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Summary 

Objectives: The relative contribution of interictal epileptiform discharges (IED) to cognitive 

dysfunction in comparison with the underlying brain pathology is not yet understood in 

children with lesional focal epilepsy.  

Methods:  The current study investigated the association of IED with intellectual functioning 

in 103 children with medication-resistant focal epilepsy.  Hierarchical multiple regression 

analyses were used to determine the independent contribution of IED features on intellectual 

functioning, after controlling for effects of lesional pathology, epilepsy duration and 

medication. Exploratory analyses were conducted for language and memory scores as well as 

academic skills available in a subset of participants.  

Results:  The results reveal IED to have a negative association with IQ with independent, 

additive effects documented for frequent and bilaterally distributed IED as well as discharge 

enhancement in sleep.  Left-lateralised IED had a prominent effect on verbal intelligence, in 

excess of the influence of left-sided brain pathology.  These effects extended to other 

cognitive functions, most prominently for sleep enhanced IED to be associated with deficits in 

expressive and receptive language, reading, spelling and numerical skills.  

Significance:  Overall, IED effects were of a magnitude similar to lesional influences or drug 

effects (Topiramate use).  This study demonstrates an association between IED and cognitive 

dysfunction, independent of the underlying focal brain pathology. 

KEY WORDS:  Focal epilepsy, children, interictal epileptiform discharges, cognition, 

intelligence  
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Introduction 

Early onset childhood epilepsy is known to be associated with impaired cognitive 

development but the relationship of this to ongoing epileptiform activity remains 

controversial 1.  Interictal epileptiform discharges (IED) are sharp waves, spikes, or spike-

wave complexes that occur in the absence of observable changes in behaviour 2.  A direct 

relationship between IED severity and the degree of short- and long-term cognitive 

impairment experienced by children with epilepsy has been suggested 3,4.  However, the 

debate continues as to whether IED are mainly an expression of the underlying brain 

pathology 4,5, a debate that extends to the question of whether pharmacological suppression of 

IED is warranted.  Current evidence on the possible chronic impact of IED on cognition in 

children mainly derives from studies in patients with non-lesional epilepsy and with low 

seizure frequency 3,6,7.   

Across studies in children with benign rolandic epilepsy (BRE) there is evidence that 

frequent and multifocal IED are associated with cognitive deficits, ranging from general 

intellectual functions 8, educational progress 3 to affecting only specific cognitive domains 

6,8,9. There is variability to the extent to which IED during sleep are associated with cognition, 

ranging from negative findings 10 to reporting robust effects on reading and verbal IQ 11. A 

large study of children with predominantly non-lesional epilepsy syndromes also reported 

correlation of diurnal IED load with specific functions, such as information processing speed 

and short-term memory 6.  

There is also some evidence for a modest influence of the laterality or topography of 

discharges, with left-sided and temporal IED correlating with some verbal scores 8 and right-

sided IED with visuo-spatial performance 6. However, laterality effects have not always been 

observed 9,11.  

One important caveat in assuming a causal relationship between cognitive dysfunction 

and IED stems from the possibility that cognitive deficits could be due to the underlying 
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genetic abnormality, as evidenced by increased incidence of reading and speech-sound 

disorders in siblings of children with BRE 12.  The debate concerning the independent 

contribution of IED to cognition could therefore be informed by an empirical investigation of 

patients with epilepsy as a consequence of focal brain pathology, without a suspected or 

known genetic origin.  

In the present study we investigated the possible impact of IED features on cognitive 

functioning, while accounting for seizure variables and type, extent and location of lesional 

pathology.  Our primary hypotheses focussed on intelligence scores from the Wechsler scales 

as a marker of general cognitive ability, which are standardised across age groups and well 

comparable across centres. Based on the reviewed evidence in children with non-lesional 

epilepsy, it was hypothesized that IED exert an independent negative effect on intellectual 

performance; with high frequency and bilateral IED yielding reduced IQ scores 8.  Further, we 

hypothesised that left lateralized IED would be associated with poorer verbal abilities 13,14, in 

particular with greater VIQ-PIQ discrepancy scores as a sensitive index of lateralised brain 

dysfunction in children 15.  Secondary hypotheses predicted similar associations with more 

specific cognitive domains, such as language, memory and educational attainments, in 

particular with reading skills 11.   

 

Method 

Study design and participant selection 

We conducted a retrospective case note review of EEG telemetry, neuroimaging and 

neuropsychology data in a cohort of children with medication-resistant, predominantly 

lesional, focal epilepsy who were referred for diagnostic investigations for epilepsy surgery. 

We included consecutive epilepsy surgery candidates who had completed structural/ 

functional neuroimaging, neuropsychological and other diagnostic evaluations at our centre, 
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between 2005-2013.  Reports from neuropsychological, neuroradiological and clinical EEG 

telemetry were accessed via an electronic database at Great Ormond Street Children’s 

Hospital following permission by the hospital ethical review board. Seizure-related 

information (i.e. type, frequency, age at seizure onset, and duration of epilepsy) and current 

medications were also retrieved from patient records. Specific emphasis was placed on 

Topiramate use, as this has been associated with reduced intellectual functioning 16.   

 

Investigations and outcome measures  

Neuropsychology: The standard protocol included age-appropriate measures of 

intelligence (Wechsler Intelligence Scale for Children, WISC IV or III) and academic 

attainments (Wechsler Individual Achievement Test, WIAT-II and in a minority using its 

earlier UK version - the WORD/WOND). Estimates for verbal and non-verbal intelligence 

were derived from the verbal comprehension and perceptual reasoning indices of the WISC. 

Depending on location of pathology and level of functioning of the child, memory 

assessments (using the Children’s Memory Scale, CMS) and a clinical language screen 

(Clinical Evaluation of Language Fundamentals, CELF IV) were also administered. In about 

half of children with IQ scores below 70, memory and language tests were not administered. 

Neuropsychological scores were obtained as close in time to the EEG recording as possible, 

which in the majority of cases took part within a few days/ weeks, but extending to months in 

some cases. 

Neurophysiology: Video EEG telemetry was performed across a median of 4 days and 

nights (range 1-5). Sleep was documented in 87/103 cases. The record was reviewed by one 

of four experienced paediatric neurophysiology consultants. The full report of ictal and 

interictal EEG features was evaluated. The background EEG was categorized into normal or 

abnormal, depending whether it fell within age-appropriate limits and it was noted if there 

were focal or generalized changes.  
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IED Frequency was classified categorically as ‘none’, ‘rare/occasional/infrequent’ and 

‘frequent’. By consensus between raters, ‘frequent’ discharges were denoted if the average 

number of IED was one or more per 10 second EEG epoch/page for the majority of the 

waking record. IED frequency was then categorised in a binary fashion as ‘frequent’ or 

‘infrequent’ if this criterion was not met (see Refs. 6 and 7 for choice of the same criterion). 

Sleep-related IED enhancement was noted if there was a change in IED frequency category 

(increases or decreases, see above) from the waking state.  

Neuroradiology:  Detailed information about presence, extent and type of lesional 

pathology was derived from reports of a tailored epilepsy MRI protocol by a consultant 

paediatric neuroradiologist. A representative map of the distribution and type of focal lesions 

in half of the present cohort is shown elsewhere 17. Lesion localisation was coded as frontal, 

temporal, parietal or other (multi-lobar, e.g. parieto-occipital).  

Statistical Analysis 

Pearson’s correlation coefficient was calculated to assess the relationship between IQ 

and both age of onset and duration of epilepsy. Independent samples t-tests and analyses of 

variance (ANOVA) were used to investigate the effects of seizure, lesion and IED variables 

on IQ scores.  Hierarchical regression analyses were performed to determine the independent 

contribution of IED variables on neuropsychological scores while controlling for relevant 

seizure and lesion-related variables.  We examined inter-correlations to avoid significant 

associations between predictor variables, and tested the assumption of multicollinearity 

according to variance inflation factor values. Residual scatter plots were inspected for 

evidence of heteroscedacity. Statistical analyses were performed using IBM SPSS Statistics 

Version 21. 

 

Results 
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Participants and sample characteristics 

The current study was based on a cohort of 103 children with medication-resistant 

focal epilepsy who were undergoing assessment for epilepsy surgery at our centre (Table 1).  

The sample is characterised by a variety of generalised and focal seizure types. Three children 

previously presented with infantile spasms. Most patients (97%) were taking AEDs at the 

time of neuropsychological testing.  Abnormalities on MRI were detected in 94% of cases and 

were more frequently lateralized to the left hemisphere (64%) and localized to the temporal 

lobes (36%). Twenty five children (24%) had intellectual disability as defined by an IQ score 

below 70. 

 

Impact of seizure-related and lesional variables on intelligence scores 

Lower IQ scores were associated with an earlier age of habitual seizure onset and 

longer duration of epilepsy (Table 2). These associations remained significant when patients 

with progressive (inflammatory) pathology were excluded (r=.31, p=.003; r=.40, p=.001, 

respectively). While there was no relationship of seizure frequency with IQ scores, there was 

some evidence that children with less severe seizures had better IQ scores. No clear 

association was found between IQ scores and number of AEDs administered at time of 

testing.  However, Topiramate use was associated with an IQ decrement of about 10 points.  

           Among the MRI lesion variables, left-lateralised lesions were linked to a reduction in 

VIQ scores while patients with multilobar lesions, as compared to focal or no lesions had 

globally lower IQ scores.  There was no IQ difference between cases with focal lesions and 

MRI-negative cases, nor between groups defined by the lesioned lobe (p>.372), when 

multilobar cases were excluded.  There were also no significant interactions between lesion 

characteristics and any IED features, apart from a predicted association between lesion side 

and laterality of IED (χ2=60.3, p<.0001). 
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Association between IED features and intelligence scores 

The majority of children in this cohort (93%) showed IED in their EEG records. 

Children with frequent IED had lower IQ scores compared to children with infrequent or no 

IED (Table 2).  A bilateral IED distribution (in 11% of cases) was associated with a reduction 

in PIQ compared to unilateral or no IED. Children with enhanced IED in sleep had reduced 

PIQ scores and showed a trend for lower VIQ scores (p=.087) compared to those without such 

increase.  As predicted, children with IED recorded over the left hemisphere (or lateralised to 

the left side) showed a trend for lower VIQ scores (p=.061), and a much larger VIQ-PIQ 

discrepancy score (mean= -11, SD=12; t(87)=4.1, p<.001, 95% CI [6-17]).  There was no 

main effect of IED lobar scalp localization and of presence of abnormal EEG background 

activity on IQ scores. 

Primary hypotheses: Independent contribution of IED variables to IQ scores 

Hierarchical multiple regression analyses tested the contribution of IED, after 

controlling for the impact of seizure- and lesion-related variables (Model 1 in Table 2) which 

explained ~30% of the variance in IQ scores.  Bilaterally distributed IED (compared to 

unilateral or no IED) accounted for a further 3-4% of IQ variance (Model 2).  Frequent IED 

accounted for additional 5-6% (Model 3). Further IQ reduction was associated with enhanced 

IED occurrence in sleep (Model 4). The final models for each IQ measure included the 

following independent IED features: for VIQ – frequent and (in trend) sleep-enhanced IED; 

for PIQ – bilateral, frequent and sleep-enhanced IED. 

Finally, a hierarchical regression analysis of VIQ-PIQ discrepancy scores after first 

accounting for presence of left-sided lesions (F(1,87)=6.81, p=.011),  showed a major effect 

of left-lateralised IED (F Change=9.04, df =1,86, p=.003; β =-.410, p=.003), completely 

replacing the lesion effect (β =-.013, p=.927).  When we evaluated if this association could be 

accounted for by the link with seizure onset from the left hemisphere (instead of IED 
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lateralization), no additional variance beyond lesion lateralisation was found (F Change 

=2.39, df =1,84, p=.126). 

Secondary hypotheses: Independent association of IED with specific cognitive skills 

We further explored if the final model identified above for IQ scores could also 

explain variability in scores of processing speed, academic attainments, language skills and 

memory performance obtained from a large part of our cohort (Table 4). It is important to 

point out that language scores, verbal memory and academic attainments were positively 

correlated with IQ (all r >.50), hence a possible association with IED cannot be seen as 

independent of intellectual ability.  While some of the effects of Topiramate use, lesion 

localisation, and epilepsy duration were replicated for most of those cognitive measures, the 

effects of IED features showed some selectivity, which could not be explained by the reduced 

sample size. For example, while no IED effect on processing speed was found, there were 

clear effects of sleep-related IED enhancements on academic attainments such as reading, 

spelling and numerical operations. Similarly, robust effects of sleep IED enhancement were 

found for expressive and receptive language skills, while no such association with verbal and 

visual memory was seen. 
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Discussion 

Our study suggests that IED independently contribute to cognitive compromise in 

children with structural epilepsy and may even be as detrimental to cognitive development as 

the underlying brain pathology itself.  Specifically, high frequency of IED occurrence, 

bilateral scalp distribution and enhancement of IED during sleep independently predicted 

cognitive compromise when lesion, AED and seizure variables were carefully controlled.  

Our findings are complementary to previous research in children with non-lesional epilepsy 

3,6-8,11.  

Moderate effects of underlying brain pathology were observed, including reduced 

VIQ in children with left-sided lesions and overall IQ reductions in children with multilobar 

pathology.  Interestingly, the effect of left-lateralised IED distribution on VIQ-PIQ 

discrepancy scores was found to be far in excess of that of the underlying lateralised brain 

pathology, confirming previous research in non-lesional epilepsy 14.  IED and seizure 

frequency were correlated; however we failed to find any association between seizure 

frequency and IQ scores, as in previous studies 6,7,11.  

We assume that for the majority of patients in this cohort seizures were the 

consequence of focal lesional pathology. This is supported by a high rate of seizure freedom 

(~70%) at long-term post-operative follow-up currently under way. The fact that we observed 

an independent contribution from IED to IQ supports the hypothesis of a causative role of 

IED in contributing to cognitive dysfunction, extending the concept of ‘epileptic 

encephalopathy’ 18 to other forms of epilepsy 19.  

We also confirmed the negative association of earlier age at epilepsy onset with IQ 

scores consistently reported in medication-resistant cohorts 20-24, highlighting the detrimental 

effect of early onset epilepsy on emerging cognitive networks. We did not find a significant 
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impact of number of AED used on cognitive functions, in agreement with a previous report 

11, apart from the suspected negative effect of Topiramate 16. 

Enhancement of epileptiform discharges in sleep has previously been associated with 

educational and behavioural impairments 3.  A detailed analysis by Ebus and colleagues 6 

found only a partial effect of IED frequency in sleep on cognitive processing speed. This is 

congruent with the lack of IED effects on processing speed documented in our study. In 

contrast, robust sleep IED effects were found here for scores of oral language, reading, 

spelling and numerical operations. This supports findings in children with BRE showing a 

correlation of nocturnal (but not diurnal) IED frequency with reading scores 11. Development 

of these skills across childhood is aided by sleep-dependent consolidation 25 and is therefore 

susceptible to chronic IED-related disruption 26,27. In contrast, the lack of an IED correlation 

with memory retention over a short waking period was not surprising;  given that we were not 

able to quantify discharge load and location during the neuropsychological testing period. 

Such short-term effects on memory have been shown when IED were quantified from 

hippocampal recordings during memory retention and recall 28, in analogy to effects of scalp-

recorded IED on verbal and non-verbal tasks performance 13.  

The retrospective case note review and cross-sectional nature are restrictions of our 

study design. A major limitation is the dichotomisation of IED frequency, used here to 

standardise this variable across telemetry EEG reports from different reviewers. Nevertheless, 

the cut-off of about 10% of the EEG record (i.e. >=1 IED per 10s epoch) for the high 

discharge frequency category used here corresponds to the threshold at which previous 

studies reported significant cognitive effects when seen in wakefulness 6,7 and sleep 11.  This 

dichotomisation nevertheless captures the inverse relationship observed between IED 

discharge frequency in sleep and memory retention in a recent quantitative study conducted 

in a comparable sample of surgical candidates at our centre 29, confirming a previous report 
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26.  Although a further limitation could be the mix of pathologies included in this study, it 

enabled us to detect a significant impact of lesional pathology on IQ and to show robust 

independent IED effects. Finally, in the absence of longitudinal EEG recordings it is 

impossible to accurately estimate the chronic IED burden in our sample, as fluctuations can 

occur over longer time periods 30.  

It remains currently unresolved which aetiological factors are responsible for the 

widely reported negative impact of longer illness duration on IQ 22,23, which was also 

observed here.  Current best evidence on the long-term impact of static, early acquired brain 

lesions shows children only deviate from a normal cognitive trajectory if they also have 

epilepsy 31.  Conversely, selective recovery of VIQ scores seen after left temporal epilepsy 

surgery strongly suggests that, despite the surgical ‘lesion’, it is the cessation of seizure 

activity which is ultimately beneficial for cognition 16.  

In conclusion, our study adds to the growing body of evidence suggesting that 

chronic exposure to frequent or bilateral IED during wakefulness and enhancement of 

discharges from wakefulness to sleep may have detrimental effects on cognitive 

development.  Unlike previous studies, we have shown that IED have an association with 

cognition independent of the underlying brain pathology.   
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INTERICTAL DISCHARGES AND INTELLECTUAL IMPAIRMENT  

Key Points 

 Lesional, drug and duration of epilepsy effects on cognitive scores were controlled for 

in hierarchical regression analyses. 

 IQ decrement was independently associated with frequent IED (>=1/10s epoch) and 

bilaterally distributed IED.  

 VIQ-PIQ discrepancy scores were related to left-sided IED in excess of effects of left 

hemisphere lesional pathology. 

 Enhancement of IED from waking to sleep was associated with additional IQ 

decrements and deficits in academic and language skills.  
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Table 1  

Sample Characteristics 

Demographics and clinical variables Mean (SD)  

Gender (M/F) 49/54 

Age (years) 12.7 (2.7) 

Age at seizure onset (years) 6.2 (3.7) 

Duration of epilepsy (years) 6.5 (4.0) 

Seizure frequency (number/week) 7 (157) 

Number of AEDs (median, range) 2 (0-5) 

Verbal IQ 85 (18) 

Performance IQ 87 (18) 

Lesional Pathology n (%) 

MRI lesion negative 6 (6%) 

Inflammatory 8 (8%) 

Tumour* 27 (26%) 

Atrophy 14 (14%) 

MTS 15 (15%) 

Malformations of cortical development  28 (27%) 

Other** 5 (5%) 

IED/ EEG Features  

Frequency (none/ infrequent/ frequent) 9/ 68/ 27 

Laterality (L/ R/ Bilateral) 57/ 26/ 11  

Lobe (F/ T/ F-T/ Other) 20/ 38/ 12/ 24 

Sleep changes (fewer/ no change/ more) 15/ 20/ 49 

Background EEG (normal/ mild/ abnormal) 35/ 28/ 40 

 

* denotes dysembryoplastic neuroepithelial tumours (DNT), ** includes: white matter hyperintensive 

lesions, grey/white matter blurring, neurocutaneous melanosis, F – frontal, T- temporal, - F-T – 

fronto-temporal. MTS – mesial temporal sclerosis.  
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Table 2  

Relationship of clinical, lesional and EEG/IED characteristics to IQ scores 

Clinical variables Verbal IQ Performance IQ 

Age at seizure onset (Pearson’s R) .15 .28** 

Duration of epilepsy (Pearson’s R) -.21* -.31** 

Seizure frequency (Spearman’s Rho) .03 .07 

Seizure type (aura/absence/dyscogn. vs. other) +6.2 (4.2) +11.0 (3.9)** 

Number of AEDs (>2 vs. less) -4.8 (3.8) -.8 (3.7) 

Topiramate (yes vs. no) -10.7 (4.5)* -10.9 (4.3)* 

Lesional Pathology   

MRI Lesions: Left vs. Right   -10.3 (4.1)* -4.1 (4.0) 

                       Multi- vs. unilobar/other  -16.0 (3.7)*** -15.2 (3.5)*** 

IED/ EEG Features   

Frequency (frequent vs. infrequent/none) -10.6 (3.9)** -10.6(3.8)** 

Laterality (bilateral vs. unilateral/none) -10.7 (6.0) -10.3 (4.5)* 

Laterality (left-lateralised vs. other) -7.0 (3.7) +2.2 (3.7) 

Sleep (enhanced vs. no change/less) -7.1 (4.0) -8.2 (3.8)* 

Background EEG (abnormal vs. normal) -4.0 (3.8) -2.6 (4.0) 

 

Legend: Table shows difference in IQ scores between contrasts indicated in left column (standard 

error in brackets), unless stated.  

*p < .05, **p < .01, ***p < .001; comparisons marked with ** and *** survived Bonferroni 

correction for multiple comparisons.  
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Table 3    

Hierarchical Multiple Regression Analyses of Intelligence Scores 

 Model 1a (n=96) Model 2a (n=88) Model 3a (n=85) Model 4a (n=74) 

Verbal IQ B SE β B SE β B SE β B SE β 

Topiramate use -12.46 3.95 -.28** -13.58 4.11 -.32** -11.56 4.02 -.28** -14.33 4.58 -.32** 

Multi-lobar lesion localisation -13.55 3.45 -.36*** -11.32 3.59 -.30** -10.71 3.46 -.29** -10.42 3.70 -.27** 

Left lateralised lesions  -7.71 3.30 -.21* -10.24 3.49 -.28** -8.33 3.40 -.23* -11.06 3.56 -.30** 

Duration of epilepsy -.86 .40 -.19* -.68 .42 -.15 -.91 .42 -.21* -.91 .44 -.20* 

Bilateral IED     -10.64 5.49 -.18 -7.24 5.62 -.12 -7.92 5.59 -.14 

Frequent IED       -8.80 3.57 -.24* -8.53 3.81 -.23* 

Sleep enhanced IED          -7.13 3.59 -.19(*) 

R2 .290 .311 .342 .437 

Adjusted R2 .259 .269 .292 .377 

∆R2 .290 .032 .051 .034 

F Change 9.298*** 3.75 6.087* 3.947(*) 

 Model 1b (n=98) Model 2b (n=90) Model 3b (n=86) Model 4b (n=75) 

Performance IQ B SE β B SE β B SE β B SE β 

Topiramate use -13.37 3.87 -.30** -15.59 4.11 -.35*** -13.97 3.89 -.34** -14.84 4.10 -.33** 

Multi-lobar lesion localisation -13.30 3.38 -.35*** -11.99 3.51 -.31** -12.50 3.31 -.33*** -13.17 3.27 -.35*** 

Left lateralised lesions  -2.65 3.23 -.07 -4.76 3.42 -.13 -2.33 3.26 -.06 -3.08 3.16 -.08 

Duration of epilepsy -1.37 .39 -.31** -1.37 .42 -.30** -1.60 .40 -.35*** -1.59 .39 -.35*** 

Bilateral IED     -12.21 5.27 -.21* -10.47 5.20 -.18* -11.53 4.79 -.21* 

Frequent IED       -9.82 3.43 -.26** -10.05 3.38 -.27** 

Sleep enhanced IED          -6.44 3.22 -.18* 

R2 .312 .342 .424 .536 

Adjusted R2 .282 .303 .380 .487 

∆R2 .312 .042 .060 .028 

F Change 10.525*** 5.356* 8.210** 4.005* 

 

(*)p = .051, *p < .05, **p < .01, ***p < .001; factors marked with ** and *** survived  Bonferroni correction for 

multiple comparisons. 

 

 

 

 



INTERICTAL DISCHARGES AND INTELLECTUAL IMPAIRMENT   

 

Table 4    

Hierarchical Multiple Regression Analyses of other neuropsychological scores 

 PSI (n=74) Reading (n=72) Spelling (n=69) Numerical (n=72) 

 B SE β B SE β B SE β B SE β 

Topiramate use -10.33 4.91 -.24* -3.68 5.63 -.07 -6.03 5.18 -.13 -12.47 5.90 -.22* 

Multi-lobar lesion localisation -9.95 3.92 -.28* -17.17 4.69 -.39* -15.75 4.44 -.39*** -19.29 4.97 -.39*** 

Left lateralised lesions  .42 3.75 .01 -7.82 4.53 -.18 -5.76 4.25 -.15 -7.79 4.66 -.17 

Duration of epilepsy -1.35 .48 -.31** -.75 .56 -.14 -.22 .52 -.05 -1.32 .58 -.23* 

Frequent IED -6.52 5.94 -.12 -6.63 4.79 -.15 -3.81 4.47 -.09 -7.84 4.98 -.16 

Bilateral IED -4.58 4.19 -.12 -8.66 7.32 -.13 -1.96 7.19 -.03 -5.30 6.86 -.08 

Sleep enhanced IED -.45 3.90 -.01 -10.03 4.66 -.24* -9.66 4.28 -.26* -12.30 4.79 -.26* 

R2 .260 .343 .320 .418 

Adjusted R2 .181 .280 .251 .363 

F 3.31** 5.40*** 4.63*** 7.54*** 

 
CELF Expressive 

(n=50) 
CELF Receptive (n=50) CMS Verbal (n=54) CMS Visual (n=57) 

 B SE β B SE β B SE β B SE β 

Topiramate use -16.14 6.30 -.32* -23.26 5.42 -.50*** -18.09 6.39 -.39** -14.53 7.89 -.27 

Multi-lobar lesion localisation -7.56 5.79 -.16 -5.79 4.92 -.14 -6.86 5.59 -.17 1.03 7.17 .02 

Left lateralised lesions  -13.65 5.34 -.33* -7.94 4.58 -.20 -5.99 5.24 -.16 8.83 6.77 .19 

Duration of epilepsy -.10 .65 -.02 -.23 .55 -.05 -.35 .63 -.07 -1.25 .84 -.21 

Frequent IED -10.88 5.82 -.23 -5.42 5.01 -.12 -6.31 5.40 -.16 6.56 7.10 .13 

Bilateral IED -18.41 7.76 -.29* -10.80 6.68 -.18 -1.98 7.36 -.04 -1.29 10.06 -.02 

Sleep enhanced IED -12.54 5.06 -.30* -16.60 4.34 -.43*** -6.63 4.92 -.18 1.79 6.47 .04 

R2 .452 .523 .310 .166 

Adjusted R2 .359 .444 .198 .042 

F  4.83*** 6.59*** 2.76* 1.34 

 

PSI = Processing Speed Index (derived from the WISC test); CELF = Clinical Evaluation of Language 

Fundamentals; CMS = Children’s Memory Scale. *p < .05, **p < .01, ***p < .001; factors marked with ** and 

*** survived Bonferroni correction for multiple comparisons. 

 

 

 


