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Following the increasing availability of DNA-sequenced data, the genetic structure of populations can now be
inferred and studied in unprecedented detail. Across social science, this innovation is shaping new bio-social
research agendas, attracting substantial investment in the collection of genetic, biological and social data for large
population samples. Yet genetic samples are special because the precise populations that they represent are
uncertain and ill-defined. Unlike most social surveys, a genetic sample’s representativeness of the population
cannot be established by conventional procedures of statistical inference, and the implications for population-wide
generalisations about bio-social phenomena are little understood. In this paper, we seek to address these problems
by linking surname data to a censored and geographically uneven sample of DNA scans, collected for the People of
the British Isles study. Based on a combination of global and local spatial correspondence measures, we identify
eight regions in Great Britain that are most likely to represent the geography of genetic structure of Great Britain’s
long-settled population. We discuss the implications of this regionalisation for bio-social investigations. We
conclude that, as the often highly selective collection of DNA and biomarkers becomes a more common practice,
geography is crucial to understanding variation in genetic information within diverse populations.
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Introduction

Recent social scientific interest in bio-social relations –
the ways in which individual biology interacts with
social environments to produce specific patterning of
health and social outcomes – have spurred more efforts
to take into account biological information about
individuals, including their DNA. Increasing data
availability and continuous advances in computational
power have made feasible the analysis of human DNA
for a variety of research problems, and substantial
investments are being made in the UK to assemble
DNA records into purpose-built genetic databases
(Medical Research Council 2010; WTCCC 2014) or
even as part of social surveys (McFall et al. 2012).

While today’s genetic research is vaunted as con-
tributing widely to social science research agendas,
geographic variations in biological population charac-
teristics have as yet received rather little attention. This
contrasts with the history of genetics, which has been
intimately bound up with the geography of populations
and their movements. Traditional approaches to study-
ing human genes (e.g. Cavalli-Sforza et al. 1994;
Cavalli-Sforza 2002) clearly demonstrate that observing
gene frequency in geographic space improves if not
enables inquiry into the genealogy of populations. But

while population genetics has been researched exten-
sively at broader (global, continental) scales, identifying
more granular, genetic structure within populations has
proven difficult because of data and computational
limitations (Biswas et al. 2009; Leslie et al. 2015;
Winney et al. 2012).

Geneticists use the term ‘population structure’ to
denote genetic differences between population sub-
groups, such as regions within a country – and it is such
scales that likely provide a range of factors influencing
individual bio-social and biomedical outcomes (e.g.
genome-wide association studies: Bodmer and Bonilla
2008; Cardon and Bell 2001; WTCCC 2007). Fine-
grained population structure results from genetic
differentiation within populations arising from a num-
ber of genetic and demographic processes (Cavalli-
Sforza and Bodmer 1971). In the simplest case, if
population structure is not taken into account, the
identification of causal pathways linking traits, genes,
social and geographical factors may be confounded
(Marchini et al. 2004). A promising and widely applied
way of accounting for population structure is through
geographic analysis of bio-genetic or related population
attributes (Cheshire 2014), but such studies have
hitherto been based on incomplete or otherwise limit-
ing data.
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Current studies on geographic population structure
Current studies of geographically detailed genetic
structure can be divided into two types: those that use
biological characteristics of sampled volunteers (e.g.
Capelli et al. 2003; Cavalli-Sforza et al. 1994; O’Dush-
laine et al. 2010; Quintana-Murci et al. 2004; WTCCC
2007) and those that use surnames as non-biological
surrogate indicators of population characteristics
(Darlu et al. 2012; Degioanni et al. 2003; Jobling
2001). Scientists have recognised ever since the 19th
century that many surnames are associated with
distinctive population characteristics, and their associ-
ation with genetic variation developed in the late
20th century (Lasker 1985, 6). Some correspondence
between regional gene frequencies and local surname
mixes has been verified in a variety of national contexts
(e.g. Barrai et al. 2001 2002; Boattini et al. 2012;
Cheshire et al. 2013; Dipierri et al. 2011; Herrera Paz
et al. 2014; Longley et al. 2011; Rodr�ıguez-Larralde
et al. 1998 2000). In the UK, many surnames emerged
under locally or regionally varying naming conventions,
for example by lineage, place names or regional
description of occupation (Cheshire et al. 2009). This
remains manifest in regional clusters of surnames in
Great Britain today: in other words, most surnames do
not occur evenly across the country, but rather remain
concentrated locally, much like genetic variants
(Cheshire and Longley 2012). Such concentrations
persist over time, despite the relatively minor cumula-
tive effects of internal migration.

The two types of studies have different strengths and
weaknesses. Biological studies are close to the subject,
as they collect either direct information on DNA
structure or closely associated biological data (mtDNA,
blood groups, antigens). Although no longer pro-
hibitively expensive for bio-social investigations, cost
issues nevertheless restrict the size of attainable sam-
ples, and participation in investigations may systemat-
ically exclude some groups (e.g. religious groups, social
classes, ethnic groups). Surname-based studies are
based on an indirect indicator of genetic structure,
although they rest on specific assumptions about
migration and may be subject to other confounding
factors. Yet these studies are able to draw on nearly
complete population registers, making it possible
therefore to identify the geographical extent of sub-
populations within a population-wide representation.

Combining gene and surname geographies
In this paper, we seek to combine the strengths of both
types of studies and relate a collection of DNA samples
to Great Britain’s regional surname geography. We
argue that as biological concerns become part of social
science research agendas, so hitherto neglected aspects
of geographic sample designs need to be addressed in
order to enable valid inferences about the population

at large in any specific time period. Social surveys often
seek to establish a basis to generalisation through prior
stratification or posterior sample weights using indica-
tors of demographic and social similarity that are
deemed material to the survey’s objectives. In biolog-
ical and bio-social research, however, it remains an
open question as to what should be regarded as a
representative biological sample that accommodates
the effects of population structure. This question does
not, of course, bear on the general problem that
defining populations according to national boundaries
or other geographical delimitations creates uncertain-
ties with respect to non-territorial shared population
characteristics, such as genetics, identity or social
attitudes (Nash 2013). This problem, although common
to all sample-based investigations in social science,
becomes particularly apparent in the study of bio-
genetic population characteristics and points towards a
tension between inductive and deductive approaches to
defining populations. Although this paper cannot
resolve this debate, it may nevertheless provide a first
step by addressing the question of sample design in
highly selective and unstructured DNA samples. We
develop a three-stage approach to infer the geography
of fine population structure and draw conclusions with
regard to the strategic role of geography in the wider
inquiry into bio-social relations.

Data

The sample
We drew on genotyped DNA-sequences of 2039
volunteers, which were collected in 2008/09 as part of
the Wellcome Trust-funded study of ‘The People of the
British Isles’ (POBI). The sample was designed with a
view to representing known population subgroups as
well as to identify fine population structure within the
broader British population (Leslie et al. 2015; Winney
et al. 2012). For this purpose, volunteers were only
recruited to the study if their four grandparents were
born in rural Britain and no more than 80 kilometres
apart from each other. ‘Rural’ areas are held to be
more homogeneous and were defined as lying at least
two kilometres away from towns with present-day
populations of 125 000 inhabitants or more (see
Winney et al. 2012). Since the four grandparents
account for the entire genetic material of an individual,
proximate birthplaces of grandparents reduce the
likelihood of admixture, especially if they were born
at a time when rural migration destinations were rare.
The mean birth year of grandparents was 1885.

Figure 1 (left) shows the geocoded locations of each
volunteer’s four grandparents for whom the locations
were available (n = 2019) alongside the ‘ancestral
mean geographic location’ of each volunteer, defined
as the centroid of the four points. The geographic
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distribution of the sample is uneven, as we deem typical
for DNA scans taken from participants based on their
consent and the requirement of volunteers to attend
events or clinics. In the case of the POBI sample, the
restriction to recruit only from rural areas additionally
skewed the geographical distribution. While the sample
covers large parts of northern, central and southern
England, the area of mainland Scotland is underrep-
resented. By contrast, other areas are overrepresented,
consistent with the POBI design: Anglesey and Pem-
brokeshire in Wales, Orkney and Aberdeenshire in
Scotland and Cumbria, East Anglia and Gloucester-
shire in England.

The motivation for restricting sampling to rural
families that are long established in their respective
areas was to emphasise historic spatial patterning by
excluding genetic material that had been recently
imported into localities – for example, through rural–
urban or international migration. The sample thus
presents a historic pattern of the genetic traits of the
grandparents’ generation that have been passed down
to the present-day established residents. In view of
historic rates of mobility and migration, which chiefly
occurred over short distances (Pooley and Turnbull
1998, 65), it may be speculated that the spatial genetic
structure has remained relatively stable since historic
invasions prior to the 12th century and the wide advent
of the system of given and family names.

Population register
In order to provide a population-wide basis to com-
parison, an appropriate population register should
satisfy the following criteria:

1 it should contain surnames as proxies of biological
characteristics;

2 it should be a nearly complete micro-dataset
referring to the same time period that the sample
material refers to, i.e. to the time of the grand-
parents’ births (around 1885);

3 it should allow removal of surnames known to
have been imported from abroad in the more
recent past and which may be considered to be
‘native’ as a consequence;

4 it should map to the spatial extent of the sample
with similar inclusion/exclusion criteria, and more
specifically it should only contain rural records
according to the definition of ‘rural’ used in the
sample design.

Population registers that hold surnames (criterion 1)
and at the same time provide a nearly complete set of
micro-data for the time period of interest (criterion 2)
are the digital micro datasets of the 1881 Censuses of
England, Wales and Scotland (Schurer and Woollard
2000a 2000b). These datasets are available for aca-
demic use through the ESRC-funded UK Data Service
(www.ukdataservice.ac.uk). There are no 1881 Census
data available for Northern Ireland. Records that refer
to populations that likely have a recent migration
history were removed using a surname classification
tool (Mateos 2007): only records of people with Anglo-
Saxon, Irish, Scottish, Cornish and Celtic names are
retained (criterion 3). The 1881 Census of Population
holds information about the residential parish of each
record, which are partially geocoded (Southall 2012
2014) and can therefore be linked to the geographic

Figure 1 The ‘POBI’ sample locations (left) and population density of ‘rural’ parishes in 1881 (right)
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definition of rural areas used in the POBI project (i.e.
areas that are at least two kilometres from towns with
present-day populations of 125 000: criterion 4).1

Applying each of the four criteria results in a popula-
tion that can be considered to best match a potential
reference population for the sample (Table I).

Analytical design to create a
regionalisation based on population
structure

The general strategy to regionalise Great Britain based
on population genetic structure and surname geogra-
phies comprises three stages, in which each POBI
participant’s genetic profile is compared to the 1881
surname ‘profile’ of the sampled individual’s grandpar-
ents’ residential area. Genetic profiles can be generated
by measuring the genetic similarity between each pair
of participants. This similarity is termed ‘co-ancestry’
because it can be interpreted as the probability of any
two participants being descended from a common
ancestor. Participants can be classified into any number
of l groups based on co-ancestry, and here we will
describe these groups as ‘genetic clusters’.

An equivalent procedure can be followed for areas
based on their surname profiles. The similarity of
surname profiles between areas, which is termed
‘isonymy’, can be used to classify areas into any number
of k groups. Combining these approaches, we can link
the genetic cluster of a POBI sampled individual with
the isonymy group based on the residence of the
participant’s grandparents. The following three-stage
approach is then carried out.

1 Global correspondence. We establish the agree-
ment between any combination of l genetic
clusters and k isonymy groups. For instance, we
may group participants into two genetic clusters
and two isonymy groups and determine the
proportion of participants that belong to the same
pairing of genetic cluster and isonomy group. By
extension, this can be performed for any parti-
tioning, e.g. two genetic clusters and three
isonymy groups, three genetic clusters and three
isonymy groups and so forth. Using an index of

partition agreement, we identify the combinations
that best match based on how many participants
of the same genetic cluster fall into the same
isonymy group.

2 Local correspondence. Having identified the best-
matching combinations of genetic clusters and
isonymy groups, we proceed to measure the degree
to which each isonymy group is likely to reflect
‘true’ population genetic structure based on evi-
dence from the POBI sample. We use two indices,
Dominance and Distinctiveness. Dominance mea-
sures how homogeneous each isonymy group is in
terms of the number and size of genetic clusters it
contains spatially; and the Distinctiveness of each
isonymy group measures the extent to which the
genetic clusters it contain occur in other isonymy
groups. We combine these two indices to form an
overall index of Regional Integrity.

3 Regionalisation. We identify the constellation of
isonymy groups that maximises Regional Integrity.
We start with the most disaggregate, best-agreeing
combination identified in the measurement of
global correspondence (Stage 1) and merge the
isonymy groups that show a low value of Regional
Integrity. Iteratively, we arrive at the optimal
regionalisation of Great Britain, which best spa-
tially represents population structure based on the
evidence found in the genetic sample and the
population register.

R (R Development Core Team 2014) was used as the
software with the base, classInt, reshape2 and plyr
packages for data management (Bivand 2013; Wickham
2007 2011), stats, clue and modeest for statistical
analysis (Hornik 2005 2015; Poncet 2012) and maptools,
rgeos, ggplot2, sm and spatstat for geospatial analysis
and visualisations (Baddeley and Turner 2005; Baddeley
et al. 2013; Bivand and Lewin-Koh 2014; Bivand and
Rundel 2014; Bowman and Azzalini 2014; Wickham
2009).

The following sub-sections provide more technical
details on how genetic profiles and isonymy groups are
defined and how the indices of partition agreement and
Regional Integrity are produced. The less technically
interested reader may skip these sub-sections and
continue with the results.

Preparation: linking sample and register
DNA scans of many individuals can be summarised in a
similarity matrix measuring the percentage of DNA
that most likely stems from a near common ancestor
between each pair of individuals in the sample (for
more details see Lawson et al. 2012; Leslie et al. 2015).
This ‘co-ancestry matrix’ can be used for genetic
profiling (often involving cluster analysis of individuals
producing a classification of DNA profiles). Lawson

Table I The reference population after application of the
four inclusion criteria

Populationa Surnames Parishesb

Total 29 912 298 518 153 7203
With local surname 27 213 993 61 286 7203
With local surname and
rural

18 692 871 57 511 6848

aPopulation registers are not complete. bSome parishes have been
grouped to meet a minimum population threshold of 750 people.
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et al. (2012) produced a co-ancestry matrix for the
POBI sample and Leslie et al. (2015) completed the
genetic profiling with an additional, probabilistic
adjustment to the resulting assignments of individuals
to 53 genetic profile classes (see Leslie et al. 2015,
supplementary material p. 2, for details). Both the co-
ancestry matrix and the adjusted profile assignments
were provided for geographical analysis.

A comparable procedure can be applied to surnames
for small areas. We calculate local concentrations of
surnames in 1881 parishes and compare each pair of
spatial units with respect to similarity of their surname
compositions. This logic follows Lasker’s (1977) appli-
cation of isonymy – ‘the recurrence of the same
surnames in different ancestral lines in the same
pedigree’ (Lasker 1969, 309) – to estimate relatedness
between or genetic similarity of populations based on
the relative frequency of common surnames:

gij ¼
X

s

ns:ins: j
2ninj

ð1Þ

where ns.i and ns.j are the number of bearers of surname
s in populations i and j respectively.

When the logic of isonymy is transferred to areas,
the repeated calculation for each area results in a
matrix of isonymy between each pair of areas. This
isonymy matrix is comparable to the co-ancestry matrix;
the former describes similarity between areas in terms
of isonymy, while the latter describes similarity between
individuals in terms of hypothetical co-ancestry.

Stage 1: Measuring global correspondence
We compare the geographical distribution of genetic
profiles with the geography of different surname mixes
in local areas (parishes). The surname mixes are
calculated by inverting the isonymy matrix to a distance
matrix (using the negative logarithm of the matrix
values) and running Ward’s hierarchical clustering
algorithm on it. The result is a taxonomy of areas by
their surname compositions, available for any number
of isonymy groups k. A similarity index, the Adjusted
Rand (Hubert and Arabie 1985), is used to measure the
correspondence between two alternative partitions of
the POBI sample: one partitioned by genetic cluster,
and the second by isonymy group of the local area.

The generic formula of the Adjusted Rand is

Radj ¼ R� EðRÞ
maxðRÞ � EðRÞ

where
R ¼ ncons

2

� �
n
2

� ��1

ð2Þ

where R is the actual index value, E(R) the expected
value, max(R) the maximum possible value, n all
observations and ncons observations in consonant pairs.

For more details on the reproduction of the statistic
see Hubert and Arabie (1985) and Albatineh et al.
(2006). The index ranges from �1 to +1, where +1
indicates identical partitioning by the two partitions k
and l and �1 opposing partitioning. A value of 0
indicates random partitioning or no correspondence.

Stage 2: Developing local indices of Regional
Integrity
In a second step, we seek to establish the local
correspondence between co-ancestry and isonymy.
For each isonymy group, we measure the degree of
correspondence to the co-ancestry information of the
sub-sample that falls into the spatial extent of the
isonymy group. Comparable in kind to studies of alpha
and beta diversity in ecology (Magurran 2004), we
break down local correspondence into Distinctiveness
and Dominance.

We measure Distinctiveness as the extent to which
the genetic clusters found in areas of the same isonymy
group do not also occur in other isonymy groups. If, for
example, 100 per cent of observations of a genetic
cluster occur only in one isonymy group, the genetic
cluster is characteristic of that isonymy group and thus
contributes to its degree of Distinctiveness. The logic is
similar to that of the Location Quotient (LQ), which is
a quantity that is widely applied in geography to
describe relative density of phenomena in one region
relative to other regions (Burt et al. 2009). We modify
the LQ to range between 0 and 1 as follows:

DISk ¼
X

l

n2kl
nk � nl ð3Þ

where nkl is the number of observations in isonymy
region k that belong to genotype l.

Hence for each isonymy group, Distinctiveness is the
sum of the regional share of total observations that
belong to a given genetic cluster weighted by the
prevalence of the genetic cluster within the group. In
other words, the Distinctiveness can be conceived of as
weighted proportional LQ of all genetic clusters that
occur in one region. Since it uses proportions, the
Distinctiveness index can be interpreted as a probabil-
ity that the regional population is distinct from the
remaining regional populations.

The second component, internal homogeneity, can be
expressed as the Simpson Index ofDominance (Simpson
1949). The index measures the degree to which one
group is dominant relative to the remaining groups.

DOMk ¼
X

l

nkl
nk

� �2

ð4Þ

It describes the probability that two randomly chosen
individuals from a region belong to the same genetic
cluster.2 Yet, while a probabilistic reading is useful, it
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should be noted that some values of the indices are more
likely than others because of unequal sizes of isonymy
groups. It is necessary to adjust for chance, as is donewith
the Rand index (Equation 2), whereby we subtract the
expected index value from the actual value and divide it
by the difference between the maximum possible value
and the expected value. Themaximum possible value for
both Distinctiveness and Dominance is 1 in both cases.
The expected value for Distinctiveness of a group,
however, is equal its share of observations; hence the
unadjusted index is not comparable across regions.
Similarly, if genetic clusters were distributed randomly,
the expected Dominance index in each region would be
1/L where L is the number of genetic clusters. Under
adjustment, a value of 0 indicates randomness and 1
perfect departure from randomness.3

A combined index of Regional Integrity can be
calculated by multiplying both indices together.

RIk ¼ DISk:adj � DOMk:adj ð5Þ

where the subscript adj indicates the adjusted version of
the index.

Stage 3: Identifying the optimal regionalisation
Based on the Adjusted Rand Index and sample size, we
identify the combination with the highest level of
granularity that seems acceptable. We then proceed
with the following steps.

1 We merge the regions to the next coarsest level as
indicated by the next local maximum of the
Adjusted Rand index.

2 If the Regional Integrity index of the merged
regions is higher than all its sub-regions, the
merger is accepted; otherwise we keep the sub-
region with higher Regional Integrity and merge
the remaining sub-regions.

3 We recalculate local correspondence indices for
the resulting partition.

4 We repeat steps 1 to 3 on the resulting partition
until no further improvements occur or the
coarsest level of regionalisation is reached.

Results

Global correspondence: which level of
regionalisation seems best?
As described above, we cluster the inverted isonymy
matrix using Ward’s clustering algorithm of parish
groups for 1881 with population weights to generate a
full range of between 2 and 80 clusters of areas with
distinct surname compositions. The dendrogram is a
useful way to display the entire taxonomy of areas,
showing the distances (in statistical space) at which
individual areas (at the bottom) are assigned to
iteratively increasing clusters (Figure 2a). Examining
the resulting taxonomy of areas for their geographical
attributes, we can note that a strong regional grouping
of areas by isonymy emerges from this classification
procedure, although no geographic information was
processed as part of it. Parishes successively merge into
regional agglomerations, such as Wales, northern and
southern Scotland, Cornwall, Devon, the Midlands,
southern England, northern England and so forth.

(a) (b)

Figure 2 Dendrogram of 1881 rural parish groups of Great Britain classified by isonymy (left) and Adjusted Rand
Index values of agreement between l genetic clusters and k isonymy groups (right). Each line represents a genetic cluster

solution with l e {2..53}
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These clusters are further merged to larger regional
agglomerations that form Wales, Scotland and southern
and western, northern and eastern England. The latter
merge into England, which then together with Scotland
and finally Wales make up a single cluster of all areas.
This taxonomy is consistent with previous findings
(Cheshire and Longley 2012; Longley et al. 2011),
although it should be noted that urban parishes are
excluded here, as is the whole of Northern Ireland, for
which no 1881 Census data are available.

Based on a similar clustering procedure, study
volunteers have been assigned a genetic cluster (a
group of volunteers whose genetic characteristics indi-
cate that they likely share similar ancestry) at successive
stages. At each level, participants have been grouped
into 2, 3, 4, etc. up to 53 clusters resulting in an
assignment matrix, developed and provided by Leslie
et al. (2015). Together with the isonymy class of their
ancestral places of birth, the genetic cluster and area
isonymy class of each participant can be compared.
First, we assign each volunteer his or her genetic profile
for each of the l cluster solutions (l e {2..53}). We then
append to the volunteer information the membership
of each isonymy group k (with k e {2..80}) based on the
location of the grandparents’ birth places. Since there
are four grandparents who may each reside in a
different isonymy group, the most common group
among the four grandparents is assigned to the
participant. There can be ties in relatively rare circum-
stances (7.5 per cent for k = 20 isonymy groups) when
two grandparents or each single one belonged in a
different isonymy group. In this case, we selected one
of the groups randomly.

We then measure the level of agreement between
various l and k using the Adjusted Rand similarity index
(Hubert and Arabie 1985), which calculates a ratio
between consonant pairs and dissonant pairs of obser-
vations and adjusts these for chance. If, for example,
two participants are both assigned to an isonymy group
X and a genotype Y, they are consonant pairs of
observations. If another participant is assigned to X and
genotype Z, she forms a dissonant observation to the
other two. The index ranges from �1 to +1, where 0
indicates random partitioning or no correspondence, 1
identical partitioning and �1 opposing partitioning,
which is the case when the entire sample is grouped
into one class according to one partition and each
sample record is in a distinct class in the other
partition. Note that the index is aspatial; it measures
the level of agreement between two classifications
irrespective of geographical proximity or contiguity.

Plotting the index value of each partition (or cluster
solution) of genetic profiles l against each of isonymy
group k presents a picture of declining correspondence
as the number of classes k increases. We are interested
in the combinations of k and l where the index exhibits

pronounced local peaks in order to identify those
partitions that agree most. The index shows a global
peak at l = 3 genetic clusters and k = 3 isonymy groups
with an index of .605 (Figure 2b). The next best local
peak is at l = 11 genetic profiles and k = 5 isonymy
groups, followed by other local peaks at l = 11 and
k = 7, l = 15 and k = 14, l = 15 and k = 20 and so
forth. At k = 13 isonymy groups, the partition with
l = 15 genetic profiles remains superior to any other
genetic profile partition.

Figure 3 shows the geography of these selected
combinations of isonymy groups and genetic clusters.
The left-hand maps show parishes for 1881 coloured by
isonymy group. The right-hand maps show the POBI
sample using the centroid location for each set of four
grandparents’ locations, coloured by genetic cluster.
We use kernel density estimation with varying band-
width as a visual aid to highlight geographical concen-
trations of genetic profiles, where they exist. The
bandwidth was chosen to be slightly wider than the 95th
percentile of the distribution of nearest neighbour
distances among observations of each group. This has
proven to usefully display tendencies of spatial con-
centration as it captures the majority of point-to-point
distances within a group.

The partition with k = 3 isonymy groups divides
Great Britain into three regions: Wales, England and
Scotland (Figure 3a). In the genetic cluster solution
with l = 3, three genetic clusters can be identified that
broadly correspond to Wales, England-Scotland and
Orkney.4 With the Adjusted Rand index (Radj) of 0.61,
this combination indicates high certainty about the
presence of population structure between those regions.

The next partition with a peaking Radj of .284
comprises a combination with k = 7 surname regions
and l = 11 genetic clusters (Figure 3b). One of the
isonymy groups covers Scotland almost entirely. Four
genetic clusters concentrate in this region, with two
distinct genetic clusters detected in Orkney. A second
isonymy group emerges in northern England, where a
number of spatially overlapping genetic clusters can be
observed. It appears that in isonymy groups 1 and 2, the
genetic diversity of populations is higher than the mix
of surnames in Scotland and northern England would
suggest at this level. Isonymy groups 3, 4 and 5
encompass the widespread genetic cluster 15, which
reaches into the northern English isonymy group 2. A
sixth isonymy group emerges in south-west England,
encompassing two concentrations of genetic clusters
there: one in Cornwall (genetic cluster 3) and one in
Devon (genetic cluster 10). Isonymy group 7 – a Welsh
cluster – corresponds to the concentration of three
distinctive genetic clusters.

Figure 3c provides a more fine-grained picture of
isonymy and co-ancestry, albeit with lower correspon-
dence, as indicated by an Radj of .158. The seven
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(a)

(b)

(c)

Figure 3 Isonymy groups (left) and the geographic distribution of genetic clusters (right). (a) k = 3 isonymy groups and
l = 3 genetic clusters with Radj = .605. (b) k = 7 isonymy groups and l = 11 genetic clusters with Radj = .284. (c) k = 20

isonymy groups and l = 15 genetic clusters with Radj = .158
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isonymy groups split into further sub-regions. Scotland
now consists of three sub-regions and Wales splits into
a southern (15) and a northern (18) cluster with two
additional isonymy groups (16, 20) along the border
between England and Wales. These four clusters in and
around Wales correspond geographically to genetic
clusters 1 and 14, 4 and 6. The south-west of England
now splits into two distinct isonymy groups covering
Cornwall (19) and Devon (12) and thereby correspond-
ing to genetic clusters 3 and 10. The isonymy groups in
central and southern England suggest much greater
population heterogeneity than is indicated by co-
ancestry: here the genetic cluster 15 prevails. The
opposite can be observed in Orkney: here we find more
genetic heterogeneity than surnames would suggest.

Local correspondence: geographical variation in
correspondence
The succession of isonymy maps suggests different
levels of regionalisation that best reflect the population
in genetic terms. Yet, a regionalisation purely based on
global correspondence of genes and surnames conceals
local variations in the heterogeneity of each measure: it
is clear from Figure 3 that the genetic heterogeneity
found in the sample varies geographically, and the
same is also true of heterogeneity in naming conven-
tions in different parts of the country.

Based on this reasoning, we define high local
correspondence as a property of an isonymy group
when it encompasses observations that, in terms of
their co-ancestry, are distinct from other isonymy
groups (Distinctiveness) and simultaneously similar to
each other (Dominance). Together the two components
convey a sense of confidence we can ascribe to the
degree to which an isonymy group truly represents
population structure. We call this the Regional Integrity
of an isonymy group in terms of the population
structure found in the sample.

Figure 4 shows Distinctiveness, Dominance and
Regional Integrity for all three most agreeing combi-
nations of isonymy regions and genetic clusters. For the
first combination (Figure 4a), the one with the highest
level of global correspondence, the Welsh isonymy
region has the highest level of Distinctiveness with a
value of .721. The English isonymy region has the
second highest level of Distinctiveness (.559). Although
it encompasses 89 per cent of genetic cluster number 3
(cf. Figure 3a) and therefore leads us to expect high
Distinctiveness, its larger size compared to other
regions – 80 per cent of observations fall in this region
– produces a higher expected value of Distinctiveness
and hence depresses the index value. The Scottish
isonymy region exhibits the lowest level of Distinctive-
ness (.466), which can be explained by the fact that,
although Scotland hosts the distinctive population that
is classified as genetic cluster 2, these comprise just 40

per cent of the observations in Scotland. The remaining
60 per cent belong to the mostly English genetic cluster
3, which reduces Distinctiveness and even more so
Dominance. In terms of Dominance, the English region
is the top-scoring one because within its regional
extent, only genetic cluster 3 prevails. The Welsh
region hosts all observations with genetic cluster
number 1, but the observations in the England–Wales
border region, which make up a quarter, belong to
genetic cluster number 3. These patterns attest to a
higher level of Regional Integrity to the English region,
followed by Wales and Scotland. Given that in the latter
two regions, the Distinctiveness is higher than Domi-
nance, a more granular division may lead to improve-
ments in Regional Integrity. Conversely, it is less likely
that Regional Integrity in the English regions can be
improved unless further splits in terms of isonymy and
granularity are spatially congruent.

The next combination with seven isonymy regions
and eleven genetic clusters changes some of the
patterns (Figure 4b). Now, the Scottish region exhibits
a higher level of Distinctiveness than other regions.
This is because the genetic clusters that formerly
extended across southern Scotland and England now
split into more local genetic clusters number 5, 8 and 9
(cf. Figure 3b). The latter two are largely confined to
southern Scotland and only a minority of the genetic
clusters 5 and 11 remain in this region. Given a
resulting lower expected index value of Dominance, the
more granular genetic clusters increase homogeneity,
adding up to an overall improvement of Regional
Integrity for the Scottish isonymy region. The
unchanged Welsh region has greater Distinctiveness
following regional subdivision of the formerly English
genetic cluster into new genetic cluster number 6,
which prevails in the England–Wales border region.
Given further splits, population heterogeneity increases
and therefore the Dominance score remains low in
comparison with other regions. A highly distinctive
region has emerged in the south-west, covering
Cornwall and Devon. Given that this new region
corresponds to two highly localised genetic clusters,
the level of Dominance is lower. The picture reverses
for England. While most English regions lose Distinc-
tiveness, their internal homogeneity remains high as the
widespread genetic cluster 11 is dominant among their
corresponding observations in the sample. The result-
ing map of Regional Integrity appears rather invariant.
The most consistent region is the Devon and Cornwall
cluster, while the least consistent regions are the south-
eastern isonymy groups. Regional integrity has
improved for the Scottish region compared to the
coarser partitioning, while it has decreased for Wales.
There and in Devon and Cornwall, Dominance is lower
than Distinctiveness which indicates that greater
integrity could be gained by further regional division.
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(a)

(b)

(c)

Figure 4 The distinctiveness (left), dominance (middle) and regional integrity (right) indices for each combination with
high global correspondence. (a) k = 3 isonymy groups and l = 3 genetic clusters. (b) k = 7 isonymy groups and l = 11

genetic clusters. (c) k = 20 isonymy groups and l = 15 genetic clusters
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The final combination with the highest granularity
confirms the tendencies found in the previous one
(Figure 4c). Twenty isonymy clusters and 15 genetic
clusters reduce the number of highly distinctive regions
to one in north-eastern Scotland (which includes parts
of the Orkney and Shetland islands), two Welsh
regions, Cornwall, Devon and to a lesser degree
southern Scotland. The southern and eastern English
regions are the least distinctive, which arises because
the widespread English genetic cluster number 15 did
not split significantly compared to the last combination.
The latter is reflected in a high level of Dominance
among the south-eastern English isonymy clusters.
Four of these show a value of 1, implying that there
is only one genetic cluster present among the corre-
sponding observations. The absolute number of obser-
vations varies between 89 and 155 in these regions.
Now, the south-western isonymy clusters exhibit higher
values of homogeneity along with clusters in northern
Wales and northern Scotland. At this higher granular-
ity, it seems that the isonymy clusters reflect more
homogenous populations in most parts of the country
based on the sample information on co-ancestry. Yet,
Regional Integrity suggests that the lack of Distinctive-
ness in some of the isonymy clusters outweighs the
benefits of viewing homogeneous populations. Merging
some of the English regions, for example, would better
reflect population structure in Great Britain than the
highly granular solution. The only regions that show a
high likelihood of Regional Integrity are Devon and
Cornwall, and northern Wales. There is a second tier of
intermediate values, which can be found in Scotland
and southern Wales. This arises because of higher
Distinctiveness in southern Wales and Scotland–

Orkney, suggesting that another split of this region
may improve integrity values.

A triangulated geography of population structure in
Great Britain
We use Regional Integrity values at various levels of
granularity to derive a synthesised picture of Great
Britain’s geography of population structure, assembling
the isonymy groups and genetic clusters that result in
the highest Regional Integrity. This is done by an
iterative process that begins with the most disaggregate
combination of genetic clusters and isonymy groups,
which is above a given threshold of global correspon-
dence as measured by the Adjusted Rand Index. This
threshold may be defined based on sample size, but
essentially it is a subjective decision as to which level of
the Adjusted Rand Index is deemed acceptable. The
regions are then merged to the next coarsest level, and,
if Regional Integrity of the merged region improves
compared to all previous sub-regions, the merger is
accepted; otherwise, only the sub-region with the
higher Regional Integrity than the merged region is
retained and all other sub-regions are merged. In this
way, at each iteration, the improvement of Regional
Integrity is measured and the process of aggregation
terminates when no further improvements occur or the
coarsest level of regionalisation is reached.

Figure 5 shows the resulting synthesised geography
of population structure in Great Britain. Note that
mergers of sub-regions that belong to different parent
regions are not allowed. The resulting partition corre-
sponds to eight isonymy regions based on the 15
co-ancestry groups. Scotland is now composed of far
northern, north-eastern and southern sub-regions. The

Figure 5 The synthesised regions of population structure in Great Britain (left) and their corresponding regional
integrities (right)
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large English region comprises all former sub-regions
except Devon and Cornwall, which each remain sepa-
rate. Wales is divided into a northern and southern
part. The resulting Regional Integrity indices range
between .210 in southern Wales and .850 in Cornwall.

As a whole, the map highlights those areas of Great
Britain where we can be most confident about the
existence of population structure – northern Wales and
Cornwall – given the information in and geographic
distribution of the POBI sample viewed jointly with the
geographic concentration of surnames. We should be
more cautious in Scotland and southern Wales, where
further sampling would be necessary to increase
certainty about population structure. By viewing the
components of Regional Integrity, we find that the high
uncertainty in southern Wales arises because of internal
heterogeneity, that is lack of Dominance among the
prevalent genetic clusters. Further sampling in this
region may help to attain more clarity about population
structure in southern Wales. This may well lead to a
further split of southern Wales or a merger with
adjacent regions. The same conclusion can be drawn
for southern Scotland, while the contrary applies to
northern Scotland, where the sample suggests a high
level of homogeneity but a lower level of Distinctive-
ness. In Scotland, the sampling is particularly uneven,
with nearly half of all Scottish observations made in
Orkney. Again, a more geographically representative
sample may increase confidence about population
structure in Scotland and improve the integrity of
regional partitioning.

In summary, by means of the algorithm that
maximises Regional Integrity, we are able to develop
the most robust regionalisation of population structure
in Great Britain given the joint evidence of a genetic
sample and a corresponding nearly complete popula-
tion register. Geographical heuristics facilitate a quan-
titative assessment of uncertainty and highlight regions
where more information is needed, be it through
further in-depth study of local surname patterns or
measuring genetic characteristics in the corresponding
sub-sample.

Discussion: implications for geography and
bio-social research

This paper deploys geographical heuristics to contextu-
alise a present-day study of the human genetics of Great
Britain using historic Census of Population data. The
heuristics match present-day genetic data with historic
surname geographies and then calculate a number of
measures of correspondence. Global correspondence
measures provide a general picture of regional differ-
ences in population structure at different levels of
granularity, confirming pronounced differences
between three of the UK countries as well as regional

differences between northern England, south-western
England, and northern and southern Wales. Finer scale
regionalisations are less distinctive but are nevertheless
important in some parts of the country, such as Devon
and Cornwall. After using global correspondence to
filter the most matching partitions of isonymy and
ancestry data, partly bespoke measures of local corre-
spondence are used to determine where isonymy and co-
ancestry correlate. This information improves the
regionalisation and addresses vagaries that are a conse-
quence of the highly selective genetic sample, the
genotyping and overlapping geographies of genealogy.

Significance and interpretation of the
regionalisation
The resulting regionalisation draws the most likely
boundaries of fine population structure based on the
joint evidence emanating from genome and surname
geographies. Despite the apparent crispness of the
regionalisation, the boundaries should not be under-
stood as representing sharp transitions of bio-genetic
characteristics but rather mark a possible classification
based on gradients of bio-genetic similarity. The
Regional Integrity index itself reflects the degree to
which regional populations may be considered to be
distinctive. The significance of difference is also an
outcome of the level of granularity of both classifica-
tion by co-ancestry and classification by isonymy: the
more intricate the classification, the less marked are
the differences between them in absolute terms.

In view of the relevance of population structure, the
regionalisation provides important information for bio-
social research. Bio-social relations are likely to take on
different patterns in each of the different regions, if the
regions effectively represent underlying population
structure. Although the regionalisation is generated
from data that indeed pertain to an ancestral genera-
tion, the regional patterns have enduring resonance
today, as genetic material is passed on over genera-
tions, thus carrying forward population structure of
ancestral generations. Even the cumulative effects of
more recent migration are unlikely to mask the genetic
divergence between sub-populations (or random
genetic drift: Hartl and Clark 1989, 306), and our
regionalisation is of relevance beyond the long-settled
rural populations of Great Britain. If, in addition, we
consider that the vast majority of people remain within
100 kilometres of their birthplace (Pooley and Turnbull
1998, 65), the present-day population structure of
most of the country is unlikely to have profoundly
changed.

The Regional Integrity index additionally provides a
means to assess how well population structure might be
represented if, for example, urban areas were included
in the reference population or a contemporary popu-
lation register were used in the comparative analysis. In
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both cases, global and local correspondence measures,
notably the Regional Integrity index, would decrease in
some regions. More generally, our approach could be
used to measure the agreement of a given genetic
sample with a range of different reference populations
in order to ascertain the most appropriate population
frames of the sample. In this way, the uncertainty
resulting from the typically highly skewed and selective
nature of genetic samples can be addressed.

Our regionalisation may also be a useful resource to
inform sample designs of future genetic studies. In the
context of medical and health geography, for example,
sample designs that recruit participants or selects
sufficient observations from each of the eight regions
may be better suited for generalisations about the
entire British population than samples designed only to
reflect conventional demographic and social popula-
tion characteristics. Studies that seek to investigate
particular associations may benefit from sampling only
from one region where the population is likely to be
more homogeneous in terms of genetic characteristics.
Where there are databases that depend on consent
(such as the UK Biobank), separate analyses for each
of the regions or other ways of accounting for the
regional manifestation of population structure may be
useful.

The regionalisation of population structure also
identifies the parts of Great Britain where we should
be relatively more wary of generalising about bio-social
or biological phenomena. Where isonymy and co-
ancestry align, we can be more confident in attributing
biological phenomena (e.g. phenotypes) to the regional
sub-population in general, and bearers of regionally
concentrated names (and their relatives) in particular.
Where they do not align, we have less basis to ascertain
the degree to which a phenomenon is present in the
sub-population. This applies, for instance, to Scotland
and southern Wales, where we do not know whether
the genetic clusters found are characteristics of partic-
ular, sampled individuals, sampling sites, a locality or
the wider region. This uncertainty limits our ability to
assess the importance of phenomena for the population
at large.

Whichever the strategy, triangulation by using
ancillary data is necessary to establish a valid basis for
inference and generalisations. Genetic samples are
likely to remain constrained by prior assumptions on
the genetic structure of populations, arising out of the
results of previous research. They are thus likely to be
highly selective and geographically skewed and may
also lack a clearly defined source population in time
and space. Our findings suggest that this selectiveness
can be countered to some extent by use of surnames as
population-wide genetic indicators, thus providing a
more robust basis for inductive generalisations.

Limitations
Some limitations of this approach should be noted.
First, surname geographies are shaped by processes
that may not accompany genetic diffusion. The consis-
tency of surname adoption across space and time and
the nature of naming conventions affect the signal
quality of a surname with respect to population
structure. In Wales, for example, where a relatively
small number of surnames were adopted at a later
period than in the rest of the country, surname
geographies are much more invariant and thus less
likely to pinpoint population structure. The wide use of
diminutive surnames (e.g. Johnson, Williamson) and
common occupation-related metonyms (e.g. Smith,
Carpenter) further obscures detail – diminutive sur-
names are very common right across Wales and only
indicate specificity to this territory, while metonyms are
often common across the entirety of Great Britain.
Thus while our analysis is informative for most names,
this is not the same as saying that it holds for a similar
proportion of name bearers. Although grouping of
spatially co-occurring surnames should at least in part
counter these difficulties, the impact of naming con-
ventions and histories on surname–gene correlations at
the area level requires further research. The scale of
migration and mixing between migrants and longer
settled residents will further weaken the ecological link
between genes and surnames over time. Indeed,
surnames only function as ancillary correlates to
genetic population structure where surnames are
hereditary, where naming conventions have been
regionally variant at a sufficiently granular geographic
scale and where the majority of the population does not
migrate or migration origins and destinations are
sufficiently definite that they can be accommodated.
Existing studies on surname geographies suggest that
most European and American countries, and Japan,
satisfy these criteria (Cheshire 2014). While ancillary
information is required to ascertain the wider popula-
tion, a genetic sample is required, conversely, to
measure the individual characteristics that are needed
to align surname geographies with underlying popula-
tion structure.

Second, the result of combining data on surname
geographies and genes is in part a manifestation of the
sample design of the POBI project. The degree to
which a region is distinct and homogeneous is still
affected by the number of observations that fall within
a region and how many genetic clusters can be
identified; both characteristics are in turn a result of
sample design. It should be noted, however, that the
Distinctiveness index penalises small numbers of obser-
vations to some extent. For instance, if the sample had
been more skewed within England with the same
observed genetic clusters, some English sub-regions
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with more observations would have increased in their
Distinctiveness. Conversely, regions with fewer obser-
vations would have lost Distinctiveness and thereby
Regional Integrity. Since lower values result in mergers,
and since more observations tend to produce higher
values of Distinctiveness, regions with few observations
tend to merge to larger entities, which is a desirable
effect of the decision algorithm. In all of this, the
sample size required to represent the parent population
depends on the heterogeneity of the characteristic that
is being measured: in the case of genes, this is unknown
at the sample design stage, and in the case of surnames,
this depends on geographies of naming conventions
that at best bear only indirect and partial correspon-
dence with genetic structure of the population. Boot-
strapping may be a useful extension of the procedures
set out here, in order to assign standard errors and
confidence intervals to regional estimates. Yet, given
sufficient observations in each isonymy group (at least
105), this was not felt necessary.

Concluding remarks

Our view is that the analysis set out here combines the
strengths of in-depth genetic surveys with the perva-
siveness of (historic and contemporary) population
registers. In follow-up genetic research it will be
essential to devise sampling strategies that build on
the results of the POBI project in the interests of
improved generalisation. Given that bio-social research
straddles the purview of social similarity and biology,
geography will have a crucial role to play in bridging
the disciplines involved and offer solutions to inform
research designs and interpretation of bio-social phe-
nomena, in particular as bio-social research agendas
become more developed and produce an increasing
number of unstructured, highly selective samples that
significantly depart from standards of social represen-
tativeness. In this sense, the POBI sample is not unlike
many other population datasets. The three-stage
approach presented in this paper – measuring global
correspondence, identifying local correspondence and
bespoke regionalisation – may be an effective way to
deal with such types of unstructured samples and
support contextualised interpretations and valid gener-
alisations that take into account the indefinite diversity
of human populations.
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Notes

1 Digital boundaries for Scottish parishes of 1881 were not
available at the time of the study. Therefore Scottish
census records were geo-coded using 1881 gazetteers
(www.visionofbritain.org) matching 1951 parish bound-
aries with the parish name information available in the
census file. The procedure resulted in approximate geo-
spatial delimitations of 1881 Scottish parishes. Professor
Humphrey Southall and Dr Paula Aucott kindly made the
1881 gazetteer available for our study.

2 A geneticist may observe similarity to concepts related to
estimating population structure from allele frequencies
(Cavalli-Sforza and Bodmer 1971, 343), for example by
means of the Fixation Index FST (see also Hartl and Clark
1989, 282). Here, we seek to measure homogeneity within
a regionally defined, hypothetical sub-population and
hence use an index commonly used in ecology.

3 In contrast to the Dominance index, the adjusted Distinc-
tiveness index can fall below zero in extreme cases, for
example when one region only encompasses one observa-
tion or indeed no observation at all. A negative Distinc-
tiveness value would, however, indicate poor overall
partitioning and would therefore be reflected in a very
low adjusted Rand index.

4 Participants living in Northern Ireland are not processed in
the analysis.
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