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Abstract 
The speed at which established socioeconomic and technological systems can be 
adapted to alternatives that are compatible with a climate stabilised, 2°C world 
remains unknown. Quantitative models used for assessing this challenge typically 
make a number of arguably optimistic assumptions regarding human behaviour and 
decision making. This often restricts the insights produced to futures approximating a 
so-called first-best policy landscape. However, empirical studies of socio-technical 
change have shown that technological diffusion is often influenced by actors and 
institutions interacting under less ideal, second-best conditions. This paper quantifies 
these factors in a formal energy model as landscape and actor inertia and employs 
them for the first time in BLUE, a dynamic stochastic socio-technical simulation of 
technology diffusion, energy and emissions inspired by the multi-level perspective. 
Using the UK energy system as an example, the results illustrate how socio-technical 
inertia may significantly blunt future efforts to achieve climate targets.  
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Highlights 

 We present a quantitative socio-technical energy transitions model inspired 
by the Multi-Level Perspective 

 BLUE is a stochastic system dynamic model that features multiple actors 
with detailed behavioural parameters 

 The feasibility of UK climate targets is explored under landscape and actor 
inertia 

 The results show that actor inertia may significantly increase the difficulty of 
achieving climate targets 

 The results also show the importance of taking socio-technical perspectives 
on energy transitions 
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1.0 Introduction 

 
1.1 Modelling energy transitions in “second-best” policy worlds 

The Paris Agreement sets out an international framework for stabilising emissions of 
greenhouse gases (GHGs), with an aspirational target to hold mean global 
temperature rise to at least 2°C by the end of the century [1]. The Intergovernmental 
Panel on Climate Change (IPCC) has shown that to have a “likely” (>66%) chance of 
achieving this goal, global emissions must fall rapidly by mid-century and be almost 
negligible by 2100 [2]. While current national pledges fall short of action consistent 
with this target [3], and the framing of the targets as temperature limits is itself, 
contested [4], it is agreed that an effective mitigation response will require large-scale 
changes to established energy systems [5]. 

The scale of the energy transition challenge is extremely daunting. While there is a 
diversity of views on which technological, behavioural, lifestyle and political changes 
might be required in different contexts and at different scales, a common theme runs 
through almost all of the literature: the urgency required for the transition. While the 
theoretical possibility of achieving climate targets is generally accepted, the speed at 
which established socioeconomic and technological systems can be adapted to 
alternatives that are compatible with a 2°C world remains unknown. 

Quantitative models used for assessing this unprecedented challenge typically make 
a large number of arguably optimistic assumptions regarding human behaviour and 
decision making, as well as future social and political conditions. A majority of long-
term decarbonisation studies assume that key actors will make investment decisions 
in a rational, cost optimal fashion, and that future governments will be able to forge a 
social consensus that is conducive to taking action in spite of resistance from vested 
interests. Most studies also assume that a political mandate can be obtained to put in 
place long-term policies to price externalities and correct the market failures that lead 
to GHG pollution. Work using these idealised assumptions, sometimes referred to as 
“first-best” conditions, is often critiqued as overestimating the speed of transitions 
while simultaneously underestimating their costs [6]. There is therefore a strong 
interest in exploring climate targets under so-called “second-best” worlds where the 
“messy policy landscape” found in reality is better acknowledged [7].  

It is argued that capturing the behaviour of key energy system actors, and in 
particular, how their behaviour might co-evolve through time as energy transitions 
unfold, is key to improving the utility of energy economic models for policy design [8]. 
A classic taxonomy of energy economic models, developed by Hourcade et al. [9], 
identifies macro-economics, technological detail, and micro-economic realism as the 
key dimensions of study required for future advancement of the field. We argue in 
this paper that improving the representation of decision making and actor dynamics 
in energy models requires not only a better depiction of investment choices in the 
micro-economic sense, but also a broader set of structural changes aimed at 
improving overall societal realism. To inform this perspective we draw on the 
substantial insights provided by the interdisciplinary field of socio-technical 
transitions [10]. 



 

1.2 The multi-level perspective (MLP) on socio-technical transitions 

The behaviour of key institutions or actors has been observed as a major factor 
influencing past technological transitions, suggesting that technologies are firmly 
embedded within particular social and political contexts [11]. The literature on socio-
technical transitions advocates the concept of studying not only technologies, but 
their role in society as part of integrated “socio-technical systems”. This expands the 
common, engineering-derived definition of “system” to include not only networks of 
technological artefacts but also the associated supporting institutions and individuals 
who use them [12,13]. Benjamin Sovacool sums up the co-evolving nature of socio-
technical change by observing that “To be successful, technologies must not only get 
built, but get built into society” [14]. 

As noted above, a rapid energy transition towards a 2°C world by the mid-21st century 
implies a radical restructuring of the established order, which is dominated by fossil 
fuel technologies, infrastructures and institutions. Together, these form what is often 
referred to in the literature as a powerful “socio-technical regime”, effectively a 
reigning champion that is difficult for new challengers to displace. A strong 
incumbent regime not only dominates the playing field but also to some extent 
affects the rules of the game by which others must play. It’s very existence creates 
path dependencies and socio-technical “lock-in” to an environmentally harmful 
paradigm [15,16]. Studying the conditions which enable systems to break out from 
locked-in states is a key activity in the transitions research community [17]. 

One of the most widely used frameworks for exploring socio-technical change is the 
multi-level perspective (MLP) of Geels [18] (see Figure 1). Essentially, under the MLP 
framework, innovative “niche” technologies have their performance and costs 
improved over time under the support of powerful actors [19]. Shifts in macro-scale 
“landscape” conditions, such as government intervention in markets or changes in 
social preferences [20,21] may then create periodic windows of opportunity for these 
innovations to disrupt the status quo and enter the mainstream. In this paper, we aim 
to replicate these dynamics in a quantitative model for the purposes of analysing the 
viability of achieving climate targets in a national energy system. We note that 
quantitative model outputs still require qualitative interpretation, and we see this 
formal modelling activity as one that must be developed in parallel with qualitative 
studies of transitions (we elaborate further in discussion under Section 5.2). 



 

Figure 1 – Socio-technical change, represented under the multi-level 
perspective (MLP) on sustainability transitions (based on [18]) 

 

 

1.3 Actor and landscape inertia 

The historical diffusion of innovative energy technologies into mainstream use has 
generally been slow, occurring along decadal timescales rather than in the space of a 
few years. An extensive review by IIASA researchers found that energy technologies 
have historically taken between 80 – 130 years to achieve market dominance from 
their initial commercialization [22]. To limit anthropogenic warming along the 
timescales required by the Paris Agreement, transitions to new energy technologies 
may need to occur at rates that could be considered extremely rapid by historical 
standards.  

Researchers have speculated about the social and political conditions that could be 
required to bring about such a rapid shift. Some have invoked the idea of conditions 
approximating a  “war economy” or the Apollo space program to bring about a 
completely transformed energy system in 40 – 50 years [23,24], while sceptics have 
noted that these herculean efforts have historically been difficult to sustain over long 
periods, typically burning out after less than a decade [25]. Running a war economy 
requires political and social consensus, which is currently absent from the energy 
transition landscape. Currently, we observe that the dominance of the incumbent 
fossil-fuelled regime is facilitated by macro-scale social and political conditions 
(referred to in the MLP tradition as the “landscape”), which maintain carbon pollution 



 

from fossil fuel use as an unresolved externality. In this paper, we refer to the 
formidable barrier to systemic change posed by current socio-political conditions as 
“landscape inertia”. 

While landscapes in transitions studies are often cast as sets of contextual factors that 
can change only at a glacial pace [26], there has been some support for the idea of 
exploring their implementation as a dynamic element [18]. van (Hugo) Driel and 
Schot [27], for example, propose the disaggregation of landscapes using a taxonomy 
that distinguishes between largely immutable factors (such as physical climate), long-
term trend patterns (such as demographics or economic structure), and rapid external 
shocks (such as oil price fluctuations). Our exploration of landscape inertia in this 
study operationalises the concept in a more dynamic fashion than is typical in many 
qualitative studies of socio-technical change. However, dynamic representations of 
the landscape are common in exploratory transitions modelling (e.g. [28] or [29]). 

As well as landscape inertia, we also explore an inertial effect that occurs at the level 
of individual decision makers. When individuals act as consumers allocating their 
personal time and capital, they make heterogeneous choices. Costs form a strong 
component of decision making, but individual decisions may also be affected by 
habits, the influence of family, friends and neighbours, and wider social norms [30]. 
Individuals often make economic choices that are sub-optimal, in the sense of 
neoclassical economics, acting in the absence of perfect information and under 
conditions of bounded rationality [31]. Whether or not these individual preferences 
can be aggregated across large populations and adequately explained by a rational 
choice model of decision making, or whether more complex models may be required 
to explore behaviour, remains an ongoing field of discussion within economic theory 
[32]. However, there are a number of well-documented areas where rational choice 
behaviour does not appear to play out in energy policy. For example, in many 
countries there has been a widespread failure (often termed “the energy efficiency 
gap” [33]) to incentivise market players and individual householders to invest in 
building energy efficiency measures, a supposed “low hanging fruit” with few non-
cost barriers [34,35]. This effect is an example of what we will explore in this paper as 
“actor inertia”. 

 
1.4 Quantitative modelling of socio-technical transitions in energy 

While technological transitions frameworks like the MLP elegantly describe transition 
dynamics, such as regime resistance to change, a general critique is often raised that 
they can be difficult to operationalize for the purposes of informing policy [36,37]. 
Formal quantitative models of energy systems, on the other hand, are recognised as 
an important part of an iterative evidence-based policy process [38], but often 
employ highly simplified representations of actor dynamics and choice behaviour. 
Several detailed review papers provide an understanding of the typical model types 
that are used in energy futures research [39–41]. A common approach is to assume 
that individual consumers will make cost-optimal choices when presented with a 
range of technological options and that this will hold true for the whole population 
when taken in aggregate [42]. However, as discussed previously, this potentially 



 

overlooks insights from other disciplines with a rich tradition of developing models of 
decision making, such as behavioural economics, psychology and sociology [30]. 

Modelling carried out for the IPCC Fifth Assessment Report acknowledges that 
“changes in institutional structures will be required to facilitate the technological change 
envisaged in the scenarios” and that "non-optimal or real world institutional conditions 
can influence how technological pathways evolve" [43]. There is widespread 
recognition that a focus on technologies alone faces limits to delivering public policy 
solutions to environmental challenges, that interdisciplinary theories of technological 
change are urgently needed [44], and that research should seek to integrate 
behavioural and social insights into quantitative energy modelling [45,46].  

One response has been a push in the research community towards developing and 
using formal models of innovation and technological change inspired by socio-
technical transitions theories such as the MLP (e.g. [29]). A detailed review by Li, 
Trutnevyte and Strachan [47] identified existing socio-technical energy transition 
(STET) models in the energy supply, buildings and transport sectors and proposed a 
taxonomy for describing their key characteristics, as illustrated in Figure 2.  



 

Figure 2 – Taxonomy of socio-technical energy transition (STET) models 
(based on [47]) 

 
 
Li et al. argue that while a small number of models exist that combine the key 
elements A – C, the most frequently encountered model families (labelled 1 – 4 in 
Figure 2) are generally not appropriate for explicit modelling of socio-technical 
change without extensive modification. The strengths and weaknesses of different 
model types for modelling socio-technical transitions are summarised below in Table 
1.  
 
 
 
 
 



 

Table 1 – Strengths and weaknesses of different model types for transitions research 

# Model Type 
Energy Research 
Examples 

Strengths for Modelling of Socio-
technical Transitions 

Weaknesses for Modelling of Socio-
technical Transitions 

1 Economy energy 
and environment 
models 

National and global 
scale energy system 
optimisation models 
(ESOMs) [48,49] 

Global scale integrated 
assessment models 
(IAMs) [50] 

Granular technological detail 
enables exploration of technological 
substitution dynamics in transitions. 

Multi-sectoral economic 
optimisation approach allows 
complex trade-offs between 
different options and across 
different sectors to be explored for 
transitions. 

Technological detail usually lower than 
in comparable sector-specific models. 

Complex dynamics amongst multiple 
transition actors subsumed into single 
social planning agent who acts with 
unlimited agency and perfect foresight. 

Economic choice behaviour of social 
planner usually abstracted to 
neoclassical optimality. 

2 Sector-specific 
techno-economic 
simulations 

Buildings [51] 

Heat [52] 

Electricity [53]  

Transport [54] 

High levels of technological detail for 
exploring transitions, often going 
beyond broad technology categories 
to represent specific sizes or 
engineering design variants of 
systems. 

Simulation approach often lends 
itself well to spatially detailed 
studies that may even incorporate 
GIS analysis (e.g. [55]) to relate 
transition impacts to real world 
locations. 

Soci0-technical transitions that cut 
across multiple sectors (such as the 
decarbonisation of electricity supply) 
are difficult to analyse i.e. the depth in 
single-sector models often comes at the 
expense of breadth. 

Human behaviour and economic 
elements of socio-technical transitions 
are often left outside of the scope of 
analysis. 

3 Agent-based 
models of energy 
systems 

Electricity [56] 

Transport [57,58] 

Agent-based approach captures 
interactions of multiple actors as 
transitions unfold, often with 
detailed consideration given to 
behavioural parameters such as 
economic choice. 

Models frequently focus on capturing 
the complex dynamics of the present 
day system but often fail to capture how 
these relationships may transition 
through time in response to the 
emergence of radical technologies, 
changes to landscape conditions like 
regulatory and market frameworks or 
long term shifts in fuel prices and 
behavioural preferences. 

4 Technology or 
product diffusion 
simulations 

Bioenergy in the 
power sector [59] 

Hydrogen in the road 
transport sector [60] 

Models use agent-based or dynamic 
simulation approaches to capture 
both inter-actor dynamics and also 
changes to the selection 
environment as transitions unfold 
(e.g. technology performance, 
prices, behavioural preferences). 

Models tend to be designed to focus on 
a single niche technology or product of 
interest, so lack the capability to 
represent trade-offs between a broad 
portfolio of alternatives. 

Models tend to simulate uptake or 
growth of a technology within a target 
market segment, typically limiting the 
analysis to a single sector and making it 
difficult to explore complex multi-
sectoral transitions. 



 

5 Socio-technical 
energy transition 
(STET) Models  

Power [61] 

Energy demand 
and supply [62] 

Transport [28]  

Buildings [63] 

Models successfully combine 
techno-economic detail, behavioural 
heterogeneity and transition 
pathway dynamics to capture 
elements of socio-technical change 
in a formal analytical framework  

Models complex to validate 

Such a highly inter-disciplinary 
approach may never deliver the types of 
detailed insights in any single domain 
(behaviour, technology, transition 
dynamics) that more tightly focused 
models may be able to provide, and 
may struggle to capture the widest 
economic and environment interactions 

 

1.5 Summary of aims and objectives 

In any socio-technical transition, the rate of change is affected by the social and 
political contexts into which new technologies are deployed. To date, a majority of 
model-based analyses that are aimed at quantifying transition pathways to a climate 
stabilised future have employed only a limited depiction of actor behaviour, and 
focused mainly on “first-best” conditions that potentially underplay the challenges 
posed by social and political barriers. In this paper, we conceptualise the resistance to 
change arising from incumbent institutional arrangements, established behaviours 
and lifestyles as “landscape and actor inertia”. We present here a socio-technical 
energy transition (STET) model of the UK energy system, the Behaviour Lifestyles 
and Uncertainty Energy model (BLUE). BLUE is conceptually aligned with one of the 
most frequently employed heuristic frameworks for exploring socio-technical change, 
the multi-level perspective (MLP) [18].  

A wide ranging review of existing STET models [47] found examples applied to the 
energy demand and supply, power, buildings and transport sectors, but none which 
assessed the feasibility of achieving climate targets across a whole national energy 
system. In this paper we take the UK as an example of a country that has a binding 
long term energy systems decarbonisation target. We use BLUE to explore the effect 
that different levels of landscape and actor inertia have on the rate of technological 
change in the energy system and its’ ability to meet climate targets. The work 
illustrates the magnitude of the challenges posed by systemic inertia, and contributes 
to the new interdisciplinary research frontier of socio-technical energy transition 
modelling. The remainder of the paper is structured as follows:  

 Section 2.0 introduces the BLUE model and details some of its key 
features, as well as describing how it is currently calibrated for UK policy 
analysis. 

 Section 3.0 details the scenario dimensions used to explore landscape 
and actor inertia. 

 Section 4.0 presents the results, which show the effect of landscape and 
actor inertia on the UK energy system’s ability to meet climate targets. 

 Section 5.0 discusses the implications for policy and for research, 
suggesting possible avenues for future investigation. 

 Section 6.0 concludes by summarising the key findings and 
recommendations of the paper. 



 

2.0 BLUE model overview 

 
2.1 Topology and concept 

The Behaviour, Lifestyles and Uncertainty Energy model (BLUE), is a system dynamic 
model of the UK energy system that simulates energy use and emissions through 
time as an energy transition unfolds. BLUE is implemented in the Analytica modelling 
environment developed by Lumina Decision Systems. BLUE is conceptually aligned 
with the multi-level perspective (discussed in Section 1.2) in that it has landscape, 
regime and niche levels, as illustrated in Figure 3. Rather than relying on a single 
omnipotent social planner to allocate resources, BLUE is configured with multiple 
actors, each representing a social planner that is independently responsible for a 
single economic sector.  

BLUE is configured with the following actors: energy supply (A), residential (B), 
commercial (C), industrial (D), and the various transport sectors (E-H). Together they 
represent the incumbent socio-technical regime surrounding energy supply. The 
landscape module contains macro-scale energy system drivers such as economic 
growth, environmental policy measures, and a range of possible changes to 
technology costs and fuel prices through time. The niche innovations are represented 
by a number of key transition technologies (X) and changes to lifestyle (Y), which 
have the potential to disrupt the incumbent socio-technical regime. Calibration 
checks for total emissions, total primary energy, and electricity demand are used to 
ensure that the model structure and data in the base year produce results that are 
within a few percent of government statistics. Further details on the data used to 
calibrate the model are elaborated in Section 2.3. 

Figure 3 – BLUE model topology 

 

Figure 4 provides a conceptual illustration of how the model operates. BLUE is run in 
annual time steps over a 40 year time horizon from a 2010 base year out to 2050. In 



 

each time step, the individual energy system actors (A-H) track the condition of the 
capital stock in their respective sectors. For example, the energy sector actor 
monitors the age of power stations and other generating plant, and the road 
transport sector actor monitors the vintages of the vehicles in the transport fleet. As 
capital assets in each sector reach the end of their economic life and are retired, the 
system actors have to make decisions about capital stock replacement. In each 
window of capital stock replacement, each actor attempts to minimize the cost of 
investments in their respective sectors.  

Such actor driven decisions are iteratively made as new niche technologies or lifestyle 
changes occur, or as landscape pressures – such as fuel price changes or an overall 
carbon price signal – are implemented (see Sections 3.1, 3.2). A key feature of BLUE is 
that each actor takes investment decisions with myopic foresight (they have no 
advance knowledge of future landscape conditions) and with no prior knowledge of 
how the other key players will react to them. As a result, rather than producing a 
blueprint for a least-cost transition, as a pathway optimization model would do, BLUE 
instead captures the dynamic interactions of the different actors through time. 
Finally, BLUE represents input parameters via discrete or continuous probability 
distributions (see Section 2.3), hence allowing detailed exploration of the combined 
uncertainty ranges under which decisions are made, sampled probabilistically via a 
Monte Carlo approach. 

 

Figure 4 – Conceptual socio-technical transition through time in BLUE 

 

 

 



 

2.2 Model operation and formulation 

Technology diffusion, total energy use, CO2 emissions and total energy costs are 
tracked both for individual sectors and across the full energy system for the whole 
time horizon, enabling the model to be used for assessing normative targets. BLUE 
operates as a stochastic Monte Carlo simulation, thus capturing a range of input 
uncertainties in the outputs. This applies not only to key landscape inputs like fuel 
prices, but also to a number of behavioural parameters (described below), such that 
uncertainty in the decision making behaviour of the actors can also be characterised.  

 
2.2.1 Actor behavioural parameters 

BLUE includes a range of parameters that allows the investment behaviour of the 
different decision makers in the energy system to be differentiated from one another, 
summarised in Table 2.  

Table 2 – Actor behaviour parameters in BLUE 

Parameter Symbol Description 

Demand 
elasticities 

e 
Actors exhibit different levels of sensitivity to changes in energy prices. For example, 
some are price-insensitive and continue to use the same amount of energy in the face of 
price increases, while others may react to curtail their consumption. 

Market 
heterogeneity 

v 

Actors have varying sensitivities to cost differentials when making decisions 
around investments in new capital assets. For example, some may exhibit 
strongly “cost optimising” behaviour, while others may not choose the cheapest 
option every time. Individuals make investment choices without the benefit of 
perfect information of all their options [64], and different consumers and 
companies have different requirements and preferences that blurs the notion of 
the “average technology cost”. The approach in BLUE to market heterogeneity is 
modelled after the approach taken in the CIMS [65] and Res-IRF/IMACLIM-R [63] 
hybrid energy economy models.  

Intangible 
costs / 

benefits 
i 

Different actors experience non-monetary costs/benefits from different investment 
choices that can be estimated as a parameter in order to include them in the cost-based 
choice decision framework. 

Hurdle rates r 
Actors have different attitudes to investment risk and exhibit varying sensitivities to up-
front economic costs. 

Retrofitting / 
replacement 

rate 
b Actors have different investment cycles for new capital assets over time. 

 



 

2.2.2 Energy service demands and energy prices 

Key inputs to BLUE at the landscape level are energy service demands and energy 
prices. Energy service demands are assumed to grow in line with user-defined drivers 
that reflect national circumstances. (e.g. residential sector energy demand growth 
will be a function of elements such as population growth and housing stock levels), 
and respond not only to demand elasticities but also to the rate of change in energy 
prices between the current time period and the previous time period. This can be 
expressed as: 

𝐷𝑠,𝑡 = 𝐷𝑠,𝑡−1 × [1 + 𝐺𝑠] × [𝑒𝑠,𝑡−1(1 − ∆𝑃𝑠,𝑡−1)]     (1) 

Where D = energy service demand, s = sector, t = time period, G = demand driver, P = 
energy price, and e = price elasticity of demand. 

Energy prices grow by a user input rate through time, which can be aligned with 
policy projections or randomised as desired by the user. Energy prices contain a fuel 
price component and a carbon price component. 

𝐸𝑓,𝑡 = [𝑃𝑓,𝑡−1 × (1 + 𝑘𝑓)] + [𝑧𝑓,𝑡 × {𝐶𝑂2,𝑡−1 × (1 + 𝑗)}]    (2) 

Where E = energy price, P = fuel price, t = time period, f = fuel type, k = periodic fuel 
price increase/decrease, CO2 = carbon price, j = periodic carbon price 
increase/decrease and z = specific emissions intensity. 

 
2.2.3 Capital stock replacement 

In each sector, the model evaluates the net present value of competing technology 
options. The net present value of available technologies is evaluated by each actor as 
follows: 

𝑁𝑠,𝑡,𝑥 = 𝐶𝑠,𝑡,𝑥 + 𝑖𝑠,𝑡,𝑥 + ∑ [
𝐷𝑠,𝑡×𝑃𝑓,𝑡×𝑌𝑠,𝑡,𝑥

−1

(1+𝑟𝑠,𝑡)
𝑡 ]𝑇

𝑡       (3) 

Where N = net present value, s = sector, t = time period, x = energy technology, C = 
capital investment cost, i = intangible cost, D = energy service demand, f = fuel type, Y 
= efficiency, r = hurdle rate, T =investment time horizon 

 
2.2.4 Technology diffusion 

Having determined the net present value, the model then uses it as an input into 
evaluating technology diffusion into the marketplace. 

𝑀𝑠,𝑡,𝑥 = [𝑀𝑠,𝑡−1,𝑥 × (1 − 𝑏𝑠,𝑡)] + [𝑀𝑠,𝑡−1 × 𝑏𝑠,𝑡 × (
𝑁𝑠,𝑡

−𝑣𝑠,𝑡

∑ 𝑁𝑠,𝑡

−𝑣𝑠,𝑡
𝑥

)]   (4) 

Where M = technology portfolio, s = sector, t = time period, x = energy technology, b 
= retrofitting/replacement rate, N = net present value, v = heterogeneity parameter 

 



 

2.2.5 Heterogeneity in BLUE 

The heterogeneity parameter, v, and its’ effect on technology choice merits some 
more detailed discussion. Figure 5 illustrates how using different values for the 
heterogeneity parameter affects technological diffusion when there are two 
competing technologies (there may of course, be more than two technologies, but 
the results are simplest to visualise in two dimensions). 

In Figure 5, the relative costs between the incumbent technology and the alternative 
technology are on the horizontal axis, while the vertical axis represents the fraction of 
the alternative technology adopted. It can be seen that with a heterogeneity factor of 
zero, costs effectively play no part in investment decisions, while with high values of v 
(e.g. ≥ 20), selection behaviour in the model approaches near perfect cost optimality 
(the lowest cost option is selected almost every time). 

 

Figure 5 – Technological diffusion for different values of the heterogeneity parameter, v 
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For the purposes of exploring heterogeneity in BLUE, we define a number of 
descriptive ranges for the heterogeneity parameter, summarised in Table 3. 

Table 3 – Descriptive definitions for the heterogeneity parameter 

Definition v Description 

Cost optimising 
behaviour 

20 – 50 
Actors will choose the least cost option almost every time, even if the savings are very 
small. For example, at v=50, a 5% saving results in a 95% uptake.  

Strong price 
sensitivity 

10 – 19 
In this range, actors react strongly to prices, but prices do not guide all their decisions. 
For example, at v=15, a >30% saving would be needed to drive replacement of the entire 
capital stock with the lowest cost alternative. 

Partial price 
sensitivity 

5 – 9 
At this setting, actors are price conscious but often very large cost savings are required 
before a total switch to new technologies occurs. For example at v=5, a >70% saving is 
required for complete replacement. 

Price insensitive 0 – 4 
With these inputs, actors do not react strongly to prices. Even large cost savings might 
not cause a complete shift to the new technology. 

 

2.3 Calibration and key assumptions 

BLUE is calibrated to a 2010 base year for the United Kingdom. Analysis of UK climate 
targets requires taking a whole systems perspective across all energy using sectors, 
including supply, buildings, industry, and transport. As noted earlier, the application 
of BLUE to the UK energy system represents the first time a STET-type model has 
been used in this fashion, with past works focusing mainly on individual economic 
sub-sectors. Table 4 gives a set of key model inputs used for calibrating the base 
demand and cost data, while Table 5 shows the main driving assumptions behind 
changes to costs and demand levels across the time horizon. To reflect current UK 
policy thinking, key assumptions about demand growth and fuel prices have been 
selected to reflect the UK government perspective. Additional model detail and 
calibration data can be found in the online documentation (see [66]). 

Multiple policy analyses show that an energy transition towards a more electrified 
future using low carbon electricity is an attractive decarbonisation pathway for the 
UK [67–70]. In this paper we therefore consider various low carbon generation options 
in the power sector, electric heat pumps for supplying building heating, and electric 
drivetrain vehicles for road transport. To represent future improvements in these 
technologies, their costs are assumed to fall over time (although at uncertain rates), 
effectively capturing different levels of exogenous technological change. Most 
variables are considered in a probabilistic fashion, using distributions as inputs. For 
example, Figure 6 illustrates the variation in estimates of electricity generation costs 
in the model baseline year. 



 

Figure 6 – Starting year levelised electricity costs (based on [71]) 

 

 

Table 4 – BLUE base year calibration data for the United Kingdom 

Parameter Sub-Parameter 
Value  

(L=Low, C=Central, H=High) 
Units Notes 

Energy 
Service 
Demands 

Residential 

Commercial 

Industrial 

Transport (Road) 

Transport (Air) 

Transport (Rail) 

Transport (Marine) 

2064 

821 

1093 

1691 

515 

42 

38 

PJ 
UK Department of Energy and 
Climate Change (DECC) [72]. 

Fossil Fuel 
Prices 

Oil 

Coal 

Gas 

9.69 

2.5 

4.06 

£/GJ 
UK Department of Energy and 
Climate Change (DECC) [73]. 

Power 
Generation 
Technology 
Portfolio 

Gas 

Coal  

Coal-CCS 

Gas-CCS 

Nuclear 

35.3 

35.8 

0 

0 

10.9 

GW 
UK Department of Energy and 
Climate Change [74]. 



 

Onshore Wind 

Offshore Wind 

Large Scale Solar PV 

0 

4.218 


0 

Power 
Generation 
Technology 
Levelised 
Costs 
(LCOE) 

Gas 

Coal  

Coal-CCS 

Gas-CCS 

Nuclear 

Onshore Wind 

Offshore Wind 

Large Scale Solar PV 

L=6.1,C= 10.1 ,H=14.2 

L=6.7, C=9.6, H=12.5 

L=34.6, C=44.4, H= 56.4 

L=34.6, C= 38.4, H=43.1 

L=26.4, H=45.6 

L=19.5, C=24.1, H=29.8 

L=34.0, C=38.4, H=43.6 

L=29.6, C=31.7, H=34.0 

£/GJ 

Triangular distributions used where 
literature provides low (L), central 
(C) and high (H) values, uniform 
distributions used for high / low 
data. Sources include a range of 
government and academic 
references converted to 2010 base 
year [71,75–77]. 

Residential 
Heating 
Technology 
Portfolio 

Gas Boiler 

Elec. Resistive Heating 

Air Source Heat Pump 

92.8 

7.2 

0 

% 
UK Department of Energy and 
Climate Change (DECC) [72]. 

Residential 
Heating 
Technology 
Costs 

Gas Boilers 

Elec. Resistive Heating 

Air Source Heat Pumps 

L=2500, H=3000 

L=1750, H=4025 

L=8400, H=10500 

£ 
Uniform distributions used to span 
range of estimates [78]. 

Commercial 
Heating 
Technology 
Portfolio 

Gas Boilers 

Elec. Resistive Heating 

Air Source Heat Pumps 

87 

13 

0 

% 
Based on UK Department of Energy 
and Climate Change [79] 

Commercial 
Heating 
Technology 
Costs 

Gas Boilers 

Elec. Resistive Heating 

Air Source Heat Pumps 

18142 

42653 

29975 

£ 

Based on NERA and AEA [78]. 
Report only gives a single value for 
representative heat pump 
installation so no ranges used 

Road 
Transport 
Technology 
Portfolio 

Fossil Fuel Vehicles 

Electric Vehicles 

100 

0 
% 

Electric vehicle sales in the UK were 
less than 0.1% of annual sales in 
2012 [80], so it can be assumed that 
as a fraction of the road fleet 
composition they were negligible in 
2010. 

Road 
Transport 
Technology 
Costs 

Fossil Fuel Vehicles 

Electric Vehicles 

14330 

L=25620, C=20490, H=59440 
£ 

Representative values for C/D class 
vehicles, based on [81]. 

 

 

 

 

 



 

Table 5 – Key driving assumptions 

Parameter Sub-Parameter 
Value  

(L=Low, C=Central, H=high) 
Units Notes 

Energy 
Service 
Demand 
Growth 

Residential 

Commercial 

Industrial 

Transport (Road) 

Transport (Air) 

Transport (Rail) 

Transport (Marine) 

Variable (see Section 2.2) %/year 

Demand drivers in BLUE for this 
study have been chosen to mimic 
the baseline projections used by the 
UK Department of Energy and 
Climate Change (DECC) in the 
government’s latest carbon budget 
assessment [82]. 

Residential demand makes 
assumptions about population 
growth, the number of new 
households, house demolition rates, 
and also heat demand in a climate 
change influenced world. 

Commercial and Industrial demand 
assumptions reflect the government 
view on future economic growth. 

Transport demand drivers are 
aligned with UK Department for 
Transport (DfT) central projections. 

Fossil Fuel 
Price 

Oil 

Coal 

Gas 

Variable (see Section 2.2) %/year 

Triangular distributions through 
time which reflect UK Department of 
Energy and Climate Change (DECC) 
projections [83]. 

Power 
Generation 
Technology 
Cost Change 

Gas 

Coal  

Coal-CCS 

Gas-CCS 

Nuclear 

Onshore Wind 

Offshore Wind 

Large Scale Solar PV 

Stable 

Stable 

L=-1.28, C=-1.30,H= -1.35 

L=-1.35, C=-1.42, H=-1.45 

Stable 

L=-0.08, C=-0.11, H=-0.16 

L=-1.46, C=-1.51, H=-1.54 

L=-2.36, C=-2.41, H=-2.48 

%/year 

For CCS and renewable options, 
technology costs fall to the 2030 
levels found in the literature and 
then remain at 2030 levels out to 
2050. Implied cost reduction 
trajectories based on 
high/central/low values in DECC 2013 
[71].  

Costs for nuclear and conventional 
fossil thermal power stations are 
modelled as stable in real terms. 

There is large uncertainty over the 
cost of new nuclear power in the UK 
(captured in Table 4 inputs) and no 
empirical evidence that costs fall 
with increased deployment [84]. 

Residential 
and 
Commercial 
Heating 
Technology 
Cost Change 

Gas Boilers 

Elec. Resistive Heating 

Air Source Heat Pumps 

Stable 

Stable 

L=-0.3, C=-0.6, H=-1.0 

%/year 

Gas boiler and electric resistive 
heating are modelled as stable in 
real terms. Range of heat pump cost 
reduction potential based on 
industry literature produced for 
DECC and the UK Committee on 
Climate Change (CCC) [85,86]. 



 

Road 
Transport 
Technology 
Cost Change 

Fossil Fuel Vehicles 

Electric Vehicles 

L=+0.39, C=+0.56, H=+1.14  

L=-1.98, C=-2.94, H=-3.15  
%/year 

Modelled cost changes plateau post-
2030. Fossil fuel vehicle costs are 
expected to increase as engines and 
exhaust systems become more 
complex in search of efficiency gains 
and to mitigate air pollution, while 
electric vehicle costs are expected to 
fall, driven by improvements in 
battery costs. Costs based on 
industry literature [81]. 

 

3.0 Analysis Approach 

This paper explores the effect of landscape and actor inertia via an assessment of UK 
compliance against the national climate target, which is an 80% reduction in GHG 
emissions by 2050 (from 1990 levels) from all economic sectors, including shipping 
and aviation [87]. In total, 16 scenarios are explored (described below and 
summarized in Section 3.3), comprising of: 

 4 potential landscape conditions, such as government policy stringency 
and lifestyle change; and  

 4 different behavioural assumptions for actor behaviour; 
 

Technology diffusion, energy use and overall CO2 emissions for the UK are computed 
for each scenario. BLUE is run in a stochastic Monte Carlo fashion with 500 iterations 
per scenario in order to capture the degree of uncertainty arising from the use of the 
probabilistic input variables. 
 

3.1 Landscape conditions 

The landscape in socio-technical studies contains the macro-scale contextual 
conditions for the transition, and can include factors as diverse as “oil prices, economic 
growth, wars, emigration, broad political coalitions, cultural and normative values, 
environmental problems” [26]. In this paper, we operationalise "landscape inertia" in 
our model as a dynamic element by testing the effects of synergistic changes to 
carbon pricing and societal preferences.  

A government imposed carbon price is used as a proxy for specific policy instruments 
and represents the level of government action taken to mitigate emissions. Carbon 
prices start low and are increased over time, following one of three UK government 
Department of Energy and Climate Change (DECC) trajectories to 2050 [88]. The 
increasing price of carbon is reflected in how the costs of technology options are 
perceived by the model actors, and feeds through to their decision choice framework 
(as described earlier in Section 2.2). 

As well as the level of government ambition, societal preferences and lifestyles are 
also important to understand landscape inertia. The default demand pathway for the 
UK used in BLUE (see Table 5) already incorporates a falling per capita heat demand 



 

(as a result of the uptake of thermal efficiency measures in buildings) as well as stable 
per capita demand for electrical appliances. Transport projections on the other hand, 
follow UK Department for Transport (DfT) projections and imply large increases in 
personal travel budgets. DfT projects that road transport demand per capita will 
double by 2050, and that air travel demand per person will quadruple. Questioning 
the assumptions around personal mobility in therefore is a key area to explore from a 
lifestyle perspective.  

In the UK, 68% of total journeys are made by car [89] but almost 40% of these are 
over distances of less than 5km [90]. The spatial planning of denser settlements (>50 
people/ha) with convenient access to services and employment hubs could represent 
a key strategy for reducing dependence on car commutes [91], as well as increasing 
the uptake of mass transit and non-motorised transport options [92]. Air travel 
demand is the fastest growing source of transport emissions in developed countries 
like the UK [93]. Aviation is recognised as a difficult to decarbonise sector with 
relatively few technical mitigation options, so future social attitudes towards air travel 
may also be key to influencing compliance with climate targets. We explore here the 
potential for lifestyle choices to modify end use energy demand away from the 
default UK government pathway in three key areas:  

 Growth in non-motorised transport to between 10 and 20% of travel 
demand 

 Stabilisation of road travel demands at 2030 levels (allows for a ~30% 
increase in per capita demand relative to 2010) 

 Stabilisation of air travel demands at 2020 levels (allows for a ~50% 
increase in per capita demand relative to 2010) 

The dimensions explored for landscape conditions are summarised in Table 6. Each 
setting L1 – L4 includes a mixture of both lifestyle change and policy factors, on the 
basis that political decisions are likely to flow from a social mandate for action. It is 
difficult to imagine a future where a democratically elected government is able to 
successfully impose strong carbon taxes on a population that is not in favour of 
environmental action. Likewise, the development of a strong social consciousness 
driving major changes to consumption and lifestyles appears unlikely to 
spontaneously emerge in a market based society in the absence of any price signals. 
Therefore, for the purposes of our analysis in this paper, strong government action on 
emissions mitigation and strong lifestyle change elements are grouped together, 
while weaker government action and less profound changes to lifestyle are similarly 
combined.  

At one extreme is a case where the UK government’s “high” trajectory for CO2 pricing 
is followed, accompanied by significant changes in lifestyle (L4) and at the other is a 
case where there is no government policy in support of low carbon technologies and 
no change from baseline projections for end use energy demand (L1).  



 

Table 6 – Exploratory dimensions for landscape conditions 

Test Case 
Carbon Tax 
Trajectory 

Lifestyle Change 

L1 No carbon tax No change from baseline DECC projections 

L2 
£100/tCO2 by 

2050 
Increase in non-motorised transport 

L3 
£200/tCO2 by 

2050 

Increase in non-motorised transport, and 

stabilisation of road travel demand 

L4 
£300/tCO2 by 

2050 

Non-motorised transport,  

stabilisation of road travel demand, and 

stabilisation of air travel demand 

 

3.2 Behavioural settings 

To explore actor inertia, a range of possible micro-economic behaviours and non-cost 
barriers are explored. These are summarised in Table 7. At one extreme is cost 
optimising behaviour with a social planning perspective (A4), at the other is a case 
with parameters for exploring bounded rationality and non-cost barriers included 
(A1). Demand elasticities are represented as triangular distributions, based on an 
extensive review found in Pye et al. [69]. Market heterogeneity explores a range of 
settings described earlier in Section 2.3.4. Social discount rates used in EU policy 
assessment are typically in the range of 3 – 6% [94]. The UK government 
recommends a social discount rate of 3.5% [95]. Models often use private discount 
rates for technology investment evaluation that approximate the typical financial cost 
of capital available to the actor e.g. 9 – 17% [96]. A detailed discussion on the 
selection of appropriate hurdle rates in long term energy economic modelling is 
beyond the scope of this paper [97]. However, ranges that reflect two extremes, both 
the societal and the individual perspective (when generalised across the whole 
population) are explored. 

 

 

 

 

 

 

 



 

Table 7 – Exploratory dimensions for actor behaviour (L=Low, C=Central, H=High) 

Test Case Description 
Behavioural 
Parameter 

Residential  
Road 

Transport 
Power Commercial Industrial 

A4 

Cost optimising 
behaviour, 

social planning 
perspective 

Demand 
elasticities (e) 

L=-0.1 

C=-0.25  

H=-0.40 

L=-0.15 

C=-0.30  

H=-0.50 

- 

L=-0.01 

C=-0.1  

H=-0.15 

L=-0.01 

C=-0.03  

H=-0.05 

Market 
heterogeneity 

(v) 
20 – 50 

Intangible costs 
(i) 

0 - 0 

Hurdle rate  

(r) 
3 – 6% 

Implicit in 
LCOE (see 

Table 4) 
3 – 6% 

Retrofitting / 
replacement 

rate (b) 

Every 15 
years 

Every 10 years 

Technology 
specific, 
based on 

[71] 

Every 15 
years 

Every 20 
years 

A3 

Strong price 
sensitivity, 

social planning 
perspective 

Demand 
elasticities (e) 

L=-0.1 

C=-0.25  

H=-0.40 

L=-0.15 

C=-0.30  

H=-0.50 

- 

L=-0.01 

C=-0.1  

H=-0.15 

L=-0.01 

C=-0.03  

H=-0.05 

Market 
heterogeneity 

(v) 
10 – 19 

Intangible costs 
(i) 

0 - 0 

Hurdle rate  

(r) 
3 – 6% 

Implicit in 
LCOE (see 

Table 4) 
3 – 6% 

Retrofitting / 
replacement 

rate (b) 

Every 15 
years 

Every 10 years 

Technology 
specific, 
based on 

[71] 

Every 15 
years 

Every 20 
years 

A2 

Partial price 
sensitivity, 
intangible 

costs, social 
planning 

perspective 

Demand 
elasticities (e) 

L=-0.1 

C=-0.25  

H=-0.40 

L=-0.15 

C=-0.30  

H=-0.50 

- 

L=-0.01 

C=-0.1  

H=-0.15 

L=-0.01 

C=-0.03  

H=-0.05 

Market 
heterogeneity 

(v) 
5 – 9 

Intangible costs 
(i) 

Air Source 
Heat Pumps 

[98] 

L=200 

H=480 

UK Plug-In 
Vehicle Grant 
at the time of 

writing is 
£5000 

- 

Air Source 
Heat Pumps 

[98] 

L=200 

H=480 

- 



 

Hurdle rate  

(r) 
3 – 6% 

Implicit in 
LCOE (see 

Table 4) 
3 – 6% 

Retrofitting / 
replacement 

rate (b) 

Every 15 
years 

Every 10 years 

Technology 
specific, 
based on 

[71] 

Every 15 
years 

Every 20 
years 

A1 

Partial price 
sensitivity, 
intangible 

costs, private 
discounting 

Demand 
elasticities (e) 

L=-0.1 

C=-0.25  

H=-0.40 

L=-0.15 

C=-0.30  

H=-0.50 

- 

L=-0.01 

C=-0.1  

H=-0.15 

L=-0.01 

C=-0.03  

H=-0.05 

Market 
heterogeneity 

(v) 
5 – 9 

Intangible costs 
(i) 

Air Source 
Heat Pumps 

[98] 

L=200 

H=480 

UK Plug-In 
Vehicle Grant 
at the time of 

writing is 
£5000 

- 0 

Hurdle rate  

(r) 
9 – 17% 

Implicit in 
LCOE (see 

Table 4) 
9 – 17% 

Retrofitting / 
replacement 

rate (b) 

Every 15 
years 

Every 10 years 

Technology 
specific, 
based on 

[71] 

Every 15 
years 

Every 20 
years 

 

 

 

 

 

 

 

 

 

 

 



 

3.3 Scenario summary 

An ensemble of 16 scenarios, illustrated in Figure 7, were assessed by combining the 
landscape and behavioural dimensions discussed above. To explore the uncertainties 
in the input data, each scenario set was run 500 times using Monte Carlo simulation.  

Figure 7 – Full set of exploratory scenarios in BLUE 

 

 

 

 

 

 



 

4.0 Results 

 
4.1 Technological transitions in key sectors 

Selected results are illustrated below for technological change in the power, 
buildings, and road transport sectors. As noted in Section 2.3, these are the main 
energy system sectors under which past policy analyses have concluded that the 
deepest transformations must occur in the UK context. 

 
4.1.1 Power sector 

Figure 8 shows four key transitions from the simulated scenario set. These are 
effectively the four corners of the full 16-scenario diagram shown above in Section 
3.3. The lower two quadrants (L1A1, L1A4) represent technological change under 
conditions of high landscape inertia i.e. no carbon price signal, and no lifestyle 
change. The upper two quadrants, (L4A1, L4A4) show a power sector transition 
under conditions of low landscape inertia i.e. a strong carbon price signal, with 
significant lifestyle change. The scenarios to the left hand side of the chart (L4A1, 
L1A1) exhibit the effects of high actor inertia. Actors display partial price sensitivity, 
perceive intangible costs to unfamiliar technologies, and use a private discount rate 
for evaluating their options. Those scenarios on the right of the chart (L4A4, L1A4) 
illustrate outcomes under low actor inertia. In this case, actors exhibit cost optimising 
behaviour, ignore intangible costs, and take a social planning perspective on 
discounting the future. 

The most obvious difference between the high landscape inertia and low landscape 
inertia scenarios is the change in the deployment of low carbon generation 
technologies. Under high landscape inertia scenarios (the L1 set), which have no 
carbon price signal, the power sector becomes dominated by a mixture of coal and 
gas plant. Under low landscape inertia scenarios (the L4 set), which have the pollution 
externality from fossil fuel use subjected to a high carbon tax, coal loses significant 
market share and there is a shift to both natural gas and a large fraction of low carbon 
energy sources. 

Actor inertia can also be seen to exert an effect on technology selection. If we focus 
first on the L1 scenario set, it can be seen that under conditions where actors display 
cost optimal choice behaviour and use a social discount rate for investment analysis 
(L1A4) a large fraction of the 2010 coal plant is displaced by gas in 2050. In contrast, it 
can be seen that under conditions where actors display a lower propensity to cost 
optimisation and take a private perspective on discounting the future (L1A1), coal 
retains significant market share throughout the time horizon.  

The L4 scenario set also shows important differences arising from the effects of actor 
inertia. With cost optimising actor behaviour and a social planning perspective 
(L4A4), coal becomes almost completely eliminated from the generation portfolio as 
early as the mid 2020’s, the transition to renewable energy happens very late in the 
time horizon (around 2045), and comes mostly from solar power. In the scenario 



 

where actors display a less pronounced sensitivity to prices, and where a private 
discount rate is used (L4A1), the decline in coal is much less pronounced. The 
transition to low carbon energy also begins much earlier (around 2030), and comes 
from a wider set of sources, including solar and onshore wind. 

Figure 8 – Power sector transitions (median values) 

 

 

4.1.2 Buildings sector 

Figure 9 highlights changes found in residential heating technologies in a four-
quadrant chart that shows key scenarios from the full 16-scenario set. As with the 
power sector chart described above in Section 4.1.1, these have been selected to 
demonstrate the combined effects of both high and low landscape inertia, and high 
and low actor inertia. 

It can be seen that in the scenarios with high landscape inertia, where no price is put 
on GHG emissions from fossil fuels (the L1 set), the residential heating sector remains 
largely dominated by gas boilers. Electrification is minimal and no heat pumps are 
deployed. On the other hand, under the scenarios with low landscape inertia (the L4 



 

set), a large fraction of heat demand (around 60%) becomes electrified. This is driven 
by both the progressive decarbonisation of the electricity sector as well as the 
increasing costs of using gas due to the strong carbon tax found in these scenarios. 

The influence of actor behavioural parameters can be seen prominently in the 
scenarios that employ significant electrification of heat (the L4 set). Under conditions 
where actors take a cost optimising, social planning perspective, with no intangible 
costs (L4A4), most electrification of residential heating occurs with heat pumps. In 
contrast, under conditions where actors display more heterogeneous choice 
behaviour, consider intangible costs, and take a private discounting perspective, most 
electrification occurs with direct electric heating. This difference is likely to arise as a 
result of the capital cost differential between heat pumps and direct electric heating 
(see Section 2.3). The inclusion of intangible costs and a high, private discount rate, 
serves to make heat pumps appear relatively less attractive to the residential sector 
actor. 

Figure 9 – Residential buildings sector transitions (median values) 

 



 

4.1.3 Transport sector 

Figure 10 illustrates four scenarios for the road transport fleet, occurring under the 
same conditions as the corresponding transitions shown above for power (Section 
4.1.1) and buildings (Section 4.1.2). Scenarios with high landscape inertia (the L1 set) 
show only minimal electrification of the vehicle fleet, while electric vehicles show 
substantial penetration in scenarios with low landscape inertia (the L4 set). Actor 
behavioural parameters have a strong effect. With actor behaviour set to be cost 
optimising and using a social discount rate (L4A4), penetration of electric vehicles by 
2050 is extremely rapid and comes to make up nearly 90% of the fleet. On the other 
hand, if actors are assumed to be more sensitive to non-cost variables, incur 
intangible costs, and use a private discount rate for assessing their choices (L4A1), 
electric vehicles capture a significant, but much lower market share over the same 
period (around 30%). This reflects increasing actor sensitivity to up front capital costs 
and the increase in perceived costs. 

Figure 10 – Road transport sector transitions (median values) 

 

 

 



 

4.2 Climate target compliance 

The ability of the energy system to meet UK climate targets for 2050 under the 
various scenarios explored is assessed below. 

 
4.2.1 Central estimates for emissions reductions 

The relationship between landscape inertia, actor inertia, and emissions reductions 
can be seen below in Figure 11. Each of the 16 data points plotted represents the 
median estimate across the 500 Monte Carlo simulations carried out for each of the 
16 scenarios summarised in Section 3.3. From the chart it can be seen that under 
conditions representing the highest landscape inertia and the highest actor inertia 
(L1A1), median estimates for delivered emissions reductions are extremely low, of 
the order of only 2%. At the other extreme, with cost optimising behaviour, a social 
planning perspective on discounting the future, high carbon taxes and changes to 
lifestyle considered, the median estimate is for a 56% reduction in emissions (L4A4).  

It can be seen from Figure 11 that for achieving emissions targets, landscape inertia 
appears to have a much stronger effect than actor inertia. Comparing L1A1 (median 
2% reduction) against L4A1 (median 45% reduction), it can be seen that supportive 
landscape conditions can increase the level of climate mitigation achieved even if 
actor inertia is high. However, actor inertia alone can also be observed to exert a 
powerful effect. By comparing L4A4 (median 56% reduction) against L4A1 (median 
45% reduction), it can be seen that increasing actor inertia does impose a noticeable 
drag on mitigation efforts, even when landscape conditions are otherwise favourable. 

Figure 11 – Median estimated CO2 reductions achieved by 2050 

 



 

4.2.2 Probability density for emissions reductions 

Another means of visualising the impact of actor and landscape inertia is provided in 
Figure 12, which takes advantage of the probabilistic nature of the BLUE model to 
estimate CO2 emission reductions at different confidence intervals. It can be seen that 
in scenarios with landscape conditions set to L1, L2, and L3, a part of all of the curves, 
regardless of the actor behaviour setting used (A1 – A4), extend into the negative 
range. This means that for these scenarios, uncertainty in factors such as future fuel 
prices and technology costs (see Section 2.3) result in a non-negligible chance that 
emissions might increase.  

The only scenarios that were consistently observed in simulation to deliver emissions 
reductions by 2050 were those with landscape conditions set to L4, which implies 
both strong government support for low carbon technologies (via a high carbon tax) 
and significant lifestyle change compared to the baseline (air travel demand 
stabilising per capita at 2020 levels instead of quadrupling by 2050). Even under these 
conditions, the observed uncertainty range is large, with emissions reductions 
compared to 1990 levels ranging from 35 to 71%. From a policy perspective, the 
results show that even if  the government can increase the carbon price signal to the 
highest level currently envisaged by 2050 (300 £/tCO2), then the UK’s climate targets 
for 2050 are never met in simulation. With lower carbon prices, only modest carbon 
savings are observed at best, and sometimes none at all. 

Another general observation is that the impact of actor behaviour appears larger 
when landscape conditions favour decarbonisation. It can be seen in Figure 12 that 
the L1 group of scenarios are very tightly clustered together, regardless of the actor 
inertia setting (A1 – A4). Groups L2, L3, and L4 exhibit progressively greater spreads 
between results under actor settings at A1 and at A4. This is intuitive. When there is 
no carbon tax (L1 group), price related behaviour has little impact on the outcome vis-
à-vis emissions. When there is a high carbon tax on the other hand (L4 group), the 
behavioural responses to this price signal becomes increasingly important. 



 

Figure 12 – Cumulative probability of 2050 CO2 reductions for all scenarios 

 

 

5.0 Discussion 

 
5.1 Implications for policy 

The results show that actor and landscape inertia both act as powerful resistive forces 
against transitions to new energy technologies, presenting a formidable barrier to 
achieving climate targets. Even with carbon taxes at the higher end of the UK 
government range, and key decision makers who were extremely cost conscious and 
taking a long term perspective on valuing the future (scenario L4A4), the energy 
system struggled to decarbonise much beyond 50% relative to 1990 levels in the 
majority of simulations. This is a sobering finding in light of the government’s 
aspiration for an 80% reduction in total GHG emissions by 2050. For the model to 
have a chance of achieving this target, it would be necessary to introduce either much 
steeper cost reductions in key low carbon technologies, much higher price signals 
from government to penalise carbon intensive technologies, or implement even more 
radical changes to end use energy demands, with implications for lifestyle change. 
Another alternative would be to introduce negative emissions technologies into the 
model to allow for a sequestration strategy, but the feasibility and wisdom of this 
approach is currently hotly debated and yet to be proven [99–101].  

A range of cost reductions in new technologies are already implemented based on 
reviewed sources (see Section 2.3). It is of course possible that rapid cost reductions 
that lie outside of this range may take place, but this requires more optimism about 
the future of the technology innovation system than currently appears in the policy 



 

literature. Increasing government action through subsidy removal for high carbon 
technologies and strong, sustained support for low carbon ones, is another option. 
However, our analysis here suggests that this could involve going beyond the highest 
carbon price so far envisaged by the UK government (300 £/tCO2 in 2050). Finally, 
there is the question of end use energy demand and lifestyle change. The baseline 
pathway for energy demand modelled in this paper takes the government’s central 
view as a starting point, and already includes significant thermal efficiency 
improvements to buildings and a broadly stable per capita demand for electricity. 
Accordingly, we focused our investigation of lifestyle change around transport 
behaviours. Aviation was identified as a particularly challenging sector and one where 
stabilising demand growth was observed in simulation to have a major effect on the 
viability of hitting climate targets (see Figure 12, and compare the L3 and L4 scenario 
groups).  

The introduction of both high carbon taxes and government policies aimed at 
changing transport behaviours face demanding hurdles to implementation. Policies 
that may be perceived as restricting individual freedom to travel on aircraft appear 
unlikely to gain traction with voters in developed countries, at least in the near-term 
[102]. Without a strong social mandate, it also remains an open question as to 
whether any democratically elected government would be able to implement high 
carbon taxes without simply being voted out of office [103]. How and whether social 
attitudes may change in future as a result of increasing exposure to climate change 
impacts remains to be seen. Policymakers in the UK should continue with ambitious 
climate mitigation efforts but it is possible that the framing of the target may need to 
be reconsidered. In particular, exploring the viability of a post-2050 target based 
around achieving a net-zero emissions position in line with the Paris Agreement could 
be a useful starting point. 

 
5.2 Implications for research 

As discussed in Section 1.0, many energy models used in policy analysis frequently 
focus on technological performance and draw conclusions based on the assumption 
that rational choice behaviour will guide economic decisions. We have argued that 
this relatively narrow focus overlooks important insights that can be obtained from 
integrating a wider range of social and behavioural elements into energy modelling. 
The results presented here illustrate that energy transitions to sustainability face an 
uphill struggle when actor responses and landscape factors are not well aligned and 
complementary to one another. We would argue that these are factors that cannot 
simply be ignored or assumed to have a minimal effect in quantitative energy policy 
analysis, given the obvious impacts that landscape and actor inertia have on achieving 
climate targets. While landscape conditions appear to be the dominant deciding 
factor, our initial work shows that even under strong price signals the micro-economic 
behaviour of individual actors can exert a strong drag effect (see Section 4.2). 

Models based around economic optimisation remain highly useful in that they can 
demonstrate how to achieve ambitious pathways for emissions reductions in a “first 
best” policy world with few barriers. This can be a pragmatic approach when 



 

technological and resource uncertainties remain large and unexplored, as is the case 
for many countries which are in the process of developing their decarbonisation 
pathways [104]. However, in some countries, such as the UK, the cost optimal 
pathways for achieving energy system change are already well explored in multiple 
analyses [67–70]. The key question for UK policymakers is therefore now one of 
implementation. Here, rational optimisation models face limitations when used to 
assess the viability of achieving targets in “second best” policy worlds [7] that account 
for social and political barriers. We would argue that cost minimised pathways from 
optimisation analyses should therefore be thought of as techno-economic maxima, 
with approaches that incorporate the behaviours of multiple actors used to explore 
the socio-technical feasibility of climate targets. 

The analysis in this paper demonstrates that climate mitigation strategies which rely 
only on technological change potentially offer a narrow and uncertain solution space 
when considering a 2050 target date for deep decarbonisation. Looking beyond direct 
technology substitution and market design to explore changes to behaviour, 
lifestyles, institutions, and culture might play an important role in expanding the 
solution space. Articulating the energy demand implications of new means of societal 
organisation, decision making, and resource allocation in a climate constrained world 
is a key area for future interdisciplinary research, as is understanding how social and 
technological change can be accelerated though institutional reform, nullifying the 
influence of vested interests, and shifting societal preferences towards sustainability 
through information provision and education.  

There is much enthusiasm in parts of the transitions community regarding the future 
prospects for modelling societal transitions [105]. However, some have opined that 
full integration of quantitative modelling and qualitative transitions approaches may 
be unlikely given the foundational differences in scientific philosophy between the 
disciplines [106]. Li et al. discuss at length the challenges faced by those seeking to 
model socio-technical change and explicitly acknowledge that “some elements of 
socio-technical transitions may always lie outside of the capability of any formal 
analysis” [47]. There undoubtedly remains significant scope for models to improve 
their level of societal realism, advance their representation of actor behaviour, and 
capture the co-evolving nature of governance, technology and society. But an 
interdisciplinary approach to forward-looking evaluation strategies that recognises 
the value of articulating different forms of knowledge and includes a role for both 
formal modelling and qualitative interpretation, is both desirable and necessary. The 
transitions community is currently forging ahead with new approaches for structuring 
dialogue between practitioners from different analytical backgrounds, including the 
concept of “bridging” between disciplines advanced by McDowall, Turnheim, Li and 
Geels [106–109]. 

 
5.3 Limitations and future work 

To the knowledge of the authors, the work explored in this paper represents the first 
time that a socio-technical energy transition (STET) model has been used to assess 
the viability of legislated climate targets across a whole multi-sectoral national 



 

energy system. This is an important step towards operationalising the insights from 
socio-technical transitions theory into the type of quantitative energy policy analysis 
activity that is typically practiced in government. It is a challenge for all research into 
behaviour to calibrate models with empirical data, which is often sparse and difficult 
to implement as model variables. For detailed discussion of the challenges associated 
with translation of observed micro-economic effects into a model of user choice 
behaviour the reader should refer to work by Driscoll and Holden [110]. However, 
difficulties of this nature do not justify ignoring or excluding actor behavioural 
parameters from modelling, and we have taken a pragmatic view in this work.  

To account for the unknown nature of many micro-economic parameters (such as 
market heterogeneity, price elasticities etc.), our analysis explores a range of 
plausible values between maxima and minima informed by the literature on 
behavioural economics. Additionally, the model structure enables future calibration 
with empirical data (for example, stated or revealed preference data from surveys) to 
occur in future, as demonstrated in other models with detailed micro-economic 
parameters, such as CIMS, which also employs statistical simulation of unknown 
behavioural parameters [111]. For a robust discussion of the challenges in validating 
socio-technical energy transition (STET) models, the reader should refer to work by Li 
et al. [47].  

There are a number of promising avenues for future work in this area. The analysis 
presented here separated micro-economic decision making behaviour from political 
attitudes to climate mitigation and lifestyle choices around energy service demand, 
both of which could also be considered “behaviour” in a more general sense, and 
which could be disentangled further. There is also additional scope to refine the 
representation of how actors and institutions interact, drawing insights from the 
literature on political economy and governance (e.g. [112]). For example, expanding 
the representation of institutional decision making to explore the effect of policy 
continuity and political uncertainty on energy transitions [113], perhaps using an 
explicit government actor. There may also be scope to implement in the model actors 
who actively oppose the transition. Recent transitions studies have shown that 
established players in the incumbent socio-technical regime, far from being passive or 
inert bystanders in energy transitions, may in fact attempt to aggressively defend 
their interests through active resistance [114,115]. Finally, exploring mechanisms for 
accelerating transitions is a vital activity, and future work may draw on the existing 
transitions literature on rapid decarbonisation, tipping points and breaking out of 
lock-in [116,117]. Capturing these dynamics would require the addition of a number of 
non-linear feedback loops to the existing BLUE model (for example, social influence 
effects [118]) as well as an empirical basis to enable these to be calibrated. 

 

6.0 Conclusions 

While there is no doubt that technology has a central role to play in transitioning the 
world to a climate stabilised future, there is a prevailing tendency in much of the 
energy modelling literature for mitigation options to be analysed more or less 
exclusively under “first-best” socio-political contexts. This risks downplaying the 



 

daunting barriers to socio-technical change posed by systemic inertia in the energy 
system. Here, we have explored the challenge of achieving GHG reduction targets 
when actor behaviour and landscape drivers are not aligned, as is often the case 
under “second-best” policy conditions.  

We quantify these factors in a formal model as “landscape and actor inertia” and 
employ them for the first time in a dynamic stochastic socio-technical simulation of 
technology diffusion, energy and emissions in order to assess the potential for the UK 
energy system to transition to a low carbon future. We show that actor inertia can 
impose a high drag effect on climate mitigation efforts even under strong price 
signals from government, and also that without measures to reduce end use energy 
demand, the chances of achieving very deep reductions in GHG emissions by 2050 are 
significantly impaired.  

In the case of the UK, the analysis presented in this paper shows that national climate 
targets for 2050 remain out of reach in simulation, even when using some of the most 
optimistic technology cost and performance assumptions drawn from the current 
literature. This is because landscape and actor inertial effects prevent the diffusion of 
innovative low carbon technologies occurring with sufficient speed to break the 
system out of lock-in before the target date. This leaves policymakers with difficult 
choices around the achievement of stringent climate targets and if the only viable 
approach is on largely speculative strategies based around negative emissions 
sequestration. Research that goes beyond technology and markets and aims to 
expand the solution space for deep decarbonisation through understanding potential 
contributions from changes to behaviour, lifestyles and governance is urgently 
needed, as is work that explores how the uptake of socio-technical innovations can be 
accelerated to bring about transitions on a timescale compatible with a 2 °C world. 

We argue strongly that an improved representation of behaviour in energy modelling 
for policy is urgently required. Exploring resource and technology-based uncertainties 
remain important but should now be complemented with research that explores 
transformative energy system pathways, capturing the interactions of actors and 
institutions, and considering radical innovations in governance, behaviour and 
lifestyles. These efforts necessitate the development of a new generation of models, 
and interdisciplinary research that builds on past approaches to incorporate insights 
from both quantitative modelling studies and the field of socio-technical transitions. 
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