas PNRs are terminated 
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with hydrogen, which not only affects the local potential felt by electrons close to the PNR’s edge, 

but also leads to subtle geometry changes in the same region.  

The above factors primarily affect the wavefunction close to the edge of PNRs,  and are therefore 

more important for narrow PNRs where edge regions make up a larger proportion of the total 

wavefunction. For wider PNRs, these edge effects are relatively insignificant, and therefore the 

band gap can be accurately predicted by applying PBCs to the bulk. 

It follows that the band gaps obtained using the PBC method can be predicted formulaically if we 

assume that both of phosphorene’s band edges are parabolic around the Γ-point. The valence and 

conduction band energies of phosphorene at 𝑘 =
𝜋

𝑁𝑙0
 can be estimated formulaically as follows:  

𝐸𝒌,𝑉𝐵/𝐶𝐵 = 𝐴𝑉𝐵/𝐶𝐵 . 𝒌2 + 𝐸𝑉𝐵𝑀/𝐶𝐵𝑀 

𝐴𝑉𝐵/𝐶𝐵 =
1

2
.
𝑑2𝐸𝒌,𝑉𝐵/𝑉𝐵

𝑑𝒌2
 

where 𝐸𝑉𝐵𝑀/𝐶𝐵𝑀 are the energies of the VBM and CBM. We recall that the second differential 

of 𝐸𝒌 with respect to 𝒌 also appears during the calculation of effective mass. Therefore, we can 

express 𝐴𝑉𝐵/𝐶𝐵 in terms of the corresponding band edge effective mass, 

𝑚ℎ/𝑒 = ℏ2. (
𝑑2𝐸𝒌,𝑉𝐵/𝑉𝐵

𝑑𝒌2 )

−1

 

𝐴𝑉𝐵/𝐶𝐵 =
1

2
.
𝑑2𝐸𝒌,𝑉𝐵/𝑉𝐵

𝑑𝒌2
=

ℏ2

2. 𝑚ℎ/𝑒
 

Furthermore, 𝐸𝒌,𝑉𝐵/𝐶𝐵  and ultimately 𝐸𝑔𝑎𝑝,𝒌 can also be expressed in terms of the effective 

mass, 

𝐸𝑘,𝑉𝐵/𝐶𝐵 =
ℏ2

2. 𝑚ℎ/𝑒
. 𝒌2 +  𝐸𝑉𝐵𝑀/𝐶𝐵𝑀 

𝐸𝑔𝑎𝑝,𝒌 = 𝐸𝑘,𝐶𝐵 − 𝐸𝑘,𝑉𝐵 = (
ℏ2

2. 𝑚𝑒
. 𝒌2 + 𝐸𝐶𝐵𝑀) − (

ℏ2

2. 𝑚ℎ
. 𝒌2 +  𝐸𝑉𝐵𝑀) 
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𝐸𝑔𝑎𝑝,𝒌 = 𝐸𝑔𝑎𝑝,𝑝ℎ𝑜𝑠 + (𝑚𝑒
−1 + 𝑚ℎ

−1).
ℏ2

2
. (

𝜋

𝑁𝑙0
)

2

 

where 𝐸𝑔𝑎𝑝,𝑝ℎ𝑜𝑠 is the band gap of bulk phosphorene. When tested, the above formula reproduced 

the band gaps predicted using PBCs to within 5% for the thinnest nanoribbons and to a far higher 

degree of accuracy for wider ribbons, as can be seen in Figure 6.5. The overestimation of the band 

gap of the thinnest ribbons occurs because the valence and conduction bands are not parabolic 

further away from the band edges. 

Given that effective masses at phosphorene’s band edges are consistent to within 10% when 

calculated using different density functionals, the above equation allows 𝐸𝑔𝑎𝑝  to be estimated for 

any functional provided that 𝐸𝑔𝑎𝑝,𝑝ℎ𝑜𝑠 is known. It also implies that the absolute additive effect 

on the band gap as a result of quantum confinement is consistent regardless of the functional used. 

Given that the electronic and optical band gaps of phosphorene have been found to be around 2.2 

and 1.6 eV respectively when calculated using state of the art GW calculations [14], our results 

suggest that 𝐸𝑔𝑎𝑝 can be moved throughout the optical region. 
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Figure 6.5: The band gaps of z-PNRs (top) and a-PNRs (bottom) consisting of between 4 and 

16 unit cells predicted using three methods; direct modelling of the PNR using DFT, applying 

PBC to the band structure of monolayer phosphorene. 
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6.3.6 Effective mass 

Given that the band edge electronic states of PNRs are different from those found in monolayer 

phosphorene, their electron and hole effective masses along the length of the ribbon are also 

different. We found that the effective masses for the majority of the a-PNRs are similar to those 

along the analogous armchair direction in phosphorene, where when calculated using PBE, 𝑚ℎ = 

0.146 𝑚0 and 𝑚𝑒 = 0.156 𝑚0. However, for narrow a-PNRs, 𝑚𝑒  and 𝑚ℎ both increase 

exponentially with decreasing ribbon width, as show in Figure 6.6. For example, in a-PNR4, 𝑚𝑒 

= 0.187 𝑚0 and 𝑚ℎ  = 0.173 𝑚0, both approaching 20% higher than in monolayer phosphorene. 

 

Figure 6.6: The hole and electron effective masses of a-PNRs consisting of between 4 and 16 

unit cells. 

We found the calculation of 𝑚ℎ in z-PNRs to be considerably more troublesome. While the 

VBM in phosphorene and in a-PNRs is located directly at the Γ-point, the VBM in z-PNRs is 

slightly offset from the Γ-point in the X direction. The thinner the nanoribbon, the more sizeable 

this offset: in z-PNR4, the VBM is located at [0.086, 0, 0] 2𝜋/𝑙, whereas in z-PNR16 it is located 

at [0.038, 0, 0] 2𝜋/𝑙. The displacement of the VBM towards X in z-PNRs is consistent with the 

band structure of phosphorene; Figure 6.7 compares phosphorene’s band dispersion between [0, 
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𝜋

10𝑏0
, 0] 2𝜋/𝑙  and [0.1, 

𝜋

10𝑏0
,  0] 2𝜋/𝑙 to that of z-PNR10 between [0, 0, 0] 2𝜋/𝑙 and [0.1, 0,  0] 

2𝜋/𝑙. In both cases the band maximum is displaced towards X, and while the exact band 

dispersions differ, the origin of the indirect band gaps seen in z-PNRs is clearly demonstrated.  

 

Figure 6.7: The valence band dispersion of z-PNR10 (left) compared to that of phosphorene 

between Γ and 0.2 ×X (right). 

While the differences between the energy of valence band of z-PNRs at Γ and the VBM are 

minimal (typically < 5 meV), the band dispersion about the VBM is asymmetric. Given that 

effective mass theory is based around the assumption that band edges are parabolic, this brings 

into question the suitability of the method and makes the calculation of 𝑚ℎ difficult. To 

compromise, we sampled points between the VBM and X only, ignoring the asymmetric band 

dispersion between Γ and the VBM.  While this compromise allowed us to treat each z-PNR 

consistently, we believe that the results obtained should be viewed with a degree of caution.  

We found that 𝑚ℎ increases exponentially with decreasing ribbon width, rising to around 3.1 𝑚0 

in z-PNR4 compared to 2.2 𝑚0 in z-PNR16. Both of these values are significantly lower than the 

effective mass calculated for bulk phosphorene in Chapter 3. However, this difference could be 



164 
 

considered a misleading result given the way that we calculated 𝑚ℎ  in z-PNRs compared to 

phosphorene. In phosphorene, the high value of 𝑚ℎ is a result of the extremely flat valence band 

around Γ. In z-PNRs, this flat region is slightly stabilised, and so the point defined as the VBM is 

no longer located at Γ. Instead, the VBM is located at the point in k-space equivalent to the edge 

of the flat region in the band structure of bulk phosphorene. If we were to calculate phosphorene’s 

hole effective mass at this point, 𝑚ℎ would be in agreement with the trends seen in Figure 6.8. 

Given that the energy difference between the two points in the bulk is less than 1 meV, both will 

be occupied at non-zero temperatures and therefore there is limited meaning in distinguishing 

between them.  

Meanwhile, 𝑚𝑒 remains fairly constant with ribbon width, ranging from 1.27 𝑚0 in z-PNR16 to 

1.31 𝑚0 in z-PNR4. These values are similar to 𝑚𝑒 in bulk phosphorene, 1.25 𝑚0, suggesting 

that n-type transport is unaffected by nanostructuring in the y-direction.   

 

Figure 6.8: The hole and electron effective masses of z-PNRs of widths between 4 and 16 unit 

cells.
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6.4 Phosphorene nanoribbons under strain 

Given the remarkable effects of straining monolayer phosphorene, see Chapter 5, we investigated 

the effects applying uniaxial strain along the length of PNRs. In the interests of computational 

cost, we only studied 10 unit cell wide PNRs consisting of 40 phosphorus atoms per unit cell and 

assume that our findings can be extrapolated to PNRs of all widths. We investigated strains, 𝜀, of 

between 0.90 and 1.10, well within the theoretical strain limit of phosphorene. To do this, we 

relaxed atomic positions within a fixed unit cell expanded by a factor of 𝜀 along the lattice 

parameter corresponding to the ribbon’s length. 

6.4.1 Stiffness 

We quantified the stiffness of PNRs by calculating the 2D Young’s modulus, C2D, as discussed in 

Chapter 5. C2D is defined in a similar manner as the conventional Young’s modulus, C3D.  

𝐶2𝐷 =
1

𝐴0
(

𝜕2𝐸

𝜕𝜀2 ) 

where E, ε and A0 correspond to energy, linear strain and the equilibrium surface area of the 

nanoribbon respectively. While 𝐶3𝐷 has units of N/m2 (Pa), 𝐶2𝐷 has dimensionality of N/m (Pa.m), 

and is related to ε3D through the relationship 𝐶3𝐷 =  
𝐶2𝐷

𝑐0
, where c0 is the lattice parameter 

perpendicular to the plane on which the 2D material lies. 

We noticed that plots of 𝐸 vs. 𝜀 are asymmetric around 𝜀 = 1.00, and therefore we calculated two 

values of C2D: Cext, for 𝜀 > 1.00 and Ccomp, for 𝜀 < 1.00. We found that for both extensive (𝜀 > 

1.00) and compressive (𝜀 < 1.00) strains, 𝐶2𝐷 is significantly lower for a-PNR than for z-PNR. 

This finding was entirely expected; Chapter 5 and other recent studies have shown that it is far 

easier to strain phosphorene along the armchair direction than along the zigzag direction.  
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 Cext (N/m) Ccomp (N/m) 

a-PNR10 19.2 23.3 

z-PNR10 139.65 93.54 

Table 6.2: The young’s 2D moduli of a-PNR10 and z-PNR10 for both compressive strain Ccomp and 

extensive strain Cext. 

Regardless of the difference between a-PNRs and z-PNRs, values of 𝐶2𝐷 are low. For a-PNR10, 

𝐶2𝐷 is an order of magnitude lower than it is for graphene nanostructures. As with bulk 

phosphorene, we suggest that compression and extension leads mainly to a P-P-P bond angle 

change rather than more energetically demanding changes in bond length. 

6.4.2 a-PNR 

Under no strain, the band gap of a-PNR10 is 0.93 eV, just 0.04 eV higher than the band gap of bulk 

phosphorene. However, uniaxial straining can induce large changes in the band gap, see Figure 

6.9.  For strains of between ε = 0.90 to 1.07, tensile strain is associated with a steadily increasing 

band gap, while compressive strain is associated with a steadily decreasing band gap. The band 

gap peaks at 1.16 eV when ε = 1.07, and falls to 0.36 eV when ε = 0.90.  When ε > 1.07, the band 

gap begins to fall with further compressive strain, reaching 1.07 eV when ε = 1.10.  

 

Figure 6.9: The band gap of a-PNR10 at strains of between ε = 0.90 to 1.10. 



167 
 

The changes in band gap with strain can be understood by looking at the absolute changes in the 

energies of conduction and valence bands. Figure 6.10 shows that as a-PNR is stretched from         

ε = 0.90 to 1.07, the band gap increases as a combined result of the stabilisation of the VBM and 

the destabilisation of the CBM. The VBM is stabilised from around -4.5 eV to -4.9 eV as ε is 

increased from 0.90 to 1.07, while the CBM is destabilised from -4.2 eV to -3.75 eV.  

The stabilisation of the VBM with extensive strain suggests that the state’s constituent atomic 

orbitals are arranged in an anti-bonding manner along the ribbon’s length. Figure 6.10, which 

shows that the spd- and site-projected phase factors of the electronic state at the VBM, confirms 

that the VBM consists of pz orbitals arranged in an anti-bonding manner along the length of the 

ribbon. Meanwhile, the CBM of a-PNR10 also consists of pz orbitals, but arranged in bonding 

manner along ribbon’s length, explaining why the CBM is destabilised as a-PNR is stretched 

between ε = 0.90 and 1.07.  

Past a critical strain of ε = 1.07, the band gap falls with further tensile strain. While the energy of 

the VBM plateaus, the emergence of a new CBM which is stabilised with tensile strain causes the 

band gap to fall. The emergent CBM consists of py orbitals arranged in an antibonding manner 

along the armchair direction, explaining its stabilisation with extensive strain. 

We also note the presence of competing valence band which is rapidly destabilised with 

compressive strain. This valence band has its maximum away from the Γ-point at approximately 

[0.3, 0, 0] 2𝜋/𝑙, and is just 40 meV more stable VBM when ε = 0.90. At strains of ε < 0.90, the 

band gap of a-PNR becomes indirect, from [0.3, 0, 0] 2𝜋/𝑙  Γ, with the overall band gap rapidly 

decreasings thereafter. Indeed, preliminary investigations indicate that z-PNR10 becomes metallic 

at strains of ε < 0.85. 
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Figure 6.10: Absolute band energies (relative to the vacuum level) of the first and second 

valence and conduction bands in a-PNR10 at strains of between ε = 0.90 to 1.10 (top) and the 

charge density of electronic states at VBa (bottom left), CBa (bottom right), with the phase 

factors of the constituent and dominating pz orbitals shown. Isosurfaces are 0.001 e/Å3. 

Unstrained a-PNR10 has hole and electron effective masses of 0.158 𝑚0 and 0.147 𝑚0  

respectively. The phase factors at the VBM shown in Figure 6.10 suggest that there is a continuous 

region of electron density ‘inside’ the sheet, while the phase factors of orbitals making up the 

CBM suggest that there is a continuous region of electron density on the top and bottom surfaces 

of the sheet.  The presence of continuous electron density, i.e. without nodes, aids charge carrier 

transport and explains the low effective masses calculated. 
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Between strains of ε = 0.90 and 1.07, the ordering of valence and conduction bands stays constant, 

and thus so do the electronic states at the VBM and CBM. Both hole and electron effective masses 

rise gradually upon extension as overlap between neighbouring atomic orbitals decreases; 𝑚ℎ 

rises from 0.114 𝑚0 when ε = 0.90 to 0.158 𝑚0 when ε = 1.07, while 𝑚𝑒 rises from 0.125 𝑚0 

when ε = 0.90 to 0.160 𝑚0 when ε = 1.07. While this behaviour is ordinary, much more dramatic 

changes in effective mass occur past a critical strain of ε > 1.07. 

The band structure around the new CBM that emerges when ε > 1.07 is highly un-dispersive, as 

can be seen by comparing the band structure of a-PNR10 when ε = 1.00 to the band structure when 

ε = 1.10, see Figure 6.11. The result is a dramatic increase in 𝑚𝑒, from 0.160 𝑚0 to over 8 𝑚0 

when ε = 1.07, an increase of over 50× which effectively quenches n-type transport in highly 

strained a-PNR. The fact that 𝑚ℎ remains relatively constant could have important implications 

for p-type devices where concurrent n-type transport is undesirable. Meanwhile, the VBM that 

emerges when ε < 0.90 has a slightly lower effective mass compared to the ground state, m0. 

 

Figure 6.11: The effective mass at the conduction (𝑚𝑒) and valence (𝑚ℎ) band edges of a-PNR 

under strains of between ε = 0.91 and 1.03 (top) and the band structure of a-PNR10 at strains of ε 

= 0.90 (bottom left), ε = 1.00 (bottom midde) and ε = 1.10 (bottom right). 
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6.4.4 z-PNR 

The band gap of unstrained z-PNR10 is 1.08 eV. Between ε = 0.91 and 1.03 the band gap rises 

from 0.75 to 1.23 eV, and between ε = 1.04 and 1.10 the band gap falls from 1.25 to 0.73 eV. As 

z-PNR10 is compressed from ε = 0.91 and 0.90, the band gap falls sharply from 0.75 to 0.54 eV. 

 

Figure 6.12: The band gap of z-PNR10 under uniaxial strains of between ε = 0.90 to 1.10. 

To understand these trends, we consider at the absolute band energies of z-PNR10 under various 

strains, see Figure 6.13. Changes in the band gap between ε = 0.91 and 1.03 are driven mainly by 

the destabilisation of the CBM, which is destabilised from around -4.5 eV when ε = 0.91 to over 

-4.0 eV when ε = 1.03. Examining the charge density and site decomposed phase factors, we see 

that the CBM of z-PNR consists of pz orbitals arranged in a bonding manner along the length of 

the ribbon. As the ribbon is extended these electronic states are destabilised, increasing the band 

gap between ε = 0.91 and 1.03. 

 



171 
 

Changes in the band gap between ε = 1.03 and 1.10, which falls from 1.25 eV to 0.73 eV, are also 

driven by changes in the energy of the CBM. At ε > 1.03, a new CBM emerges which is stabilised 

with extensive strain, from -3.93 eV when ε = 1.04 to -4.35 eV when ε = 1.10. The electronic state 

at the emergent CBM consists of py orbitals arranged in an anti-bonding manner along the length 

of the ribbon, explaining its stabilisation with extensive strain.   

Meanwhile, the energy of the VBM remains relatively constant as tensile strain is applied between 

ε = 1.00 and 1.10. Upon compression, the VBM is stabilised by approximately 0.2 eV between     

ε = 1.00 and 0.90. However, examining the charge density and site decomposed phase factors, it 

appears to consist of pz orbitals arranged in an antibonding manner along the ribbon’s length, 

suggesting that is should be destabilised with compressive strain. The charge density plot of the 

VBM suggests that it is dominated by the bonding interaction between atoms on the top and 

bottom surfaces of the sheet, and given that the distance between these atoms barely changes with 

strain the energy of the VBM remains fairly consistent. Moreover, from a top view, the anti-

bonding interaction between neighbouring phosphorus atoms (e.g. those marked a and b) is 

compensated by a bonding interaction between atoms a and c. This bonding interaction increases 

as the ribbon is compressed, leading to the stabilisation observed between ε = 1.00 and 0.90. 

Meanwhile, between ε = 0.91 and 0.90, a new VBM emerges, which is rapidly stabilised upon 

compression, resulting in a jump in band gap from 0.75 eV to 0.54 eV. 
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Figure 6.13: The absolute band energies of the first and second valence and conduction bands in 

a-PNR10 at strains of between ε = 0.90 to 1.10 (top) and the charge density of electronic states at 

VBa, CBa, with the phase factors of the constituent and dominating pz orbitals shown  (bottom left, 

centre, right). 
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In unstrained z-PNR10, hole and electron effective masses are 2.35 and 1.29 𝑚0 respectively. As 

discussed previously, there is only a limited bonding interaction along the length of the ribbon, 

explaining these high effective masses. Extensive straining between ε = 1.00 and 1.02 𝑚0 leads 

to a massive increase in 𝑚ℎ, which reaches 7.63 𝑚0. This change occurs as VBM moves to the 

Γ-point, around which the valence band is remarkably flat. The effective mass of 7.63 𝑚0 is in 

line with 𝑚ℎ in monolayer phosphorene, where the VBM is also located at the Γ-point. With 

further extensive strain, 𝑚ℎ quickly decreases, falling to 1.40 𝑚0 when ε = 1.10. However, as 

discussed in Section 6.3.6, hole effective masses in z-PNRs should be viewed with some caution 

given that they are extremely sensitive to the exact position of the VBM. With compressive strain, 

between ε = 1.00 and 0.91, 𝑚ℎ falls from 2.39 𝑚0 to 1.21 𝑚0 as the bonding between atoms a 

and c in Figure 6.13 increases. At ε = 0.90, a new VBM emerges which is highly dispersive, and 

𝑚ℎ falls to 0.11 𝑚0, the lowest effective mass reported for any black phosphorus structure. 

Meanwhile,  𝑚𝑒 slowly rises between ε = 0.90 and 1.03, from 1.21 𝑚0 to 1.31 𝑚0. This change 

is what one would intuitively expect when interatomic distances are increased. Past ε = 1.03, a 

new CBM emerges around which the band structure is highly dispersive, see Figure 6.14, leading 

to a sudden fall in 𝑚𝑒 to 0.14 𝑚0. The resulting high 𝑚ℎ/𝑚𝑒 ratio suggests a suitability for             

n-type applications, with the sudden increase in the ratio between ε = 1.03 and 1.04 potentially 

useful for switching devices.  
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Figure 6.14: The hole and electron effective mass of z-PNR under strains of between ε = 0.91 

and 1.03 (top) and the band structure of a-PNR10 at strains of ε = 0.90 (bottom left), ε = 1.00 

(bottom midde) and ε = 1.10 (bottom right). 
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6.5 Diagonal phosphorene nanoribbons 

Alongside the preceding work investigating a-PNRs and z-PNRs, Dr Xiaoyu Han investigated the 

properties of a different type of PNR, d-PNRs, which are cut diagonally along the lattice. Her 

work was published alongside that contained in this chapter. The band gaps of d-PNRs were also 

increased with respect to bulk phosphorene as a result of quantum confinement. The increases in 

band gap in d-PNRs are larger than in a-PNRs but smaller than those in z-PNRs. Meanwhile, 

straining d-PNR led to two direct to indirect band gap transitions as the valence band is stabilised 

(under compression) and the conduction band is destabilised (under extension) at a k-point lying 

away from the Γ–point. It is possible that d-PNR structures may be engineered upon straining so 

that two valleys are energetically degenerate with electrons of widely different momentum able 

to coexist at the same energy. 

6.6 Summary 

We investigated the properties of two different types of hydrogen passivated PNR using DFT at 

the GGA level. We looked at ribbon widths between 13 and 75 Å, corresponding to between 4 

and 16 unit cells. There were limited changes in geometry with respect to the bulk, and 

furthermore we found that the changes in electronic energy associated with the formation of either 

passivated PNR were minimal. However, we would expect the Gibbs free formation energies to 

be endothermic due to the entropic losses associated with hydrogen adsorption.  

In terms of electronic properties, the band gap of both PNRs increased with decreasing ribbon 

width as a result of quantum confinement effects. The band gap of the narrowest z-PNR studied 

was increased by 0.65 eV while the band gap of the narrowest a-PNR was increased by 0.12 eV. 

We explained the difference in the magnitude of quantum confinement effects by applying 

periodic boundary conditions to the band structure of monolayer phosphorene. We also derived a 

formula relating the band gap of PNRs to phosphorene’s band edge effective masses and band 

gap. This formula demonstrates that the additive effect on the band gap of PNRs with respect to 

the bulk should be consistent regardless of the methodology used to calculate electronic structure. 

This shows shown that the band gap of PNRs can be shifted throughout the optical region. 
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Effective masses are, in general, subtly increased in narrow PNRs with respect to the bulk. As 

would be expected from the anisotropy seen in monolayer phosphorene, both hole and electron 

effective masses are significantly lower in a-PNRs than in z-PNRs. 

We also investigated the effects of applying strain to PNRs. Stretching a-PNR10 between ε = 0.90 

and 1.08 leads to an increased band gap due to the simultaneous stabilisation of the VBM and 

destabilisation of the CBM. At strains of ε > 1.08, a new CBM emerges that is stabilised as further 

strain is applied, reducing the band gap. The band structure of a-PNR is highly undispersed around 

the emergent CBM, meaning that 𝑚𝑒 dramatically increases. The nature of the VBM, however, 

remains fairly constant across all strains and thus so does 𝑚ℎ. The dramatic decrease in the 

𝑚ℎ/𝑚𝑒  ratio past a critical strain of ε  =1.08 suggests that a-PNRs may readily be tuned for p-

type applications. 

Meanwhile, stretching z-PNR10 between ε = 0.90 and 1.03 increases the band gap predominantly 

because of the destabilising effect on the CBM. At ε = 1.04, a new CBM emerges that is stabilised 

with extensive strain, and so the band gap falls between ε = 1.04 and 1.10. The emerging CBM 

has a far lower effective mass, leading to a significant increase in the 𝑚ℎ/𝑚𝑒 ratio. This suggests 

that z-PNRs may be readily tuned for n-type applications through the application of uniaxial strain. 
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Chapter 7 

Thesis Summary 

The investigations reported in this thesis reveal novel properties of two nanomaterials: 

phosphorene and titanium metallocarbohedrene. Both have potential applications in important 

technologies, with Ti8C12 relevant to hydrogen storage and the properties of phosphorene suitable 

for next generation electronic devices. Given that both materials have been successfully 

fabricated, our investigations provide a direction for future development. While we recognize that 

computationally reported behaviours are often difficult to reproduce experimentally, it is 

important to recall the numerous occasions where theoretical work has preceded experimental 

realization. For example, graphene was theoretically investigated for several decades before its 

exceptional properties were confirmed in 2004. Furthermore, a theoretical understanding of a 

material’s properties can useful in overcoming practical challenges and in improving performance 

in existing applications. This chapter will summarise the findings presented in Chapters 3, 4, 5 

and 6 and explain their potential significance. 

7.1 Titanium metallocarbohedrene 

Chapter 3 investigated the adsorption of hydrogen by titanium metallocarbohedrene in order to 

assess its potential use as a hydrogenation catalyst. We found that Ti8C12 fulfils the criteria set out 

in Chapter 1: it is able to dissociate hydrogen with a low kinetic barrier and a moderate change in 

Gibb’s free energy, making it thermodynamically compatible with a wide range of HSMs. We 

considered the stepwise chemisorption of H2 to form a variety of hydrogenated products, ranging 

from Ti8C12H2 to Ti8C12H8. We calculated the stability of each compound over a range of 

temperatures and pressures, concluding that the hydrogenation of Ti8C12 is reversible under mild 

conditions. Furthermore, different forms of hydrogenated Ti8C12 are preferentially formed under 

different conditions, with each form thermodynamically compatible with a different range of 

HSMs.  



180 
 

We studied the kinetics of H2 dissociation using transition state theory. The electronic activation 

energy for the heterolytic dissociation of H2 by Ti8C12 is very low, particularly when considered 

with the moderate binding energies in mind. Furthermore, the kinetics of H2 dissociation by Ti8C12 

are much faster than in many other materials that heterolytically dissociate H2. This observation 

can be attributed to the donation of electron density from titanium species to the anti-bonding σ* 

orbital in H2, the same mechanism that catalyses the dissociation of H2 by precious metals and 

their complexes.  

Overall, the fast dissociation of H2 with a moderate binding energy makes Ti8C12 a suitable 

candidate for use in catalysis. While its gravimetric hydrogen storage capacity falls short of 

requirements for future HSMs, the near ideal thermodynamic reversibility of hydrogenation 

reported is thought provoking, with local structure playing a huge role in determining hydrogen 

binding energies.  

While previous studies have shown that Ti8C12 is exceptionally stable and can be formed through 

plasma reactions, the isolation of significant quantities of Ti8C12 is yet to be achieved. However, 

given the continued progress in experimental nanochemistry, we are confident that the promising 

properties of Ti8C12 are realizable.  In terms of future work, the investigation of other stable 

metallocarbohedrenes such as V8C12 and mixed metallocarbohedrenes, MxN8-XC8, would likely 

yield interesting results.  

7.2 Phosphorene 

Just two years after the first reports of phosphorene, more than 250 articles investigating the 

material have been published. The level of interest in phosphorene is unsurprising given the 

topicality of 2D materials stimulated by the fabrication of graphene in 2004. Once a field confined 

to theory, there is a growing possibility that 2D materials will allow for the continued evolution 

of electronic devices. With silicon based technologies fast approaching their fundamental limits 

and the demand for faster, smaller and more efficient electronic devices showing no signs of 

slowing, the emergence of such 2D materials is well timed.  

Within the growing family of 2D materials, phosphorene has an appealing set of properties. It 

holds a key advantage over graphene in that it is inherently semiconducting and is thus better 
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suited for use in integrated circuit devices. Furthermore, phosphorene’s high p-type conductivity 

complements the n-type conductivity of MoS2 in terms of building CMOS logic devices.  

In Chapter 4, we investigated the basic electronic structure of ground state phosphorene and bulk 

black phosphorus. The band gap of phosphorene increases as the number of layers is decreased, 

allowing the properties of phosphorene transistors, including the on-off ratio and threshold 

voltage, to be modulated. We were able to predict the band gaps of few-layered phosphorenes by 

applying periodic boundary conditions to the band structure of bulk black phosphorus, with the 

agreement with results calculated using DFT improving as the number of layers is increased. 

Therefore, the method presented provides a computationally efficient way of predicting the band 

gap of N-layered phosphorenes when N is large. Furthermore, we showed that the anisotropy of 

phosphorene’s effective mass increases as the number of layers is reduced, another factor that 

requires careful consideration during the construction of phosphorene based devices.  

Chapters 5 investigated the effects of strain on the properties of phosphorene. In our opinion, the 

most important result presented is the huge enhancement of n-type mobility induced by applying 

a relatively modest compression normal to the surface of bilayer phosphorene. The utilisation of 

the huge n-type mobility predicted would likely lead to exceptional device performance, with 

electrons over two order of magnitude more mobile than those in the ground state. While 

phosphorene is inherently p-type, bulk black phosphorus is n-type when doped with tellurium. We 

therefore suggest that a full charged defect analysis of tellurium doped phosphorenes would be a 

worthwhile exercise. Furthermore, in order to confirm the high mobility of the electronic state that 

emerges when bilayer phosphorene is compressed, we suggest a more thorough investigation of 

electron – phonon coupling in few-layered phosphorenes. In Chapter 5, we also investigated the 

out-of-plane bending of phosphorene, reporting that it is five times easier to bend phosphorene in 

the armchair direction than in the zigzag direction. The bending stiffness of phosphorene in the 

armchair direction is lower than that of graphene, suggesting a highly degree of rippling. Given 

that bending phosphorene affects phosphorene’s band edge positions and band gap, the behaviour 

reported has implications for phosphorene’s susceptibility to both oxidation and reduction. 

Finally, we found that when armchair direction extensive strain is applied, phosphorene becomes 

unstable with respect to a phase transition to blue phosphorus. This finding renders previously 

reported critical strains in excess of 30% unrealistic.  
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The properties of phosphorene nanoribbons are investigated in Chapter 6. Quantum confinement 

effects result in the band gap of PNRs being increased with respect to the bulk, with the magnitude 

of the effect largest when wavefunctions are confined in the armchair direction. By applying PBCs 

to the electronic structure of ground state phosphorene, we derive a numerical model that can be 

used to predict the electronic properties of PNRs that are too large to be modelled directly using 

DFT. We also investigated the changes in the band gap and effective mass of PNRs under uniaxial 

strain, explaining each response in terms of the composition of band edge electronic states. Of 

particular interest are the sudden changes in effective mass observed when PNRs are extended 

past relatively modest critical strains. To investigate these effects further, we suggest future work 

to predict scattering times, using either the DPA or a full analysis of electron-phonon coupling. 
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Appendix A 

Quaternary Oxynitrides 

A.1 Background 

In addition to the main body of work reported in Chapters 3, 4, 5 and 6, we investigated the 

properties of a family of quaternary compounds for their potential suitability as water-splitting 

photocatalysts. The first water splitting catalyst was discovered by Fujishima and Honda in 1972 

and was based on TiO2 and Pt [i]. Water splitting photocatalysis relies upon the excitation of 

electrons from the valence band of a semiconductor into the conduction band through the 

adsorption of solar energy. The excited electron is energetic enough to reduce H+ while the 

electron hole oxidises water to form O2 and H+. The general scheme of photocatalytic water 

splitting is shown in Figure A.1, which shows the energy levels of the semiconductor valence and 

band edges relative to the absolute reduction and oxidation potentials of H+ and OH- respectively. 

 

Figure A.1: A schematic diagram depicting the absolute energy levels of a water splitting 

photocatalyst’s band edges alongside the redox potentials of H+ and OH-, with energies 

calculated relative to the vacuum level 
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Given the mechanism of water splitting photocatalysis, there are several prerequisites that any 

potential catalyst must fulfil. Their band gap must be greater than 1.23 eV, the difference in the 

reduction potential of H+/H2 and O2/H2O. More specifically, the absolute potential energy of the 

conduction band must be higher than the reduction potential of H+, and the potential energy of 

the valence band must be lower than the oxidation potential of OH-. It is important to note that 

the band edge positions at the material’s interface with solution may significantly differ from the 

bulk band edge positions. Such considerations are, however, beyond the scope of this 

investigation. 

The above prerequisites for water splitting photocatalysis means that the band gap should fall 

within the visible light region (1.65-3.27 eV). While photocatalysis using ultraviolet photons 

(>3.27eV) is possible, the intensity of ultraviolet photons at the Earth’s surface is far lower than 

the intensity of lower energy photons, the intensity of which peak between 2.0 and 2.5 eV.  

The majority of known photocatalysts are d0 or d10 metal oxides [ii]. Wide band gap 

semiconductors such as TiO2 respond only to the UV region [iii], while efforts to dope these 

semiconductors with N or S have produced limited success [iv]. Hematite (α-Fe2O3) is another 

popular photocatalytic material, but its conduction band is too low to drive H2 production [v]. A 

recent publication screening in excess of 130 inorganic materials suggests the potential of 

Na5MoO4N and Li5MoO4N as a potential water splitting photocatalysts, claiming their 

thermodynamic stability, appropriate band-edge positions and estimated band gaps of 3.19 and 

2.61 eV respectively [vi]. While the ∆-sol method that was used to estimate the band gap of 

Na5MoO4N and Li5MoO4N has been shown to be relatively accurate in estimating the band gaps 

of transition metal compounds [vii], it is highly empirical and does not provide a detailed picture 

of the electronic structure of materials. More computationally demanding density functionals such 

as HSE06 are more widely used and equipped to calculate an accurate electronic band structure 

and decomposed density of states. 

A.2 Methodology 

DFT ionic relaxations were carried out using the Vienna Ab initio Simulation Package (VASP) 

using both PBE and HSE06 functionals to account for exchange and correlation. The electronic 
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energy of Na5MO4N (M=Cr,Mo,W) was found to be fully converged when the brillouin zone was 

sampled at a density of 7 ×7×5 k-points. Wave functions were expanded using a plane wave basis 

set with a cut-off energy of 500eV. Ionic positions were optimized using a conjugate-gradient 

algorithm, and the structure was optimized until the change in energy between two consecutive 

steps fell below 1 meV. In order to ensure the correct cell volume, a Birch-Murnaghan fitting was 

carried out for each compound [viii]. We used CPLAP to assess the stability of compounds which 

are yet to be synthesised experimentally [ix]. The electronic properties of Na5MO4N were 

investigated using the results of calculations using both of the HSE06 functional. A further 

electronic relaxation of the structural ground state derived using the PBE functional was carried 

out using the mBJ meta-GGA functional [x]. 

A.3 Metal Oxynitdies 

A.3.1 MoO3 

To assess the performance of mBJ and HSE06 in predicting the electronic properties of Mo(VI) 

semiconductors, we compared the band gaps  predicted when the electronic structure of MoO3 

was optimised using both mBJ and HSE06 to experimental results from the literature. The 

literature suggests that the MoO3 has an indirect band gap of 2.9 – 3.15 eV [xi-xii]. This compares 

well to the indirect band gap of 3.01 eV calculated when MoO3 was relaxed using the HSE06 

functional. When the structure of MoO3 was relaxed using PBE and then the electronic structure 

was relaxed using mBJ, the indirect band gap of MoO3 was found to be underestimated at 2.53 

eV. Furthermore, throughout our study of group VI-semiconductors we will primarily analyse the 

electronic properties resulting from optimisation with the HSE06 functional. However, as mBJ is 

comparatively cheap calculation, we will run mBJ calculations in parallel in case of any useful 

insights arising from comparisons of the two methods.  

A.3.2 M5MoO4N (M=Na, Li) 

The structure of  Na5MoO4N obtained from the ICSD database [xiii] was relaxed using both PBE 

and HSE06 functionals. While the lattice paramaters calculated using PBE more closely 

resembled experimental lattice parameters published in the literature, the local structure of 
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[MoO4N]6- polyhedra calculated using the HSE06 functional matched the literature more closely 

than when using the PBE functional. In particular, the Mo-N bond length were overestimated by 

2.7% when using the PBE functional but were only overestimated by 1.2% when using HSE06. 

The structure of Li5MoO4N was determined by sustituting each sodium atom present in the 

structure of Na5MoO4N with a lithium atom and relaxing the structure. Both lattice parameters are 

reduced by around 9% with respect to Na5MoO4N when using either exchange correlation 

functional. This result is to be expected by virtue of the smaller ionic radii and subsequent higher 

charge density of Li+ with respect to Na+. The local structure of the [MoO4N]6- polyhedra is, 

however, essentnially unchanged. 

 

Figure A.2: Unit cell of Na5MoO4N (left) and the structure of [MoO4N]6- relaxed using HSE06. 

 Na5MoO4N Li5MoO4N 

 Exp PBE (vs. Exp) HSE (vs. Exp) PBE HSE 

a /Å 5.727 5.71  5.67 5.23 5.19 

c /Å 10.677 10.70  10.63 9.74 9.67 

Mo-N /Å 1.719 1.77  1.74 1.76 1.73 

Mo-O /Å 1.958 1.98  1.96  1.96 1.94 

O1-Mo-O2 /° 83.68° 83.97°  83.93° 83.20° 83.20° 

O2-Mo-O3 87.51° 86.96°  86.96°  87.86° 87.84° 

O3-Mo-O4 83.68° 83.97°  83.93°  83.20° 83.20° 

O4-Mo-O1 87.51° 86.96°  86.96° 87.86° 87.84° 

Table A.1: Structural properties of M5MoO4N (M=Na, Li) following relaxation using PBE and 

HSE06 functionals. 
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We calculated the electronic band gap of Na5MoO4N and Li5MoO4N using three different 

exchange correlation functionals; PBE, mBJ and HSE06. Both direct and indirect band gaps are 

shown in Table A.2, where we also show the band gaps calculated in the literature using the ∆-sol 

method. 

 Na5MoO4N Li5MoO4N 

 Indirect Direct Indirect/ Direct 

PBE 2.38 2.53 2.11 2.25 

mBJ 3.30 3.39 2.96 3.10 

HSE06 3.89 3.99 3.57 3.86 

∆-sol [xiv] 3.19 2.77 

Table A.2: Electronic band gaps of M5MoO4N (M=Na, Li) determined using a range of 

functionals and methods. 

It can be seen that the four methods employed give a wide range of indirect band gaps for 

Na5MoO4N, ranging from 2.38 eV when using PBE to 3.89 eV when using HSE06. It is well 

known that PBE tends to underestimate band gaps, meaning that these results do not warrant 

further consideration. While mBJ is far less computationally expensive, we believe that the better 

established HSE06 functional is likely to produce more accurate results in this investigation, due 

both to its ability to reproduce both the local structure of [MoO4N]6- and the indirect band gap of 

MoO3 (see Section A.3.1).  

In agreement with the trend seen in the band gaps determined using the ∆-sol method, we found 

the indirect band gap of Li5MoO4N (3.57 eV) to be smaller than that of Li5MoO4N (3.89 eV) when 

using the HSE06 functional. However, both of these band gaps are significantly greater than those 

calculated using ∆-sol, which are in far better agreement with the band gaps calculated using the 

mBJ functional. The decomposed density of states, as shown in Figure A.3, reveals that the 

valence band of Na5MoO4N is dominated by oxygen orbital character while the conduction band 

is dominated by molybdenum character. 
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Figure A.4: Decomposed density of states of Na5MoO4N 

The band structures of Na5MoO4N and Li5MoO4N was determined by sampling the brillouin zone 

between highly symmetric k points and is shown in Figure A.4.The first conduction band of both 

compounds is very flat, suggesting highly localised states conduction states. Furthermore, the anti-

symmetric molybdenum environment in both compounds gives rise to distinct conduction bands 

as the d-orbital energies diverge. The conduction band at around 4 eV is comprised almost 

exclusively of Mo dz2 orbital character, while the next distinct band comprises of a combination 

of Mo dx2-y2
 and dyz orbitals.  

The mobility of electrons excited to the conduction band minimum (CBM) can be qualitatively 

estimated by calculating the effective mass. The effective mass of conduction band electrons at 

the CBM in Na5MoO4N was found to be 1.88 𝑚0 and 1.57 𝑚0 in Li5MoO4N. In comparison to 

rutile TiO2 where the conduction band contains light electronic states with effective mass of 0.6 – 

0.8 𝑚0 [xv], the conduction band electrons in Na5MoO4N and Li5MoO4N are predicted to be 

relatively immobile and localised.  
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Figure A.3: The band structures of Na5MoO4N (left) and Li5MoO4N (right) calculated using the 

HSE06 functional. The VBM is arbitrarily set to zero. 
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The valence bands of the two compounds are, however, more starkly different. The valence band 

in Li5MoO4N is much more dispersive than in Na5MoO4N. Indeed, the relative mass of an electron 

hole in the valence band of Na5MoO4N about the VBM was found to be 9.39 𝑚0, whereas in 

Li5MoO4N it was found to be 2.59 𝑚0.  

The decreased separation of [MoO4N]6- units in Li5MoO4N is likely to play a role in increasing 

hole mobility. More specifically, the shortest O-O separation between [MoO4N]6- polyhedra is 

reduced from 3.52 Å in Na5MoO4N to 3.00 Å in Li5MoO4N. Bearing in mind that the valence 

band in both compounds is dominated by oxygen character, reduced O-O separation is likely to 

significantly increase hole mobility through the compound. While Mo-Mo distances are also 

similarly decreased, electron mobility through the anions surrounding Mo(VI) is likely to be 

extremely low regardless of Mo-Mo separation 

The low mobility of both conduction band electrons and electron holes in the valence band means 

that electron-hole recombination is likely to occur [xvi], reducing potential photocatalytic activity. 

The higher charge carrier mobility of Li5MoO4N means that the compound is likely to be more 

photocatalytically active that Na5MoO4N in terms of recombination kinetics. 

A.3.3 M5CrO4N (M=Li,Na) 

In an attempt to reduce the band gap of M5MoO4N, we investigated the electronic properties of 

M5CrO4N. The rationale behind substituting chromium species into the structure in place of 

molybdenum was to stabilise the conduction band while keeping the same number of valence 

electrons. The unoccupied 4d states of Mo(VI) are likely to be significantly higher in energy than 

the unoccupied 3d states of the more oxidising Cr(VI). 

The initial structures of Li5CrO4N and Na5CrO4N were based around the analagous molybdenum 

compounds discussed above. We then relaxed both structures using the PBE and HSE06 

functionals. The size of the unit cells of both Na5CrO4N and Li5CrO4N are reduced with respect 

to Na5MoO4N and Li5MoO4N, while Cr-O and Cr-N bonds were also shorter then in either of the 

analogous molybdenum compounds. Both of these observations can be explained by the smaller 

ionic radius and higher charge density of Cr(VI) compared to Mo(VI). As was the case when 

studying Na5MoO4N and Li5MoO4N, Cr-O and Cr-N bond distances were shorter when using the 

HSE06 functional compared to the PBE functional. 
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 Na5CrO4N Li5CrO4N 

 PBE HSE  PBE HSE 

𝑎0 5.566 5.520 5.056 5.010 

𝑐0 10.537 10.438 9.522 9.454 

M-N /Å 1.636 1.560 1.620 1.584 

M-O /Å 1.885 1.861 1.860 1.837 

Table A.3: Structural properties of M5CrO4N (M=Na, Li) following relaxation using PBE and 

HSE06 functionals. 

We calculated the band gaps of Na5CrO4N and Li5CrO4N, with the results shown in Table A.4. 

As predicted, the band gaps for M5CrO4N were significantly lower than for M5MoO4N, with the 

HSE06 functional predicting indirect band gaps of 2.55 eV and 2.43 eV for Na5CrO4N and 

Li5CrO4N respectively. While both compounds have a significantly smaller band gap than the 

analogous molybdenum compounds, it is interesting to note that substituting sodium for lithium 

has far less of an effect on the size of the band gap than it does in M5MoO4N compounds. Both 

band gaps are well within the visible light region, suggesting an excellent potential for 

photocatalysis. 

 Na5CrO4N Li5CrO4N 

 Indirect Direct Indirect Direct 

mBJ 2.06 2.10 1.83 1.94 

HSE06 2.55 2.66 2.43 2.62 

Table A.4: Electronic band gaps of M5CrO4N (M=Na, Li) determined using the mBJ and 

HSE06 functionals 

The band structures of Na5CrO4N and Li5CrO4N are shown in Figure A.5. The conduction bands 

of both compounds are similarly undispersed, with the effective mass about the CBM calculated 

to be 2.68 𝑚0 and 2.71 𝑚0 respectively. The valence band of Li5CrO4N is again far more 

dispersive than in Na5CrO4N. The effective masses of electron holes about the VBM were 

calculated to be 3.21 𝑚0 and 7.40 𝑚0 respectively. Reasons for this difference are analogous to 

those discussed for M5MoO4N in Section A.3.3.  

 

 



192 
 

 

 

Figure A.5: The band structures of Na5CrO4N (left) and Li5CrO4N (right) calculated using the 

HSE06 functional. The VBM is arbitrarily set to zero. 

We used CPLAP to assess the likely stability of Na5CrO4N and Li5CrO4N against competing 

phases including chromium oxides, tertiary chromium oxides, chromium nitride, sodium oxide, 
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lithium oxide, sodium nitride, lithium nitride and elemental sodium, lithium, chromium, oxygen 

and nitrogen.  

The structures of Na5CrO4N relaxed using both the HSE06 and PBE functional were found to be 

stable with respect to competing phases. The stability region plot calculated using energies 

calculated using HSE06 is shown in Figure A.6. 

 

Figure A.6: A representation of the stability region of Na5CrO4N, generated using CPLAP. 

However, we found that Li5CrO4N is unstable with respect to competing phases by an 

approximated 0.07 eV/atom. We believe that this is down, in part, to the high charge density of 

Li+ and resulting stability of Li2O. 

We also investigated some of the likely native point defects of Na5CrO4N. Na5CrO4N was chosen 

because its band gap falls within the visible light region and CPLAP predicts that it is stable versus 

competing phases.  

The large number of Na+
 particles surrounding [CrO4N]6- means that several possible doped 

structures with either an Na+ interstitial (𝑁𝑎𝑖
•) or an Na+

 vacancy (𝑁𝑎𝑣
′ ) can be formed. We 

identified three unique Na+ sites in Na5CrO4N and two likely sites for a Na+ interstitial. 
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We relaxed each defective structure using the HSE06 functional, and found that a 2×2×1 supercell 

with a volume of 1122.5 Å3 was sufficient to converge defect energies to within 0.005 eV. The 

formation energy, Ef of a defect with charge q was calculated using the following equation [xvii]. 

𝐸𝑓(𝑞) = 𝐸𝑑(𝑞) − 𝐸𝑝 − 𝑁𝜇 + 𝑞(𝐸𝑣 + 𝐸𝑓 + ∆) 

The term needed to align the Fermi level, Δ, was calculated using sxdefectalign [xviii,xix]/ 

 

Figure A.7: The formation energy of charged defects in a 2x2x1 supercell of Na5CrO4N 

By combining 𝑁𝑎𝑖
• and 𝑁𝑎𝑣

′ , the energy of an infinitely separated frenkel defect can be calculated. 

The lowest energy 𝑁𝑎𝑖
• / 𝑁𝑎𝑣

′  pair has a total formation energy of 1.34 eV, suggesting that 

stoichiometric Na5CrO4N is likely to contain relatively few infinitely separated Na+ Frenkel 

defects. 

A.3.4 M5WO4N (M=Li, Na) 

In order to test our reasoning behind the smaller band gap of M5CrO4N compared to M5MoO4N, 

we also investigated the electronic structure of M5WO4N. The tungsten 5d dominated conduction 

band of M5WO4N should, in theory, be higher in energy than the 4d and 3d dominated conduction 

bands of Na5MoO4N and Na5CrO4N respectively leading to a larger band gap. 
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Our calculations found the band gap of M5WO4N to be significantly higher than either M5CrO4N 

or M5MoO4N; using the HSE06 functional, their indirect band gap of Na5WO4N was found to be 

4.46 eV while the indirect band gap of Li5WO4N was found to be 4.14 eV. 

 Na5CrO4N Li5WO4N 

Method 
Indirect Band 

Gap /eV 

Direct Band Gap 

/eV 

Indirect Band 

Gap /eV 

Direct Band Gap 

/eV 

mBJ 4.42 4.45 3.96 4.05 

HSE06 4.46 4.54 4.14 4.26 

Table A.5: Electronic band gaps of M5WO4N (M=Na, Li) determined using the mBJ and 

HSE06 functionals 

A.4 Conclusions 

M5CrO4N compounds were found to have band gaps extremely well suited to photocatalysis; 

Li5CrO4N had a band gap of 2.43 eV and Na5CrO4N was found to have a band gap of 2.55 eV. 

However, the low charge carrier mobility of Na5CrO4N suggests that electron-hole recombination 

would significantly hinder the compounds catalytic activity. While the charge carrier mobility of 

Li5CrO4N was found to be slightly higher, phase stability calculations predicted that the compound 

is unstable with respect to competing phases. 
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