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Abstract  

In this paper, we consider solutions to ten of the challenges faced when trying 

to predict an individual’s functional outcome after stroke on the basis of lesion site. A 

primary goal is to find lesion-outcome associations that are consistently observed in 

large populations of stroke patients because consistent associations maximise 

confidence in future individualised predictions. To understand and control multiple 

sources of inter-patient variability, we need to systematically investigate each 

contributing factor and how each factor depends on other factors. This requires very 

large cohorts of patients, who differ from one another in typical and measurable 

ways, including lesion site, lesion size, functional outcome and time post stroke 

(weeks to decades). These multivariate investigations are complex, particularly when 

the contributions of different variables interact with one another. Machine learning 

algorithms can help to identify the most influential variables and indicate 

dependencies between different factors.  Multivariate lesion analyses are needed to 

understand how the effect of damage to one brain region depends on damage or 

preservation in other brain regions.  Such data-led investigations can reveal 

predictive relationships between lesion site and outcome.  However, to understand 

and improve predictions we need explanatory models of the neural networks and 

degenerate pathways that support functions of interest.  This will entail integrating 

the results of lesion analyses with those from functional imaging (fMRI, MEG), 

transcranial magnetic stimulation (TMS) and diffusor tensor imaging (DTI) studies of 

healthy participants and patients. 

 

 

  



Introduction 

In recent decades, it has become increasingly clear that the effect of brain 

damage, after stroke, largely depends on which parts of the brain have been 

damaged.  Most of the evidence has been gleaned from neuroimaging studies that 

have searched high resolution magnetic resonance images (MRI) for brain regions 

that are damaged in patients who have particular symptoms/functional loss.  The 

results of these studies, using increasingly sophisticated techniques to overcome 

age-old challenges (Boxes 1 and 2), are important for identifying “structure-function 

relationships” and functional specificity in the human brain (see Karnath and Rorden, 

2004 for review).  The current paper is concerned with a different set of problems 

that emerge when we attempt to reverse the inference: i.e. predict functional 

outcome from a lesion (Inoue et al. 2014) as opposed to find lesion sites associated 

with a functional impairment. 

Boxes 1 and 2 about here 

 

 

  

The problem with reversing the inference is as follows: the results of 

neuroimaging studies that find brain sites where damage is significantly greater in 

those with poorer performance (VBM, VSLM) or for a group of patients with a 

functional impairment relative to another group without the functional impairment 



(VAL, AnaCOM, MAP-3, PM3), can be driven by a comparatively small subset of 

participants (Figure 1). Unless further analyses are conducted, the results summed 

over groups of individuals do not indicate which of the patients with damage will or 

will not have the functional impairment.   

 

Figure 1 about here 

 

 

In order to provide patients with accurate predictions that they and their carers 

can be confident in, we need to (1) identify lesion-outcome associations that are 

highly consistent across individuals (i.e. low inter-patient variability); (2) confirm that 

the identified lesion-outcome associations predict behaviour in new patients (i.e. 

cross-validation) and (3) develop procedures for introducing this information into the 

clinic (i.e. clinical translation).  The problems and solutions considered in this paper 

focus only on the first of these steps; i.e. identifying lesion-outcome associations that 

are highly consistent across individuals. We use the term “outcome” rather than 

“deficit” or “symptom” because outcome conveys the possibility that a deficit or 

symptom can vary across time (i.e. the effect of recovery). The word “outcome” can 

also be used to describe functional abilities that are normal as well as impaired. 

When describing potential solutions, we distinguish between two different 

goals. Studies searching for lesion sites associated with outcomes typically aim to 

draw conclusions about the function of the underlying brain regions. For example, 

the precentral gyrus above the insula is thought to play a role in articulating speech 

because it is damaged in patients who have speech articulation difficulties (Baldo et 

al., 2011). We refer to this type of goal as a “model-based”. In contrast, when 



predicting outcome from lesion sites, the goal is to find reliable predictive 

relationships, irrespective of whether we understand the underlying functional 

anatomy. We refer to this as a “data-led” account; for more details see Price et al. 

(2010). 

The first three problems described below apply to model-based accounts but 

are not so critical for data-led accounts. We then focus on solutions that affect both 

model-based and data-led accounts. Together both approaches can be used to 

derive a comprehensive understanding of the multifaceted association between 

structure and outcome.  

 

Problem 1 (P1).  Impairments from undamaged but disconnected regions 

It has long been appreciated that damage to one part of the brain might 

disconnect and cause dysfunction in other parts of the brain (Catani and ffytche, 

2005; Mesulam, 1990).  A function that is lost could therefore have been the property 

of the damaged region or undamaged but disconnected regions.  It is important for 

model-based accounts of lesion-outcome associations to establish which of these 

alternative possibilities applies so that they can make interpretations about the 

underlying functional anatomy. In contrast, data-led predictive accounts of lesion-

outcome associations are primarily concerned with whether damage to a region 

causes a functional deficit, irrespective of whether that function was previously the 

property of the damaged region or the disconnected regions. Consequently, we are 

not concerned with finding a solution to this problem at present as long as it is not 

subject to any of the other problems listed below. We note, however, that sometimes 

neurophysiological markers of a disconnection of axonal afferants in an undamaged 

region can be detected. This is referred to as diaschisis which arises when cerebral 

blood flow decreases in a disconnected area (Slater et al., 1977) as a consequence 

of changes in anatomical structure and functional connectivity (Carrera and Tononi, 

2014).  

 

Problem 2 (P2) Damage to the vascular system not the neural system. 

This is a variation of the first problem but refers to cases where a region 

susceptible to vascular damage consistently results in a functional impairment, even 

though the lost function was never a property of the damaged region (Mah et al., 

2014).  For example, if a function is supported by neural activity in Regions A,B and 



C; and each of these regions receives a blood supply stemming from Region V, then 

damage to Region V will impair the function of A, B and C even though neural 

activity in Region V is not involved in computing the function. It is important to 

answer this question for model-based accounts of lesion-outcome associations that 

do not want to misinterpret the contribution of Region V. On the other hand, for data-

based predictions, it is informative to know that a functional outcome consistently 

occurs after damage to Region V, even if the neural mechanisms underlying the loss 

are not fully understood.  We are therefore not concerned with finding a solution to 

this problem at present as long as the lesion-outcome association is observed 

irrespective of lesion size (the importance of which is described in P5 below). 

 

Problem 3 (P3) Damage to the same region impairs different functions. 

If we are concerned with understanding the functional contribution of a brain 

region, it can be challenging to interpret observations that the same region appears 

to be involved in very different functions. In such cases, do the different functions 

share an underlying computation that has not previously been appreciated?  

Alternatively, could the common cause of the different impairments be loss of a 

blood supply that feeds two different neural systems? These questions can be 

difficult to answer particularly when functions of interest only emerge from integrated 

activity across multiple brain regions. A body part analogy here would be the function 

of a finger that contributes to very diverse behaviours (typing or piano playing) 

depending on the combination of other fingers, thumbs and body parts it is 

interacting with, and the precise timing of these interactions. We may be a long way 

from understanding how the brain sustains so many different functions but in terms 

of predicting outcome, it is sufficient to know that loss of a brain region consistently 

impairs a set of functions.  

 

Problem 4 (P4):   Seeing past inter-patient variability 

The issue here is that damage to the same part of the brain can have different 

effects in different patients (Hillis and Tippett, 2014; Koh et al., 2015; Watila and 

Balarabe, 2015).  In light of this inter-patient variability, how can we make accurate 

predictions for new patients? 

There are several reasons to be optimistic.  First, we know that although 

outcome varies substantially across patients for some lesion sites, damage to other 



brain regions can have much more consistent effects. For example, left occipito-

temporal damage typically impairs fast efficient reading (Leff et al., 2006).  We 

should therefore not let inter-patient variability in the effect of some lesion sites 

distract us from identifying consistent effects that would be useful and informative for 

other patients. 

Second, functional imaging studies of healthy participants have shown that 

variability is not just noise, but can inform us about the different ways our brains can 

support behaviour.  Once some sources of variability have been controlled, it 

becomes clearer that functional responses from many brain regions are highly 

consistent across healthy participants, particularly in sensory and motor regions. 

Although consistent functional responses in healthy participants do not predict how 

the brain will respond after damage, they do indicate when inter-patient variability in 

response to damage is unlikely to be due to pre-morbid differences in functional 

anatomy.  

Third, many sources of inter-patient variability have already been identified 

(see Box 3) and can therefore be controlled when searching for consistent lesion-

outcome-associations.  Some relate to the patients themselves, including 

demographic factors and co-morbidities, time post-stroke and therapies that speed 

up the recovery process.           

Box 3 about here 



 

 

Other sources of inter-patient variability relate to basic principles of functional 

organisation and re-organisation. For example, the effect of damage to a region will 

depend on whether other regions that can potentially compensate for the lost region 

are also damaged (see Figure 2).   We have previously referred to the availability of 

alternative neural pathways to support the same task as “degeneracy” (Price and 

Friston, 2002) and found this to be a useful concept in explaining recovery of function 

following damage to the normal system (Price et al., 2010). For example, take the case 

of patients with cortical blindness after damage to primary visual cortex. Although 

these patients have damage to the primary geniculo-striate pathway,  they can learn 

to make a wide range of visual discriminations surprising well in their blind field (Das 

et al., 2014).  This ability to relearn is difficult to explain in the absence of an alternative 

visual pathway. It has now been shown that a second visual pathway exists, in which 

visual information travels from the superior colliculi (in the brainstem) to the cortex 

(e.g. the motion area) via the pulvinar (Berman and Wurtz, 2010). The existence of 

this second pathway, which bypasses the primary visual cortices, can explain many 



intriguing observations in blind subjects (e.g. blindsight), even though the recovery 

capacity through this alternative pathway might be limited.  

The existence of alternative pathways is not limited to the visual system. 

Indeed, recent studies have shown that many abilities can be sustained by different 

pathways, including language processing (Friederici, 2011; Kümmerer et al., 2013), 

word reading (Richardson et al., 2011; Seghier et al., 2008; Yvert et al., 2012), action 

imitation (Mengotti et al., 2013; Tessari et al., 2007), and emotion processing (Pessoa 

and Adolphs, 2010). The point here is that by taking into account the existence of 

different alternative pathways, we can improve our understanding of lesion-outcome 

associations and account for inter-patient variability in relearning and recovery.  Most 

poignantly, we can predict that task performance will be worse when all possible neural 

support system are lost than when one of the possible set are preserved. 

Figure 2 about here 

 

 

In addition to the above sources of inter-patient variability, there are a number 

of reasons why lesion-outcome associations might vary from one study to another. 

These include how the lesion is measured, how the outcome is measured and how 



the lesion and outcome are associated and modelled. In some studies, for example, 

lesions are identified by (i) a neurological expert manually drawing around the 

observable sites of damage (Damasio and Frank, 1992; Bates et al, 2003); (ii) 

automated lesion identification programs that identify abnormal tissue after 

comparing the patient brain to normal brains (Seghier et al., 2008); or (iii) 

quantitatively inferred from image signal in voxel based morphometry (Mehta et al., 

2003).  Likewise, a functional loss may be described in terms of (i) failure to achieve 

a particular task goal (e.g. name an object) which might be caused by a breakdown 

at one of several different computational levels (e.g. failure to see, recognise, 

retrieve the name or articulate speech) or (ii) relative performance on a range of 

tasks (e.g. patients who can recognise objects but cannot name them). Methods for 

relating lesion site to functional loss also vary depending on whether those 

investigating the lesion-outcome association use an anatomical region of interest, a 

functional region of interest, mass univariate lesion analyses or multivariate lesion 

analyses (Chen et al., 2008; Smith et al., 2013; Hope et al., 2014; Zhang et al., 

2014). Finally, inter-patient variability may depend on other factors such as atypical 

performance (e.g. because of fatigue) on the day of the assessment. 

P4 Solutions (S) 

P4_S1) To understand, control and tease apart the relative influence of all the 

lesion and non-lesion factors generating variability in outcome and recovery post-

stroke, we need to conduct standardised assessments on very large cohorts of 

patients who have, collectively, incurred a comprehensive range of brain lesions, and 

differ from one another in measurable ways (see Box 3).   

P4_S2) To test the consistency of a lesion-outcome association, we need to 

include patients who do and do not have impairments. This allows us to check 

whether lesion sites associated with an impairment are also observed in those who 

do not have the same impairment. By including patients who do not have 

impairments, we can also identify lesions that rarely if ever cause an impairment.  

P4_S3) To account for functional reorganisation and recovery after stroke, we 

need to include patients who are tested at multiple time points post-stroke. To 

explain inter-patient variability in the time course of recovery, we also need to 

consider how the effect of time post-stroke varies with many other factors such as 

the patient’s age, prior education, amount and type of treatment, current cognitive 

state and co-morbidities (see Box 3). 



P4_S4) When multiple sources of potential variability have been controlled, 

consistent lesion-outcome associations may be identified either from (a) post hoc 

analysis of lesion sites seen in those who do versus do not have an impairment in 

the function of interest, or (b) lesion overlap maps for patients who have very specific 

functional impairments.  Whether or not a consistent lesion-outcome association is 

observed, further analyses and cross-validation are required (see below).  

 

Problem 5 (P5):  Large lesions dominate lesion-outcome associations. 

A consistent lesion-outcome association should be independent of lesion size.  

If the lesion-outcome association is identified from samples that include patients with 

large lesions, a consistent lesion-outcome association might be misinterpreted.  This 

is illustrated in Figure 3 using the hypothetic neural system introduced in Figure 2.  

Figure 3 about here 



 

 

 

In Figure 3, four patients with the same functional impairment all have large 

lesions that include Region B. This consistent lesion-outcome association, based on 

patients with these large lesions, would therefore lead to the false inference that the 

cause of the impairment in these patients was damage to Region B, i.e. the site with 

100% overlap, when in fact the impairment was variably caused by damage to A, C 

or the connections between these regions. 

P5 Solutions:  

P5_S1) When a region is identified where damage is consistently associated 

with impaired performance, the predictive value of this region needs to be checked 



by investigating the effect of selective damage to the region in patients with focal 

rather than large lesions.  If focal lesions result in an impairment, then we can predict 

that damage to the identified region causes an impairment irrespective of lesion size; 

and test this prediction in future patients.  In contrast, if focal lesions do not impair 

performance then the functional impairment observed in patients with larger lesions 

might be better predicted by the combination of regions that have been damaged 

(see Figure 2 above and Problem 6 below). For instance, a recent study of patients 

with vertigo found an 80% lesion overlap in a core region of the retroinsular 

vestibular network (Dieterich and Brandt, 2015).  However, focal lesions to the region 

of overlap were not consistently associated with vertigo.  Instead, vertigo was better 

predicted by a combination of regions along the vestibular network and the degree of 

inter-hemispheric connectivity (Brandt et al., 2014). 

Note that including lesion size as a nuisance regressor in a lesion-outcome 

analysis (Karnath et al., 2004; Schwartz et al., 2012; Kümmerer et al., 2013) may 

reduce the impact of large lesions on the results but does not directly test whether 

focal damage to a lesion-deficit association causes an impairment. 

 

Problem 6 (P6):  Large lesions have inconsistent outcomes  

For some functional impairments, the size of the lesion might be the best 

predictor of outcome but, when the effect of lesion size is inconsistent, we need to 

understand why some patients with large lesions have the impairment while others 

do not. As illustrated in Figure 2 and 3, and discussed above, the effect of large 

lesions can be explained by the fact that they are more likely to knock out all 

potential recovery systems. An understanding of the underlying neural networks (i.e. 

a model-based account) would help to constrain our interpretation of which regions 

need to be preserved (see Problem 10 below). In the absence of this knowledge, the 

following data-led solutions may be informative. 

P6 Solutions: 

P6_S1)  Large lesions that do and do not cause the impairment of interest can 

be compared to determine whether those causing an impairment have damaged a 

different combination of regions.  

P6_S2) The sample could be expanded to include patients who have focal 

damage to all, or different combinations of, parts of the large lesions that cause 



impairments. In the absence of such data, it remains plausible that untested parts of 

the large lesion caused the impairment.  

P6_S3)  It is also important to assess patients with focal lesions in the early 

stages of their recovery.  Evidence that focal lesions cause impairments early post 

stroke with subsequent recovery would indicate functional reorganisation (i.e. 

alternative pathways take over) that might not be possible when large lesions damage 

all potential recovery systems (see Figure 2).  By collecting evidence of which brain 

regions caused a temporary deficit, the critical components of large lesions might be 

revealed; and predictions as to which large lesions will cause a persistent deficit and 

which will not may become more apparent. 

 

Problem 7 (P7):  Multiple lesion sites cause the same impairment. 

 When a function requires multiple brain regions (i.e. a distributed system), 

then damage to any one of these regions might cause an impairment resulting in 

variability, rather than consistency, in lesion-outcome associations. For example, in 

the hypothetic neural system illustrated in Figure 2, patients with damage to A or C 

would all have a functional impairment but, when grouped together, there would be 

low inter-patient consistency in the lesion-outcome association particularly when 

assessed with univariate models.  Low consistency within a group would also limit 

detectable differences between patients with different symptoms (see Rorden and 

Karnath, 2004). 

P7 Solutions:  

P7_S1) Patients with the functional impairment of interest need to be 

categorised according to their lesion site.  One possible solution would be to select 

patients who have the smallest and most distinct lesions, then group all the other 

patients with the functional impairment according to the degree of damage to each of 

the identified regions; and look for the most consistent lesion-outcome associations 

that might be predictive in future patients. 

Having grouped the patients with the same functional impairment, according 

to their lesion site, further analyses of their functional impairment might reveal subtle 

behavioural differences that were not otherwise observed.   

Subsequent studies would then be sensitive to the behavioural differences 

noted for different regions. Indeed, lesion analyses will be more precise when the 

functions of interest are closest to the underlying computations of different brain 



regions.  We acknowledge, however, that it can be difficult to define the function of 

individual regions, especially when they only contribute in combination with many 

other regions in distributed neural systems (i.e. the function arises from the 

interactions between multiple brain regions). 

P7_S2) A more pragmatic solution is to incorporate information from multiple 

voxels into machine learning algorithms that generate predictive multivariate models 

of the data (Hope et al., 2013; Smith et al., 2013; Yang et al., 2014). We consider 

these approaches further in relation to Problem 9 below. 

 

Problem 8 (P8):  Inter-patient variability in the effect of time post stroke. 

The assumption in the above discussion is that time-post stroke is one of the 

variables that is carefully controlled when identifying consistent lesion-outcome 

associations.  It is important to control time post-stroke because neural plasticity and 

functional reorganisation are known to persist for years after stroke (see Hope et al., 

2013). On the other hand, it is also essential to understand the effect of time-post 

stroke so that we can (i) identify lesion sites that cause short term impairments (i.e. 

lesions that patients recover from), (ii) estimate the speed of expected recovery after 

stroke which could be used to (iii) guide treatment planning, and (iv) provide baseline 

measurements from which to assess the effect of a treatment. 

Measuring the influence of time post-stroke on residual structure-function 

relationships can make lesion analyses extremely complicated because the 

structure-function relationships may evolve in both short term (days) and long term 

(years) time frames.  This requires a multifactorial design to investigate how multiple 

components (lesion sites, behavioural outcomes and time points post-stroke) are 

interacting and how these relationships are affected by the degree of therapy and 

intervention.    

In addition, the effect of time post-stroke on lesion-outcome associations will  

be affected by inter-patient variability in the neural pathways that patients preferred 

to use pre-stroke.  Conceptually, this can be illustrated by considering individual 

differences in using the left or right hand for writing.  A lesion to the motor system 

controlling the right hand will have a more devastating effect in right-handed than 

left-handed subjects. Conversely, a lesion affecting the motor system controlling the 

left hand will have a more devastating effect on left handed than right handed 



subjects. Moreover, within cohort, the speed of recovery will depend on how quickly 

the individual can learn to use their non-dominant hand.  

A second example relates to how healthy controls vary in their preference for 

using one of two possible neural pathways for reading aloud.  In Seghier and Price 

(2010), we found that some participants used a pathway that was routed via the left 

putamen and others used a pathway that was independent of the left putamen. The 

implications are that left putamen damage will have a different effect on reading 

aloud in those who do and don’t use the left putamen pathway. In those that don’t 

use the left putamen pathway, left putamen damage may have minimal effect 

because their preferred pathway isn’t damaged.  In those who do use the left 

putamen pathway, left putamen damage is likely to have an initial impact on reading 

aloud (because the neural pathway they usually use is damaged) but reading aloud 

should resolve when the patient learns to use the alternative pathway (if it is 

preserved). The speed of relearning may also depend on many things including prior 

experience using the alternative pathway and the degree of intervention.  

In summary, when there are alternative pathways for the same task, there will 

be inter-patient variability at the time of the stroke; and also in the time course of 

recovery.  We would expect, however, that inter-patient variability will decrease as 

time post stroke increases because, with time, those that are slow using the 

alternative pathway may eventually catch up with those that were quick to use the 

alternative pathway.  

 

P8 Solutions 

P8_S1) Time post-stroke should be carefully considered when investigating 

the consistency of lesion-outcome associations across patients. Consistent 

impairments are most likely to be observed in patients who are early post-stroke. 

Consistently unimpaired performance is most likely to be observed in patients who 

are later post-stroke. 

P8_S2)  Hypotheses about the time course of recovery in different patients 

need to be validated by longitudinal assessments of the same individuals.  

 

Problem 9 (P9):  Outcome depends on a complex mix of variables 

Despite our best efforts, we may not find consistent lesion-outcome 

associations because there are simply too many factors to control or there are 



complex linear and nonlinear interactions between different variables that are not 

easy to formalise, particularly when they additionally interact with time post-stroke 

(i.e. spatiotemporal interactions). 

P9 Solution 

P9_S1 Machine learning algorithms can play an invaluable role in helping to 

resolve what might seem like incomputable complexity. These approaches 

simultaneously consider data from multiple variables (e.g. tissue integrity in multiple 

spatially distributed brain regions, time-post stroke, age, gender) to find the 

combination of variables that best predict an outcome, even if we have very little 

insight into how the predictions are generated.  The accuracy, sensitivity and 

specificity of the predictions can then be established by cross-validation in new 

samples of patients (Chen et al., 2008; 2015; Hope et al., 2014; Smith et al., 2013; 

Zhang et al., 2014).   

P9_S2) In future, machine learning algorithms could assess and use 

information from many other variables that may be indicative of functional outcome. 

For example, metabolic, demographic and mechanistic markers of recovery potential 

could be included (Coupar et al., 2012; Lee et al., 2015; Shiban et al., 2015; Watila 

and Babarabe, 2015), or severity of the initial impairment (Coupar et al., 2012; El 

Hachioui et al. 2013),   or the hours or type of therapy.  Predictions of outcome from 

lesion site could also be combined with measures of functional/effective connectivity 

across networks of brain regions that have also been shown to predict outcome after 

brain injury (Warren et al. 2014).  

The more variables are included, the more accurate the predictions are likely 

to be but there is a high price to pay for these advances because they will 

progressively require larger and larger sample sizes (see P4_S1 above). As an 

illustration, if we have a model with 10 regions, there are 45 possible pairs of regions 

and 120 triplets. Understanding and replicating all possible combinations would 

therefore require thousands of patients, unless the analyses were constrained by 

model-based hypotheses.  

 

Problem 10 (P10):  Understanding and improving the predictions 

In the Introduction to this paper, we made a distinction between model-based 

lesion analyses and data-led lesion analyses, arguing that predictions could be made 

on the basis of data-led observations without understanding the underlying 



neurological model.  Here we consider how the two approaches could be integrated 

to provide better predictions. 

Solutions 

P10_S1)  Working backwards, if machine learning algorithms (P9_S1) 

generate accurate predictions, their outputs and computations can be examined to 

understand the relative contribution of specific variables and how these variables 

interact with one another to determine outcome after brain damage. Machine 

learning algorithms also allow us establish lesion-deficit associations across multiple 

(cognitive) domains (Corbetta et al., 2015). 

P10_S2) To understand the combinations of regions that are critically damaged 

in patients with large lesions (P7), we need to compare the effect of damage to (i) each 

part and (ii) the combinations of parts. Once the effects are understood, we can 

generate hypotheses to test in new patients.  For example, if a lesion site had two 

parts A and B, then the critical part could either be: A-only, B-only, either A or B or 

A&B together. This leads to four testable hypotheses. First, if only part A is important, 

then task difficulty will be observed after damage to A-only but not B-only. Second, if 

only part B is important, then task difficulty will be observed after damage to B-only 

but not A-only. Third, if A & B are both parts of the same pathway, then task difficulty 

will be observed irrespective of whether damage is to A-only, B-only or A&B. Fourth, 

if the full region of interest contains 2 independent pathways (A&B), then damage to 

A-only or B-only should not affect task performance.  

P10_S3)  To understand which part of a lesion is contributing to a function, we 

can cross-validate the results of lesion analyses with the results of functional imaging 

(fMRI), transcranial magnetic stimulation (TMS) and diffusor tensor imaging (DTI) 

studies on healthy participants. 

 

Discussion 

We have identified a set of ten problems associated with finding and 

understanding lesion-outcome associations that are consistent and predictive for 

individual patients.  These problems and some possible solutions are listed in Box 4 

but note that there isn’t a one to one relationship between the 10 problems and 10 

solutions because the same solutions can apply to multiple problems. Moreover, 

some of the problems (P1-P3) are not essential to solve when the aim is purely to 



make accurate data-led predictions rather than to understand the neural networks 

associated with the functions of interest. 

Box 4 about here 

 

 

 

We have argued that to predict how an individual will be affected by a stroke 

we first need to understand and control multiple factors that might influence whether, 

and to what degree, a function of interest is affected.  Controlling for as many 

sources of inter-patient variability as possible should reveal consistent lesion-

outcome associations for some lesion sites even if other lesion sites have more 

variable outcomes.   Consistent lesion-outcome mappings need to be validated with 

longitudinally collected data from patients with focal lesions. Patients with large 

lesions can further indicate whether the effect of damage to multiple regions (within 

the large stroke) is additive, super-additive or has no additional effect compared to 

the effect of each of the focal lesions (Figure 2). When a consistent lesion-outcome 



association is identified, new patients can be grouped according to lesion site with 

the aim of predicting their outcome and its change with time post stroke. 

 

When it is impossible to model complex relationships between multiple 

variables contributing to outcome, multivariate lesion analyses and machine learning 

algorithms can be used to identify the most influential variables and generate the 

most predictive models of all sources of data (Hope et al., 2013).   The results of 

these data-led analyses can be used to provide a better understanding of the most 

predictive variables; and to update model-based accounts of the neural systems that 

can support the task of interest.  Indeed, although we have argued that data-led 

analyses are sufficient to make predictions about future outcomes, predictions will 

improve greatly in future when we have a better understanding of the neural 

networks underlying sensorimotor and cognitive functions.  This in turn will require 

the results of lesion studies to be integrated with the results of fMRI, MEG, DTI and 

TMS studies of healthy and brain damaged participants. 

 
Below we discuss how complementary information provided by model-based 

and data-led accounts can be used to validate each other and provide richer more 

informative and predictive models of brain function. 

 

Model based accounts, validated and informed by new data  

A clinically useful model-based account must be able to predict new data.  For 

instance, when a model-based account assumes only one necessary processing 

pathway for a task, then its prediction would be that damage to this pathway will impair 

function.  Conversely, if a model-based account predicts the existence of two 

alternative processing pathways for a given function, it predicts that task performance 

will be better when only one pathway is damaged than if all pathways are damaged 

(see Figure 2).   

If new data do not confirm the hypotheses, the model needs to be updated. 

However, it is not always intuitively clear what changes need to be made or how they 

should be implemented. For example, if patients can perform a task despite damage 

to the neural system modelled for that task, then there must be unknown ways of 

performing the task. Finding these alternative neural pathways can be difficult 

especially if the mechanisms for recovery are inconsistent across patients with similar 



lesion sites. We describe below how data-led analyses of inter-subject variability can 

provide fresh insights into how the explanatory model can be updated. (Airan et al., 

2016; Dubois and Adolphs, 2016; Kherif et al., 2009; Seghier and Price, 2009; 2016). 

Examples of prior studies that have demonstrated inter-subject variability in the 

neuronal systems underlying a single cognitive task include repeated demonstrations 

that there are many ways to read the familiar words and that individual subjects differ 

in their reading strategies and skills (Jobard et al., 2011; Kherif et al., 2009). This 

translates into the differential involvement of different reading pathways (Hoffman et 

al., 2015; Richardson et al., 2011; Seghier et al., 2008; Yvert et al., 2012) depending 

on individual’s strategy and preference. For example, subjects who rely more on 

semantic mediation during reading have greater structural connectivity between 

semantic and phonological nodes in the reading network (Graves et al., 2014) and 

greater functional involvement of the anterior temporal lobe (Hoffman et al., 2015). 

The impact of damage to the same region is therefore expected to result in individual 

differences in outcome and recovery trajectory, depending on the emphasis each 

patient placed on the damaged areas pre-stroke.  

By monitoring the capacity and speed of recovery in patients with damage to 

the normal system, inferences could perhaps also be made about the preferred 

(dominant) neural pathway that subjects relied on before their stroke. For example, 

those that recover fast are likely to have an alternative pathway that is already capable 

of performing the task, while those that recover slowly may not have prior experience 

using an alternative pathway. This can be appreciated by analogy to hand-dominance. 

Right handed individuals with damage to the system controlling their right hand will be 

quicker to recover the ability to write if they already have the potential to write with 

their left hand. If we were able to find lesion or demographic clues to indicate how an 

individual patient was going to recover, we would be able to indicate the type of 

rehabilitation that could speed up that recovery. 

 

Data-led accounts informed by model-based accounts. 

Data-led accounts are useful for identifying predictive relationships and the 

major sources of inter-subject variability (Hope et al., 2013). For example, a data-led, 

machine learning analysis might reveal that damage to a set of regions consistently 

impairs performance on a task of interest or that preservation of a set of regions 

consistently preserves task performance.  These predictions are useful for giving 



clinical predictions but they do not explain how or why damage is affecting task 

performance.  To explain the data-led account, we can make and test hypotheses 

based on model-based accounts.  For example, we can hypothesize and test how the 

regions identified by the data-led account respond during normal task performance, 

how they connect to one another and what the potential processing pathways might 

be. This is a challenging endeavour and we consider some of the possible 

methodological approaches below. 

 

Methodological approaches for constructing model based accounts. 

Neural systems, for tasks of interest, are typically identified in healthy subjects 

in terms of both the set of regions activated (whole brain activation maps) and task 

related directional functional connectivity measures (neural pathways) that indicate 

how one brain region is influenced by activity in other brain regions (i.e. how activity is 

propagated through the system). These inter-regional interactions can be estimated 

using different connectivity techniques (Li et al., 2009; Sakkalis, 2011). One of the 

widely used connectivity techniques in functional neuroimaging is dynamic causal 

modelling (DCM, (Friston et al., 2003)), which provides the opportunity to estimate how 

the rate of change of activity in one region influences the rate of change in other 

regions (Friston et al., 2003; Seghier et al., 2010). This in turn leads to information 

about the direction of the influence one brain region may have on another rather than 

implying a non-directional correlation. DCM can also indicate whether a region is 

having an excitatory or inhibitory effect on another, and the excitatory/inhibitory 

balance and neuromodulatory effects within a region (Bhatt et al., 2016).  Such 

information might be invaluable for understanding the mechanisms of recovery after 

stroke and how this might be influenced by interventions. 

Having established the most likely neural pathways and neuromodulatory 

effects in healthy controls, and quantified the degree of normal inter-subject variability, 

DCM can be used in patients to investigate the degree of abnormality induced by the 

stroke. For example, a patient who has retained or recovered the ability to perform a 

task following damage to a normal neural pathway would be expected to show 

decreased activity and connectivity in the damaged pathway but increased activity and 

connectivity in another pathway that was also capable of supporting the task. This 

would suggest that one pathway could compensate for another; and this hypothesis 

could be tested by looking to see whether healthy controls show a trade-off between 



alternative pathways (i.e. strength of connectivity in one being inversely correlated with 

the strength of connectivity in another), see (Seghier et al., 2014; Seghier et al., 2012).   

Alternative neural pathways (nodes plus connections) identified in patients 

might be missing from the task model because they were not consistently observed in 

normal subjects.  In this scenario, the patient findings motivate further investigation of 

healthy participants to test whether the nodes and connections identified in the patient 

are observed in a subset of the healthy participants (Seghier et al., 2012; 2014). Put 

another way, DCM in patients may help to identify meaningful variability in the normal 

population that could reflect the use of different cognitive strategies and different 

processing pathways (Miller et al., 2012). Models of the neural systems underlying a 

task can then explicitly include these alternative pathways so that they can make more 

accurate predictions for new patients (Park and Friston, 2013). This long term goal is 

likely to require DCM investigations into very large cohorts of healthy participants and 

patients but could ultimately bring us closer to understanding all the possible neural 

pathways that can support recovery of task function after stroke. 

Systematically increasing the predictive power of existing model-based 

accounts will benefit from the incorporation of as much prior information as possible. 

For instance, informed modelling with respect to lesion information (Seghier et al., 

2012; Zaghlool and Wyatt, 2014), physiology (Havlicek et al., 2015), anatomical 

connectivity (Stephan et al., 2009) or functional connectivity (Carter et al., 2012) will 

help to develop useful and credible models. The recent developments in DCM for 

inverting larger networks (Seghier and Friston, 2013) and for comparing between 

models and groups (Friston et al., 2016) will open new possibilities to understand the 

relationships between structure, function, and outcome and the neural mechanisms 

that support recovery after stroke (Rigoux and Daunizeau, 2015). 
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