
UCL DEPARTMENT OF
COMPUTER SCIENCE

Research Note
RN/16/06

PREM: Prestige Network Enhanced Developer-Task Matching for
Crowdsourced Software Development

August 9, 2016

Ke Mao†, Qing Wang‡, Yue Jia† and Mark Harman†
†CREST Centre, University College London, Gower Street, London, WC1E 6BT, UK

‡Institute of Software, Chinese Academy of Sciences, Beijing, China
k.mao@cs.ucl.ac.uk, wq@itechs.iscas.ac.cn, yue.jia@ucl.ac.uk, m.harman@ucl.ac.uk

Abstract

Many software organizations are turning to employ crowdsourcing to augment their software production. For current
practice of crowdsourcing, it is common to see a mass number of tasks posted on software crowdsourcing platforms,
with little guidance for task selection. Considering that crowd developers may vary greatly in expertise, inappropriate
developer-task matching will harm the quality of the deliverables. It is also not time-efficient for developers to discover
their most appropriate tasks from vast open call requests. We propose an approach called PREM, aiming to appropriately
match between developers and tasks. PREM automatically learns from the developers’ historical task data. In addition to
task preference, PREM considers the competition nature of crowdsourcing by constructing developers’ prestige network.
This differs our approach from previous developer recommendation methods that are based on task and/or individual
features. Experiments are conducted on 3 TopCoder datasets with 9,191 tasks in total. Our experimental results show
that reasonable accuracies are achievable (63%, 46%, 36% for the 3 datasets respectively, when matching 5 developers
to each task) and the constructed prestige network can help improve the matching results.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/79528586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. INTRODUCTION
Emerging social media and open innovation techniques have
reshaped the way people collaborate and share information,
which have also offered opportunities for evolutionary changes
in software development paradigm [6]. Many successful soft-
ware companies turn to employ decentralized software ecosys-
tems such as open source and crowdsourcing communities
to augment their software production. Crowdsourced Soft-
ware Development (CSD) can be viewed as a specific mode
of Global Software Development (GSD) [13]. It utilizes an
open call format to attract geographically distributed on-
line developers for accomplishing various types of software
development tasks such as architecture, component design,
component development, testing and bug fixing.

The crowdsourcing formulation widely in use was defined by
Jeff Howe [14] in 2006. Although crowdsourcing is not spe-
cially proposed for software engineering domain, the trend
of its application in software development keeps growing.
A crowdsourcing industry report from Massolution [22] in-
dicates the number of workers engaged in software devel-
opment gained 151% in the year 2011. This increase is
even more dramatic than the increase in crowdsourced mi-
cro tasks. Amazon Mechanical Turk (AMT)1 is one of the
most popular marketplace for crowdsourcing micro tasks
such as photo tagging and logo designing. Crowdsourcing
platforms that support software development include Top-
Coder, uTest, GetACoder, eLance, Freelancer, Tackcn, etc.
Among them, TopCoder2 has the world’s largest commu-
nity for crowdsourced software development. Its clients in-
clude lots of famous IT companies such as Google, Microsoft,
Facebook and AOL. Compared with traditional software de-
velopment, TopCoder’s crowdsourced development exhibits
the ability to deliver customer requested software assets with
lower defect rate at an order of magnitude lower cost in less
time [5,17].

Current crowdsourcing approaches in practice adopt a pull
methodology where tasks are posted on specialized online
platforms. Although this enables simplicity and tasks ac-
cessibility, it provides little guidance in task selection and
cannot guarantee that the tasks are performed by the best
suitable developers: Usually there are lots of simultaneously
competitive tasks posted on crowdsourcing platforms. For
instance, illustrated as Figure 1, from February 10th 2014
to March 10th 2014, there are an average of 89 simulta-
neously active tasks available on TopCoder platform for a
single day. According to a study [8] based on AMT plat-
form, most crowd workers usually only view first few pages
of recent tasks posted on the platform. Thus the appropri-
ateness of the developer-task matching resulted by the pull
methodology is questionable.

Considering that the crowd developers vary a lot in exper-
tise, inappropriate developer-task matching can harm the
quality of the deliverables. Also, developers need to spend
much time in browsing vast amount of task description in
order to choose their suitable ones. In this paper we propose
a developer-task matching approach called PREM which
enables ideal developer-task matching result to be actively

1AMT Website: http://www.mturk.com/
2TopCoder Website: http://www.topcoder.com/

Figure 1: Daily available tasks on TopCoder.

pushed to developers.

Specifically, we propose to consider the competition nature
of the emerging crowdsourcing platform when suggesting
the matching result, because the competition relationship
among developers can affect their task selection behaviour.
For example on TopCoder platform, it is observed that highly
skilled developers face tougher competition, thus they reg-
ister particular task early, which deter the entry of their
opponents in the same task [4]. The feature of dealing
with crowd developers’ competition relationship differs our
approach from previous developer recommendation or task
triage methods in classical software development paradigm.
The major contributions of this paper are:

• PREM, a novel developer-task matching approach enhanced
by developers’ prestige network. Our approach automati-
cally learns from the developer’s historical tasks and con-
siders the competition nature of crowdsourcing (e.g., the
“cheap talk” phenomenon [10]) to better match between
available tasks and developers.

• CSD task features and similarity measures are proposed
for learning task preference. Prestige network construc-
tion and corresponding refinement algorithms are designed
to consider the competition relationship among develop-
ers.

• An empirical evaluation of our method conducted on 3
datasets, corresponding to development, assembly and bug
fixing contexts separately. The datasets contain as many
as 9,191 successful tasks crowdsourced on TopCoder, the
world’s largest crowdsourcing platform for software devel-
opment. The results show with the reasonable accuracy
and the effectiveness of prestige network based enhance-
ment.

• An implementation of our approach, CrowdDev platform.
The platform is publicly available via the Internet to sup-
port global crowd developers.

The rest of this paper is organized as follows: We begin
with Section II, describe CSD process, and introduce the
competition in CSD as background information. Section III
introduces our PREM approach to developer-task matching
for CSD tasks. The evaluation of our work is presented
in Section IV. This is followed by a discussion in Section
V. Section VI presents related work. Finally Section VII
concludes and presents directions for future work.

2. BACKGROUND
Prior to presenting our approach of developer-task match-
ing, we introduce the background knowledge in CSD process.
Since TopCoder is currently the world’s largest CSD plat-
form which supports a global crowd of more than 600,000
developers. The platform is famous for its CSD method-
ology. It is based on this platform shall we introduce the
process.

The overall process of CSD used by TopCoder platform is
achieved by the open competition format for each develop-
ment phase, utilizing TopCoder’s global talent pool of de-
velopers. The development process commences with a re-
quirement phase. During this phase, the project manager,
who comes from the crowd or the platform and is responsible
for managing following phases and communicating with the
client companies to identify their project goals, task plan
and estimated budget. Then the requirements specification
are defined and are passed as the input to the next phase.
The subsequent architecture phase decomposes the appli-
cation into a set of components. (TopCoder’s CSD is also
the practice of component-based software engineering). The
component design activity produces a full set of design doc-
umentation such as UML diagrams and component specifi-
cations.

These specified components design are then implemented in
the subsequent development phase. The component devel-
opment activity may incorporate pre-built reusable compo-
nents. The finished components are combined together in
an assembly phase and are further certified by system level
testing activities. Assembly tasks require online developers
build the application by assembling the winners’ component
implementations according to the architecture design. Fi-
nally, the fully functioning solution is deployed into the cus-
tomer’s quality assurance environment in the deployment
phase. After a period of user acceptance testing, all devel-
oped assets are delivered to the client. For further mainte-
nance activities, TopCoder provides “Bug Hunt” and “Bug
Races” tasks for discovering and fixing bugs.

The essential of crowdsourcing is the “wisdom of the crowd”.
The above introduced CSD process relies on highly interac-
tive and social communities to finish the CSD tasks. For
the crowd developers, on one hand they collaborate on the
higher-level process, for example when a developer imple-
ments a component, he may inquire the designer about the
UML diagrams and may discuss the application framework
with the architect via the community forum. On the other
hand, they also compete against each other on a specified
task. Because the open call format is usually achieved by a
series of contests. This competition nature of crowdsourcing
is one of the key features that distinguish CSD from OSS de-
velopment. An previous study [19] on CSD shows a higher
competition level can be beneficial in improving software
quality.

As for the TopCoder platform, it has a reputation system
to help developers strategically choose their opponents. For
instance, lower rated developer’s entry may be deterred by
the higher rated developer [4]. If we consider the reputa-
tion from a social network perspective, we can draw a pres-
tige network from the developers’ participation and winning

Figure 3: A real developer prestige network.

history. One such real prestige network we extract from
the TopCoder platform is given in Figure 3. Later we will
show how to construct this network and how to utilize it in
developer-task matching.

3. OUR APPROACH
In this section we explain the key ideas behind our PREM
approach. We present the framework of PREM , describe
the two components of PREM (i.e., Content Based Initial
Matching and Prestige Network Based Enhancement). We
show two types of developers in the prestige network whose
competition relationship are considered in order to refine the
developer-task matching result.

The framework of our PREM approach is shown in Fig-
ure 2, where the hollow arrows indicate the learning process
based on historical data, while the solid arrows illustrate
the matching process for new arriving tasks. PREM for
developer-task matching is achieved via both task content
and developers’ prestige network extracted from the CSD
websites. Here the content refers to a group of features de-
scribing a CSD Task, such as required techniques, payment,
title, description, posted data and delivering deadline, etc.
The learner tries to capture the characteristics (e.g., exper-
tise, expected payment and task duration, etc.) of each de-
veloper from their historical activities and match the most
suitable developers to new arriving tasks. This initial result
is further refined by the process of prestige network based
enhancement.

3.1 Content Based Initial Matching (CBIM)
The fundamental assumption of the content base matching
method is that developers will prefer or be familiar with the
tasks which are“similar” to the tasks they have performed in
the past. We employ multi-class, single-label classification
techniques to automate the process of identifying developers
who may be suitable with the new arriving tasks. Here we
treat developer as class, each task in historical records is
labelled with the first place winner. The matching approach
consists of the following steps:

The first step is data filtering. We filter those historical
tasks (i.e., training set) with incomplete information (e.g.,
missing winner label or lack of task description). To exclude
irrelevance empirical knowledge, we remove the tasks which
development type do not match current application domain

Figure 2: The framework of PREM.

Table 1: Features of a Task

Feature Format Description

Date Numeric Post date of the task.

PL Text Programming Language used.

Title Text Title of the posted task.

Tech Text Techniques used.

Description Text Detailed task description.

Duration Numeric Time allocated to the task.

Payment Numeric Reward of the task.

(e.g., development, assembly, bug fixing, etc.). Also, we
treat a developer won at least 5 tasks as a skilled developer
in this paper, and filter out those unskilled developers. Then
the filtered data are passed to the subsequent step for feature
extraction.

3.1.1 Task Feature Extraction
Each CSD task on TopCoder platform is described by a va-
riety of information. For feature extraction in this paper we
extract text features including title, description, program-
ming language and techniques. Numeric features include
task post date, allocated task duration and payment. The
detailed feature description is presented in Table 1. In or-
der to unify numeric and text features, we convert each text
feature into word vector format, keeping only meaningful
and descriptive tokens processed by tokenization and stop
word (e.g., ‘a’, ‘the’, ‘and’, ‘of’, ‘is’, ‘this’, etc.) removal.
To be specific, suppose there are m terms after tokeniza-
tion and stop word removal for a text feature, the corre-
sponding vector of this feature in task t would be vt =
(wt,1, wt,2, ..., wt,m), where wi,j stands for the weight for
each term termj , which is calculated by Term Frequency-
Inverse Document Frequency (TF-IDF) according to Equa-
tion 1.

wi,j =
(
1 + log(tfj)

)
∗ log |T |

dfi
(1)

Here tfj is the number of times termj appears in task de-
scription i, |T | is the total number of tasks and dfi equals
the number of tasks containing termj . The extracted text
feature vectors together with the numeric features are then
used for model building.

3.1.2 Model Building
In this step we firstly train a classification model on prepared
historical tasks. Various of supervised learning algorithms
can be adopted. Note that for each new arriving task, the
algorithm should be able to generate a distribution of proba-
bilities for all developer labels, such algorithms can be C4.5
Decision Tree [25], Random Forest [20], Näıve Bayes [18],
K-Nearest Neighbour [9], etc. Note that in order to use
the K-Nearest Neighbour algorithm, we need to define the
similarity measure. In this paper we define the similarity
Sim between two task ti and tj according to the post date
distance, difference in task programming language ,matched
number of techniques, allocated duration distance, payment
difference and the text matching degree (i.e. cosine similar-
ity of two vectors) in title and description. Sim is define
according to Equation 2.

Sim(ti, tj) = w1Dis(F1,i, F1,j) + w2Dis(F2,i, F2,j)

+w3Dis(F3,i, F3,j) + ...+ wnDis(Fn,i, Fn,j)
(2)

Where w stands for the weight assigned to the correspond-
ing feature (in this paper we use equal weights i.e. 1.0 for
all features), Dis indicates the distance function which vary
among different features. The definition of distance mea-
sures in this paper is shown in Table 2.

Lastly, we apply the trained model on new arriving tasks,
the ranked top N developers from the generated probability
distribution are matched to each corresponding task.

The output of CBIM is a list of candidate developers D =

Table 2: Feature Distance Measures

Feature Distance Measure

Date (Datei −Datej)/DateMaxDiff

PL PLi == PLj?1 : 0

Title
Titx·Tity
‖Titx‖‖Tity‖

Tech Match(Techi, T echj)/NumberOfTechsMax

Description
Desx·Desy
‖Desx‖‖Desy‖

Duration (Durationi −Durationj)/DurationMax

Payment (Paymenti − Paymentj)/PaymentMax

Algorithm 1: Constructing the Prestige Network

Input: The historical tasks set T , the registrants set Ri
and the winners set Wi for each task ti ∈ T

Output: The prestige network G
1 Node set V ← ∅, edge set E ← ∅
2 for each task ti ∈ T do
3 for each winner wj ∈ Wi do
4 add node wj to V if wj /∈ V
5 for each registrant rk ∈ Ri do
6 add node rk to V if rk /∈ V
7 if rk 6= wj then
8 add edge (rk, wj) to E

9 Prestige network G← (V,E)
10 return G

{d1, d2, ..., dn}, where d1 to dn are sorted descendingly ac-
cording to their probabilities of being the most suitable de-
velopers, assessing from the task content perspective.

3.2 Prestige Network Based Enhancement
The initial matching result can be regarded as the seed and is
used as the input for further refinement by Prestige Network
Based Enhancement (PNBE). The basis idea of PNBE is to
consider the competition nature of crowdsourcing and better
match between developers and tasks. PNBE contains the
steps as follows:

3.2.1 Prestige Network Construction
In this paper we define the prestige network as a social net-
work connotating the completion nature among developers.
If one developer defeated another developer by winning a
task, there is a directed edge drawn from the loser node to
the winner node. The process for constructing the prestige
network is described as Algorithm 1.

The input of this algorithm include a set of historical tasks,
and corresponding registrants and winners for each task in
the set. The algorithm iterates through each task, adds
directed edges from each registrant to each winner in the
task. Duplicate edges are allowed. Finally the constructed
prestige network represented by a graph is returned.

Motivation: The use of prestige network is initially mo-
tivated by attempting to capture the “cheap talk” strategic
behaviour observed in Archak’s study [4]. The basic idea is
that given the initial matched developersD = {d1, d2, ..., dn}.
Based on the content features, di is more suitable compared
with the developers ranked after di. For di+1 to dn those
who are deterred by di should be removed from the match-
ing list. This aims to incorporate both developers’ task con-
tent preference and their strategic behaviour in choosing the
task: For example, developer A and B are both high skilled
developers and share the similar task preference. For a par-
ticular task t, when developer A is slightly more suitable
than B and B has been defeated by A before, B may move
to another task in order to reduce the risk in winning the
prize, despite his preference on the task content of t.

Observation: Through the prestige network drawn from

Figure 4: A real case of “winner” (left) and “partic-
ipant” (right) developers.

empirical data, we observed that, on one hand, there are
fewer edges between the nodes with higher in-degree, which
can be attributed to the “cheap talk” phenomenon among
high skilled developers.

On the other hand, we can also see that some developers
are frequently defeated by their opponent developers. If we
suppose the “cheap talk” effect is a general rule, then we can
infer the developers should learn to avoid the opponent de-
velopers who have defeated them after accumulating certain
failure experience. However according to our observation on
the empirical data, this is not always the case. We find that
for some developers, they would actively challenge their win-
ners even if they have continuously defeated by them. The
reason can be attributed to various incentives of the devel-
opers. Perhaps for some of them, they enjoy the competition
process and choose the tasks they like regardless of the com-
petition results or simply share the similar task preferences
with the winners.

Formulation: Although some developers actively and ex-
tensively choose their tasks in the CSD platform, they sel-
domly win a task. That is, those developers are frequently
defeated by other developers. We call these developers who
have a broad interest in the tasks and put a low priority
on competition results as “participant-developers”. Like-
wise, for those who constantly defeat others and may strate-
gically choose their opponents, we call them as “winner-
developers”. An example of the “participant-developer” and
“winner-developer” is given in Figure 4.

Since the “participant-developers” can constantly challenge
some other developers, we can model this as an attraction
force between the graph nodes. Also, the deterrence effect
among the “winner-developers” can be modelled as repulsion
force. Basically, we employ the energy model [24] in graph
theory to capture the attraction and deterrence effects. The
attraction force is calculated according to the co-occurrence
times of two developers. While the repulsion force is ob-
tained regarding the ratio of non co-occurrence times and
co-occurrence times of two developers. The attraction force
and the repulsion force between two nodes are calculated
according to Equation 3 and Equation 4, where deg means
the degree of a node and edg indicates the edge numbers
between two nodes.

attraction(vi, vj) = edg(vi, vj) (3)

Figure 5: An example prestige network.

repulsion(vi, vj) =
(deg(vi) + 1) ∗ (deg(vj) + 1)

edg(vi, vj) + 1
(4)

Example: An example prestige network is shown in Figure
5, where each node stands for a developer and the weight
of the edge indicates the number of duplicated edges. In
this example, “winner developers” W1 and W2 have the
strongest repulsion force which is calculated as: (6 + 1) ∗
(4 + 1)/(0 + 1) = 12. The strongest attraction force ex-
ists between the“participant-developer”P1 and the“winner-
developer” W1, which is 6 resulted by summing their edge
numbers up.

3.2.2 Matching Result Refinement
Based on the proposed attraction and repulsion measures of
the prestige network, we propose the algorithm to refine the
initial matching result obtained from CBIM. This procedure
is illustrated by Algorithm 2.

The algorithm mainly consists of 5 phases:

1) Force calculation: Line 2 to line 4 calculate the re-
pulsion and attraction forces between each node pair in the
prestige network.

2) Candidate preparation: Line 5 to line 7 prepare the
deterred and attracted candidate list for each node. For
node vi ∈ V , those nodes with the largest repulsion and at-
traction force with vi are added to the candidate lists R(vi)
and A(vi) separately. Note that α and β indicate the corre-
sponding size of R(vi) and A(vi), which can be adjusted.

3) Exclusion operation: Line 8 to line 11 exclude the de-
terred candidates from the initial matching result. For de-
veloper di ∈ D, those developers ranked after di and belong
to R(di) are excluded.

4) Inclusion operation: Line 12 to line 13 include the
attracted candidates. For developer di ∈ D, developers di
and A(di) are added to D′, preserving the insertion order.

5) Redundancy removal: Line 14 to line 15 remove those
redundancy candidates ranked after the nth position. The
left n matched developers in D′ form the enhanced matching
result which is expected be returned.

4. EVALUATION
This section presents the empirical study conducted on 3
datasets with different development characteristics to eval-
uate our PREM approach. Since there is no existing bench-

Algorithm 2: Refining Matching Result via Prestige Network

Input: The Prestige network G = (V,E) and the top n
developers D = {d1, d2, ..., dn} matched to task t
generated by learner m

Output: Matched developers D′ = {d1′, d2′, ..., dn′}
1 D′ ← ∅
2 for each node pair (vi, vj), where i 6= j, in V do

3 repulsion(vi, vj)← (deg(vi)+1)∗(deg(vj)+1)

(edg(vi,vj)+1)

4 attraction(vi, vj)← edg(vi, vj)

5 for each node vi ∈ V do
6 calculate repulsed node set R(vi)← {r1, r2, ..., rα},

satisfying max
α∑
j=1

repulsion(vi, rj)

7 calculate attracted node set A(vi)← {a1, a2, ..., aβ},

satisfying max
β∑
j=1

attraction(vi, aj)

8 for each developer di ∈ D do
9 for j ← i+ 1 to size(D) do

10 if dj ∈ R(di) then
11 remove dj from D

12 for each developer di ∈ D do
13 add di and A(di) to D′

14 for i← n+ 1 to size(D′) do
15 remove di from D′

16 return D′

mark for this emerging application context, we first com-
pare PREM with a statistical based näıve method named
ACTIVE, which matches the most statistical top winners
to new arriving tasks. Since this method is simple and ac-
tionable, if we cannot outperform this method then there is
no reason for current CSD platforms to adopt our PREM
method. Further, we compare PREM with the Content
Based Matching (CBM) approach which derives from PREM
by removing the PNBE part. Note that, in this paper we
regard CBIM as a component of PREM and view CBM as
an individual approach. Lastly, we implement an alterna-
tive version of PREM related to the essential exclusion and
inclusion operations, and compare its performance with the
original one’s.

With these experiments, we aim to answer the following 3
questions:

Q1: How is the performance of PREM?

Q2: Is the performance of PREM sensitive to the adopted
leaner and the dataset?

Q3: Does the execution order of the exclusion and inclusion
operations in PREM affect its performance?

4.1 Dataset
We evaluate our approach on the datasets collected from
TopCoder platform, which now has the largest community
for crowdsourced software development. We totally collected
9,191 historical tasks that have been crowdsourced from Oct.
9th 2003 to Apr. 9th 2013, which cover 3 types of soft-
ware development tasks on the platform, i.e. component de-

Table 3: Dataset Statistics

Dataset # Tasks # Win. Duration

Development 1093/1367 92/298 2003.10-2013.02

Assembly 1505/1727 86/211 2008.11-2013.03

Bug 5599/6097 202/484 2008.01-2013.04

velopment (DEV), assembly (ASM) and bug fixing (BUG)
tasks. We evaluate our approach separately on each of the
3 datasets. The statistics of the 3 datasets after and before
data filtering (see Section 3.1) is shown in Table 3. Note that
the 3th column indicates the number of distinct winners.

4.2 Study Setting
To simulate the real practice, we sort the task records as-
cendingly according to their posted time and then divide
each of the 3 datasets into 10 folds. We use 9 folds of records
as our training set and the remaining fold as our testing set,
i.e. new arriving tasks. On each of these datasets, PREM
matches top 2, 3, 4 and 5 developers to a specific task sep-
arately and record the matched developers for evaluation.
When PREM refines the initial CBIM matching result, we
set the inclusion and exclusion candidates size to 1, i.e.,
α = 1 and β = 1 in the algorithm. The machine learn-
ing algorithms evaluated in our study include C4.5 Decision
Tree (C4.5), Random Forest (RF), Näıve Bayes (NB) and K-
Nearest Neighbour (KNN). The corresponding parameters
are set according to the default parameters in the popular
open sourced data mining tool Weka [12].

4.3 Evaluation Metrics
In order to evaluate the performance of our proposed ap-
proach, we need the metrics which are popular in developer
recommendation techniques. Since previous related research
topics such as bug triage mainly focus on the Accuracy di-
mension of the performance [7,15,26], we adopt this metric
and it is defined formally as shown in Equation 5, where
D (t) stands for the matched developers for task t and T
stands for testing set.

∣∣correct(D (t)
)∣∣ = 1 when the ground

truth developer is included in D (t).

Accuracy =
1

|T | ∗
∑
t∈T

∣∣correct(D (t)
)∣∣ (5)

4.4 Results and Analysis
We present the empirical evaluation results of the experi-
ments as described above: Table 4 shows the performance
comparison between PREM and ACTIVE. Table 5 compares
the accuracy of PREM with CBM which does not consider
prestige network information, and Table 6 compares the ac-
curacy of PREM with its alternative version, PREM’. All
numbers in these tables are in percentage. The analysis of
these results are as follows.

4.4.1 Results for Q1
Overall, PREM is able to achieve reasonable accuracy. The
highest accuracies are 63%, 46%, 36% for the DEV, ASM
and BUG datasets separately, when PREM adopts C4.5
learner and matches 5 developers to each task.

Table 4: Accuracy of PREM and Statistical AC-
TIVE Matching Results

Dataset Top
PREM

ACTIVE
C4.5 RF NB KNN

DEV

2 42.2 41.3 38.5 48.6 24.6
3 53.2 54.1 44.0 49.5 35.6
4 58.7 56.9 48.6 54.1 37.6
5 63.3 61.5 53.2 57.8 37.6

ASM

2 30.7 29.3 22.7 28.7 10.0
3 35.3 35.3 26.7 34.0 10.7
4 43.3 38.0 30.7 38.0 15.3
5 46.0 42.0 32.0 38.0 19.3

BUG

2 27.0 25.6 26.5 20.8 14.5
3 29.2 28.4 28.3 22.2 14.5
4 32.7 30.6 31.7 28.1 14.5
5 36.3 33.6 32.9 29.2 17.5

Also, it can significantly outperform the statistical ACTIVE
method and the CBM method in which the prestige network
is not taken into consideration.

Compared with ACTIVE : In Table 4, the bold numbers
imply the best accuracy in the corresponding rows. It is
immediately clear that PREM outperforms the statistical
ACTIVE method across all datasets with different settings,
assessed from the Accuracy dimension.

Compared with CBM : In Table 5, the last row indicates
the average improvement when compare PREM with CBM.
Across all 48 pairs of comparison under different experimen-
tal settings, there are only 2 cases that PREM are slightly
worse than CBM (i.e., the ASM-Top5-NäıveBayes case and
the ASM-Top5-KNN case).

4.4.2 Results for Q2
Through the experimental results in Table 5, we find the per-
formance of PREM is sensitive to both the adopted learner
and the dataset.

We can see that the tree-base learners, C4.5 and Random
Forest perform the best in 9 of 12 and 2 of 12 cases, sep-
arately. They can be regarded as the learners that can
best support PREM. Note that without PNBE, these two
tree-based methods can still achieve relatively high accuracy
compared with other learners. When accessing from the per-
spective of the improvement, the KNN leaner has the best
improvement provided PNBE, the best improvement can be
as much as 22% (the DEV-Top2-KNN case). Also, the C4.5
learner has reasonable improvement with PNBE. After man-
ually checking all the candidate developers matched by dif-
ferent learners, we find that the improvement has a posi-
tive correlation with the diversity of the learner generated
results. The results are more diverse when they contain
more unique developers which are matched by the learner
on the test dataset. The reason for this outcome is that the
datasets are unbalanced, which means a small number of
“winner-developers” win a majority of tasks. For the more
diverse results, these “winner-developers” have a higher pos-
sibility to be included into the refined results through the

Table 5: Accuracy of CBM and PREM Matching Results

Dataset Top
C4.5 RandomForest NäıveBayes KNN

CBM PREM CBM PREM CBM PREM CBM PREM

DEV

2 33.9 42.2 30.3 41.3 30.3 38.5 26.6 48.6
3 41.3 53.2 40.4 54.1 35.8 44.0 30.3 49.5
4 46.8 58.7 46.8 56.9 39.4 48.6 33.9 54.1
5 51.4 63.3 54.1 61.5 45.9 53.2 38.5 57.8

ASM

2 30.0 30.7 29.3 29.3 21.3 22.7 28.0 28.7
3 33.3 35.3 34.0 35.3 24.7 26.7 31.3 34.0
4 36.7 43.3 36.7 38.0 26.7 30.7 33.3 38.0
5 38.0 46.0 38.0 42.0 33.3 32.0 38.7 38.0

BUG

2 24.7 27.0 22.2 25.6 25.4 26.5 18.1 20.8
3 27.7 29.2 25.2 28.4 27.0 28.3 19.7 22.2
4 29.7 32.7 27.7 30.6 27.5 31.7 19.9 28.1
5 29.9 36.3 31.8 33.6 27.7 32.9 19.9 29.2

Average Improvement +6.22% +5.01% +4.22% +9.23%

Table 6: Accuracy of PREM and PREM’ Matching Results

Dataset Top
C4.5 RandomForest NäıveBayes KNN

PREM PREM’ PREM PREM’ PREM PREM’ PREM PREM’

DEV

2 42.2 45.9 41.3 41.3 38.5 35.8 48.6 45.9
3 53.2 51.4 54.1 54.1 44.0 41.3 49.5 51.4
4 58.7 57.8 56.9 58.7 48.6 45.9 54.1 57.8
5 63.3 63.3 61.5 64.2 53.2 50.5 57.8 63.3

ASM

2 30.7 30.0 29.3 27.3 22.7 22.7 28.7 28.0
3 35.3 34.7 35.3 35.3 26.7 26.7 34.0 31.3
4 43.3 43.3 38.0 38.0 30.7 31.3 38.0 36.0
5 46.0 44.7 42.0 41.3 32.0 32.7 38.0 38.0

BUG

2 27.0 27.0 25.6 25.8 26.5 26.5 20.8 20.6
3 29.2 29.2 28.4 27.9 28.3 28.3 22.2 22.0
4 32.7 30.1 30.6 30.8 31.7 30.2 28.1 27.2
5 36.3 33.3 33.6 32.7 32.9 30.8 29.2 27.5

P-value (2-tailed) 0.11410 0.96012 0.06148 0.59612

inclusion operation, which increases the chance in matching
the ground truth winners.

Based on above findings, we conclude that PREM is more
effective well when:

• The learner itself performs better on the dataset.

• The learner itself generates more diverse results on the
dataset.

Also, we find that on ASM and BUG datasets, PREM has
relatively poorer improvement than on the DEV dataset.
This can be attributed to the characteristics of the datasets.
On ASM and BUG datasets, we observed that their corre-
sponding prestige networks are more uniform however the
prestige network of the DEV dataset exhibits higher local
density. This outcome indicates that on ASM and BUG
datasets, the identified strategic behaviour of the“participant-
developers”and“winner-developers”are not as typical as the
DEV dataset does.

The repulsion and attraction force levels can be different
on these datasets. For instance, the repulsion force level
can be higher on DEV dataset as its tasks require specific

skills. Thus those who have the expertise can easily deter
others without relevant skills. While on the ASM and BUG
datasets, the skill requirements are more general and the at-
traction force level can be higher as more developers have
the capacity to perform the tasks. Since parameters regard-
ing the attraction and repulsion force levels (i.e., α and β)
are predefined in PREM, they may need to be tuned for the
ASM and BUG datasets. We infer that PREM performs less
effective when the dataset involves less competition nature
which can be captured by PREM.

4.4.3 Results for Q3
PREM refines the developer matching result essentially by
the exclusion and inclusion operations illustrated in Algo-
rithm 2. In the alternative implementation PREM’, we
switch the execution order of these two operations, i.e., at-
tracted developers are included first, then the deterred devel-
opers are removed. The performance comparison is shown
in Table 6.

We employ the Wilcoxon non-parametric statistical hypoth-
esis test to assess whether there is any discernible differences
between the performances of the two implementations. We
choose Wilcoxon test as it compares the sums of ranks and
it is more robust than the Student’s t-test. Also it does not

require the samples come from normal distributions. In the
analysis we set the confidence level to 95% and we calculate
the 2-tailed P-values. The result is shown in the last row of
Table 6. We can see that for all learners, the correspond-
ing P-values are larger than 0.05. Thus the Wilcoxon test
gives no evidence against the null hypothesis that there is
no significant differences between the two performance dis-
tributions.

So the answer for Q3 is that the execution order of the ex-
clusion and inclusion operations in PREM has no significant
effect on its performance. Through the intermediate exper-
imental results we find that both operations contribute to a
higher accuracy for PREM.

5. DISCUSSION
In this section, we discuss the threats to validity of this
study, the accuracy-diversity dilemma of developer-task match-
ing approaches, our finding on supporting developers in mak-
ing decision at the late registration stage and our supporting
tool.

5.1 Threats to Validity
Internal threats: Threats to internal validity stem from
potential factors affect the dependent variables without our
knowledge. It is possible there are flaws in the implementa-
tion of our techniques which could have affected the results.
To reduce this threat, we employed the open sourced WEKA
machine learner package to support our PREM approach
and manually check the intermediate results generated by
our approach.

External threats: Threats to external validity arise when
the experimental results are unable to be generalized. First,
although our experiments are conducted on large datasets
with 3 different application contexts, it is collected from one
CSD platform (TopCoder). It is possible that the competi-
tion relationship among developers can differ from one CSD
platform to another. Thus PREM should be re-evaluated
when applied to other CSD platforms. Second, we evaluate
PREM with limited number of learners. There are more so-
phisticated NLP techniques that can be adopted to support
PREM, however we do not know their corresponding perfor-
mances yet. Third, the parameters used in machine learners
and in PREM (i.e., α and β) are not tuned in our experi-
ments. Their performances can be optimized with different
parameter settings. We leave the further evaluations on var-
ious CSD platforms, more machine learners and parameter
tuning as future work of this paper.

Construct threats: Threats to construct threats occur
when the metrics used fail to capture the concepts they
meant to evaluate. We assess the effectiveness of PREM
by the accuracy measure which is popular in related stud-
ies. However in the context of CSD, although a highly ac-
curate matching result may contribute to the delivery of
qualified assets, it does not necessarily encourage more par-
ticipants, which may harm the community ecology for a long
term. Another potential dimension should considered here
is the diversity metric which is often used in the recom-
mender system area. Since accuracy and diversity are usu-
ally conflicting objectives, there exists an accuracy-diversity
dilemma [29]. To compensate for this construct threat, we

additionally discuss the accuracy-diversity dilemma and pro-
pose a way to trade-off between the two objectives.

5.2 The Accuracy-Diversity Dilemma
As shown in the experimental results, PREM has the ca-
pacity in improving the developer-task matching accuracy,
however over-stressing the importance of accuracy merely
brings short-term benefit for the CSD platform. It can lead
to the CSD community dominated by only a small number
of developers as time pass by. Only by achieving reasonable
diversity, can the system serve for the “long-tail” develop-
ers and enhance the participation level (i.e., exploration).
Meanwhile, the system can match certain number of most
suitable developers to ensure that the accuracy is acceptable
(i.e., exploitation). In this way the matching system works
for long-term benefit.

Here we present a way to make PREM work in the exploita-
tion and exploration way. The idea can be briefly described
as follows:

1) Set x% candidate slots as exploitation.
2) Set 1− x% candidate slots as exploration.

This idea can be implemented by ensembling various learn-
ers employed in our PREM matching system. For instance,
according to the experimental results, the C4.5 learner in-
dicates good capability in matching accuracy, thus can be
viewed as an exploitation learner. While the KNN learner
shows relatively superior ability in matching diversity, thus
can be regarded as an exploration learner. We combine the
matched developers generated from these two learners and
select top N developers according to the weights assigned to
accuracy and diversity.

The optimization goal vary in different contexts, here we
define the optimization target in the form of Weighted Har-
monic Mean [11]. We assign the weight β2 to Accuracy
and the weight 1 to diversity. Hβ is calculated according to
Equation 6.

Hβ =
(
1 + β2) ∗ Accuracy ∗Diversity

β2 ∗Accuracy +Diversity
(6)

Then we calculate H0.5 (emphasize on accuracy), H1(equal
emphasis) and H2 (emphasize on diversity). Figure 6 shows
the trade-off performance of the combination based approach.
In this figure the exploitation learner C4.5 and the explo-
ration learner KNN are used. Scatter points correspond
to different proportion of developers selected from the two
learners’ results. For example, as for “Top 5” case, the pro-
portion is from 100% C4.5 results to 100% KNN results, the
4 middle points stand for the combined results (with the
proportion of 4:1, 3:2, 2:3 and 1:4). The triangle symbol
indicates an optimal point for the corresponding β value.
From the results we can see that the trade-off approach can
be superior than the single learner supported PREM. For
example, in the “Top 20” case, the H1 optimal point shows
that the method only sacrificed 3% in accuracy while
gained 50% in diversity.

5.3 Late Registration Stage Strategy
As a complement to PREM which works prior to or at the
early registration stage, we present our finding to support
developers strategic decisions at the later registration stage,

Figure 6: Performance of the combination based
trade-off method on Assembly dataset.

especially for those developers who desire to win the task.
At the late registration stage, we have plenty of information
about the adversary thus can support a developer’s strategic
decision (e.g., register other tasks than develop a solution for
a task in which their opponents dominant).

Besides the prestige network, we find that the “rating” and
“reliability” information provided by TopCoder platform can
be good indicators in predicting the final winner of the task
at the late registration stage. We evaluate a variety of meth-
ods on the development dataset and find the heuristic rule
by considering “rating” and “reliability” even performs bet-
ter than the machine learners which achieves an accuracy
as high as 72%. The utility function we employed to esti-
mate the winner are simply defined as f = rating ∗ (1.0 +
reliability). We present this winner indicator and find it
useful in supporting online developers’ decision making at
the late registration stage.

5.4 An Online Implementation of PREM
In order to support our proposed approach, we have im-
plemented a user friendly tool called “CrowdDev” platform3

and deployed it on the Internet. This platform is designed
to enable crowd developers view the collected active open
call requests from various CSD platforms, and help them to
find their most suitable tasks via PREM. Also, developer’s
personal prestige network is provided in order to help the
developer better choose their opponents. At current stage,
CrowdDev only supports TopCoder platform.

6. RELATED WORK
Although the study on GSD commenced a decade ago [13],
there are few research work have been done on related top-
ics for the emerging CSD paradigm. We could not find any
prior work on developer-task matching in the CSD context.
For recommending crowdsourced micro-tasks to users, Am-
bati, Vogel and Carbonell [1] proposed a recommendation
approach based on implicit modelling of interest and skills.
Yuen, King and Leung [28] employed probabilistic matrix
factorization for preference-based task recommendation in

3Our CrowdDev Platform: http://www.CrowdDev.org

Figure 7: The relationship between developers’ reg-
istration order and submission rate.

crowdsourcing system. These two studies were conducted on
Amazon Mechanical Turk platform with micro-tasks, rather
than tasks as complex as software development.

Another related topic which has been studies more exten-
sively is developer recommendation for development-oriented
tasks [3]. Čubranić and Murphy [30] proposed to build de-
veloper recommenders for automatic bug triage using text
categorization techniques. Anvik, Hiew and Murphy [2] ex-
panded the previous work by data pre-processing, using ad-
ditional features and exploring the performances of more
machine learning algorithms. Gaeul, Kim and Thomas [16]
further improved developer recommenders for bug triage by
using tossing graph based on developers tossing behaviours
in bug repositories. Matter, Kuhn and Niestrasz [23] pre-
sented their approach to automatically suggest developers
for handling bug reports using a vocabulary-based expertise
model. Xuan et al. [27] leveraged developer prioritization
based on a social network techniques to assist triage tasks
in bug repositories.

However these papers are more about developer collabo-
ration. The proposed approaches need to be carefully re-
examined in the crowdsourced software development context
due to its competition nature and several other new features.
For instance, one prior research has shown that traditional
laws on software cost are challenged in the CSD context [21].
Likewise, we consider traditional developer recommendation
methods cannot be migrated to this new context directly as
previous bug triage studies are based on open source com-
munity which is collaboration oriented. While crowdsourc-
ing is competition oriented and the developers have more
complicated relationships.

Nikolay Archak [4] studied the developers’ strategic behaviour
on TopCoder platform. The “cheap talk” phenomenon is ob-
served, which indicates the high rated developer would reg-
ister the task early in order to deter their opponents’ entry.
One of our analysis also agrees with this study. As Figure 7
shows, the early registered developers have a higher possibil-
ity to make a submission, e.g., the late registered developers
may be deterred by the early ones. However, we argue the
deterrence would not always work. For some developers,
they would insist on competing with high rated developers
even though they have been defeated by them constantly.
We identified two typical types of developers evolved in the
competition, which have been discussed in Section IV.

7. CONCLUSIONS
Crowdsourced software development is an emerging paradigm
which utilize “wisdom of the crowd” for software production.
Crowdsourced software development tasks demand reliable
developers to grantee a qualified asset that can be delivered
to the client. Current crowdsourcing practice usually adopt
a pull methodology which cannot grantee that developers
work on their most suitable tasks. In addition it brings the
developers much burden in finding their suitable tasks from
the overloaded task information.

To tackle above challenges, in this paper we proposed an
approach named PREM to actively match the best suitable
developers to the available tasks. A set of task features
were proposed, which can be used to build content based
matching models using existing machine learners. In order
to enhance the matching result, we further considered the
competition nature of crowdsourcing. We identified two typ-
ical types of developers in CSD and their task selection be-
haviour were considered in our constructed prestige network.
The experimental results show that PREM can achieve rea-
sonable accuracy and significantly outperform the statisti-
cal and CBM methods. To cope with the accuracy-diversity
dilemma of the matching results, we further proposed a com-
bination method to adjust our matching results. We also
implemented an online platform to support our approach,
which can be publicly accessed by the crowd developers.

For future work, we intend to propose an improved approach
to better model the social relationship among developers.
Multi-criteria optimization such as the accuracy-diversity
dilemma will be considered when searching for the optimal
matching results.

8. REFERENCES
[1] V. Ambati, S. Vogel, and J. G. Carbonell. Towards

task recommendation in micro-task markets. In
Human Computation, volume WS-11-11 of AAAI
Workshops. AAAI, 2011.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix
this bug? In Proceedings of the 28th International
Conference on Software Engineering, pages 361–370.
ACM, 2006.

[3] J. Anvik and G. C. Murphy. Reducing the effort of bug
report triage: Recommenders for development-oriented
decisions. ACM Transactions on Software Engineering
and Methodology (TOSEM), 20(3):10, 2011.

[4] N. Archak. Money, glory and cheap talk: analyzing
strategic behavior of contestants in simultaneous
crowdsourcing contests on topcoder.com. In
M. Rappa, P. Jones, J. Freire, and S. Chakrabarti,
editors, WWW, pages 21–30. ACM, 2010.

[5] A. Begel, J. Bosch, and M.-A. D. Storey. Social
networking meets software development: Perspectives
from github, msdn, stack exchange, and topcoder.
IEEE Software, 30(1):52–66, 2013.

[6] A. Begel, R. DeLine, and T. Zimmermann. Social
media for software engineering. In Proceedings of the
FSE/SDP workshop on Future of software engineering
research, pages 33–38. ACM, 2010.

[7] P. Bhattacharya and I. Neamtiu. Fine-grained
incremental learning and multi-feature tossing graphs

to improve bug triaging. In Software Maintenance
(ICSM), 2010 IEEE International Conference on,
pages 1–10. IEEE, 2010.

[8] L. B. Chilton, J. J. Horton, R. C. Miller, and
S. Azenkot. Task search in a human computation
market. In Proceedings of the ACM SIGKDD
Workshop on Human Computation, HCOMP ’10,
pages 1–9, New York, NY, USA, 2010. ACM.

[9] T. Cover and P. Hart. Nearest neighbor pattern
classification. IEEE Transactions on Information
Theory, 13(1):21–27, 1967.

[10] J. Farrell and M. Rabin. Cheap talk. The Journal of
Economic Perspectives, 10(3):103–118, 1996.

[11] W. F. Ferger. The nature and use of the harmonic
mean. Journal of the American Statistical Association,
26(173):36–40, 1931.

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: an update. SIGKDD Explor. Newsl.,
11(1):10–18, Nov. 2009.

[13] J. D. Herbsleb and D. Moitra. Global software
development. Software, IEEE, 18(2):16–20, 2001.

[14] J. Howe. The rise of crowdsourcing. Wired magazine,
14(6):1–4, 2006.

[15] G. Jeong, S. Kim, and T. Zimmermann. Improving
bug triage with bug tossing graphs. In Proceedings of
the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT
symposium on The foundations of software
engineering, pages 111–120. ACM, 2009.

[16] G. Jeong, S. Kim, and T. Zimmermann. Improving
bug triage with bug tossing graphs. In Proceedings of
the the 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT
symposium on The Foundations of Software
Engineering, ESEC/FSE ’09, pages 111–120, New
York, NY, USA, 2009. ACM.

[17] K. Lakhani, D. Garvin, and E. Lonstein. Topcoder
(a): Developing software through crowdsourcing.
Harvard Business School General Management Unit
case, (610-032), 2010.

[18] P. Langley, W. Iba, and K. Thompson. An analysis of
bayesian classifiers. In In Proceedings of the 10th
International Conference on Artificial Intelligence,
pages 223–228. MIT Press, 1992.

[19] K. Li, J. Xiao, Y. Wang, and Q. Wang. Analysis of the
key factors for software quality in crowdsourcing
development: An empirical study on topcoder.com. In
COMPSAC. IEEE Computer Society, 2013.

[20] A. Liaw and M. Wiener. Classification and regression
by randomforest. R News, 2(3):18–22, 2002.

[21] K. Mao, Y. Yang, M. Li, and M. Harman. Pricing
crowdsourcing-based software development tasks. In
Proceedings of the 2013 International Conference on
Software Engineering, New Ideas and Emerging
Results Track, ICSE 2013, pages 1205–1208. IEEE
Press, 2013.

[22] Massolution. Crowdsourcing industry report. 2012.

[23] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning bug
reports using a vocabulary-based expertise model of
developers. In Proceedings of the 2009 6th IEEE

International Working Conference on Mining Software
Repositories, MSR ’09, pages 131–140, Washington,
DC, USA, 2009. IEEE Computer Society.

[24] A. Noack. Energy models for graph clustering. J.
Graph Algorithms Appl., 11(2):453–480, 2007.

[25] J. R. Quinlan. C4.5: programs for machine learning.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1993.

[26] J. Xuan, H. Jiang, Z. Ren, and W. Zou. Developer
prioritization in bug repositories. In Software
Engineering (ICSE), 2012 34th International
Conference on, pages 25–35. IEEE, 2012.

[27] J. Xuan, H. Jiang, Z. Ren, and W. Zou. Developer
prioritization in bug repositories. In Proceedings of the
2012 International Conference on Software
Engineering, ICSE 2012, pages 25–35, Piscataway, NJ,

USA, 2012. IEEE Press.

[28] M.-C. Yuen, I. King, and K.-S. Leung. Taskrec:
probabilistic matrix factorization in task
recommendation in crowdsourcing systems. In Neural
Information Processing, pages 516–525. Springer, 2012.

[29] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R.
Wakeling, and Y.-C. Zhang. Solving the apparent
diversity-accuracy dilemma of recommender systems.
Proceedings of the National Academy of Sciences,
107(10):4511–4515, 2010.

[30] D. ÄŇubraniÄĞ. Automatic bug triage using text
categorization. In In SEKE 2004: Proceedings of the
Sixteenth International Conference on Software
Engineering and Knowledge Engineering, pages 92–97.

KSI Press, 2004.

