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Abstract
The weight with which a specific outcome feature contributes to preference quantifies a per-

son’s ‘taste’ for that feature. However, far from being fixed personality characteristics, tastes

are plastic. They tend to align, for example, with those of others even if such conformity is

not rewarded. We hypothesised that people can be uncertain about their tastes. Personal

tastes are therefore uncertain beliefs. People can thus learn about them by considering evi-

dence, such as the preferences of relevant others, and then performing Bayesian updating.

If a person’s choice variability reflects uncertainty, as in random-preference models, then a

signature of Bayesian updating is that the degree of taste change should correlate with that

person’s choice variability. Temporal discounting coefficients are an important example of

taste–for patience. These coefficients quantify impulsivity, have good psychometric proper-

ties and can change upon observing others’ choices. We examined discounting prefer-

ences in a novel, large community study of 14–24 year olds. We assessed discounting

behaviour, including decision variability, before and after participants observed another per-

son’s choices. We found good evidence for taste uncertainty and for Bayesian taste updat-

ing. First, participants displayed decision variability which was better accounted for by a

random-taste than by a response-noise model. Second, apparent taste shifts were well

described by a Bayesian model taking into account taste uncertainty and the relevance of

social information. Our findings have important neuroscientific, clinical and developmental

significance.

Author Summary

People often change their preferences in the light of what others choose. One form of such
change is ‘epistemic trust’ for preferences, i.e. preference alignment over and above any
direct benefits that may accrue. We sought to explain preference shifting in terms of nor-
mative Bayesian inference in which, along with updating beliefs about what the world is
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like, and what the correct or profitable answers are given one's tastes, subjects also learn
about their own personal tastes when these are incompletely certain. In a novel study
based on a well-established paradigms, 740 young people expressed their tastes about the
degree to which they preferred a smaller but immediate, versus a larger but delayed,
reward. They did this both before and after learning about another agent’s choices. We
found taste changed between the two assessments to a degree that was correlated with sub-
jects’ choice variability in the absence of social influence. This is consistent with our Bayes-
ian model if, for instance, people make choices by taking random samples from their own
uncertain beliefs. Younger people were influenced by others more than older ones, and
this observation was explained in the model by the former being less certain about their
own preferences.

Introduction
People change their choices, usually in the direction of conformity, when they learn what oth-
ers value [1]. Reasons for this include the mechanistic, such as forms of priming; the instru-
mental, such as avoiding the dangers of social non-conformity or to seek social approval; and
the epistemic, in which people who are unsure about their own preferences use observations of
those of others as data. Interpersonal influence, such as choice convergence, has been exten-
sively studied in instrumental settings. First, alignment with others is explicitly sought when
conformity is itself rewarded [2]. Second, choices converge if conformity is not rewarded but
choices result explicitly from shared information about the state of the world [3,4]. Toelch and
Dolan [1] termed these (social-)normative and informational influence respectively. In con-
trast, here we focus on epistemic preference change where there is no explicit calculation of
improved outcomes [5,6] (though this effect may have even contributed to some behaviour
change during experiments that examined instrumental conformity).

In this study we use the term ‘taste’ in a strict sense to mean the function directly mapping
stimulus attributes to utility [7]. As an example, if I used to choose oranges over apples but,
having gathered social information, I now choose apples because I explicitly estimate that
oranges don’t sell [4], this is not a preference change in the sense of ‘taste’. Versions of prefer-
ence (taste) change have been observed in domains as diverse as oenophilia [8] and pain [9],
though more typically in contexts where the values of others have to be inferred indirectly
from what amounts to price-lists provided in the experiments. Unlike the present work these
studies have not examined the computational structure of such changes. Here, we sought to
examine epistemic preference change occasioned by the demands of learning about other’s
choices [10].

A important domain in which such effects have been shown is temporal discounting [11],
which quantifies the extent to which a person prefers a temporally proximal reward over a dis-
tal one, even if the latter is larger. Discounting is of economic [11] and psychiatric [11–14]
importance. Thus understanding how social influences might lead people to develop or repair
maladaptive discounting is of special clinical relevance. By contrast with many other domains
of preference, discounting also enjoys extensively tested mathematical formalizations.

In a recent study [11], we showed that when subjects learned to make discounting choices
for other individuals, their own tastes apparently changed to become more like those of these
partners. Here, we sought to examine a potentially Bayesian basis for this, testing our ideas on
a substantial new sample of subjects whose basic discounting preferences and demographics
we also present here.
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The premise for our account is that subjects are uncertain about their own taste for dis-
counting. This is entirely plausible in the light of the substantial debate as to the rationale
for discounting in the first place, as well as of how taste uncertainty may affect other
domains of choice [12,13]. We thus proceed in four steps: (1) subjects’ uncertainty would
be reflected in the variability of their choices, even in the absence of perturbing influences;
(2) the more uncertain subjects are about their preferences, the more they would shift on
learning about others; (3) this degree of preference-shifting could be described in terms of
relevance, which we operationalise as the width of the distribution of preferences in a
notional reference group of people to whom both the index person and the social influencer
belong and (4) these effects would dominate over more complex social motives, such as
those stemming from mere participation in the experiment (and thus be independent of the
direction of social influence), oppositional traits (shifting away from the Other) or competi-
tive traits ('overtaking' the other). We justify and elaborate these steps using theory and
experiment.

Methods

Sample
In a novel study, participants were recruited from North London and Cambridgeshire as part
of the Neuroscience in Psychiatry Network (NSPN). They, or their legal guardians if younger
than 16, gave informed consent. The study was approved by the Cambridge Central Research
Ethics Committee (12/EE/0250). We invited participants so that the final sample was equally
distributed between the two genders and between the ages of 14 to 24. Participants were
excluded if they currently received help for a mental health issue, if they had moderate or
severe learning disability or serious neurological disorders.

Task
We used the 'Delegated Interpersonal Discounting (DID)' task [11,14]. The task was delivered
as part of a battery administered to equal numbers of male and female community dwellers
between the ages of 14 and 24 in Cambridgeshire and London, as part of the Neuroscience in
Psychiatry Network (NSPN) project. At the time of this study 750 participants had been
recruited; 5 withdrew consent; in 4 cases, the research assistant conducting the experiment
decided not to complete the task for the sake of the wellbeing of the participant (e.g. tired,
unhappy). In a further 3 cases, technical problems rendered the data unusable. We therefore
present the analysis of 738 cases.

The task involved three phases. In phase 1, subjects made a series of temporal discounting
decisions that we used to estimate their initial value K1 in a standard hyperbolic discounting
model. The index 1 stands for phase 1 of the experiment, before learning about another indi-
vidual. According to this model, the value of a reward RD given after a delay D is

VD ¼ RD=ð1þ KDÞ ð1Þ
where K is the hyperbolic discounting parameter [15–17].

In phase 2, they learned to make choices expressed by another, simulated, participant whose
K = Ko differed from theirs. Finally, in phase 3, they made more choices for themselves and the
other, allowing us to assess whether their K3 6¼ K1 had changed (3 here indexes phase 3, after
exposure to the partner). The Ko of the simulated participant was set to be systematically larger
or smaller than K1 by a modest amount in order to provide the temptation to change.

Modelling Learning of One's Own Discounting Taste in the Face of Social Influence

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004965 July 22, 2016 3 / 17



In detail, we approximated the behaviour of participants and simulated the ‘other’ using
hyperbolic value discounting followed by a softmax rule:

Q0 ¼ R0

QD ¼
RD

1þ KD

pD ¼
1

1þ e

Q0 � QD

T

ð2Þ

where πD is the policy probability for choosing the delayed option, Q0,QD are the action values
for choosing the immediate or the delayed option (of values R0, RD) respectively, and T is the
motivational currency or softmax temperature that quantifies how much a unit change in
objective outcomes affects choice probability. In assessing K1 during the experiment, in order
to determine Ko and realize the other’s choices, we made the assumption that T = 1, since previ-
ous work [11] with this method suggested that this would suffice. However the results below
are based on fitting T too.

The 60 trials of phase 1 comprised 30 from a standard set covering a wide range of values of
K, and an interleaved set of 30 from an adaptive algorithm. The latter calculated a probability
distribution over the possible values of Kb characterising the participant under Eq 2; and then
chose a pair of options likely to reduce the uncertainty (entropy) of that distribution as much
as possible.

In phase 2, we chose Ko based on K1. Previous results [11] and pilot data led us to expect
that the population would have an approximately normal distribution of ln(K) with a mean of
roughly μ = −4.5 and a standard deviation of roughly σ = 2.3. We therefore chose ko = ln(Ko)
(using lower case k = ln(K)) to be shifted from kb by one σ either towards or away from −4.5
with probabilities 2/3 and 1/3 respectively, simulating real-life encounters that were on the
whole not unlikely. We presented participants with options much like the ones in phase 1, but
now asked participants “What would [name] choose?” [name] was gender-matched to the par-
ticipant and likely to be encountered among their peers. It was chosen from a selection of typi-
cal names given to children born in England in the last 20 years. Once the participant made
their choice on behalf of the seeming Other, we simulated the other's choice (using T = 1) and
gave the participant veridical feedback as to whether or not they were correct. We presented
trials until either the participant got 8 correct answers out of the most recent 10, or 60 learning
trials were completed.

In phase 3, we interleaved mini-blocks of 10 trials 'choose for self', which were as in phase 1,
and 10 trials 'choose for other', which were as in phase 2. We instructed participants that one of
the 'choose for self' trials from the entire task would be chosen at random and the choice they
made paid out for real at the appropriate delay. Participants were instructed that the task was
about their “true preferences” and there was no financial incentive to make correct choices in
the 'choose for other' trials.

The task was thus very similar to that used by Nicolle and co-workers [14], but optimized
for delivering to large community samples. We relied on the experimental design but also in
the control experiments performed by Garvert and co-workers [11] to guard against explicit
instrumental explanations as well as against simple forms of priming accounting for the change
(See SI of [11]). For example we made it very clear to the participants that they would be paid
according to the preferences they expressed about themselves only; and that there was no
“right or wrong answer” regarding what they chose for themselves. Indeed we were “interested
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in their own preferences”. The task was coded in MATLAB 2012a running on 12' screen lap-
tops with the Cogent graphics toolbox (see Acknowledgments).

Models
We first consider how to model choice variability along with modal preference, as this will play
a key role in understanding preference shift. If we faced a participant with just a single delayed
option and found that they chose it, say, 60% of the time, we would not be able to tell if this
was because of a relatively high variability parameter (T) or because of relatively weak modal
preference (K). However over many trials we used a range of triads of R0 and RD and D to dis-
ambiguate the two parameters. In Eq 2 for example this is possible as K only affects the compo-
nents of the delayed choice whereas T affects both (see also supporting information S1 Text
and S1 Data).

Preference-temperature (KT) model. We first fitted the model of Eq 2, this time with T
being a free parameter, to phase 1 of the experiment. We refer to this as the KT model. The
maximum-a-posteriori (MAP with flat priors) fit for k, T according to this are called kb,Tb

Preference-uncertainty (KU) model. A recently popular way of parameterizing variability
is to consider subjects as sampling a value of k from a distribution, with choices being made
according to a deterministic version of Eq 2, i.e. T! 0. It is natural to consider a normal distri-
bution for k (i.e., a log-normal distribution for K):

pðkÞ ¼ N ðk;m; uÞ ð3Þ

Subjects will choose the delayed option if k< ln[(RD / R0−1) / D]; the probability of this
occurring under a single sample from the distribution of Eq 3 is

pD ¼ Cðln½ðRD=R0 � 1Þ=D�;m; uÞ ð4Þ

whereC denotes the cumulative density of the normal distribution.
If the distribution of Eq (3) reflects the beliefs of the subject about k, then this model can be

seen as using a form of matching to equate the uncertainty of beliefs with the variability of
behaviour. This can also be seen as a form of random preference model [18,19], which main-
tains that at any given trial agents are uncertain about their exact preference for different
options. Hence they draw preferences probabilistically, giving rise to variable behaviour and
also to the possibility of learning from others. It is consistent with the recent emphasis on sam-
pling in optimal decisions [20–22]. This contrasts with the KT model, where decision noise is
independent from the preference between options (Eq 2). The latter is the value difference
Q0−QD, well-known to the agent. The KT model is in that sense a ‘trembling hand’model
where an error rate dilutes preferences [23–25].

One characteristic of the log normal distribution implied by Eq 3 is its scalar property rela-
tive to K (rather than k), in that, for a fixed standard deviation u, the largerm, the larger the
standard deviation of K, and hence the more variable the temporal discounting behaviour asso-
ciated with samples (with the additional proviso that the indifference point of the options faced
by the agent remains in a similar relationship to the increasing m; we use this at a population
level to explain observations about temporal preferences in the S1 Text). We use the subscripts
1 (and if necessary 3) whenm and u are fitted to separate phases of the experiment. However
we use s, o in the context of the preference-shift model as will be explained below. Note that the
KU model is Fechnerian in form [26] as it compares the log of a stimulus attribute, ln[(RD /
R0−1) / D] to a criterion ln K subject to the noise u of Eq 4. It is only when the issue of inference
over preferences arises that our (random- preference) attribution of variability to the prefer-
ence term comes into its own, as we shall now see.
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Uncertainty-relevance model of preference learning. Under the KU model, subjects have
an explicit belief distribution over their temporal preferences (given in Eq 3). If they are not
certain about k, and if they think that the ‘Other’ comes from a reference population that bears
on their own possible preferences, then they may updatem,u in the light of what they learn.
We shall use subscript r for this reference population to which the self will refer. Note that
unlike much other work in the Bayesian inference literature, inference here is not about the
state of the world, e.g. the type of the Other [27,28], or about whether to conform or not to
avoid costs [2], but rather about the tastes (i.e., preferences) of the self.

The probabilistic assumptions that underpin this account go as follows. The agent uses a ref-
erence population distributionN ðkr; s2

r Þ to describe the likely similarity between their own
preferences and that of the ‘other’. They thus consider both their own, and the other's, true val-
ues ks,ko to be drawn from this with independent Gaussian noise with variance s2

r . They are
assumed to know s2

r , since this characterizes how well the reference distribution captures them
and the 'other'. However, they do not know kr (and will thus integrate it out, assuming a flat
prior).

Although ks is their true temporal discounting preference, participants are uncertain about
it. We model this uncertainty by saying that the subjects have information ds about ks equiva-

lent to a normal likelihood distribution pðds; ksÞ / expð�ðks � k̂sðdsÞÞ2=2ŝ2
s ðdsÞÞ, where k̂sðdsÞ

is the mode of the likelihood and ŝ sðdsÞ the width. Similarly, the choices do of the ‘other’ license

inference about their true preferences as pðdo; koÞ / expð�ðko � k̂oðdoÞÞ2=2ŝ2
oðdoÞÞ, where

k̂oðdoÞ is the mode of the likelihood, and ŝ oðdoÞ its width.
Putting these probabilistic facts together, we find that do provides information about kr;

which then provides information about ks as a prior. More formally,

pðksjds; doÞ ¼
R
kr ;ko

pðks; kr; kojds; doÞdkodkr
/ R

kr ;ko
pðds; dojks; kr; koÞpðks; kr; koÞdkodkr

/ pðds; ksÞ
R
kr ;ko

pðdo; koÞpðks; kojkrÞpðkrÞdkodkr
/ N ðks; k̂sðdsÞ; ŝ2

s ðdsÞÞ
R
kr ;ko

N ðko; k̂oðdoÞ; ŝ2
s ðdoÞÞpðksjkrÞpðkojkrÞdkodkr

¼ N ðks; k̂sðdsÞ; ŝ2
s ðdsÞÞN ðks; k̂oðdoÞ; 2s2

r þ ŝ2
oðdoÞÞ

ð5Þ

Where the last step was obtained through convolving the three Gaussian terms to be inte-
grated by completing the square of the product exponent. The resulting product of Gaussians

is also Gaussian with variance s2
s ¼ ðŝ�2s ðdsÞ þ ð2s2

r þ ŝ2
oðdoÞÞ�1Þ�1 and mean as per:

pðksjds; doÞ / N ðks; s2
s ½ŝ�2s ðdsÞk̂sðdsÞ þ ð2s2

r þ ŝ2
oðdoÞÞ�1k̂oðdoÞ�; s2

s Þ ð6Þ

The structure of probabilistic inference in the preference-shift model is depicted in Fig 1.
Exactly the same rationale implies that a participant’s belief about ko can be written using

s2
o ¼ ðŝ�2o ðdoÞ þ ð2s2

r þ ŝ2
s ðdsÞÞ�1Þ�1 as

pðkojds; doÞ / N ðko; s2
o½ŝ�2o ðdoÞk̂oðdoÞ þ ð2s2

r þ ŝ2
s ðdsÞÞ�1k̂sðdsÞ�; s2

oÞ ð7Þ

We assume that Eq 6 is used to make choices for the self during phase 3; and that Eq 7 is
used to make choices for the ‘other’ during phases 2 and 3. We fit the Gaussian likelihoods that
enter these equations in a filtering manner, i.e. choices at trial t use the likelihood of all data
1. . .t-1.
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There are, however two further problems to do with choice variability. First, participants are
not incentivised in an explicit monetary way to make correct choices for the other; we thus con-
sider them to arise according to Eq 4, but relaxed according to a temperature parameter

τo, so that (dropping the dependency on R0,RD,D) the policy πDo of choosing the delayed
option on behalf of the ‘other’ is further transformed:

pDo  
p

1
to
Do

p
1
to
Do þ ð1� pDoÞ

1
to

ð8Þ

Finally, self-choices were subject to a lapse process, implying that the true probability of tak-
ing and action (e.g. the delayed one) was

p0D ¼ pDð1� xÞ þ x=2 ð9Þ

Fig 1. Uncertainty-relevancemodel of preference shift. Before information about the ‘other’ is seen, beliefs about the reference
distribution are uninformative and so the original beliefs about the self are proportional to the likelihood p(ds; ks). Once data do about the
other are seen, the likelihood of ko combines with the conditional probabilities that ks and ko as they are drawn from the reference
distribution; this combination multiplies the beliefs about the self to yield the posterior (shifted) ks. This is a schematic representation of Eq 5
(see e.g. its penultimate line).

doi:10.1371/journal.pcbi.1004965.g001
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We considered that the choices of the ‘other’, do, might be subject to a similar lapse process.
However in the event ξ assumed low values (median 0.015) so we considered the effect of the
other’s lapse rate to the eventual choices of the participant to be negligible.

Thus the Bayesian model had 5 parameters in total: k̂sðdsÞ; ŝ2
s ðdsÞ, characterising self-knowl-

edge; σr determining the compactness of the reference class; and τo,ξ, the excess other- and self-
noise parameters. When it came to the PS model we fitted these 5 parameters to all the data

from each participant at once. We will denote the fitted parameters k̂s ¼ ms;
ffiffiffiffiffi
ŝ2

s

p ¼ us for

brevity.

Data analysis
We first fitted the classic hyperbolic model and the preference-uncertainty model to the data
from phase I of the task. We found (see below) that the preference-uncertainty model was of
sufficient quality to use as the backbone for the preference-shift Bayesian schema.

The mainstay of our model-fitting was Markov-Chain Monte Carlo (MCMC) with weakly
informative priors and the Component-wise Hit-And-Run Metropolis algorithm, implemented
in the ‘LaplacesDemon’ software package [29]. All point estimates reported here are the medi-
ans of the posterior distributions of the respective variables (once stationarity was achieved).
The phase 1 data were fitted with fixed-effects models (KU and KT). A full hierarchical Bayes-
ian, random-effects analysis of the PS model had too high a dimensionality (740x5 = 3700
parameters) to be fit using MCMC. We therefore fitted it in stages. First, we fitted each individ-
ual participant separately, using uninformative priors and a Laplace approximation to the max-
imum-likelihood as initial conditions–a fixed-effects approach. Second, we used the point
estimates of the parameters for each participant to construct an estimate of the distribution of
each parameter over our sample. To this effect, and in the first instance, we ignored a small
minority of participants whose data did not constrain the model well, i.e. where the stationary
distribution was not achieved within 2 million un-thinned samples and / or when the effective
sample size was less than 100, indicating poor mixing. Third, following the philosophy of type-
2 or empirical Bayesian maximum-likelihood fitting [30], we used our estimate of the sample
distributions of the parameters as priors for re-estimating individual parameters.

Results

Preference-temperature vs preference-uncertainty models
We first present the analysis of phase I of the experiment, as the results crucially informed our
modelling choices for all further analyses. The classic KT model yielded a distribution of pref-
erences over the population that was close to the ones we expected. We expected a mean ln(K1)
of roughly μ = −4.5 and a standard deviation of roughly σ = 2.3. We obtained -4.67 with
SD = 1.82, justifying a posteriori our choice the choice of Ko for the simulated Other being 2.3
ln (+/-)units away from the Self in phases II and III. T had a mean of 1.54 (SD = 1.36).

We unexpectedly found a powerful correlation between K1 and T in the population, as seen
in Fig 2A. This hints that the KT formulation is problematic, as there is nothing in the con-
structs themselves that suggest that, for example, people who prefer not to wait should not
exercise their preference as consistently as those who do wait. Such a high correlation raises the
possibility that these measures of discounting and behavioural variability may influence each
other, either as a neural phenomenon or an analytical artefact.

The KU formulation abolished this correlation (Fig 2B). We therefore performed model
comparison to determine whether it sacrificed quality of fit to achieve this, or whether it was as
good in this respect. In the event not only did the KU model capture the correlation between
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preference and noise in a natural manner, but it also fit the data slightly more proficiently,
despite having the same number of parameters. 64% of participants had a better log-likelihood
over phase 1 choices for the KU model (SEM 1.8%, Wilcoxon p = 1.7e-11, BIC difference over
738 participants = 740, mean KU log-likelihood = -23.8, mean KT LL = -24.3).

In the KU formulation, even if the meanms and variance us of ln(K) are uncorrelated across
the population, the mean of K and the variance of K will in general be correlated. Through the
sampling procedure inherent to KU this will also affect the variability in choices, although the
precise nature of this effect will depend on the actual options used to probe discounting (See S1
Text). Fig 2B shows that the inferred values ofm1 and u1 across the population are indeed
uncorrelated. Reassuringly,m1 correlates closely with the inferred ln(K1) (r = 0.99, p< 1e-10)
and u1 being very significantly correlated with Ts (and ln(Ts); r (ln(Ts), u1) = 0.61, p< 1e-10).
The former relationship is reassuring as option pairs that are indifferent with respect to one
model are also indifferent with respect to the other. The latter relationship is also reassuring in
terms of face validity.

Having established KU as our preferred parametrisation, we examined the demographic dis-
tribution of discounting preferences. There was no significant dependence ofm1 or u1 on gen-
der.m1 declined slightly but significantly with age, Pearson r(m1, age) = -0.10, p = 0.0065. The
same was true for the amount of preference shifting towards the ‘other’, with older participants
shifting slightly less r(|m3 -m1 |, age) = -0.12, p = 0.0021.

Fig 2. a.Correlation between kb and Ts in the population. ln(Ts) is plotted against kb, as the latter is already in ln units and the two enter Eq 2 on the same
footing. Pearson r = 0.55, p < 1e-70. b. Similar plot for the KU parameterisation. r = -0.03, p = 0.37. Note two 'clumps' near ub ~ 0 (or ln(Ts) approx. -4 to
-2) which appear separate frommain cloud of points.

doi:10.1371/journal.pcbi.1004965.g002
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Uncertainty–Relevance model of preference shift
Fig 3 shows how participants shifted their preferences in response to learning about the Other's
preferences. The parameters plotted here are descriptive, representing the mode of the Laplace
approximation to the likelihood in the pre-exposure vs. post-exposurem3−m1; versus the
modal preferences of the Other-self estimated from all the choose-for-other trials. We note
that the vast majority of participants shifted in the direction of the Other without overtaking
them, just as the uncertainty-relevance model would predict.

We then examined how the two key parameters used to describe preference-shifting in the
model related to the variance in the data. We found that σr and u were very significantly corre-
lated with the shiftm3-m1 over the whole sample, just as expected from the model. In terms of
partial correlation coefficients, r (m3-m1, σr; u) = -0.56, p< 1e-30 while r (m3-m1, u; σr) = 0.61,
p< 1e-30, and positive shifts being in the direction of the other’s discounting preference
(Fig 4).

As noted for speed and convenience, we used a highly approximate procedure to estimate
the K1 that was used as the basis of Ko. It is possible that biases in this procedure could lead to

Fig 3. The difference betweenm-for-self after learning and before learning as a function of partner’s
preference. This difference (ordinate) is plotted against the difference betweenm -for-other andm-for-self-
before-learning. Two clusters form because we exposed participants to others that were 2.3 ln units away in
modal preference (in either direction). Red is the identity line (fully adopting other's preference). Green is the
linear regression line. It has a positive slope as expected (p ~ 0.0), but a negative intercept, denoting a slight
overall bias for shifting towards more patient preferences.

doi:10.1371/journal.pcbi.1004965.g003
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incorrect estimates of the key parameters of the shift model (notably the fixed, low temperature
T used which is not a good approximation to our final estimates). We explicitly tested for this
by exploiting the fact that we randomized whether subjects were asked in phase 2 to learn
about a more patient or more impulsive other. Systematic differences in the parameters
between these two possibilities would imply procedural problems. There was some modest evi-
dence for this: those who faced a more patient Other were fitted with a slightly larger u (mean
1.27 vs. 1.11; effect size ~ 0.24; Wilcoxon p = 0.00046) and slightly smaller σr (mean 1.06 vs.
1.21; effect size ~ 0.44; Wilcoxon p = 5.7e-8). We were not able to establish a confound in the
model that explained the slight overall bias evident in Fig 3 towards becoming more patient.

We also checked whether there were subsets of participants that shifted their preferences in
a systematic way, over and above the uncertainty-relevance model. We thus allowed for an
arbitrary perturbation in k between phases II and III of the experiment. This would allow the
model to produce a high likelihood for any preference shift, as long as preferences were cap-
tured as well by the same basic discounting model (here, the KU model) but it would be agnos-
tic as to the mechanism of this. Examples might be participants that overtake the ‘other’, or
shift in the wrong direction (i.e. outside the triangles defined by the identity line and x-axis in
Fig 3). We then compared the BIC values for the KU vs. perturbed models. The BIC difference
in favour of the perturbation model was> 2 in 7.4% of participants and> 6 in 4.2% of partici-
pants. We therefore concluded that the overall fraction of participants where there was strong
evidence for a process not captured by our main model, according to BIC conventional values,
was in fact small.

Finally, we examined whether σr or u explained the age-dependence of preference shifting
that we observed. σr was not significantly correlated with age but u declined (r = -0.14,

Fig 4. The apparent discounting shiftma-mb, considered in the direction of the ‘other’, was regressed against σr and u in the whole sample,
N = 738. This shift is plotted against each variable removing the variance predicted by the other. We focused on variable inter-relationships, thus ignoring
y-intercept terms. a. Shift vs. reference dispersion σr. The bigger the likely distance (σr) the smaller the shift. b. Shift vs. preference uncertainty u is also in
the direction predicted by Bayesian reasoning. We note that in each case the population consists of a denser core of points but also of penumbrae that
slightly dilute the overall fits (coloured lines). Here we follow this more conservative whole-sample regression; see S1 Text for post-hoc quality-controlled
analyses.

doi:10.1371/journal.pcbi.1004965.g004
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p = 7.7e-5), and this fully mediated the decrease of preference shifting with age (shifting partial
r for age: -0.06, p = 0.11; for u: -0.10, p ~ 0.0). The amount of variance in preference malleabil-
ity explained by age (and mediated by u) in this sample was small.

Discussion
We used the paradigmatic case of discounting to model how learning about someone else's
preferences may lead to a form of learning about one's own. We tested our models in a new
empirical study of over 700 young people which allowed us to make a number of novel contri-
butions. First, we provide evidence that in the presence of social information, Bayesian reason-
ing updates beliefs about preferences, i.e. the personal tastes themselves, as opposed to beliefs
regarding profitable decisions given one's tastes. Second, we show that uncertainty about one's
own preferences, reflected in behavioural variability in the absence of social influence, is an
important basis for a subsequent preference shift. Third, we introduce the notion of ‘reference
dispersion’, which relates to epistemic trust [31,32], and which quantifies ‘how likely is it that
my taste are similar to those of an other’. It is thus an estimate of similarity, and can be manip-
ulated in future studies to provide further experimental tests of our model. The novel finding
here is that 'reference dispersion' is less than the actual dispersion in the study population,
quantifying how participants privilege the experimental context. Finally, we report evidence
that decreasing uncertainty about one's own preferences, rather than a change in reference dis-
persion, accounts for a decreasing malleability in preference with increasing age.

Our study was motivated by an observation that discounting preference shifts take place
even if there is no obvious, conventional, motive such as direct reward for making choices like
another person's, explicit social approval, or direct gains that accrue to others. Further, the
original study on which this one builds indicated that simple priming mechanisms, such as
repeating previously performed choices, do not account for taste shifts [11]. Previous studies
which examined taste change under social influence in domains such as preferences for facial
characteristics of the opposite gender [5] addressed similar issues but did not examine their
computational basis. Inferring ‘the best discounting factor for me to like’may entail analogous
distal benefits as inferring ‘the right facial characteristics for me to like’–the crucial point being
that such distal benefits are not explicitly calculated but absorbed into tastes.

In our account, subjects were modelled as being uncertain about their own tastes and this
uncertainty was reflected in the choices they made even before they learned about the prefer-
ences of others. We captured these characteristics in the taste-uncertainty (KU) model by
assuming that subjects maintained and updated a distribution over their own taste and sam-
pled from it to make a choice on a trial. This overall model fit the subjects’ behaviour better
than the classic softmax (KT), and also explained away an otherwise surprising correlation
between the hyperbolic discounting parameter K and the temperature T (see also S1 Text).
Sampling matched behavioural variability to uncertainty, which is consistent with recent sug-
gestions about the role of sampling in choice [20,33], and goes beyond the view of random
preferences describing the distribution of tastes of individuals across a population, or from
inevitable imperfections within a neural system [26]. The better fit of the KUmodel, the depen-
dence of preference-shift on choice variability and the decrease in taste uncertainty with age
suggest that choice variability substantially reflects uncertain taste rather than just ‘trembling
hand’, taste-independent response noise. Uncertain taste does not by itself necessitate beha-
vioural variability like the one we have observed. For example, people might have estimated
their own modal taste (by taking many samples) and acted on that. However in real life the
expression of preference uncertainty in matching behaviour may also be beneficial, somewhat
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analogous to that of resolving the exploration/exploitation dilemma by Thomson sampling
[20,21].

Having a model that depends on beliefs about one’s own tastes renders it straightforward to
see how such beliefs might normatively be influenced by evidence. However using observations
of others as evidence about the self entails some interpretation. The question becomes one of
epistemic trust [32], i.e., (a) deciding the extent to which the people whose choices are being
observed are part of the same reference group as oneself, and, (b) whether that behaviour is
indicative of their true tastes, or rather could be part of a game-theoretic interaction with ineffi-
cient or incomplete mechanism design [34]. In our simplified framework, the parameter σr, the
variability about the (unknown) mean of the reference population that is assumed for both self
and other, captures the degree of epistemic trust; one limitation of our experiment is that we
have little independent evidence about the value of σr. We noted that the mean of the fitted σr =
1.13 is a little less than half the actual population dispersion forms,, ~ 2.7. This could itself
come from an implicit assumption by the participants that the other preferences they are learn-
ing about are of special relevance to them—an experiment-induced epistemic trust.

We also observed some asymmetry in participants' shifting, with an overall bias for shifting
in a more patient direction (Fig 3, green regression line intercept). Our models accounted for
this by a smaller σr (and slightly greater u) for those facing more patient partners. It could be
that the experimental procedure exerted an influence on preferences over and above the differ-
ence between the participant's and the Other's preferences. People may have a slightly skewed
belief distribution about their preferences, or perhaps a skewed sense of similarity. They may
consider themselves more similar to patient people than impatient ones (perhaps because of
some social stigma). Alternatively this effect may be independent of social reasoning, repre-
senting for example a slow reversion to the mean or a practice effect. In our conceptualization
σr summarises all sources of relevance that influence learning and its fitting may absorb phe-
nomena like the slight overall shift towards more patient choices. This should be understood
further. We consider it important for future studies to actively manipulate interpersonal con-
text on the basis of specific hypotheses about factors that determine epistemic trust (e.g.
increased relevance induced by experimental context, out-group vs. in-group belonging) and
factors best described separately (reversion to the mean, enhanced conformity to patient
behaviour due to social stigma against impatience despite explicit instructions).

In such a large community sample individual variation will be more complex than our sim-
ple parametrization allowed. For example, 5.4% (40/738) of participants were fitted with very
low, almost zero, taste uncertainty parameters–evident in the two clusters of points with very
low u or T in Fig 2. They always chose either the larger or the sooner option. To avoid cherry-
picking the data, we included all subjects in the statistical analysis. It may be, however that our
options did not correctly span their temporal preferences, as they might have been either far
too patient or impulsive. Equally, it is possible that, in such a large sample, they did not follow
some aspects of the instructions. Most interesting is the possibility that a single preference
model (here, the simple hyperbolic) is an approximation that needs to be refined by consider-
ing differences in the very structure of preferences across individuals, as beautifully suggested
by Hey, Carbone and co-workers [35]. Additional analyses (SI section S3) confirmed that the
Bayesian K-shift model accounted rather precisely for the majority of participants who closely
followed the hyperbolic model while a further, exploratory analysis provided evidence for a dif-
ferent sort of uncertainty-based updating in those who do not closely adhere to hyperbolic dis-
counting. It would be important for future research to address in more detail the variation of
the structure of preference functions across individuals.
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In summary, future research should dissect the nature of similarity or relevance (σr) in our
theory through hypothesis-based independent manipulations. In addition, individual variabil-
ity of preference functions could be addressed in more detail (cf. SI section S3).

In terms of further applications, our findings suggest that other preference measures may be
subject to uncertain beliefs and a similar inferential process. It would therefore be useful to
have a clearer separation of the ‘taste’ vs. the ‘explicit consequence’ components of preferences
in other domains; we acknowledge that this is not straightforward: for example, the issue of
‘pure time preference’ is still a matter of debate with respect to temporal discounting. One rele-
vant domain is development, where it would be important to use longitudinal, rather than
cross-sectional, studies to test our explanation that preference malleability changed with age
because of increased preference certainty. There are also clinical implications–our findings sug-
gest a mechanism by which therapeutic and malign social influence may operate. For example,
clinicians use group treatments to ameliorate disorders now thought to be associated with
increased discounting, especially alcohol and drug addiction. In group contexts, the presence
of members that have already changed their behaviour and are close to 'graduating' is thought
to be an important positive influence on new members [36]. Conversely, being a member of a
group containing those with societally unfortunate preferences could lead to maladaptive
contagion.

Supporting Information
S1 Text. Supporting Information for ‘How people use social information to find out what
to want in the paradigmatic case of inter-temporal preferences’.
(DOCX)

S1 Data. R compressed file with experimental data (incl. README).
(RDATA)

S1 Fig. KUModel fit to the modal preference and the preference uncertainty. The fit was
parametrised as per the KU model, using only trials from the phase 1 of the experiment, before
exposure to the choices of another agent. A participant with fitted values near the middle of the
population distribution of Fig 2 is shown. The three rows of plots represent the values of the
(log) preference parameter, the (log) uncertainty parameter and the model deviance–a measure
of model fit derived from the log-likelihood—as more samples are obtained from the posterior
distribution of the parameters (the converged Markov Chain). The three columns show: a., d.,
g.: Values at consecutive thinned samples, illustrating that stability has been achieved. b., e., h.:
smoothed histograms representing the posterior distributions. Note that they have very well
defined peaks both for k and for u. c., f., i.: Autocorrelation plots indicating that the degree of
thinning was appropriate–i.e., that consecutive samples (from the first column) used to con-
struct the posteriors (second column) were independent.
(TIFF)

S2 Fig. Scatter-plot of synthetic data. This is analogous to Fig 2A but produced by applying
the experimental task to artificial agents. These agents followed the KU model with uncorre-
lated km and ku.
(TIFF)

S3 Fig. Plots of Equation S1 for a set of agents with constant u and increasingm. The plots
show the temperature parameter that an agent with the same modal discounting preference, but
following the classic KTmodel, has to have in order to display an indistinguishable policy. a. The
same option pair, Ro = 1 vs. Rd = 3,D = 10 is presented to all agents. b. The same Ro and D are
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used as in a., but Rd gradually increases from 2 to 4. This results in the indifference point between
the options being 1 x u belowm, but this is not important as long as kind tracksm.
(TIFF)

S4 Fig. Preference shift plotted against explanatory parameters. This is based on fitting a lin-
ear regressionm3 –m1 = β0 + β1 u +β2 σr + β3 u σr to the ‘quality-contolled’ data set only. In all
plotsm3-m1 is considered positive if towards the preferences of the Other, and negative in the
opposite direction. a. Shift magnitude vs. reference population dispersion σr in the entire popu-
lation. Grey: resulting regression line according to the ‘quality controlled’ dataset. b. Similar
plot restricted to the ‘quality-controlled’ dataset. This picks out the area of high correlation in
a. and excludes its penumbra. β0 to β3 are derived from this set, N = 466. c. preference variabil-
ity is also tightly related to shift in this set, while d. the u σr interaction also makes a contribu-
tion, as in the simulated data. p for all β is< 1e-16.
(TIFF)

S5 Fig. Evaluation of the ‘KTC’model of discounting and Preference shift. a. and b. For
about 2/3 of participants in both phases 1 and 3 the confidence interval for C includes zero
(‘KTC model’: the value of the delayed option is adjusted by and individual parameter C). c.
Comparison of BIC values for KU model vs. KTC model. The two grey lines indicated +/- 6
BIC units, conventionally taken to be ‘strong evidence’. Many more points are below these
lines than above (403 vs. 108; ΔBIC = 744.9 over 648 participants in favour of KU). The KU
model gives a better account of behaviour over the whole group, but there is a tail of partici-
pants where the KT+C model fits better. For most of these participants preference shifting is
also better described as a change in C. d. Relationship between decision variability and prefer-
ence shift for the 70 participants whose preference shift was best fitted by a change in C accord-
ing to the KTC model. There is a very strong correlation between decision variability and
shifting, as a Bayesian update would predict (r = 0.39, p = 0.00048 overall; r = 0.64, p = 3e-12
excluding the single outlier).
(TIFF)
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