
An Empirical Study on Dependence Clusters for
Effort-Aware Fault-Proneness Prediction

Yibiao Yang1, Mark Harman2, Jens Krinke2, Syed Islam3, David Binkley4,
Yuming Zhou1∗ , and Baowen Xu1

1
Department of Computer Science and Technology, Nanjing University, China

2
Department of Computer Science, University College London, UK

3
School of Architecture, Computing and Engineering, University of East London, UK

4
Department of Computer Science, Loyola University Maryland, USA

ABSTRACT
A dependence cluster is a set of mutually inter-dependent
program elements. Prior studies have found that large de-
pendence clusters are prevalent in software systems. It has
been suggested that dependence clusters have potentially
harmful effects on software quality. However, little empirical
evidence has been provided to support this claim. The study
presented in this paper investigates the relationship between
dependence clusters and software quality at the function-
level with a focus on effort-aware fault-proneness prediction.
The investigation first analyzes whether or not larger de-
pendence clusters tend to be more fault-prone. Second, it
investigates whether the proportion of faulty functions in-
side dependence clusters is significantly different from the
proportion of faulty functions outside dependence clusters.
Third, it examines whether or not functions inside depen-
dence clusters playing a more important role than others
are more fault-prone. Finally, based on two groups of func-
tions (i.e., functions inside and outside dependence cluster-
s), the investigation considers a segmented fault-proneness
prediction model. Our experimental results, based on five
well-known open-source systems, show that (1) larger depen-
dence clusters tend to be more fault-prone; (2) the propor-
tion of faulty functions inside dependence clusters is signifi-
cantly larger than the proportion of faulty functions outside
dependence clusters; (3) functions inside dependence clus-
ters that play more important roles are more fault-prone;
(4) our segmented prediction model can significantly im-
prove the effectiveness of effort-aware fault-proneness pre-
diction in both ranking and classification scenarios. These
findings help us better understand how dependence clusters
influence software quality.

∗Corresponding author: zhouyuming@nju.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE ’16 September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. ISBN 123-4567-24-567/08/06.

DOI: 10.475/123 4

CCS Concepts
•Software and its engineering→Abstraction, model-
ing and modularity; Software development process man-
agement;

Keywords
Dependence clusters, fault-proneness, fault prediction, net-
work analysis

1. INTRODUCTION
A dependence cluster is a set of program elements that

all directly or transitively depend upon one another [8, 18].
Prior empirical studies found that large dependence clusters
are highly prevalent in software systems and further compli-
cate many software activities such as software maintenance,
testing, and comprehension [8, 18]. In the presence of a
(large) dependence cluster, an issue or a code change in one
element likely has significant ripple effects involving the oth-
er elements of the cluster [8, 18]. Hence, there is a reason
to believe that dependence clusters have potentially harmful
effects on software quality. This suggests that the elements
inside dependence clusters have relatively lower quality when
compared to elements outside any dependence cluster. Giv-
en this observation, dependence clusters should be useful in
fault-prediction. However, few empirical studies have inves-
tigated the effect of dependence clusters on fault-proneness
prediction.

This paper presents an empirical study of the relationships
between dependence clusters and fault-proneness. The con-
cept of a dependence cluster was originally introduced by
Binkley and Harman [8]. They treat program statements
as basic units, however, they note that dependence clusters
can be also defined at coarser granularities, such as at the
function-level [7]. For a given program, the identification
of function-level dependence clusters consists of two steps.
The first step generates a function-level System Dependence
Graph for all functions of the program. In general, these
graphs involve two types of dependencies between function-
s: call dependency (i.e., one function calls another function)
and data dependency (e.g., a global variable defined in one
function is used in another function). In the System De-
pendence Graphs used in our study, nodes denote functions
and directed edges denote the dependencies between these
functions. In the second step, a clustering algorithm is used

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79528540?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to calculate all the maximal strongly connected components
found in the System Dependence Graph (SDG). In function-
level dependence clusters, functions are regarded as the basic
units and each cluster consists of at least two functions. Ac-
cording to Binkley et al. [7], the function-level dependence
clusters can offer an effective proxy for the more expensive
statement-level dependence clusters.

Based on this observation, we investigate dependence clus-
ters at the function-level. Our main contributions are the
following:

1) We investigate whether the qualities of dependence
clusters are influenced by their size. Our results show that
larger dependence clusters tend to be more fault-prone.

2) We examine whether functions inside dependence clus-
ters are more fault-prone than functions outside dependence
clusters. The results show that the proportion of faulty func-
tions inside dependence clusters is significantly greater than
that of functions outside all dependence clusters.

3) We examine whether functions playing more important
roles inside dependence clusters are more fault-prone. Our
empirical results show that importance metrics are positive-
ly correlated with fault-proneness.

4) Finally, we propose a segmented prediction model for
fault-proneness prediction. More specifically, we build two
different fault-proneness prediction models respectively for
functions inside and functions outside dependence clusters.
The empirical results show that our segmented prediction
model can significantly improve the prediction performance
in effort-aware evaluations.

The rest of this paper is organized as follows. In Sec-
tion 2, we summarize related work. We present our research
questions in Section 3. In Section 4, we describe the exper-
imental setup, including the subject systems and the data
collection method used. In Section 5, we describe the re-
search method and report the detailed experimental results
with respect to each of the research questions. Section 6
discusses our findings. In Section 7, we examine threats to
validity. Finally, Section 8 concludes the paper and outlines
directions for future work.

2. RELATED WORK
This section summarizes related work on dependence clus-

ters and dependence analysis in fault-proneness prediction.

2.1 Dependence Clusters
Binkley and Harman [8] originally introduced the concept

of dependence clusters based on program slicing at the state-
ment level. They proposed a “same slice size” approach to
identifying dependence clusters using the SDG. Later, Har-
man et al. [18] extended this initial study to include a larger
set of programs. Their empirical results showed that the
“same slice size” approach was extremely accurate. In ad-
dition, they found that large dependence clusters were sur-
prisingly commonplace and consumed from more than 10%
of the program to, in some cases, 80% of the whole program.
Islam et al. [20, 21] introduced the concept of coherent de-
pendence clusters. In a coherent dependence cluster, all ele-
ments depend upon the same set of elements and also affect
a common set of elements. They used coherent dependence
clusters to identify logical functionality within programs.

Binkley and Harman [10, 9] introduced a method to mea-
sure the effect of an SDG vertex or an edge on the formation

of dependence clusters and then used this method to iden-
tify linchpins, which effectively hold a dependence cluster
together. Their results showed that only a few vertices and
edges act as linchpins. After that, Binkley et al. [10] in-
troduced a simple transformation-based analysis algorithm
to identify the impact of global variables on the presence
of dependence clusters. Their results showed that over half
of the studied programs include a global variable that was
responsible for the formation of a dependence cluster.

Beszédes et al. [5, 6] conducted an empirical study into the
properties of SEA-based dependence clusters. Such cluster
are defined at the function-level and are based on the static
execute after (SEA) relation. Their empirical results showed
that SEA-based dependence clusters occur frequently in pro-
grams regardless of their domain and size. However, the
SEA-based relation only considers call structure informa-
tion. In other words, data dependencies are not considered
in their study. In contrast, we take the data dependency
between functions into account in our study.

Binkley et al. [7] compared the following two types of de-
pendence clusters: slice-based dependence clusters at the
statement-level and SEA-based dependence clusters at the
function-level. They found that the less expensive SEA-
based dependence clusters could be used as an effective prox-
y for the more expensive slice-based dependence clusters.
Unlike the above studies, we investigate dependence clusters
from the perspective of software quality. More specifically,
we investigate whether dependence clusters have practical
value in effort-aware fault-proneness prediction.

2.2 Dependence Analysis in Fault-Proneness
Prediction

Zimmermann and Nagappan [41] calculated network met-
rics based on a dependence graph and used them to predict
faults. More specifically, they first generate a SDG at the
function level. Two kinds of dependencies between function-
s are then taken into account: call dependencies and data
dependencies. They then lift this graph up to binary level
since the defects were at the binary level. They considered
the presence of dependencies without considering the mul-
tiplicity of dependencies. After that, they compute network
measures on the dependence graph and then evaluated their
fault-proneness prediction performance on Windows Server
2003. Their results show that the recall of the model built
from network measures was 10% higher than the model built
from complexity measures.

Ma et al. [23] conducted an empirical study to examine
the effectiveness of network measures in the context of effort-
aware fault-proneness prediction, taking into account the
effort required to inspect predicted faulty module. They
investigated dependence graphs at the file-level and did not
consider the multiplicity of dependencies between files. They
found that most network measures were of practical value
in the context of effort-aware evaluations. Unlike these t-
wo studies, our SDGs are finer grained (i.e., function-level
vs binary/file-level). In addition, we take into account the
multiplicity of dependencies between functions.

Cataldo et al. [13] compared the relative impact of the
syntactic, logical, and work dependencies on fault-proneness
prediction. Syntactic dependencies are code dependencies
(e.g., control and data dependencies). Logical dependencies
focus on deducing dependencies between source code files
that are changed together [16]. Finally, work dependencies

account the human and organization of information [17, 19,
27, 29, 32]. Their work showed that the logical dependencies
explained most of the variance in fault proneness while work
flow dependencies had more impact than code dependencies.
In our study, we only investigate syntactic dependencies, but
do so at a finer granularity.

Oyetoyan et al. [31] studied the impact of cyclic dependen-
cies on fault-proneness prediction. They found that most de-
fects and defective components were concentrated in cyclic
dependent components. The cyclic dependent components
are those in call cycles in call dependence graph at the class
level. These structures can also be viewed as dependence
clusters. Our study is different from their study mainly with
respect to the following aspects: 1) our dependence cluster-
ing is at a finer granularity (i.e., function level) while their
study is at the file/class level; 2) we take into account more
types of dependencies, including both call and data depen-
dencies; 3) we study the fault-proneness prediction model in
effort-aware evaluations with respect to ranking and classifi-
cation scenarios; 4) we propose a segmented fault-proneness
prediction model and compare our models with the tradi-
tional fault-proneness prediction models.

3. RESEARCH QUESTIONS
In this section we discuss our research questions and use

the example SDG shown in Figure 1 to illustrate the ques-
tions. In Figure 1, the nodes (e.g., f1 and f2) are functions
and the directed edges are dependencies between function-
s, depicting data dependencies (labeled “d”) and function
call dependencies (labeled “c”), respectively. In this depen-
dence graph, there are 15 functions and 3 dependence clus-
ters (i.e., dc1, dc2, and dc3). In Figure 1, dc1, dc2, and
dc3 are separate clusters since they are maximal strongly
connected subgraphs. The functions are divided into two
groups: functions inside dependence clusters and functions
outside dependence clusters. Functions inside dependence
clusters and functions outside dependence clusters form the
subgraphs SubGin and SubGout, respectively.

First, because a code change to one element of a depen-
dence cluster likely ripples to the others elements of the clus-
ter, our first research question (RQ1) investigates the rela-
tionship between the size of dependence clusters and fault-
proneness:

RQ1. Are larger dependence clusters more fault-prone?
Second, functions in Figure 1 are classified into two group-

s: functions inside and outside dependence clusters. Our
second research question (RQ2) focuses on the quality of
functions in these two groups.

RQ2. Are functions inside dependence clusters more fault-
prone than functions outside dependence clusters?

Third, functions inside dependence clusters form a sub-
dependence graph (e.g., SubGin of Figure 1). Different func-
tions play different roles in this sub-graph. Thus, we set up
RQ3 for functions inside dependence clusters as follows:
RQ3. Are functions playing more important roles inside

dependence clusters more fault-prone?
Finally, we aim to examine the usefulness of dependence

clusters for fault-proneness prediction. Therefore, our last
research question (RQ4) is set up as follows:
RQ4. Are dependence clusters useful in fault-proneness

prediction?
These research questions are important to both software

researchers and practitioners, as they help us better under-

Figure 1: An SDG with dependence clusters

stand the effects of dependence clusters on software quality.
Little is currently known on this subject. Our study at-
tempts to fill this gap.

4. EXPERIMENTAL SETUP
This section first introduces the systems studied before

describing the procedure used to collect the experimental
data.

4.1 Studied Projects
Table 1 summarizes the subjects used in the study. The

first column is the system name. We use five well-known
open-source projects as subject systems: Bash (BASH), gcc-
core (GCC), GIMP (GIMP), glibc (GLIB), and GStreamer
(GSTR). Bash is a command language interpreter, gcc-core
is the GNU compiler collection, GIMP is the GNU Image
Manipulation Program, glibc is the GNU Project’s imple-
mentation of the C standard library and GStreamer is a
multimedia framework. We chose these five projects as sub-
jects for two reasons. First, they are well-known open source
projects with a publicly available bug-fix history. In partic-
ular, the bug-fixing releases do not add any new features
to the corresponding systems, thus allowing us to collec-
t accurate fault data at the function level. For instance,
gcc distribution website states “Note that starting with ver-
sion 3.3.4, we provide bug releases for older release branches
for those users who require a very high degree of stability”.
Second, they are non-trivial software systems belonging to
several different domains. In Table 1, the second to the
seventh columns are respectively the version number, the
release date, the total source lines of code in the subject
release, the number of functions, the number of faulty func-
tions, and the percentage of faulty functions. The eighth
and the ninth columns are the version number and the re-
lease date of the previous version used for computing the
process metrics in Section 5.4. The last two columns are the
version number and the release date of the fixing release.

Table 1: The subject systems

System
Subject release Previous release Fixing release

Version Release Total # functions # faulty % faulty Version Release Version Release
date SLoC functions functions date date

Bash 3.2 2006-10-11 49 608 1 947 68 3.49% 3.1 2005-12-08 3.2.57 2014-11-07
Gcc-core 4.0.0 2005-04-21 422 182 13 612 430 3.16% 3.4.0 2004-04-20 4.0.4 2007-01-31
Gimp 2.8.0 2012-05-12 557 436 19 978 818 4.10% 2.7.0 2009-08-15 2.8.16 2015-11-21
Glibc 2.1.1 1999-05-24 172 559 5 923 417 7.04% 2.0.1 1997-02-04 2.1.3 2000-02-25
Gstreamer 1.0.0 2012-09-24 75 985 3 946 146 3.70% 0.11.90 2011-08-02 1.0.10 2013-08-30

The subject projects are moderate to large-scale software
systems (from 49 to 557 KSLOC). They have only a small
number of faulty functions (from approximately 3% to 7%
of all functions). Furthermore, on average, the fixing release
comes out approximately 3 years after the subject version
is released. We believe 3 years is sufficiently long for the
majority of faulty functions to be identified and fixed.

4.2 Data Collection Procedure
We collected data from the above mentioned five projects.

For each subject system, we obtained the fault data and i-
dentified dependence clusters for further analysis using the
following steps. At the first step, we determined the fault-
y or not faulty label for each function. As mentioned be-
fore, any of the bug-fixing releases did not add any new fea-
tures to the corresponding system. For each of the subject
systems, we compared these versions with the latest bug-
fixing releases (identified by the last two columns of Table
1) and determined which functions were changed. If a func-
tion was changed, it was marked as a faulty. Otherwise, it
was marked as not-faulty. This method has been used to
determine faulty functions before [42].

Our second step, collected the dependence clusters for
each system using the Understand1 tool and an R package
igraph2. For each subject system, we first generated an Un-
derstand database. Then, we extracted the call and data
dependencies for all functions from the generated database.
In this way we obtained the SDG of the subject system.
After that, we used the function cluster in igraph package
to identify all dependence clusters. Each system’s functions
are divided into two groups: functions inside and functions
outside dependence clusters.

Table 2: The dependence clusters in subject systems

% functions Size of
System # functions # clusters inside clusters largest cluster

BASH 1 947 41 46.2 483
GCC 13 612 139 34.9 4083
GIMP 19 978 363 14.2 158
GLIB 5 923 105 11.6 277
GSTR 3 946 59 15.2 170

Table 2 describes the clusters in the subject projects. The
third to the fifth columns respectively show the number of
clusters, the percentage of functions inside clusters, and the
size of the largest cluster in each subject project. From Table
2, we can see that there exist many dependence clusters
(from 41 to 363) in these projects. Furthermore, from 11.6%
to 46.2% of the total functions are found inside dependence
clusters. Additionally, the size of the largest cluster in these
projects varied from 158 to 4083. Of these five projects,
GCC has the largest dependence cluster (that includes 4083

1https://scitools.com
2http://igraph.org/r/

Spearman rank correlationClusters: dc1, dc2, dc3, ...

Size Metric

Fault density

RQ1

Figure 2: Overview of the analysis method for RQ1

functions). This, to a certain extent, indicates that GCC is
more complex than the other systems.

5. METHODOLOGY AND RESULTS
In the section, we describe the research method and report

the experimental results in detail with respect to each of the
research questions.

5.1 RQ1. Are larger dependence clusters more
fault-prone?

In the following, we describe the research method used
and report the experimental result to address RQ1.

5.1.1 Research method
Figure 2 provides an overview of the analysis method used

to address RQ1. As can be seen, in order to answer RQ1, we
use Spearman’s rank correlation to investigate the relation-
ship between the size of dependence clusters and the fault
density of dependence clusters. Here, fault density refer-
s to the percentage of faulty functions in the dependence
clusters. There are two basic metrics to measure the size
of a graph: Size and Ties. Size is the number of function-
s within dependence clusters while Ties is the number of
edges between functions in dependence clusters. In this s-
tudy, we first use igraph to compute these two metrics for all
dependence clusters in each subject system. We choose S-
pearman’s rank correlation rather than Pearson’s linear cor-
relation since the former is a non-parametric method and
makes no normality assumptions on variables [30]. Accord-
ing to Ott and Longnecker [30], for correlation coefficient
rho, the correlation is considered either weak (|rho| ≤ 0.5),
moderate (0.5 < |rho| < 0.8), or strong (0.8 ≤ |rho| ≤ 1.0).

5.1.2 Experimental result
In the following, we describe the empirical results used

to answer RQ1. Table 3 summarizes the Spearman correla-
tion coefficients relating the size metrics with fault density
of dependence clusters. In Table 3, the second column is the
number of dependence clusters in each subject system. The
third and the fifth columns respectively present the correla-
tion coefficients for the Size and the Ties metrics from Spear-
man’s singed-rank correlation. The correlation coefficients
which are not statistically significant at the significance level
of α = 0.05 are marked in gray.

Table 3: Spearman correlation for dependence clus-
ters size and fault density (RQ1)

System # clusters
Size Ties

rho p rho p
BASH 41 0.230 0.148 0.315 0.045
GCC 139 0.299 < 0.001 0.233 0.006
GIMP 363 0.150 0.004 0.195 < 0.001
GLIB 105 0.092 0.350 0.113 0.249
GSTR 59 0.345 0.007 0.295 0.023

Consistency table

Fisher s exact test and

OR

RQ2

f3f1 f2 ...

f5 f6 ...f4

Figure 3: Overview of the analysis method for RQ2

In Table 3, we see that all the absolute values of the cor-
relation coefficients are less than 0.5. This indicates that
there is only a weak correlation between these two size met-
rics (i.e., Size and Ties) with fault density of dependence
clusters. However, all the correlation coefficients are larg-
er than 0 and most of them are statistically significant at
the significance level of α = 0.05. This indicates that these
size metrics are positively correlated with fault density. In
other words, larger dependence clusters tend to be more
fault-prone. Thus, large dependence clusters are likely more
harmful and hence should be avoided, advice that is consis-
tent with prior studies [8, 18].

5.2 RQ2. Are functions inside dependence clus-
ters more fault-prone than functions out-
side dependence clusters

In the following, we describe the research method and the
experimental result answering RQ2.

5.2.1 Research method
Figure 3 provides an overview of the data analysis method

for addressing RQ2. As can be seen, in order to answer RQ2,
we use Fisher’s exact test and the odds ratio (OR) to exam-
ine whether the proportion of faulty functions inside depen-
dence clusters is statistically significantly different from the
proportion of faulty functions outside dependence clusters.
Fisher’s exact test is a statistical significance test used in the
analysis of contingency tables [36]. The contingency table
is a matrix that displays the frequency distribution of vari-
ables. In our study, the contingency table has four types of
functions: (1) functions inside dependence clusters that have
faults; (2) functions inside dependence clusters that have no
faults; (3) functions outside dependence clusters that have
faults; and (4) functions outside dependence clusters that
have no faults. The OR indicates the likelihood that an
event (e.g., that a function is faulty) occurs [36]. Assume
p is the proportion of faulty functions inside dependence
clusters and q is the proportion of faulty functions outside

dependence clusters. Then, OR is defined as p�(1−p)
q�(1−q) . Thus

OR > 1 indicates that faults are more likely to occur inside
dependence clusters. OR = 1 indicates an equal probability.

5.2.2 Experimental result
Table 4 summarizes the results of the comparison of the

proportions of faulty functions inside and outside depen-
dence clusters. In Table 4, the second and the third columns
respectively represent the proportion of faulty functions in-

f3f1 f2 ...

Metric

Fault label

RQ3

ΔOR form univariate logistic

regression

Figure 4: Overview of the analysis method for RQ3

side and outside dependence clusters. The fourth and the
fifth columns respectively show the Bonferroni adjusted p-
value from Fisher’s exact test and OR.

Table 4: The proportion of faulty functions inside
vs. outside dependence clusters (RQ2)

System
% functions is faulty Fisher’s

OR
inside outside exact test

BASH 5.44% 1.82% < 0.001 3.115
GCC 6.08% 1.59% < 0.001 4.004
GIMP 4.47% 4.03% 1.000 1.115
GLIB 14.54% 6.06% < 0.001 2.638
GSTR 10.20% 2.54% < 0.001 4.361

From Table 4, we can see that the proportion of faulty
functions inside dependence clusters is larger than the pro-
portion of faulty functions outside dependence clusters in
all cases, and significantly larger in all but one case. All the
p-values are less than 0.05 except in GIMP which indicates
statistically significant at the significance level of α = 0.05.
This indicates that the proportions of faulty functions be-
tween these two groups are significantly different. Mean-
while, all the ORs are substantially greater than 1, two are
even greater than 4, which confirms the results from Fisher’s
exact test.

Overall, Fisher’s exact test and the ORs consistently in-
dicate that functions inside dependence clusters are more
fault-prone than functions outside dependence clusters.

5.3 RQ3. Are functions playing more impor-
tant roles inside dependence clusters more
fault-prone?

In the following, we describe the corresponding research
method and the experimental results that address RQ3.

5.3.1 Research method
Figure 4 provides an overview of the analysis method for

RQ3. Functions inside dependence clusters form an inde-
pendent dependence graph (e.g., SubGin in Figure 1). In
order to answer RQ3, we first use this graph to compute the
importance metrics as described in Table 5 for the function-
s inside dependence clusters in the sub-dependence graph.
The metrics in Table 5 are widely used networks metrics [37]
that measure the extent to which these functions contribute
to the sub-dependence graph. For example, the Between-
ness metric for a vertex measures how many shortest paths
pass through the vertex for all pairs of vertices of the sub-
graph. Thus, vertices with large Betweenness indicates a
large importance. Note that some of these importance met-
rics can be computed by one the following three method-
s: “IN”, “OUT”, and “ALL”. The “IN” method concerns all
incoming edges. The “OUT” method concerns all outgoing
edges. While the“ALL”method treats the graph as an undi-
rected graph. In this study, we only compute the metrics
using the “OUT” method.

Table 5: Summarization of the importance metrics
Metric Description
Betweenness # shortest paths through the vertex
Centr betw Centrality score according to betweenness
Centr clo Centrality score according to the closeness
Centr degree Centrality score according to the degrees
Centr eigen Centrality score according to eigenvector
Closeness How close to other vertices
Constraint The Burt’s constraint
Degree # v’s adjacent edges
Eccentricity Maximum graph distance to other vertices
Page rank Google page rank score

After that, we build univariate logistic regression models
for each of these metrics with fault-proneness. Similar to
prior studies [11, 38], we use ∆OR, the odds ratio associ-
ated with one standard deviation increase, to quantify the
effect of these metrics on fault-proneness. ∆OR is defined as
follows: ∆OR = eβ×σ . Here, β and σ are respectively the
regression coefficient from the univariate logistic regression
and the standard deviation of the variable. ∆OR > 1 indi-
cates that the corresponding metric is positively associated
with fault-proneness while ∆OR < 1 indicates a negative
association.

5.3.2 Experimental result
Table 6 summarizes the ∆ORs from univariate logistic

regression analysis for the metrics of functions inside depen-
dence clusters. In Table 6, the second and the third rows
respectively show the number of functions and faulty func-
tions inside dependence clusters for each subject system. Af-
ter each ∆ORs, “×” indicate the ∆ORs is not statistically
significant at a significance level of α = 0.05. Note that,
all the p-values are corrected by the Bonferroni correction
method.

Table 6: Results from univariate analysis for the
importance metrics of functions inside dependence
clusters in terms of ∆OR (RQ3)
Metric BASH GCC GIMP GLIB GSTR
N 900 4752 2839 688 598
faulty functions 49 289 127 100 61
Betweenness 1.394 1.159 1.097 × 0.876 × 1.079 ×
Centr betw 1.431 1.194 1.108 × 0.949 × 1.080 ×
Centr clo 1.034 × 1.257 0.957 × 1.315 1.101 ×
Centr degree 1.425 1.227 1.051 × 1.314 1.223
Centr eigen 1.013 × 1.004 × 1.106 × 0.340 × 0.947 ×
Closeness 1.035 × 1.277 0.958 × 1.310 1.102 ×
Constraint 0.716 0.705 1.039 × 0.779 0.775 ×
Degree 1.425 1.227 1.051 × 1.314 1.223
Eccentricity 0.901 × 1.068 × 0.998 × 1.030 × 0.963 ×
Page rank 1.264 × 1.037 × 1.246 0.845 × 1.127 ×

In Table 6, we see that the ∆ORs of the Centr degree
and Degree metrics are larger than 1.0 in all systems. For
other metrics, the ∆ORs are larger than 1.0 in most systems.
This indicates that they are positively associated with fault-
proneness. Overall, this result indicates that functions that
play a more important role in dependence clusters tend to
be more fault-prone.

5.4 RQ4. Are dependence clusters useful in
fault-proneness prediction?

In the following, we describe the research method and
present the experimental results for RQ4.

5.4.1 Research method
Figure 5 provides an overview of the analysis method for

RQ4. In order to address RQ4, we use AIC as the criteria
to perform a forward stepwise variable selection procedure
to build the following two types of multivariate logistic re-
gression models: (1) the “B” model and (2) the “B+C” mod-
el. The logistic regression is a standard statistical modeling
technique in which the dependent variable can take on on-
ly one of two different values [3]. It is suitable and widely
used for building fault-proneness prediction models [34, 33].
We choose the forward rather than the backward variant
because the former is less time consuming on stepwise vari-
able selection especially on a large number of independent
metrics. AIC is a widely used variable selection criteria [33].

Table 7: The most commonly used product, process,
and network metrics in this study
Category Description
Product SLOC, FANIN, FANOUT, NPATH, Cyclomatic,

CyclomaticModified, CyclomaticStrict, Essential,
Knots, Nesting, MaxEssentialKnots, MinEssential-
Knots, n1, n2, N1, N2

Process Added, Deleted, Modified
Network Size, Ties, Pairs, Density, nWeakComp, pWeakCom-

p, 2StepReach, ReachEffic, Broker, nBroker, Ego-
Betw, nEgoBetw, effsize, efficiency, constraint, De-
gree, Closeness, dwReach, Eigenvector, Between-
ness, Power

Table 8: Description of the studied network metrics
Metric Description
Size # alters that ego is directly connected to
Ties # ties in the ego network
Pairs # pairs of alters in the ego network
Density % possible ties that are actually present
nWeakComp # weak components in the ego network
pWeakComp # weak components normalized by size
2StepReach # nodes ego can reach within two steps
ReachEffic 2StepReach normalized by sum of alters’ size
Broker # pairs not directly connected to each other
nBroker Broker normalized by the number of pairs
EgoBetw % all shortest paths across ego
nEgoBetw normalized EgoBetween (by ego size)
Effsize # alters minus the average degree of alters
Efficiency effsize divided by number of alters
Constraint The extent to which ego is constrained
Degree # nodes adjacent to a given node
Closeness sum of the shortest paths to all other nodes
dwReach # nodes that can be reached
Eigenvector The influence of node in the network
Betweenness # shortest paths through the vertex
Power The connections of nodes in one’s neighbors

(1) The “B” model. The “B” model is used as the baseline
model, which is built with the most commonly used produc-
t, process, and network metrics. In this study, the product
metrics consist of 16 metrics, including one code size metric,
11 complexity metrics, and 4 software science metrics. The
process metrics consist of 3 code churn metrics [28]. The
description for the product and the process metrics can be
found in [38]. The network metrics consist of 21 network
metrics, which are described in Table 8. We choose these
metrics as the baseline metrics for the following reasons.
First, the network analysis metrics are also computed from
dependence graphs [41]. Second, these metrics are widely
used and considered as useful indicators for fault-proneness
prediction [25, 26, 28, 41]. Third, they can be cheaply col-
lected from source code for large software systems.

f3f1 f2 ...

f4 f5 f6 ...

Product/process/network
+

Importance metrics

Product/process/network
+

Importance Metrics

Product/process/network

metrics

 Cin model

 Cout model

f1' f2' f3' Predicted risk 1

Predicted risk 2

Evaluate

Predicted risk

Combined
predicted risk

Evaluate

Performances

Test set (f s inside Dependence clusters)

Test set

Training set (fs inside DCs)

Training set (fs outside DCs)

Training set

f3f1 f2 ...

f4 f5 f6 ... B model

Test set (f s outside Dependence clusters)

 B+C model

Performancesf1' f2' f3' f4' f5' f6'

CompareRQ4

f4' f5' f6'

Figure 5: Overview of the analysis method for RQ4

(2) The “B+C” model. The “B+C” model is our seg-
mented model which consists of two independent models,
i.e., the “B+Cin” model and the “B+Cout” model. The
“B+Cin” and the “B+Cout” models are respectively used for
predicting the probability that a function inside and outside
dependence clusters are faulty. They are both built with
the most commonly used product/process/network metrics
and the importance metrics described in Table 5. For the
“B+Cin” model, the importance metrics are computed on
the sub-dependence graph for functions inside dependence
clusters (e.g., SubGin of Figure 1). While for the “B+Cin”
model, the importance metrics are computed on the sub-
dependence graph for functions outside dependence clusters
(e.g., SubGout of Figure 1).

Note that, as mentioned in Section 5.3.1, some of the im-
portance and the network metrics can be computed by the
“IN”, “OUT”, or the “ALL” method. For the sake of simplic-
ity, we only use the “OUT” method.

After building the“B”and the“B+C”models, we compare
the prediction performance of the “B” model and the “B+C”
model with respect to ranking and classification scenarios.
In the following, we describe the performance indicators and
the prediction settings, respectively.

(1) Performance indicators. In recent years, effort-
aware performance measures have been widely used for e-
valuating the fault-proneness prediction models. The rea-
son is that effort-aware measures take into account the ef-
fort required to inspect the predicted “faulty” functions and
thus can provide a more realistic evaluation than non-effort-
aware measures [24]. In this study, we thus compare the
“B” and the “B+C” models in effort-aware evaluations. In
greater detail, the predictive effectiveness is evaluated in the
following two different scenarios: ranking and classification.
In the ranking scenario, the functions are ranked in a de-
scending order by the degree of their predicted relative risk.
With such a ranking in hand, software project managers
can easily select as many “high-risk” functions for inspect-
ing or testing as available resources will allow. In the clas-
sification scenario, the functions are first classified into two
categories according to their predictive relative risk: high-
risk and low-risk. The functions that are predicted as high
risk will be focused on for software quality enhancement.
Following previous work [38], we also use SLOC in a func-

Figure 6: SLOC-based Alberg diagram

tion f as the proxy of the effort required to inspect or test
the function and define the relative risk of function f as
R(f) = Pr�SLOC(f), where Pr is the predicted probabili-
ty of function f being faulty. In other words, R(f) represents
the predicted fault-proneness per SLOC. In the following, we
describe the effort-aware predictive performance indicators
used in this study with respect to ranking and classification.

Ranking. We use CE, which is the cost-effectiveness
measure proposed by Arisholm et al. [2] to evaluate the
effort-aware ranking effectiveness of a fault-proneness pre-
diction model. The CE measure is based on the concept of
the “SLOC-based” Alberg diagram. In this diagram, the x-
axis and y-axis are respectively the cumulative percentages
of SLOC of the functions and the cumulative percentage of
faults found in selected from the function ranking list. Fig-
ure 6 is an example “SLOC-based” Alberg diagram showing
the ranking performances of a prediction model m (in our
context, the prediction model m could be the “B” model
and the “B+C” model). To compute CE, we also include
two additional curves: the “random” model and the “opti-
mal” model. In the “random” model, functions are randomly
selected to inspect or test. In the “optimal” model, functions
are sorted in decreasing order according to their actual fault
densities. Based on this diagram, the effort-aware ranking
effectiveness of the prediction model m is defined as fol-
lows [2]:

CEπ(m) =
Areaπ(m)−Areaπ(random)

Areaπ(optimal)−Areaπ(random)

Here, Areaπ(m) is the area under the curve correspond-
ing to model m for a given top 100% percentage of SLOC.
The cut-off value π varies between 0 and 1, depending on
the amount of available resource for inspecting functions.

As aforementioned, practitioners are more interested in the
ranking performance of a prediction model at the top frac-
tion. In this study, we use the CE at the cut-off π = 0.2
(indicated as CE0.2) to evaluate the effort-aware ranking
performance of a model.

Classification. We use Effort Reduction in Amount (ERA),
a classification performance indicator adapted from the“ER”
measure used by Zhou et al. [40], to evaluate the effort-
aware classification effectiveness of a fault-proneness predic-
tion model. In the classification scenario, only those func-
tions predicted to be high-risk will be inspected or tested for
software quality enhancement. The ERA measure denotes
the amount of the reduced SLOC (i.e., the amount of effort
reduction) to be inspected by a model m compared with
the random model that achieves the same recall of faults.
Therefore, the effort-aware classification effectiveness of the
prediction model m can be formally defined as follows:

Here, Effort(m) is the ratio of the total SLOC in those
predicted faulty functions to the total SLOC in the system.
Effort(random) is the ratio of SLOC to inspect or test to
the total SLOC in the system that a random selection mod-
el needs to achieve the same recall of faults as the predic-
tion model m. In this paper, for the sake of simplicity, we
use ERA0.2 to evaluate the effort-aware classification per-
formance. In order to compute ERA0.2, we first use the
predicted fault-proneness by the model to rank the mod-
ules in descending order. Then, we classify the top 20%
modules into the fault-prone category and the other 80%
modules into the defect-free category. Finally, we compute
the effort-aware classification performance ERA as ERA0.2.
Here, we use 20% as the cut-off value because many studies
show that the distribution of fault data in a system generally
follow the Pareto principle [1, 15]. The Pareto principle, also
known as the 20-80 rule, states that for many phenomena,
80 percent of the consequences stem from 20 percent of the
causes [22]. In our context, this means that by inspecting
these 20% predicted fault-prone functions, we expect that
almost 80% of faulty modules in a system will be found.

(2) Prediction settings. To obtain a realistic compari-
son, we evaluate the prediction performance under 30 times
3-fold cross-validation. We choose 3-fold cross-validation
rather than 10-fold cross-validation due to the small per-
centage of faulty function in the data sets. At each 3-fold
cross-validation, we randomize and then divide the data set
into 3 parts of approximately equal size. Then, we test each
part by the prediction model built with the remainder of the
data set. This process is repeated 30 times to alleviate po-
tential sampling bias. Note that, for each fold of the 30 times
3-fold cross-validation, we use the same training/test set to
train/test our segmented model (i.e., the “B+C” model) and
the baseline model (i.e., the “B” model). On each fold, we
first divide the training set into two groups: functions inside
dependence clusters and functions outside dependence clus-
ters. Then, we train the “B+Cin” model and the “B+Cout”
model, respectively. We also divide the test set into two
groups and subsequently use the “B+Cin” model and the
“B+Cout”model to predict the probability of those function-
s that contain faults. After that, we combine the predicted
values to derive the final predicted values to compute the
performance indicators.

Based on these predictive effectiveness values, we use the
Wilcoxon’s signed-rank test to examine whether two models
have a significant difference in their predictive effectiveness.

C
E

0
.2

BASH GCC GIMP GLIB GSTR

Figure 7: Ranking performance comparison for the
“B” and the “B+C” model in terms of CE0.2

Then, we use the Bonferroni correction method to adjust
p-values to examine whether a difference is significant at the
significance level of 0.05 [4]. Furthermore, we use Cliff’s δ
to examine whether the magnitude of the difference between
the prediction performances of two models is important from
the viewpoint of practical application [2]. Cliff’s δ is widely
used for median comparison. By convention, the magnitude
of the difference is considered either trivial (|δ| < 0.147),
small (0.147 ∼ 0.33), moderate (0.33 ∼ 0.474), or large (>
0.474) [35].

5.4.2 Experimental result
This section presents the results with respect to ranking

and classification scenarios to answer RQ4.
(1) Ranking performance comparison
Figure 7 employs the box-plot to describe the distribution-

s of CE0.2 obtained from 30 times 3-fold cross-validation for
the “B” and the “B+C” models with respect to each of the
subject systems. For each model, the box-plot shows the me-
dian (the horizontal line within the box), the 25th percentile
(the lower side of the box), and the 75th percentile (the up-
per side of the box). In Figure 7, a blue box indicates that
(1) the corresponding “B+C” model performs significantly
better than the “B” model according to the p-values from
Wilcoxon signed-rank test; and (2) the magnitude of the d-
ifference between the corresponding “B+C” model and the
“B” is not trivial according to Cliff’s δ (i.e. |δ| ≥ 0.147).

Table 9: Ranking comparison in terms of CE0.2: the
“B” model vs the “B+C” model

System B B+C %↑ |δ|
BASH 0.098 0.201 104.90% 0.688

√

GCC 0.148 0.197 33.00% 0.714
√

GIMP 0.073 0.130 78.70% 0.938
√

GLIB 0.172 0.188 9.40% 0.194
√

GSTR 0.160 0.198 24.00% 0.426
√

Average 0.130 0.183 50.00% 0.592

From Figure 7, it is obvious that the “B+C” model per-
forms substantially better than the “B” model in each of the
subject systems.

Table 9 presents median CE0.2 for the “B” and the “B+C”
models. In Table 9, the second and the third columns present
the median CE0.2” respectively for the B and the “B+C”
model. The fourth and the fifth column are respectively the
percentage of the improvement for the “B+C” model over
the “B” model and the effect sizes in terms of the Cliff’s δ.
In the last column, “

√
” indicates that the “B+C” model has

significantly larger median CE0.2 than the “B” model by the
Wilcoxon’s signed-rank test. The last row in Table 9 shows
the average values for the five projects.

From Table 9, we have the following observations. For all
systems, the “B+C” model has a larger median CE0.2 than
the “B” model in terms of the median CE0.2. On average,
the “B+C” model leads to about 50.0% improvement over

E
R
A

0
.2

BASH GCC GIMP GLIB GSTR

Figure 8: Classification performance comparison for
the “B” and the “B+C” model in terms of ERA0.2

the “B” model in terms of the median CE0.2. The Wilcox-
on signed-rank test p-values are very significant (< 0.001).
Furthermore, the effect sizes are moderate to large except in
GLIB where the effect size is small. The core observation is
that, from the viewpoint of practical application, the “B+C”
model has a substantially better ranking performance than
the “B” model.

(2) Classification performance comparison
Figure 8 employs box-plots to describe the distributions

of ERA0.2 obtained from 30 times 3-fold cross-validation for
the “B” and the “B+C” models with respect to each of the
subject systems. From Figure 8, we can find that the “B+C”
models are also substantially better than the “B” model.

Table 10: Classification comparison in term of
ERA0.2: the “B” model vs the “B+C” model

System B B+C %↑ |δ|
BASH 0.098 0.211 115.20% 0.644

√

GCC 0.148 0.210 41.80% 0.816
√

GIMP 0.059 0.124 112.60% 0.940
√

GLIB 0.110 0.135 22.80% 0.462
√

GSTR 0.132 0.189 43.30% 0.551
√

Average 0.109 0.174 67.10% 0.683

Table 10 presents the classification performance for the
“B” and the “B+C” models in terms of CE0.2. For all sys-
tems, the “B+C” model has a larger median ERA0.2 than
the “B” model in terms of the median ERA0.2. On average,
the “B+C” model leads to about 67.1% improvement over
the “B” model. The p-values are very significant (< 0.001).
Besides, the effect sizes are moderate to large. The core ob-
servation is that, from the viewpoint of practical application,
the “B+C” model has a substantially better classification
performance than the “B” model.

Overall, the above observations suggest that the “B+C”
model outperforms the“B”model in effort-aware fault-proneness
prediction under both ranking and classification scenarios.
This indicates that dependence clusters are actually useful
in effort-aware fault-proneness prediction.

6. DISCUSSION
In this section, we further discuss our findings. First, we

analyze whether our conclusions will change if the potential-
ly confounding effect of module size is excluded for the “B”
and the “B+C” models. Then, we analyze whether we have
similar conclusions if the multiplicity of dependencies is not
considered.

6.1 Will our conclusions change if the poten-
tially confounding effect of module size is
excluded?

In our study, when building a fault-proneness prediction
model, we did not take into account the potentially con-
founding effect of function size on the associations between

those metrics with fault-proneness [14, 39]. Therefore, it
is not readily known whether our conclusions will change if
the potentially confounding effect of module size is exclud-
ed. In the following, we use the method proposed by Zhou
et al. [39] to remove the confounding effect of module size
and then rerun the analyses for RQ4.

Table 11: Ranking comparison in terms of CE0.2 af-
ter excluding the potentially confounding effect of
module size: the “B” model vs the “B+C” model

System B B+C %↑ |δ|
BASH 0.117 0.094 -0.194 0.224

GCC 0.150 0.174 0.160 0.520
√

GIMP 0.073 0.131 0.799 0.928
√

GLIB 0.183 0.188 0.025 0.041

GSTR 0.155 0.187 0.209 0.399
√

Average 0.136 0.155 0.200 0.333

Table 12: Classification comparison in terms of
ERA0.2 after excluding the potentially confounding
effect of module size: the “B” model vs the “B+C”
model

System B B+C %↑ |δ|
BASH 0.128 0.109 -15.40% 0.136

GCC 0.148 0.196 31.80% 0.728
√

GIMP 0.059 0.128 118.80% 0.948
√

GLIB 0.112 0.135 20.70% 0.446
√

GSTR 0.128 0.171 33.40% 0.444
√

Average 0.115 0.148 37.90% 0.486

Table 11 and Table 12 respectively present the median
CE0.2 and ERA0.2 for the “B” and the “B+C” models af-
ter excluding the potentially confounding effect of module
size. From Table 11 and Table 12, we find that the “B+C”
models have both larger median CE0.2 and median ERA0.2

than the “B” model in all the five subject systems except
in BASH. This indicates that our proposed model still per-
forms better than the baseline model in both of the ranking
and classification scenarios in most cases.

Overall, after excluding the potentially confounding effect
of function size, our conclusion on RQ4 is mostly the same.

6.2 Will our conclusions change if the multi-
plicity of dependencies is ignored?

As mentioned before, in our study we take into account the
multiplicity of dependencies between functions. The multi-
plicity information is used as the weight of dependencies in
the SDG. However, prior studies [23, 31, 41] ignored this
information. Therefore, it is not readily answerable whether
our conclusions will change if the multiplicity of dependen-
cies is also ignored. Next, we ignore the multiplicity of de-
pendencies and rerun the analysis for RQ4.

Table 13 and Table 14 respectively summarize the median
CE0.2 and the median ERA0.2 for the “B” and the “B+C”
models when the multiplicity of dependencies is not con-
sidered. From Table 13 and Table 14, we observe that the
“B+C” models have substantially larger median CE0.2 and
median ERA0.2 than the “B” model in all the five subject
systems. This indicates that our proposed model still per-
forms substantially better than the baseline model in both
of the ranking and classification scenarios.

Overall, the above observations show that our conclusions
on RQ4 remain unchanged if the multiplicity of dependencies
is not considered.

Table 13: Ranking comparison in terms of CE0.2

when the multiplicity of dependencies is not con-
sidered: the “B” model vs the “B+C” model

System B B+C %↑ |δ|
BASH 0.142 0.187 32.20% 0.313

√

GCC 0.159 0.196 23.30% 0.576
√

GIMP 0.070 0.134 92.60% 0.986
√

GLIB 0.172 0.179 4.50% 0.167
√

GSTR 0.160 0.192 20.60% 0.378
√

Average 0.140 0.178 34.60% 0.484

Table 14: Classification comparison in terms of
ERA0.2 when the multiplicity of dependencies is not
considered: the “B” model vs the “B+C” model

System B B+C %↑ |δ|
BASH 0.157 0.202 28.80% 0.261

√

GCC 0.163 0.203 24.50% 0.605
√

GIMP 0.058 0.135 132.90% 0.994
√

GLIB 0.100 0.122 22.20% 0.402
√

GSTR 0.131 0.184 40.10% 0.501
√

Average 0.122 0.169 49.70% 0.552

7. THREATS TO VALIDITY
This section analyzes the most important threats to the

construct, internal, and external validity of our study.

7.1 Construct Validity
There are two potential threats to the construct validi-

ty of our study. The first threat concerns the fault data.
In our study, we collected fault data by comparing the lat-
est bug-fixing version with the investigated version for each
system. Bug-fixing version did not add new features to the
corresponding systems. Thus, the construct validity of the
fault data can be considered acceptable. The second threat
concerns the method we used to compute the importance
and the network metrics. In our study, we use the “OUT”
method to compute those metrics which only concerns the
outgoing degree. In order to address this threat, we recom-
puted those metrics by using the other two methods and
reran the analysis for RQ3, and RQ4. We found that the
results were very similar.

7.2 Internal Validity
There are three possible threats to the internal validity

of our study. The first threat is the unknown effect of the
method to define the relative risk of a function in RQ4. In
our study, we use the ratio of the predicted value from a
näıve logistic regression model to the functions SLOC as
the relative risk for each function. However, in the litera-
ture, most studies use the predicted value from the näıve
logistic regression model as the relative risk of a function.
In order to eliminate this threat, we reran the analysis for
RQ4 by using the predicted value from the näıve logistic
regression model as the relative risk. We found that the rel-
ative performance of the “B” model and the “B+C” model
is not changed. That is to say, the “B+C” model is still
significantly better than the “B” model. The second threat
is from the specific cut-off value used for the performance
indicator (i.e. the CE and ERA). In our study, 0.2 is used
as the cut-off value for the computation of CE and ERA.
To eliminate this potential threat, we rerun all the analyses
using the following typical cut-off values: 0.10 and 0.30. We

found our conclusion remains unchanged. The third threat
is the unknown effect of the method for the stepwise variable
selection in RQ4. In our study, we use AIC as the criteria to
perform the stepwise variable selection. BIC is also a wide-
ly used method to perform stepwise variable selection [12].
We reran the analysis for RQ4 using BIC as the criteria to
perform variable selection and found the results to be very
similar.

7.3 External Validity
Our experiments are based on five long-lived and widely

used open-source C systems. The most important threat
to the external validity of this study is that our findings
may not be generalized to other systems, especially closed-
source systems. The second threat to the external validity
of this study is that our findings are restricted to only one
language. These external threats are ever present in any
empirical study concerning program analysis, we hope that
researchers will replicate our study across a wide variety of
systems in the future.

8. CONCLUSIONS AND FUTURE WORK
In this study, we perform an extensive study to examine

the relationships between function-level dependence cluster-
s and fault-proneness. Our findings from five widely used
industrial-size systems show that (1) larger dependence clus-
ters tend to be more fault-prone; (2) functions inside de-
pendence clusters tend to be more fault-prone than func-
tions outside dependence clusters; (3) functions that play
more important roles in dependence clusters are more fault-
prone; (4) our segmented prediction model can significant-
ly improve the performance in effort-aware fault-proneness
prediction. These results consistently suggest that (1) large
dependence clusters in software systems should be avoid-
ed; (2) when performing code refactoring, we should pay
more attention to dependence clusters. These results pro-
vide valuable data for better understanding the properties
of dependence clusters and its effect on software quality.

This study focuses on function-level dependence cluster
for open-source C software systems. As future work, we
plan to replicate our experiments for dependence cluster-
s at different granularities (e.g., statement level) and on
systems written in other languages and other programming
paradigms.

9. REPEATABILITY
We provide all data sets and R scripts that used to conduct

this study at http://ise.nju.edu.cn/yangyibiao/dc.html

10. ACKNOWLEDGMENTS
This work is supported by the National Key Basic Re-

search and Development Program of China (2014CB340702),
the National Natural Science Foundation of China (61432001,
91418202, 61272082, 61300051, 61321491, 61472178, and
91318301), the Natural Science Foundation of Jiangsu Province
(BK20130014), and the program A for Outstanding PhD
candidate of Nanjing University. Harman and Krinke are
part-supported by the EPSRC DAASE programme grant.
Binkley is supported by NSF grant IIA-1360707 and a J.
William Fulbright award.

11. REFERENCES
[1] C. Andersson and P. Runeson. A Replicated

Quantitative Analysis of Fault Distributions in
Complex Software Systems. IEEE Transactions on
Software Engineering, 33(5):273–286, May 2007.

[2] E. Arisholm, L. C. Briand, and E. B. Johannessen. A
systematic and comprehensive investigation of
methods to build and evaluate fault prediction models.
Journal of Systems and Software, 83(1):2–17, Jan.
2010.

[3] V. Basili, L. Briand, and W. Melo. A validation of
object-oriented design metrics as quality indicators.
IEEE Transactions on Software Engineering,
22(10):751–761, Oct. 1996.

[4] Y. Benjamini and Y. Hochberg. Controlling the False
Discovery Rate: A Practical and Powerful Approach
to Multiple Testing. Journal of the Royal Statistical
Society. Series B (Methodological), 57(1):289–300,
Jan. 1995.

[5] Á. Beszédes, L. Schrettner, B. Csaba, T. Gergely,
J. Jász, and T. Gyimóthy. Empirical investigation of
SEA-based dependence cluster properties. In
Proceedings of the 2013 IEEE International Working
Conference on Source Code Analysis and
Manipulation, SCAM ’12, pages 1–10, Sept. 2013.

[6] Á. Beszédes, L. Schrettner, B. Csaba, T. Gergely,
J. Jász, and T. Gyimóthy. Empirical Investigation of
SEA-based Dependence Cluster Properties. Sci.
Comput. Program., 105(C):3–25, July 2015.

[7] D. Binkley, Á. Beszédes, S. Islam, J. Jász, and
B. Vancsics. Uncovering dependence clusters and
linchpin functions. In Proceedings of the 2015 IEEE
International Conference on Software Maintenance
and Evolution, (ICSME’ 15, pages 141–150, Sept.
2015.

[8] D. Binkley and M. Harman. Locating dependence
clusters and dependence pollution. In Proceedings of
the 21st IEEE International Conference on Software
Maintenance, 2005. ICSM’05, pages 177–186, Sept.
2005.

[9] D. Binkley and M. Harman. Identifying ‘Linchpin
Vertices’ That Cause Large Dependence Clusters. In
Proceedings of the 2009 Ninth IEEE International
Working Conference on Source Code Analysis and
Manipulation, SCAM ’09, pages 89–98, Washington,
DC, USA, 2009. IEEE Computer Society.

[10] D. Binkley, M. Harman, Y. Hassoun, S. Islam, and
Z. Li. Assessing the impact of global variables on
program dependence and dependence clusters. Journal
of Systems and Software, 83(1):96–107, Jan. 2010.

[11] L. C. Briand, J. Wüst, J. W. Daly, and
D. Victor Porter. Exploring the relationships between
design measures and software quality in
object-oriented systems. Journal of Systems and
Software, 51(3):245–273, May 2000.

[12] K. P. Burnham and D. R. Anderson. Multimodel
Inference Understanding AIC and BIC in Model
Selection. Sociological Methods & Research,
33(2):261–304, Nov. 2004.

[13] M. Cataldo, A. Mockus, J. Roberts, and J. Herbsleb.
Software Dependencies, Work Dependencies, and
Their Impact on Failures. IEEE Transactions on

Software Engineering, 35(6):864–878, Nov. 2009.

[14] K. El Emam, S. Benlarbi, N. Goel, and S. Rai. The
confounding effect of class size on the validity of
object-oriented metrics. IEEE Transactions on
Software Engineering, 27(7):630–650, July 2001.

[15] N. Fenton and N. Ohlsson. Quantitative analysis of
faults and failures in a complex software system. IEEE
Transactions on Software Engineering, 26(8):797–814,
Aug. 2000.

[16] H. Gall, K. Hajek, and M. Jazayeri. Detection of
Logical Coupling Based on Product Release History.
In Proceedings of the International Conference on
Software Maintenance, ICSM ’98, pages 190–,
Washington, DC, USA, 1998. IEEE Computer Society.

[17] R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The
Geography of Coordination: Dealing with Distance in
R&D Work. In Proceedings of the International ACM
SIGGROUP Conference on Supporting Group Work,
GROUP ’99, pages 306–315, New York, NY, USA,
1999. ACM.

[18] M. Harman, D. Binkley, K. Gallagher, N. Gold, and
J. Krinke. Dependence Clusters in Source Code. ACM
Trans. Program. Lang. Syst., 32(1):1:1–1:33, Nov.
2009.

[19] J. D. Herbsleb and A. Mockus. An empirical study of
speed and communication in globally distributed
software development. IEEE Transactions on Software
Engineering, 29(6):481–494, June 2003.

[20] S. Islam, J. Krinke, D. Binkley, and M. Harman.
Coherent clusters in source code. Journal of Systems
and Software, 88:1–24, Feb. 2014.

[21] S. S. Islam, J. Krinke, D. Binkley, and M. Harman.
Coherent Dependence Clusters. In Proceedings of the
9th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, PASTE
’10, pages 53–60, New York, NY, USA, 2010. ACM.

[22] J. M. Juran. Quality control handbook. In Quality
control handbook. McGraw-Hill, 1962.

[23] W. Ma, L. Chen, Y. Yang, Y. Zhou, and B. Xu.
Empirical analysis of network measures for
effort-aware fault-proneness prediction. Information
and Software Technology, 69:50–70, Jan. 2016.

[24] T. Mende and R. Koschke. Effort-Aware Defect
Prediction Models. In Proceedings of the 2010 14th
European Conference on Software Maintenance and
Reengineering, CSMR ’10, pages 107–116,
Washington, DC, USA, 2010. IEEE Computer Society.

[25] T. Menzies, J. Greenwald, and A. Frank. Data Mining
Static Code Attributes to Learn Defect Predictors.
IEEE Transactions on Software Engineering,
33(1):2–13, Jan. 2007.

[26] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang,
and A. Bener. Defect prediction from static code
features: current results, limitations, new approaches.
Automated Software Engineering, 17(4):375–407, May
2010.

[27] A. Mockus and D. M. Weiss. Predicting risk of
software changes. Bell Labs Technical Journal,
5(2):169–180, Apr. 2000.

[28] N. Nagappan and T. Ball. Use of Relative Code Churn
Measures to Predict System Defect Density. In
Proceedings of the 27th International Conference on

Software Engineering, ICSE ’05, pages 284–292, New
York, NY, USA, 2005. ACM.

[29] N. Nagappan, B. Murphy, and V. Basili. The Influence
of Organizational Structure on Software Quality: An
Empirical Case Study. In Proceedings of the 30th
International Conference on Software Engineering,
ICSE ’08, pages 521–530, New York, NY, USA, 2008.
ACM.

[30] R. Ott and M. Longnecker. An Introduction to
Statistical Methods and Data Analysis. Cengage
Learning, Dec. 2008.

[31] T. D. Oyetoyan, D. S. Cruzes, and R. Conradi. A
study of cyclic dependencies on defect profile of
software components. Journal of Systems and
Software, 86(12):3162–3182, Dec. 2013.

[32] M. Pinzger, N. Nagappan, and B. Murphy. Can
Developer-module Networks Predict Failures? In
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
SIGSOFT ’08/FSE-16, pages 2–12, New York, NY,
USA, 2008. ACM.

[33] F. Rahman and P. Devanbu. How, and Why, Process
Metrics Are Better. In Proceedings of the 2013
International Conference on Software Engineering,
ICSE ’13, pages 432–441, Piscataway, NJ, USA, 2013.
IEEE Press.

[34] F. Rahman, D. Posnett, and P. Devanbu. Recalling
the ”Imprecision” of Cross-project Defect Prediction.
In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of
Software Engineering, FSE ’12, pages 61:1–61:11, New
York, NY, USA, 2012. ACM.

[35] J. Romano, J. D. Kromrey, J. Coraggio, and
J. Skowronek. Appropriate statistics for ordinal level
data: Should we really be using t-test and cohen’s d
for evaluating group differences on the nsse and other
surveys. In annual meeting of the Florida Association
of Institutional Research, pages 1–33, 2006.

[36] D. J. Sheskin. Handbook of Parametric and
Nonparametric Statistical Procedures: Third Edition.
CRC Press, Aug. 2003.

[37] S. Wasserman and K. Faust. Social Network Analysis:
Methods and Applications. Cambridge University
Press, Nov. 1994.

[38] Y. Yang, Y. Zhou, H. Lu, L. Chen, Z. Chen, B. Xu,
H. Leung, and Z. Zhang. Are Slice-Based Cohesion
Metrics Actually Useful in Effort-Aware Post-Release
Fault-Proneness Prediction? An Empirical Study.
IEEE Transactions on Software Engineering,
41(4):331–357, Apr. 2015.

[39] Y. Zhou, H. Leung, and B. Xu. Examining the
Potentially Confounding Effect of Class Size on the
Associations between Object-Oriented Metrics and
Change-Proneness. IEEE Transactions on Software
Engineering, 35(5):607–623, 2009.

[40] Y. Zhou, B. Xu, H. Leung, and L. Chen. An In-depth
Study of the Potentially Confounding Effect of Class
Size in Fault Prediction. ACM Trans. Softw. Eng.
Methodol., 23(1):10:1–10:51, Feb. 2014.

[41] T. Zimmermann and N. Nagappan. Predicting Defects
Using Network Analysis on Dependency Graphs. In
Proceedings of the 30th International Conference on

Software Engineering, ICSE ’08, pages 531–540, New
York, NY, USA, 2008. ACM.

[42] T. Zimmermann, R. Premraj, and A. Zeller.
Predicting Defects for Eclipse. In Proceedings of the
Third International Workshop on Predictor Models in
Software Engineering, PROMISE ’07, pages 9–,
Washington, DC, USA, 2007. IEEE Computer Society.

