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Abstract

Quantitative photoacoustic tomography (QPAT) is a hybrid biomedical imaging tech-

nique that derives its specificity from the wavelength-dependent absorption of near-

infrared/visible laser light, and its sensitivity from ultrasonic waves. This promising

technique has the potential to reveal more than just structural information, it can also

probe tissue function. Specifically, QPAT has the capability to estimate concentrations of

endogenous chromophores, such as the concentrations of oxygenated and deoxygenated

haemoglobin (from which blood oxygenation can be calculated), as well as the concen-

trations of exogenous chromophore, e.g. near-infrared dyes or metallic nanoparticles.

This process is complicated by the fact that a photoacoustic image is not directly re-

lated to the tissue properties via the absorption coefficient, but is proportional to the

wavelength-dependent absorption coefficient times the internal light fluence, which is

also wavelength-dependent and is in general unknown. This thesis tackles this issue

from two angles; firstly, the question of whether certain experimental conditions allow

the impact of the fluence to be neglected by assuming it is constant with wavelength, a

‘linear inversion’, is addressed. It is demonstrated that a linear inversion is appropriate

only for certain bands of illumination wavelengths and for limited depth. Where this

assumption is not accurate, an alternative approach is proposed, whereby the fluence

inside the tissue is modelled using a novel Monte Carlo model of light transport. This

model calculates the angle-dependent radiance distribution by storing the field in Fourier

harmonics, in 2D, or spherical harmonics, in 3D. This thesis demonstrates that a key

advantage of computing the radiance in this way is that it simplifies the computation of

functional gradients when the estimation of the absorption and scattering coefficients

is cast as a nonlinear least-squares problem. Using this approach, it is demonstrated in

2D that the estimation of the absorption coefficient can be performed to a useful level of

accuracy, despite the limited accuracy in reconstruction of the scattering coefficient.
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Chapter 1

Introduction and background

Medical imaging techniques find application in experimental or clinical settings depend-

ing on the type of information, structural or functional, they are able to provide [1].

Magnetic resonance imaging provides strong contrast between soft tissues making it a

highly specific functional and structural imaging technique [2] for anatomies such as

the brain, lungs and muscle tissues. However, the limited (∼1mm) resolution of MRI

means X-ray based techniques, planar or CT [3], may be more appropriate when accu-

rate sub-millimetre localisation is required, despite the fact that endogenous soft tissue

contrast is typically lower than that of MRI. Ultrasound imaging has acoustic impedance

mismatch as its source of contrast, which does not provide a high degree of specificity,

though resolution is typically sub-millimetre due to low scattering of ultrasonic waves

[4]. When highly specific chemical or functional information is required, optical meth-

ods, such as functional near-infrared spectroscopy, are a powerful tool; fNIRS offers

the ability to perform time-resolved measurements to obtain concentrations of endoge-

nous or exogenous absorbers, but low penetration depth and limited resolution due

to high optical scattering in tissue limit its application in adults. Photoacoustic (PA)

imaging is a technique that combines the high specificity of purely optical techniques

with ultrasound resolution. This is highly attractive as it offers the capability of imaging

micron-scale subcutaneous structures containing endogenous optical absorbers, such as

blood. PA imaging is achieved by illuminating the tissue using short pulses of light in

17



18 Chapter 1 : Introduction and background

the near-infrared (NIR)/ visible range to excite an acoustic signal through the deposi-

tion of optical energy as heat. The spectral and positional information carried by the

acoustic wave, detected at the tissue surface using an ultrasound detection system, can

in principle be used to determine physiologically relevant parameters such as blood oxy-

gen saturation or molecular concentrations in high-resolution 3D datasets. In order for

multiwavelength photoacoustic measurements to reveal such information, the origin of

the signal must be located and the individual contributions of each absorber to each PA

signal must be ascertained, thus presenting two inverse problems. The acoustic inverse

problem, which describes the recovery of the PA image from acoustic measurements

made over time, has been studied extensively and there are many methods by which it

can be solved. The optical inverse problem, which involves the estimation of physiolog-

ically important parameters given one or multiple PA images, is large-scale, nonlinear

and potentially ill-posed, and has a range of challenges associated with finding suitably

tractable and accurate solution methods. This thesis addresses a number of these chal-

lenges and proposes a method for solving the optical inverse problem using a novel and

highly scalable model of light transport.

1.1 Biomedical photoacoustic imaging

The photoacoustic effect was discovered by Alexander Graham Bell in 1880 while he

was investigating a means for long distance sound transmission. He found that sunlight

intermittently blocked off by a rotating wheel, incident upon a metal surface generated

acoustic waves by deposition of light energy as heat [5]. The advent of the laser in the

early 1960s, and high peak power pulsed lasers shortly after, led rapidly to the photoa-

coustic effect being revisited through laser-generation of ultrasound in a wide range of

applications [6], including ‘gas phase’ photoacoustic spectroscopy [7]. In biomedical

photoacoustic imaging, a field developed over a century after Bell’s ‘photophone’ exper-

iments [8], the photoacoustic effect is exploited to generate ultrasonic waves in tissue.

This is achieved by illuminating the tissue using short pulses of light in the near-infrared

(NIR)-visible range, whose energy is then thermalised, resulting in a pressure increase

which travels to the tissue surface as an acoustic wave where it is detected.
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The information carried by the acoustic wave has the potential to reveal structural as

well as functional features of the anatomy and physiology such as blood oxygen satura-

tion or molecular concentrations in high-resolution 3D datasets. There are two inverse

problems that must be solved in order to reveal such information; the acoustic inverse

problem involves reconstructing an image from acoustic measurements made at the

surface, while the optical inverse problem tackles the retrieval of functional or chemical

information from photoacoustic images. Solving the optical inverse problem is often

termed quantitative photoacoustic imaging (QPAT). There exist a vast number of solu-

tion methods to the acoustic inversion in the literature, but the optical inverse problem

has not yet been solved in a sufficiently general way such that useful and accurate quan-

titative measures can be readily obtained from photoacoustic images. In fact, there

are many challenges standing in a way of a practical solution. Despite these numerous

and significant challenges, of the ∼1000 papers published on the subject of photoacous-

tics annually, only a small percentage of these papers tackle the optical inversion. If

a suitable solution method were found, QPAT would be a hugely valuable clinical and

preclinical tool, given that it would have the ability to provide high-resolution 3D images

of functional information (e.g. blood oxygenation).

This thesis considers the optical problem in photoacoustic imaging in detail in later

chapters; in this chapter, the formation of the photoacoustic image is discussed first, the

process illustrated by moving from the top to the bottom of Fig. 1.1, followed by the re-

construction of the image from acoustic time-series, illustrated by the acoustic inversion

step in Fig. 1.1. Brief consideration is given to how physiological parameters might be

estimated from multiwavelength photoacoustic images at the end of this chapter.
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F I G U R E 1 . 1 : Diagram of optical and acoustic forward and inverse problems.

1.2 The forward problem

The forward problem in PA imaging is composed of three parts: first, the optical for-

ward problem describes the propagation and absorption of the light energy, which is

then thermalised, and produces acoustic waves that propagate outwards to the tissue
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surface where they are detected. The wavelengths used in PA imaging are in the near-

infrared/visible range where biological tissue has a window of absorption and scattering,

allowing the light to penetrate far deeper than wavelengths outside this range. Nanosec-

ond pulsed lasers are used to illuminate the tissue surface which, when the pulses have

propagated into the tissue and been absorbed, result in the excitation of chromophores.

The amount of light absorbed to give the absorbed energy density, H, depends on the

local fluence (in Jmm-2) and the absorption coefficient (in mm-1):

H(x, t) = µaΦ(x, t), (1.1)

where x is position and t is time.

The mechanisms that give rise to the absorption of light differ depending on the chro-

mophore’s electronic structure or polarisability. In the case of haemoglobin, for instance,

absorption of light occurs due to electronic excitation of the heme molecule, whereas

water, which can be polarised, undergoes vibrational or rotational excitation. The dif-

ferent interactions by which chromophores absorb light give rise to distinct absorption

spectra. The spectra of the dominant chromophores in mammalian tissues (blood, water,

fat and melanin) are plotted in Fig. 1.2.
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F I G U R E 1 . 2 : Absorption spectra of oxygenated haemglobin (HbO2), de-
oxygenated haemoglobin (Hb), water, fat, melanin in 200-1100nm range
[http://omlc.org/spectra/index.html]. Haemoglobin concentrations assumed to be

150gl-1 and melanin modelled as skin [9].

Once in an excited state, chromophores undergo de-excitation, either radiatively by fluo-

rescing or phosphorescing, or non-radiatively by producing vibrations that are dissipated

as heat through collisions with neighbouring molecules. Non-radiative relaxation occurs

on picosecond time-scales. Thus, the absorbed power density, H, (in Wmm-3) can be

written as

H(x, t) = µaΦ(x)f(t), (1.2)

where f(t) describes the temporal shape of the pulse. The illumination being nanosecond

duration pulses ensures that all the optical energy is thermalised before the light intensity

falls to zero. This means that Eq. (1.2) can be re-written as

H(x) = µaΦ(x)

∫ T

t=0
f(t)dt. (1.3)
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The absorbed energy density acts as a source term to heat diffusion. However, thermal

diffusion occurs on time-scales 103-106 longer than light absorption and relaxation of

the absorbers. The pressure increase, resulting from a localised temperature increase

due to thermal relaxation, also only propagates on microsecond time-scales, after the

illumination pulse has fallen to zero. This is referred to as stress confinement. The pres-

sure resulting from the absorbed energy density is described by the Grüneisen parameter,

Γ, and the acoustic pressure distribution is given by

p0(x) = (1− υ(x))Γ(x)H(x), (1.4)

where υ is the quantum efficiency in the medium, describing how much energy is dissi-

pated via radiative relaxation. In most biological tissues the the Grüneisen parameter

accurately describes the relationship between acoustic pressure and absorbed energy,

although in some cases, e.g. homogeneously distributed nanoscale absorbers where ab-

sorption of the light and heating happen in the two different materials, the photoacoustic

efficiency is used. The Grüneisen parameter is equal to βc2

Cp
, where β is the volume expan-

sion coefficient and Cp is the specific heat capacity at constant pressure. The complete

optical forward model is given by

p0(x, λ) = (1− υ)
β(x)c(x)2

Cp(x)
Φ(x, λ)µa(x, λ), (1.5)

where λ is the wavelength of the incident light pulse and it is assumed the quantum

efficiency does not vary spatially inside the tissue.

Following the formation of the initial pressure, the broadband (MHz frequency) acoustic

waves begin to propagate outwards from the tissue. The simplest description of this

process is given by the wave equation

(
∂2

∂t2
− c2

0∇2

)
p(x, t) = 0, (1.6)
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where p is acoustic pressure. The acoustic forward model derives from two first-order

PDEs, momentum conservation and mass conservation, and a pressure-density relation.

This model is subject to two initial conditions, p(x, t = 0) = p0 and ∂p(x,t)
∂t |t=0 = 0, where

the latter is based on the assumption that no acoustic wave is propagating initially. The

acoustic field is then recorded at the tissue surface using an acoustic detector (or an array

of detectors) and measures acoustic time-series. A wide range of detection schemes exist

from focused, resonant PZT detectors [10], to planar interferometric detector arrays [11]

and hydrophones [12]. Acoustic forward propagation can be modelled in many ways;

many analytic schemes depend on known source/detector geometries [13–16] while

others such as time-domain [17] or pseudospectral-domain algorithms [18] offer more

flexibility in terms of heterogeneous media and arbitrary geometries. These algorithms

are described in more detail in Section 1.3.2.

1.3 Formation of the photoacoustic image

The characteristics of photoacoustic images are determined by the detection scheme

and the method by which images are reconstructed from acoustic time-series. This

section contrasts photoacoustic tomography from other photoacoustic imaging modes

and considers the reconstruction algorithms necessary to obtain tomographic images.

Some of the limitations of tomographic detection and reconstruction are demonstrated

at the end of the section.

1.3.1 Photoacoustic imaging configurations

The method for the formation of the PA image, as well as image properties such as

scale and resolution, are determined by the imaging configuration. PA imaging has been

performed in three basic forms: tomography (PAT), acoustic-resolution photoacoustic

microscopy (AR-PAM) and optical-resolution photoacoustic microscopy (OR-PAM). To-

mography uses wide-field illumination, flooding the tissue with light, meaning that PA

signals originate throughout the illuminated volume. These signals are acquired over a

surface surrounding a portion of the imaging volume. There are a variety of detection
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configurations used in tomography mode; a hemispherical array of ultrasound trans-

ducers (optimised for breast imaging) can image to depths of several cm with 250µm

resolution [19], while whole-body animal imaging at 200µm resolution is possible via a

single-element cylindrical scanning configuration [20], and all-optical planar detection

arrays afford resolutions of tens of microns to depths of several mm [11]. However, the

detection geometry will impact the accuracy of the reconstructed image. If the detection

surface surrounds a point in the target such that any line through that point intersects

the detection surface, the point is said to be within the ‘visible region’ and can be recon-

structed exactly. This is illustrated by point A in FIg. 1.3. Points outside the visible region

will be reconstructed with artefacts since a line through such a point would not intersect

the detection surface, as illustrated by the horizontal line through point B. However,

points on an edge outside the visible region with a normal that intersects the detection

surface will be reconstructed perfectly, as shown by point C in Fig. 1.3.

F I G U R E 1 . 3 : Diagram illustrating portions of the imaging target within the visible
region for an arc-shaped sensor acoustic sensor. Point A has all lines passing through
it intersecting the sensor and is therefore in the visible region; point B has lines that
do not intersect sensor meaning it is outside the visible region; point C is on an edge

whose normal intersects the sensor.

In AR-PAM the tissue is illuminated using wide-field or weakly-focused light but a

mechanically- or electronically-steered focused acoustic detector determines both the
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spatial resolution and field-of-view. The resolution obtainable with such a setup varies

depending on the acoustic spot size and detector centre frequency, with penetration

depth typically limited to a few mm. It has been demonstrated that the resolution at

these depths can reach tens of microns for piezoelectric detectors [21, 22]. In OR-PAM, a

focused transducer is used but it is not a requirement as the resolution is not determined

by the acoustic spot size, but by the optical spot size. Strong focusing of the excitation

beam means the signal originates from a confined, optical diffraction-limited spot whose

size is limited by the strong scattering in tissue. As a result of the strong focusing pen-

etration depth is typically less than 1mm and resolution can be in the microns range

[10, 23].

In both microscopy modes, lateral localisation of the signal origin is provided by the

optical or acoustic focus and axial resolution is determined by the frequency response

of the acoustic detector. Reconstruction of the initial acoustic pressure in microscopy

mode simply involves using an estimate of the speed of sound in tissue to determine the

distance of absorbers from the detector within each A-line. The illumination, and the

detector in confocal set-ups, are then scanned to form an image. This means that, of the

three modes, PAT is the only one requiring acoustic reconstruction and these methods

are described in the next section.

1.3.2 The acoustic inverse problem

The acoustic inversion is an inverse initial value problem that can be solved for the initial

acoustic pressure distribution, p0, using a number of methods. The solution methods

to this problem can be categorised as being series solutions, back-projection formulae,

time-reversal or optimisation-based. These methods are discussed below.

Series solutions involve the projection of the acoustic field into a basis such that the PDE

of Eq. (1.6) simplifies to an ordinary differential equation; there are a number of options

when choosing a basis depending on the detection geometry, but a common choice for

planar, circular or spherical detection geometries is a Fourier basis. Decomposition of the

field into the Fourier domain affords significant computational advantages, namely that
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the derivatives in Eq. (1.6) can be computed using repeated Fast Fourier Transforms [24–

26]. Back-projection algorithms, inspired by X-ray CT reconstruction methods, compute

the inverse spherical mean Radon transform [27] in the time domain and are applicable

to a number of detection geometries [28], including spherical [29, 30], cylindrical [30],

planar [31] geometries. The back-projection algorithm has also been generalised to

universal geometries [28].

Time-reversal exploits the fact that Eq. (1.6) is invariant under the transformation

t → −t and that the acoustic field is zero after a time t = T (in odd dimensions)

[32, 33]. As such, the model propagates the detected pressure time-series, from the

detection surface D2, pd(x ∈ D2, t) backwards in time until t = 0. k-Wave [34] performs

this calculation using a pseudospectral algorithm, performing spatial derivatives in the

Fourier domain and allows for the incorporation of power law acoustic attenuation

(with suitable regularisation) [35] and sound speed heterogeneities [36]. Time-reversal

approaches, either in time-domain [37] or pseudospectral domain [34], provide accurate

reconstruction of the initial acoustic pressure for arbitrary detection geometry, provided

the imaging target is within the visible region.

More recent approaches to solving the acoustic inverse problem have been model-based;

these techniques consider the inversion within an optimisation framework in order to

minimise the difference between measured data and simulated data:

arg min
x

ε =
1

2
||y − f(x)||2, (1.7)

where ε is the error functional, f(x) is the forward model applied to the estimate of the

data and y is the measurement. The computational load and run-time associated with

these methods varies quite significantly depending on the optimisation algorithm chosen

and the level of convergence required; the system matrix and its derivatives can have

very high memory demands for high-resolution images, while a rapid forward model

can ensure the time taken per iteration is minimised [38]. Suitably fast time-domain

algorithms have been used within such schemes to ensure rapid image reconstruction
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[39]. This more general, model-based approach allows the introduction of complimen-

tary information through other fidelity or penalty terms in Eq. (1.7) (e.g. smoothness

priors [40]) as well as acoustic heterogeneities in the forward model [41, 42].

1.3.3 Practical considerations of acoustic reconstruction

As discussed in Section 1.3.1, a number of different scanning configurations exist, with

a range of methods used to reconstruct the initial acoustic pressure from acoustic time-

series. However, depending on the configuration and reconstruction algorithm, acoustic

artefacts can impact the reconstructed initial acoustic pressure which in turn impact

the accuracy with which chromophore concentrations can be estimated. As the acoustic

inversion is outside the focus of this thesis, this section presents three common sources of

artefacts and demonstrates their effect on the reconstructed pressure distribution, which

in turn will impact the accuracy of the optical inversion. Artefacts can be introduced

from incomplete or inaccurate modelling of the acoustic detector response, position

and directionality as well as incorrect speed of sound estimation in the medium and

acoustic attenuation. In this section, we consider the effect of the imaging target be-

ing partially outside the visible region, non-uniform detector frequency response and

frequency-dependent acoustic attenuation in tissue. The k-Wave Toolbox [18] was used

throughout this section as both a forward and inverse acoustic solver.

• Partial data, or the limited-view problem, arises when the photoacoustic source

does not lie completely within the visible region (or has edges that are not parallel

to the detection surface). This of course depends on the scanning configuration,

where a circular detection scheme can acquire complete data from a circular source

whereas a linear detector (unless infinite) will only acquire regions of the circle

enclosed in the angle subtended by the sensor.

We can illustrate the impact of reconstructing a photoacoustic source using partial

data by placing a 0.2mm disk, representing the initial acoustic pressure, running

a forward model of acoustic propagation, detecting the acoustic time series and

reconstructing the initial acoustic pressure from two different source types using
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time-reversal; in this example, a broadband line detector was placed at z=0mm,

at the bottom of the domain, in one case, while in the other a circular detector was

inscribed in the 2mm square domain. The grid spacing in the domain was 5µm with

a homogeneous sound speed of 1500ms-1, thus supporting a maximum frequency

of 750MHz. No acoustic attenuation was present. Fig. 1.4 shows images of the

‘true’ photoacoustic source, full-view reconstruction, partial-view reconstruction

and profiles through the source.
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F I G U R E 1 . 4 : (a) True p0 in 2mm squared domain; (b) Reconstructed acoustic pressure
from 2mm diameter circular detector arrangement (concentric with PA source); (c)
Reconstructed acoustic pressure from 2mm linear detector arrangement at z=0mm; (d)

Profiles through true and reconstructed pressure distributions at z=1mm.

From Fig. 1.4 it is clear that a full-view reconstruction in (c) using, for instance, a
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circular detector array is much more likely to yield accurate chromophore concen-

trations when performing the optical inversion as the reconstructed initial acoustic

pressure is almost identical to the true value of p0 in (a), whereas the use of a

planar detector leads to significant artefacts in the reconstruction, shown in (b).

• Bandlimited data occurs due to limited frequency response of the acoustic sensor.

Piezoelectric sensors, routinely used in PAI [21, 22], can have a high degree of

sensitivity but rarely have fla frequency response as they are resonant; this results

in them having nonuniform sensitivity and low sensitivity at either low or high fre-

quency bands will result in inaccurate reconstruction of the PA source. In order to

demonstrate the effect of bandlimiting of acoustic signals at the sensor, the same PA

source was used with the acoustic waves propagated to the circular detector used

above in Fig. 1.4(b), but the signals were then bandpass filtered using a Gaussian

filter with a 3MHz centre frequency and 100% bandwidth before reconstructing

the acoustic pressure.

x [mm]

z 
[m

m
]

(a)

−1 0 1

2

0
−1 0 1
0

0.2

0.4

0.6

0.8

1
(b)

x [mm]

p 
[a

u]

 

 
True
Bandlimited

F I G U R E 1 . 5 : (a) Image of reconstructed acoustic pressure from bandpass filtered
(3MHz centre frequency, 100% bandwidth) acoustic time series acquired on 2mm diam-
eter circular detector; (b) Profiles through true and reconstructed bandlimited pressure

distributions at z=1mm.

The effect of bandpass filtering the acoustic time-series is that high frequencies are

lost, thus smoothing out the acoustic source. Without wideband acoustic detectors,

the accuracy of quantitative estimates yielded by the optical inversion will be poor.
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• Frequency-dependent acoustic absorption is an inherent property of matter and

of relevance in PA imaging, due to the fact that signals travelling further from

source to detector will have their high frequencies attenuated more. Thus, if only

detecting from one side, signals originating from deeper regions in the tissue will be

reconstructed with lower resolution than those originating near the tissue surface.

As one-sided detection produces limtied-view artefacts, in order to demonstrate the

impact that frequency-dependent attenuation has on the reconstructed image, both

these effects must be included. In this set of simulations, the PA source consisted

of two disks, both 0.1mm in diameter, one at 1.5mm from the sensor and the other

at 0.25mm. The initial acoustic pressure is shown in Fig. 1.6(a). The simulation

parameters were the same as above, except in the forward simulation of the data

from which Fig. 1.6(c) was reconstructed, acoustic attenuation was modelled using

a power law of the form a = a0ω
u where a0 = 2dBMHzcm-1u with u = 1.5, which

is similar to biological tissues of interest [28].
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F I G U R E 1 . 6 : (a) True p0 in 2mm square domain; (b) Reconstructed acoustic pressure
from PA source); (c) Reconstructed acoustic pressure from linear detector arrangement
at z=0mm with limited-view artefacts; (d) Reconstructed acoustic pressure from linear
detector arrangement at z=0mm with limited-view artefacts and frequency-dependent
attenuation (a = a0ω

u where a0 = 2dBMHzu with u = 1.5); (d) Profiles through image
diagonal in true and reconstructed pressure distributions with limited-view (LV) and

frequency-dependent attenuation (FDA) artefacts.

The loss in high frequency components between Figs. 1.6(b) and (c) is evident,

particularly in the source at the top of the domain, far from the detector, where

higher frequencies will have undergone greater attenuation as they travelled to the

sensor. Fig. 1.6(d) shows a profile through the images (denoted by the grey line in

Fig. 1.6(a)) where the smoothing that has taken place due to frequency-dependent

attenuation is visible in both PA sources.
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In practice, the above limitations, along with limited sensor directivity and hetero-

geneities in the acoustic properties, would severely impact the accuracy of chromophore

concentration estimates made using PAT images. It may be possible to account for un-

known speed of sound [43–45] and acoustic attenuation [36], while wide band detectors

have been in use for several years [11] and iterative reconstruction schemes for reducing

artefacts exist. The success of QPAT relies on challenges within the acoustic inverse prob-

lem being adequately solved. The focus of this thesis however is on the optical inverse

problem.

1.4 Quantitative photoacoustic imaging

As mentioned in Section 1.1, QPAT refers to the estimation of physiological properties

such as blood oxygenation or chromophore concentrations from photoacoustic images

following acoustic reconstruction (i.e. the top block of in Fig. 1.1). QPAT generally

involves the exploitation of the wavelength-dependent absorption of various endogenous

or exogenous absorbers, as the linear combination of their concentrations with their

absorption spectra gives rise to the wavelength-dependent absorption coefficient, µa(λ).

Recall that the photoacoustic forward problem is given by (Eq. (1.5)):

p0(x, λ) = Γ(x)Φ(x, λ; µa, µs, g)µa(x, λ), (1.8)

where µs is the scattering coefficient and g describes the scattering anisotropy; expanding

the absorption coefficient in terms of the chromophore concentrations ck, their molar

absorption coefficients, αk, yields

p0(x, λ) = Γ(x)Φ(x, λ; ck, µs, g)
K∑
k=1

αk(λ)ck(x) (1.9)

It is clear from Eq. (1.9) that, given the objective in QPAT to estimate the ck, linear

unmixing to resolve concentrations from the absorption coefficient is required; however,

prior to that it also necessary to remove of the impact of the fluence, Φ(x, λ), and

the Grüneisen coefficient, Γ(x). A few methods for the removal of the impact of the
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Grüneisen parameter have been suggested, most common of which is one that exploits

the fact that Γ does not depend on wavelength. These approaches are discussed in detail

in CHapter 2. The fluence – which depends on wavelength through the wavelength-

dependent scattering coefficient, µs(x, λ), anisotropy factor, g(x, λ), and chromophore

concentrations – cannot be divided out of Eq. (1.8) so must be modelled; in fact, the

fluence cannot be modelled without knowledge of the ck and must therefore be estimated

simultaneously with it.

The internal fluence can be determined noninvasively by probing it using acoustic mod-

ulation to encode light passing through the tissue [46] but spatial resolution and depth

penetration are limited using this technique, with the resolution suffering a reduction

by an order of magnitude. Resolution could in principle be similar to that achievable by

PAT but absorption of high acoustic frequencies will negatively impact depth penetration

of the acoustic field, presenting an unfortunate trade-off using this technique. Diffuse

optical imaging has also been employed [47, 48] to aid the estimation of the absorption

coefficient from PAT images, but resolution is reduced to the millimetre scale. Another

noninvasive technique relies on the absorption being dependent on the fluence [49];

if the absorption from a fluence-dependent chromophore were to suddenly fall to zero

with increasing fluence, the fluence could be determined in the tissue. This approach

is fraught with practical limitations, namely that it requires the assumption that the flu-

ence outside a region of interest is unchanged by a change in the absorption coefficient

in that region. Moreover, attempts to implement such a scheme in practice [50] used

chromophores that are weakly absorbing at 488nm, a region of the spectrum in which

the high absorption of blood will severely limit the penetration of light into the tissue.

Invasive methods have been used for blood oxygenation measurements by simply placing

a known absorber inside the tissue [51], though this method has its obvious limitations.

The distribution of the fluence can also be modelled, as discussed in the next section.

1.4.1 Models of light transport

There are a number of methods by which light transport can be modelled in tissue

[52, 53]. Due to the computational complexity of solving Maxwell’s electromagnetic



Chapter 1 : Introduction and background 35

equations for a distribution of scatterers in a large region of interest [54], a suitably

accurate approximation is to use the energy-balancing, integro-differential radiative

transfer equation (RTE). For a given volume, this equation balances the energy scat-

tered from any direction into the direction of interest, and source contributions in this

direction, with energy lost due to absorption and scattering away from the direction of

interest. The variable in this equation is the radiance, which varies spatially and angu-

larly. Thus, in order to simulate the RTE directly, and therefore compute the radiance,

discretisation must be over space, angle and time. Note that it is not necessary to solve

the time-dependent RTE for PAT because the optical part of the problem is considered

instantaneous. Furthermore, the high degree of scattering in biological tissue means

that it is not always necessary to accurately model the high directionality of the light

field. Models such as the Pn approximations, diffusion or δ-Eddington approximation

only model low directional components or scattered and unscattered components of the

field to reduce computational burden of simulating the full RTE.

A range of solution methods exist for solving the RTE directly, such as the finite difference

method, the finite element method or Monte Carlo methods. Finite element methods,

which solve the weak formulation of the RTE, have fewer geometrical constraints com-

pared with finite difference techniques, but both approaches have significant memory

demands due to the need to discretise in angle and space. Monte Carlo methods, which

simulate the fluence rather than the radiance, have limited memory demands and are

inherently parallel; however, the need to simulate million or billions of photons for con-

vergence to a sufficiently low-noise fluence estimates means the algorithms can be highly

compute intensive. Approximations to the RTE, such as the diffusion equation which

assumes near-diffuse propagation of light, have computationally light solution methods,

but are inaccurate in superficial regions of the tissue, near the source, which is a region

of interest in PAT. Therefore balancing the accuracy and computational demands of the

model and its implementation are very important, particularly in their application to the

optical inverse problem.
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1.4.2 The optical inverse problem

The optical inverse problem in PAT refers broadly to the estimation of the absorption

coefficient from a single, or multiple photoacoustic images, although the estimation

of chromophore concentrations, blood oxygenation and/or the Grüneisen parameter

can also be the aim of the optical inversion. Linear inversions assume that the fluence

does not depend on the unknown; the unknown may be the absorption coefficient,

chromophore concentrations or blood oxygenation. However, this assumption is not true

in general and the inversion is complicated by the fact that the fluence depends on the

unknown, as well as the heterogeneous and wavelength-dependent scattering coefficient

µs(x, λ), which is also usually unknown. This yields at least two sets of unknowns in the

inverse problem, which is a potential source of ill-posedness. Tomographic photoacoustic

images are high-resolution 3D datasets, often containing hundreds of voxels on each

edge of a 3D volume, meaning in order to perform the optical inversion, the fluence must

be known at millions of positions throughout the domain; the resulting inverse problem

is large-scale given that the number of unknowns is well into the millions.

The ‘holy grail’ of the optical inversion is one that is sufficiently general to tackle the

issues raised in this section. A general method for solving the optical inverse problem is

one that:

(1) is 3D

(2) can estimate the absorption coefficient accurately in every voxel in the image (SNR

permitting)

(3) can estimate the scattering coefficient (sufficiently) accurately

(4) is computationally tractable, in terms of both memory and algorithmic demands

(5) can perform a full inversion in a practical amount of time

The above qualities are not independent; for instance, finite element implementations

of the RTE can accurately simulate the fluence throughout the domain, but the scale

of 3D simulations becomes intractable with the system matrix requiring in the range of



Chapter 1 : Introduction and background 37

109-1012 Bytes to store and invert. On the other hand, modelling error of the diffusion

approximation limits its application in QPAT to estimation of the absorption coefficient

in deeper structures. In this thesis, Monte Carlo methods are considered as a candidate

light model with the aim of demonstrating, where possible, that a Monte Carlo model

satisfies the above characteristics.

1.5 Contributions of this thesis

This thesis explores three key areas of QPAT (Chapters 3, 4, 5 and 6) and the conclusions

derived from these investigations make the following contributions to the field.

• Chapter 3 investigates whether blood oxygenation, a fundamental biomarker, can

be estimated from PAT images without explicitly accounting for the wavelength-

dependence of the fluence. Such a study has not yet been conducted in detail

[55, 56] and this work demonstrates that there are in fact very few experimen-

tal scenarios where neglecting the impact of the fluence would allow accurate

estimation of blood oxygenation.

• Given the need to account for the fluence, Chapter 4 presents a novel and accurate

Monte Carlo model of light transport capable of computing the radiance. This is

demonstrated using a Fourier basis at every position in the domain to account for

the angle-dependent propagation of light.

• It has previously been demonstrated, in 2D, that the absorption and scattering coef-

ficient can be estimated from multiple images by simulating the radiance. Chapter

5 demonstrates the calculation of gradients of the least-squares error between sim-

ulated and measured data with respect to the absorption and scattering coefficient

using distributions of Fourier harmonics calculated using the radiance Monte Carlo

model presented in Chapter 4. These functional gradients are then applied in in-

verting simulated PAT images for the absorption and/or scattering coefficient. The

Monte Carlo-based inversion is the first of its kind in QPAT and presents a com-

putationally tractable means for obtaining physiologically relevant information,
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such as chromophore concentrations or oxygen saturation, from multiwavelength

photoacoustic images.



Chapter 2

The optical problem in

photoacoustic imaging

2.1 Radiative transfer

The most complete description of light propagation is provided by Maxwell’s electro-

magnetic equations. However, solving such equations for light transport in tissue is

unattractive for a number of reasons. Firstly, most biological tissues are highly scattering

meaning the positions and shapes of all the scatterers must be known in order for the

model to be accurate. This microscopic description of the tissue results in vast computa-

tions which are intractable for tissue volumes on the scale of PAT images. Instead, light

transport is commonly modelled using the time-independent radiative transfer equation

(RTE). The time-independent form is used as stress and thermal confinement ensure

acoustic propagation only begins when the incident pulse of light has been fully absorbed

(see Sec. 1.2). Nevertheless, the RTE was originally derived in time-dependent form

in heuristic fashion, i.e. through the consideration of energy conservation in a small

volume dV [57], but can also be derived from energy conservation in Maxwell’s equa-

tions making use of a time-averaged, volume-averaged expression of the flow of energy

[58, 59].

39
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Here we present the derivation of the time-dependent form using energy balancing.

Consider the net outflow of energy in time dt from a small volume dV centred around

a point x, around a small solid angle in direction ŝ and at time t; the energy is incident

upon an area dA perpendicular to ŝ and travels a distance ds = cdt at speed c. The

net outflow is then equal to the sum of four contributions: a positive contribution from

a light source, negative contributions from absorption and scattering, and a positive

contribution from light being scattered into the direction of interest. This is illustrated

in Fig. 2.1.

F I G U R E 2 . 1 : Illustration of absorption, outward and inward scattering in a small
volume of tissue in direction ŝ.
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Define the time-depenent radiance, ∂φ
∂t , as the energy per unit area per steradian per

unit time; the net change in the radiance per unit length across the volume is given by

cdtdV ∂φ(λ,x,ŝ,t)
∂t , where dV is very small, λ is the wavelength of light, x is position and ŝ

is the direction of propagation. Note that all nonlinearities are neglected (e.g. inelastic

(Raman) scattering, fluorescence), meaning wavelength is constant. Based on the four

contributions above, the change in radiance per unit length per unit time can then be

written as

cdtdV
∂φ(x, ŝ, t)

∂t
= cdtdV q(x, ŝ, t)− cdtdV (µa(x) + µs(x))φ(x, ŝ, t) + cdtdV µs(x)

∫
Sn−1

P (ŝ, ŝ′)φ(x, ŝ′, t)dŝ′,

(2.1)

where P (ŝ, ŝ′), called the scattering phase function, represents the probability of light

scattering from any direction ŝ′ into ŝ, and µa and µs are the absorption and scattering

coefficients, respectively. The integral over Sn−1 represents integrating the contributions

over n − 1 dimensions which for n = 3 is performed over the unit sphere over 4π

steradians (an analogous form exists for n = 2). As the photoacoustic source is a

function of the time-dependent fluence, we must consider Eq. (2.1) integrated over

the entire illumination duration such that we are left with a time-independent equation

using the substitution ds = cdt

∂φ(x, ŝ)

∂s
= q(x, ŝ, t)− (µa(x) + µs(x))φ(x, ŝ) + µs(x)

∫
Sn−1

P (ŝ, ŝ′)φ(x, ŝ′)dŝ′.

(2.2)

Eq. (2.2) can be re-written to give the more familiar form,

(ŝ · ∇+ µa(x) + µs(x))φ(x, ŝ) = µs(x)

∫
Sn−1

P (ŝ, ŝ′)φ(x, ŝ′)dŝ′ + q(x, ŝ). (2.3)

2.1.1 Absorption

The absorption coefficient is an expression of the probability of absorption per unit length

[60]. As chromophore concentrations within the tissue may change (for physiological
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reasons such as blood flow or metabolism) or the concentrations themselves are of inter-

est, the absorption coefficient is resolved into the molar absorption coefficients, αk(λ),

which describes the probability of absorption per unit length per unit concentration, and

the concentrations of the respective k chromophores, ck. This is written as a linear

combination of the concentrations of the K chromophores present:

µa(λ) =
K∑
k=1

αk(λ)ck. (2.4)

In practice, this relationship may not be linear, as αk(λ) may also depend on ck or ck′ , as

in the case of certain molecular dyes. However, this thesis assumes linearity of Eq. (2.4),

which is a fair assumption in biological tissues as many chromophores are contained

within a cell, meaning the concentrations of the chromophore in its local environment

is fixed. Taking the heme molecule as an example, it is bound within the haemoglobin

protein and therefore will not undergo changes in concentration.

In the absence of scattering and with a boundary source at s = 0 in direction ŝ (q =

q0δ(s− 0)δ(ŝ− 0)), the RTE simplifies to

dφ

ds
= −µaφ+ q0δ(s− 0)δ(ŝ− 0), (2.5)

which has the solution φ = q0 exp(−
∫ s
s=0 µads

′) or φ = q0 exp(−µas) in a homogeneous

medium (where q0 is the radiance on the boundary). Since no light is scattered inwards

from other directions, the solution for φ can be integrated over angle, giving

Φ = Q0 exp(−
∫ s

s=0
µads

′), (2.6)

with Q0 being the fluence on the boundary, and is known as the Beer-Lambert law.
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2.1.2 Scattering

The scattering coefficient, µs, is defined in a similar manner to the absorption coefficient

in that it is the probability per unit length of a scattering event [60]. Its origins are

associated with refractive index changes between cells in the tissue [9].

2.1.2.1 Scattering phase function

On a microscopic level, the angular distribution of singly-scattered light may be ad-

equately described by Rayleigh or Mie theory, but this does not appropriately model

scattering by cells in tissue. In addition, multiple scattering is common in biological

tissue due to the very short mean-free path between scattering events, and series so-

lutions to scattering become computationally intractable for modelling large volumes

of tissue. Instead it is common to use either the Henyey-Greenstein [61] or the delta-

Eddington [62] phase functions, though a number of others exist. One expression of the

Henyey-Greenstein phase function is in terms of spherical harmonics:

PHG(ŝ, ŝ′) =
∞∑
l=0

l∑
m=−l

glY m+
l (ŝ′)Y m

l (ŝ), (2.7)

with Y m
l as the spherical harmonics and the superscript + indicates complex conjugation.

g, the anisotropy factor, is on [−1, 1]; scattering is isotropic when g = 0, forward-peaked

when g approaches +1 and backward-peaked when g approaches -1. The product

Y m+
l (ŝ′)Y m

l (ŝ) ensures the phase function is symmetric since odd components cancel.

The phase function has the attractive property that it has a closed form expression:

PHG(ŝ, ŝ′) =
1

4π

1− g2

(1 + g2 − 2g(ŝ · ŝ′))3/2
. (2.8)
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With the phase function being properly normalised such that,

∫
4π
PHG(ŝ, ŝ′)d(ŝ · ŝ′) = 1, (2.9)

it then has the expectation

g =

∫
4π
PHG(ŝ, ŝ′)(ŝ · ŝ′)d(ŝ · ŝ′). (2.10)

2.2 Models of light transport in tissue

The RTE is the most complete macroscopic model of light transport in tissue. However,

memory demands and challenges associated with its computational implementation have

led to other models being sought. Three models commonly used derive from the RTE:

the Pn approximations, the diffusion approximation and the δ-Eddington approximation.

These are described below.

2.2.1 Pn approximations

This class of methods expresses the radiance, source term and scattering phase function

in the RTE as a series of spherical harmonics [63]:

φ(x, ŝ) =

∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)1/2

aml Y
m
l (ŝ), (2.11)

q(x, ŝ) =

∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)1/2

qml Y
m
l (ŝ), (2.12)

where alm and qlm are the weighting coefficients associated with each harmonic for the

radiance and source, respectively. It is in this basis where the expansion in Eq. (2.7)

is particularly useful as its substitution into the RTE in Eq. (2.5) along with the ex-

pression for the radiance and source term in Eqs. (2.11) and (2.12) allow significant
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simplification, as shown below.

∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)1/2

(ŝ · ∇)aml Y
m
l (ŝ)+

∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)1/2

aml Y
m
l (ŝ) =

µs

∫
Sn−1

( ∞∑
l=0

l∑
m=−l

glY m+
l (ŝ′)Y m

l (ŝ)

)( ∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)1/2

aml Y
m
l (ŝ)

)
dŝ′+

∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)1/2

qml Y
m
l (ŝ)

(2.13)

This approach has the potential to reduce the memory demands of simulating the RTE

because storing the field some distance away from directional sources will only require

a few orders of spherical harmonics [64].

2.2.2 Diffusion approximation

One particular approach to solving the RTE within the Pn approximations is the P1 (which

can be further simplified to give the diffusion approximation (DA)). The P1 assumes

near-diffusive propagation by truncating the spherical harmonic series expasions for the

terms in Eq. (2.13) for l = 1 giving [63]

∂

∂z
a0

1 +
1√
2

∂

∂x

(
a−1

1 − a
1
1

)
+

1

i
√

2

∂

∂y

(
a−1

1 + a1
1

)
+ (µa + µs)a

0
0 = µsa

1
0 + q0

0 (2.14)

1

3

∂

∂z
a0

0 + (µa + µs)a
0
1 = µsg

1a0
1 + q1

0 (2.15)
√

2

6

(
∂

∂x
+ i

∂

∂y

)
a0

0 + (µa + µs)a
−1
1 = µsg

1a−1
1 + q−1

1 (2.16)

−
√

2

6

(
∂

∂x
+ i

∂

∂y

)
a0

0 + (µa + µs)a
1
1 = µsg

1a1
1 + q1

1, (2.17)

where x, y and z are the spatial dimensions in 3D.
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The fluence is equal to the isotropic, zeroth spherical harmonic a0
0, and the flux vector

J =
∫
Sn−1 φ(ŝ)ŝdŝ is given by

J =




1√
2

(
a−1

1 − a1
1

)
1
i
√

2

(
a−1 + a1

1

)
a0

1


 . (2.18)

This allows the four equations (2.14)–(2.17) to be written as two equations in J and Φ

∇ · J + µaΦ = q0
0 (2.19)

1

D
J +

1

3
∇Φ = q1, (2.20)

where D = 1
3(µa+µs(1−g)) and Q0 = q0

0(Eqs. (2.19) & (2.20) are known as the P1 approxi-

mation). Re-arranging gives

∇ · J + µaΦ = Q0 (2.21)

J = 3D(q1 −
1

3
∇Φ), (2.22)

and substituting Eq. (2.22) into (2.21), using the assumption that all sources are

isotropic (q1 = 0),

−∇ ·D∇Φ + µaΦ = Q0, (2.23)

which is known as the photon diffusion equation.
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2.2.3 δ-Eddington approximation

The limitations of the DA in modelling non-diffusive propagation can be partially reme-

died using an alternative phase function that considers the directionality of the light

field being composed of a diffusive part and a delta-function, known as the δ-Eddington

approximation [62]:

Pδ−E(ŝ · ŝ′) =
1

4π

[
2fδ(1− (ŝ · ŝ′)) + (1− f)(1 + 3g(ŝ · ŝ′))

]
, (2.24)

where f is the fraction of light scattered in the direction of anisotropy (i.e. the direction

of scattered light when g = 1). Like the DA, the substitution of Pδ−E(ŝ · ŝ′) into the RTE

allows simplification to a diffusion equation for the scattered component of the fluence,

while also producing a collimated component, Φc, which has a Beer’s law type solution,

Φc(x) = Φ0(x) exp

(
−
∫ z

0
(µa(z′) + µ̂s(z

′))dz′
)
δ(1− (ŝ · ẑ)), (2.25)

where Φ0(x) is the illumination at the surface, z is depth, µ̂s is a modified reduced

scattering coefficient to account for the different phase function [65].

2.3 Solution methods for models of light transport in tissue

The most suitable method used to solve the RTE – and approximations to it – depends

on how the optical properties are distributed over the domain, and the illumination

and boundary conditions. Analytic solutions for the radiance can be obtained using an

infinite space Green’s function in homogeneous media [66–68], and solutions have also

been extended to simple finite geometries (e.g. slabs, cylinders, spheres) [69, 70] as well

as bounded [71, 72] and layered [73] media. Analytic solutions for the fluence under

the diffusion and δ-Eddington approximation exist for simple geometries [75–77] and

can be obtained in a similar manner. Under the diffusion approximation, in the case of
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a homogeneous absorbing-scattering medium, the fluence can be computed by solving

−∇ ·D∇G0(x− x′) + µaΦ = δ(x) using the free-space Green’s function G0 [78]:

G0(x− x′) =
exp(−µeff |x− x′|2)

4π |x− x′|2
, (2.26)

where µeff the effective attenuation coefficient is given by µeff =
√
µa/D where D =

1
3(µa+µs(1−g)) . Analytic approaches are not available for arbitrary media, such as those

imaged using PAT. More general, numerical solution methods exist either through the

finite element method or Monte Carlo methods, as discussed below. (Note that finite

difference schemes [79, 80] and spectral methods [81] exist, but are not commonly

used).

2.3.1 Finite element methods

Finite element methods project the problem into a basis in which the weak form can be

solved using a simple linear system

Aφj = bj , (2.27)

where A is the system matrix, φj is the field variable and bj is the projection of the source

term into the jth element in the chosen basis [82]. The construction of A depends on

the light model and the basis [63]. Typical discretisations for the basis functions, uj , are

triangles in 2D or tetrahedra in 3D, such that the quantity φ̃ of interest is expressed in

the basis as

φj =

∫
Ω
φ̃jujdx, (2.28)

where Ω is the domain of x. Eq. (2.28) is often subject to boundary conditions that

φi and ∇φi, or some combination, are given on the boundary (Dirichlet and Neumann

boundary conditions, respectively).
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When solving for the radiance according to the RTE using the FE method, the system

is projected into both spatial and angular bases in order to account for anisotropic light

propagation. This becomes very computationally demanding in highly anisotropic 3D

media because of the need for fine angular discretisation near the source, in both the

angular and spatial domains. The discrete ordinate method of angular discretisation

has been employed in 2D using FE discretisation in the spatial domain [53] where the

scale of the computation remains tractable. However, the significant memory demands

of 3D solutions have led to reducing the dimensionality in the angular domain by using

a spherical harmonic basis [83]. Discretisation that is variable in order over the domain

(i.e. near the source, spherical harmonics for many l are stored, whereas far from the

source l = 1 is sufficient) has the potential to reduce memory demands quite significantly

[64].

Finite element solutions to the the δ-Eddington approximation [84] are much lighter

computationally since only two angular bins are required, while the DA requires only

one angular bin [85]. Although this has significant benefits in terms of computational

demand, the disadvantage is that these models break down under certain conditions;

the δ-Eddington does not completely accurately model anisotropic light propagation,

while the diffusion approximation is inaccurate near the tissue surface or near sources

where the light is more strongly directional (which is typically within a distance 1/µ′s =

1/(µa + µs(1 − g))) and in low albedo (µs ≯ µa) regions. The former is problematic

for the application of the DA as a forward model in PAT because the ballistic and near-

ballistic region near the tissue surface at depths less than 1/µ′s is a region of interest for

PA imaging.

2.3.2 Monte Carlo methods

The Monte Carlo (MC) method of light transport is a stochastic approach and is consid-

ered the ‘gold standard’ model of the RTE because (a) it converges to a solution of the

RTE [86] and (b) it can implemented straightforwardly in a range of geometries. The

method involves iterative sampling of the RTE such that energy packets propagate along

random walks through the domain. Each photon trajectory acts as a sample of the RTE
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and the deposition of energy by the packet is calculated according to the RTE. As the

number of energy packets simulated grows, the quantity of interest, typically the fluence,

tends to a solution of the RTE.

The number of energy packets required in a simulation varies depending on the appli-

cation, domain size, illumination and boundary conditions. In the case of PAT, where

the domain is 3D and has fine spatial discretisation, the number of energy packets re-

quired can easily exceed 106. Even simulations using well over this number of energy

packets can produce fluence estimates with excessively high variance to be useful. For

this reason, the application of MC models in QPAT has been limited. However, energy

packets in MC simulations can be propagated completely independently, meaning this

parallelism can be exploited using high throughput computing schemes and in turn may

provide a tractable means of solving the RTE in 3D. Chapters 3 and 4 describe in detail

the MC method of light transport, and tackles the question of how many energy packets

are sufficient in a given simulation.

2.4 The optical inverse problem

As mentioned in Chapter 1, QPAT typically refers to solving the optical inverse problem

given a photoacoustic image, i.e. the reconstructed initial acoustic pressure, as the data.

The range of possible objectives in QPAT is to estimate

• the absorption coefficient only;

• both the absorption and scattering coefficients;

• the absorption and scattering coefficients and the Grüneisen parameter;

• chromophore concentrations; and/or,

• blood oxygenation.

A spectrum of approaches have been presented in the literature, ranging from solving

the linear inverse problem alone under many simplifying assumptions, to solving the
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coupled acoustic-optical inverse problem with many parameters unknown and partial

data. These are discussed below.

2.4.1 Linear approaches

A key attraction of QPAT is that it has the potential to estimate physiological parame-

ters, such as chromophore concentrations or ratios between such concentrations. In the

context of QPAT, a linear inversion aims to exploit the wavelength dependence of the

chromophores’ molar absorption coefficients by acquiring images at two or more wave-

lengths and performing an inversion under the assumption that the forward problem is

linear in µa, i.e. that p0(λ) ∝ µa(λ). Writing out the forward problem at a single position

for the multiwavelength case for wavelengths 1...N and 1...M chromophores,


p0(λ1)

...

p0(λN )

 = Γ


Φ(λ1) . . . 0

...
. . .

...

0 . . . Φ(λN )



α1(λ1) . . . αM (λ1)

...
. . .

...

α1(λN ) . . . αM (λN )



c1

...

cM

 , (2.29)

illustrates that generally two steps are required to obtain the chromophore concentra-

tions from a position in a photoacoustic image (note that in practice these equations

would be solved at multiple positions in the image simultaneously); the left-hand side

must be multiplied by the reciprocal fluence term, followed by multiplication using the

pseudoinverse of the matrix of molar absorption coefficients:


c1

...

cM

 =
1

Γ


α1(λ1) . . . αM (λ1)

...
. . .

...

α1(λN ) . . . αM (λN )


† 

1/Φ(λ1) . . . 0
...

. . .
...

0 . . . 1/Φ(λN )



p0(λ1)

...

p0(λN )

 ,(2.30)

where † is used to indicate the (pseudo)inverse and the problem in Eq. (2.29) is typically

well-conditioned for N ≥M depending on the αk(λ). Under the assumption of linearity

between the photoacoustic image and the absorption coefficient, Eq. (2.30) can simply
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be written as


c1

...

cM

 =
1

Γ


α1(λ1) . . . αM (λ1)

...
. . .

...

α1(λN ) . . . αM (λN )


† 

p0(λ1)
...

p0(λN )

 . (2.31)

This relationship is not true in general but solving the optical inverse problem in this

way is attractive as it avoids having to estimate the fluence, which is challenging and

often computationally intensive. Many practitioners estimate blood oxygenation, sO2 =

cHbO2/(cHbO2 + cHb), using this method [20, 87–92], though their accuracy has rarely

been explicitly validated. Such methods are unlikely to yield sO2 estimates that are of

a practically useful level of accuracy because the wavelength-dependence of the fluence

will corrupt oxygenation estimates. The conditions under which this ‘linear inversion’ is

accurate are investigated in Chapter 3.

Partially correcting for the depth- and wavelength- dependence of the fluence has been

attempted using a 1D exponential correction factor with a wavelength-dependent decay

coefficient [93]. This approach is routinely used in practice [11, 94–96] to reduce the

spatial and spectral dependence of the fluence, and once this correction has been applied,

the spectroscopic inversion in Eq. (3.3) is used to estimate chromophore concentrations

or blood oxygenation. The implementation of this fluence correction and its impact on

the accuracy of sO2 estimates are also examined in Chapter 3.

2.4.2 Nonlinear approaches

Nonlinear approaches comprise a broad range of techniques used to recover optical and

physiological parameters from PAT images. The majority of approaches involve casting

the inversion as a least-squares problem. However, there are others that assume a known

scattering coefficient to exploit the fact that the absorption coefficient can be expressed as

a function of the PA image and unknown fluence, as performed in a fixed-point iteration.

The fact that the PA image appears as a term in the diffusion approximation can also be

exploited by re-casting the DA assuming a known diffusion coefficient.



Chapter 2 : The optical problem in photoacoustic imaging 53

2.4.2.1 Fixed-point iteration

It is possible to write an expression for the absorption coefficient in terms of the measured

image and the fluence, which is unknown:

µa =
pmeas0

ΓΦ
. (2.32)

Assuming that Γ = 1 or known allows us to cast this as a fixed-point iteration as the

current estimate of the absorption coefficient µ(n+1)
a will depend on the previous estimate

of the fluence, Φ(n):

µ(n+1)
a =

pmeas0

Φ(n)(µ
(n)
a , µs) + %

, (2.33)

where % is a small number that ensures the denominator is never zero, without which the

method could only be applied to regions of the image wher there is sufficient SNR. The

absorption coefficient is estimated by iterating over this expression using a fluence model

and iteration stops when the error between the measured image and the image estimate,

µ
(n+1)
a Φ(n+1), falls below some threshold. This method suffers from the significant draw-

back that a priori knowledge of the scattering coefficient, which is generally unknown,

is required. Accurate estimation of the absorption coefficient using this approach relies

on the sensitivity of the PA image to the estimate of the scattering coefficient [97]; it

has however been shown that estimates of the absorption coefficient made from noisy

images and a correct guess of the background scattering coefficient is possible [98].

2.4.2.2 Re-arranging of the forward model

Banerjee et al. [99] noticed that the image divided by the Grüneisen parameter appears

in the diffusion equation,

−∇ ·D∇Φ + µaΦ = Q0, (2.34)
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so making the substitution pmeas0 /Γ = µaΦ,

−∇ ·D∇Φ = Q0 − pmeas0 /Γ, (2.35)

in turn allows this equation to be solved for Φ. The absorption coefficient can then

be calculated via µa =
pmeas0

ΓΦ . This however requires D to be approximated via D̂ =

1
3µs(1−g) = 1

3µ′s
, where the value of µ′s is known, and of course requires Γ to be known.

In the situation where µ′s is unknown, the accuracy of absorption estimates is then

vulnerable to inaccuracies in the estimate of the reduced scattering coefficient. For

this reason, schemes which can perform simultaneous estimation of the absorption and

scattering coefficients are more attractive.

2.4.2.3 Linearisation of the forward model

Linearisation-type approaches can estimate the absorption and scattering coefficients

simultaneously. This class of inversion expands the photoacoustic forward problem as

a Taylor series about an estimate of the absorption and scattering coefficients, χ(0) =

[µ0
a µ

0
s], which in practice can be their true value or some guess of their background

value. If the photoacoustic image is formed by a product of the Grüneisen parameter

and a forward operator F applied to χ such that

p0(µa, µs; g) = ΓF(χ; g)[χ]. (2.36)

Then, the expansion is given by

p0(µa, µs; g) ≈ Γ
[
F(χ; g)[χ(0)] + F ′(χ)[χ− χ(0)] + F ′′(χ)[χ− χ(0)]2 + . . .

]
,

(2.37)

where F ′ and F ′′ are the first- and second- order Fréchet derivatives of the forward

model. Therefore, despite the forward model being nonlinear, it can be linearised in the

first Fréchet derivative by considering that p0 has been perturbed by some small changes
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in µa and µs: ∆χ = [µa − µ(0)
a , µs − µ(0)

s ]

∆p0 = ΓF ′(χ)[∆χ], (2.38)

where ∆p0 = pmeas0 − p0. The update to χ is then given by

∆χ =
1

Γ
F ′†[∆p0], (2.39)

where † is used to indicate the pseudoinverse (in practice this matrix inverse can be

regularised via a number of methods to reduce noise or enforce smoothness in ∆χ)

[100]. Perturbation-type methods such as those in Eq. (2.39) are only valid for small

perturbations in the model parameters µa and µs and require the background absorption

and scattering coefficients to be accurately known which limits the applicability of these

techniques in general [101]. The formulation of the inversion in Eq. (2.39) can also be

used within a minimisation scheme as achieved by Yao et al. [102], but the significant

memory and algorithmic demands of computing F ′ restricts this approach to inversions

of limited scale (e.g. few unknowns, low resolution of χ).

2.4.2.4 Noniterative methods

Bal et al. [103] proposed a noniterative method to uniquely recover the absorption and

diffusion coefficients using the diffusion equation as the forward model. Here, the DA

for two illumination positions (and thus two images H1 and H2) is re-arranged to yield

∇ ·

(√
D

µa
B

)
= 0, (2.40)
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where

B = H1∇H2 −H2∇H1 = µ2
aΦ2

1∇
(

Φ1

Φ2

)
, (2.41)

and where Φ1 and Φ2 are the fluences corresponding to the two illuminations. This

method allows stable reconstruction of D and µa when the vector field B connects every

position in the domain to a point on the boundary, as demonstrated in a minimisa-

tion based framework [104]. Nevertheless, the reliance of this method on the DA and

sensitivity to noise due to the ratio of images would limit its application in practice.

2.4.2.5 Least-squares approaches

Minimisation-based approaches derive from the Bayesian framework (discussed in more

detail later) and rely on the minimisation of an error function ε(χ) with respect to the

parameter set, χ,

χ = arg min
χ

ε(χ) = arg min
χ

||y −F [χ]||. (2.42)

Note that in practice the problem in Eq. (2.42) is often subject to some regularisation,

but the choice of regulariser is application-specific and is discussed in more detail where

relevant.

Two classes of iterative least-squares minimisation approach are trust-region methods

and linesearch methods [100]; trust-region methods use a local model of the error

function at the current parameter estimate and identify a direction and step length within

this region where the objective will undergo a sufficient change when the parameter

set is updated. Linesearch methods, on the other hand, choose a search direction using

gradient information and perform a 1D minimisation along the optimal trajectory.

Linesearch methods require a gradient to be computed to minimise Eq. (2.42). Two

classes of linesearch method are: Newton and quasi-Newton methods. Newton methods
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rely on calculation of the Hessian, the matrix of second-order partial derivatives of the

error functional with respect to the model parameters. This approach suffers from the

fact that computation of this matrix is not only time-consuming in an algorithmic sense,

but memory demands scale quadratically with the number of unknowns meaning the

Hessian is prohibitively large to store for large PA images which can contain millions of

unknowns. In Newton methods, the descent direction is given by

p(i) = −(∇2ε(χ)(i))−1∇ε(χ)(i), (2.43)

where ∇2ε(χ)(i) (the Hessian) and ∇ε(χ)(i) (the gradient) are the second- and first-

order derivatives of the error functional with respect to the model parameters at the ith

iteration. This approach has the advantage that the step-length, α(i), is naturally 1 and

has a quadratic rate of convergence. The computation of the derivatives of the error

function are usually calculated using some numerical scheme, such as a finite difference

algorithm (methods for gradient calculation are discussed more detail in Chapter 5)

which can be computationally very costly to store and compute, particularly for the

Hessian matrix.

Quasi-Newton methods only require calculation of the gradient and are therefore also

termed ‘gradient-based’ methods. Under this scheme, the gradient is used to approximate

the Hessian rather than explicitly computing it. A number of different algorithms exist for

forming approximations to the Hessian matrix (e.g. Broyden-Fletcher-Goldfarb-Shanno

(BFGS)) and the corresponding parameter updates. Convergence of quasi-Newton meth-

ods is slower than the Newton approach, but is well-suited to large scale inverse problems

where memory demands limit the range of algorithms that can be applied. Gradient-

based approaches simply require a search direction p(i) at the ith iteration. The most

intuitive of which is the gradient descent (or steepest decent) method whereby the de-

scent direction is simply given by

p(i)(χ) = −∇ε(i)(χ). (2.44)
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This scheme, unlike the Newton method, is not pre-conditioned and an appropriate step

length, αi, must be selected; αi can either be pre-defined, obtained using a line search

in the p direction, or can be found using some pre-conditioning scheme [105]. The

step length must be chosen in a similar way when performing a nonlinear conjugate

gradient (nCG) optimisation, which descends the error hypersurface using a series of

steps along orthogonal directions with well-chosen step sizes [105] and typically requires

fewer iterations to converge to the global minimum compared with the gradient descent

method.

Gradient-based optimisation has been applied in conjunction with forward and adjoint

models of diffusion [106] and radiative transport models [107]. As discussed previously,

the diffusion model does not accurately account for the fluence in a region of interest

for PAT and functional gradients ∂ε
∂µa

and ∂ε
∂D are not consistent with those obtained

using forward and adjoint radiative transfer equations, meaning the reconstruction is

limited in accuracy due to modelling error. Reconstructions using the RTE are accurate

to within a few % of the true absorption and scattering distributions in the presence of

1% Gaussian noise [107]. However, this was achieved using four illumination positions

and the reconstructed PA images were free from artefacts. In practice, it is rarely possible

to illuminate the target from all sides and artefacts from acoustic reconstruction, such

as limited view artefacts, will result in errors in the optical inversion. Possible means of

remedying this issue are discussed later in this chapter.

2.4.2.6 Single-step methods

The optimisation-based approaches above aim to obtain the optical parameters (Γ, µa, µs)

by inverting the absorbed energy density, H, which is first reconstructed from multiwave-

length acoustic time-series pd(xd, t, λ) or time-series acquired by illuminating the target

from different positions pd(xd, t, q(xs, ŝ)) where q(xs) are sources at xs positions. This

one-step reconstruction can be achieved by combining the forward optical and acous-

tic operators, which depend on (Γ, µa, µs) and c, respectively, into one single mapping,

Λ(Γ, µa, µs; c). Ding et al. [108] employ this scheme using a FE model of diffusion for

the light field and a finite difference model of acoustic propagation to reconstruct µa
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and c, assuming Γ and the diffusion coefficient are known. The inversion is achieved

using an optimisation scheme that computes gradients of Λ, ∂Λ
∂µa

and ∂Λ
∂c , using adjoint

diffusion and wave equations and 8 distinct illuminations. A key benefit of this approach

is that optical and acoustic parameters can be reconstructed simultaneously, however

this relies on access to more data through the use of multiple illuminations in order to

overcome any ill-posedness in this inversion. It was also found that run-time for single-

step reconstruction of µa can be slower than the equivalent two-step (acoustic followed

by optical) inversion [109].

2.4.2.7 Bayesian approach

Bayes relation states that given the data, ym, the probability of parameters χn is propor-

tional to the product of the prior distributions and the probability of the measurement

given the parameters, or likelihood function, P (ym|χn) [110]:

P (χn|ym) ∝ P (χn)P (ym|χn). (2.45)

P (χn) is an expression of the prior probability of the parameter set, while P (ym|χn)

represents the likelihood of a measurement ym being obtained given the parameters

χn. Pior knowledge is included in the inversion through P (χn). In the presence of

additive Gaussian-distributed noise, e = ym −F(χn), the likelihood function is given by

Pnoise(y −F(χn)), where F is the forward model. It follows that Pnoise is given by

Pnoise(ym|χn) ∝ exp

(
−1

2
[ym −F(χn)]T Γ−1

e [ym −F(χn)]

)
. (2.46)

which is normally distributed with covariance Γe. Written in this way Eq. (2.46) illus-

trates the flexibility of the Bayesian approach in solving inverse problems corrupted by

additive noise (it is applicable to problems affected by other noise models but this is

not discussed here) because uncertainty on the priors and the likelihood function can

incorporated. The Bayesian formulation of the inversion also allows derivation of the

least-squares approach (Section 2.4.2.5), which can be achieved using the assumption
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that Γe is diagonal and by taking the negative natural log of the expression for Pnoise in

Eq. (2.46) to reveal the error functional in Eq. (2.42).

In the estimation of the optimum parameter set χn, the maximum a posteriori (MAP) is

often sought, i.e. the parameter set which maximises P (ym|χn):

χMAP = arg max
χn

P (ym|χn). (2.47)

This approach has been demonstrated to remove artefacts in parameter estimates intro-

duced by the acoustic inversion [111]. However, the memory and algorithmic demands

of computing Γe can be significant for large datasets [112], meaning statistical inversion

techniques are not always attractive for application in PAT.

In summary, there are two broad classes of inversion: those that neglect the impact of the

fluence or assume it is constant with wavelength, and those that account for the fluence

using some analytic or numerical model. Chapter 3 investigates the validity of the first

class of inversion, while Chapters 5 and 6 consider novel ways of tackling model-based

inversion and examine which optimisation scheme performs best for gradient estimates

made using a MC model of light transport. Both types of inversion approach are not

without their challenges, discussed in Section 2.4.3, and knowledge of these obstacles is

important in maximising the accuracy of these inversion schemes.

2.4.3 Challenges in QPAT

In addition to the fact that the fluence and photoacoustic efficiency are unknown, there

are a number of challenges that stand in the way of obtaining accurate estimates of

chromophore concentrations. These are discussed below.

2.4.3.1 Inaccuracy of fluence models

Even when the fluence is modelled, there is no guarantee that the model used will

accurately model the experimental imaging configuration. The DA, despite benefits in
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terms of ease of implementation and memory demands scaling quadratically with the

number of elements in the domain, it is only accurate in the diffusive regime, a distance

> 1/(µa + µs(1− g)) away from the source, and can only accomodate isotropic sources.

The RTE and Monte Carlo models of the RTE are in theory accurate throughout the

domain, but boundary conditions and source implementations may not always match

those used in practice and the variance in MC estimates of the fluence will be strongly

dependent on the number of photons simulated, domain size and discretisation, as

well as the optical properties inside the domain. These inaccuracies will inevitably

result in uncertainties in parameters reconstructed from the optical inversion using a

deterministic reconstruction algorithm; however, it has been demonstrated [111] that

these uncertainties can be accounted for using a parameter covariance matrix, Γχ. The

estimation of Γχ does not come without its challenges but can at least provide some

estimate of the uncertainty on parameter estimates.

2.4.3.2 Nonuniqueness

The nonuniqueness problem in QPAT refers to the inability to simultaneously accurately

estimate a combination of the Grüneisen parameter, absorption coefficient and/or scat-

tering coefficient due to a lack of data, either from only using a single illumination or a

single wavelength. Strategies to overcome nonuniqueness often rely on obtaining images

using multiple wavelengths or illumination positions. Even using multiple images, each

acquired using a different illumination position, only two of the three quantities above

can be recovered uniquely provided the positions are well-chosen (as demonstrated by

Bal et al. [104]). Aside from multiple illumination positions [107, 113, 114], it is also

possible to overcome the absorption-scattering nonuniqueness by using multiple illumi-

nation patterns [103] or multiple wavelengths over which the scattering coefficient’s

dependence is known [115]; by parameterising the reduced scattering, µ′s = µs(1− g),

as a function of wavelength, µ′s(x, λ) = µs(x)′′λ−b, with µ′′s being the spatial dependence

of the scattering, the optimisation minimises the objective function with respect to the

parameters µ′′s and chromophore concentrations [116].
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Spatial priors can also help overcome the ill-posedness in Γ, µa and µs. Bal et al. [117]

use multiple illuminations and require smooth distributions of the absorption and scatter-

ing coefficients in order for accurate and unique reconstruction. Malone et al. [118] treat

the estimation of the absorption and scattering coefficients as a combined reconstruction-

classification problem. This involves classifying regions in the domain according to an

estimate of their absorption and scattering coefficients, given prior estimates of µa and µ′s

for each class. The algorithm alternates between reconstruction and classification steps

upon each iteration allowing significant improvements on the accuracy of estimates of

the scattering coefficient made using this technique.

One approach to remove the non-uniqueness between absorption, scattering and the

Grüneisen parameter which does not require prior knowledge of their interrelationship

is to exploit the fact that Γ in general does not depend on wavelength and to formulate

a new forward problem requiring inversion [104]:

p0(x, λ1)

p0(x, λ2)
=

Φ(x, λ1; ck, µs, g)
∑K

k=1 αk(λ1)ck(x)

Φ(x, λ2; ck, µs, g)
∑K

k=1 αk(λ2)ck(x)
, (2.48)

such that the Grüneisen parameter cancels. The inversion of Eq. (2.48) for absorption

and scattering would require at least three distinct wavelengths or multiple illumination

positions; in the three-wavelength case a composite error function can be formed which

sums over quadratic errors between differences of ratios of PA images:

ε =
1

2

∣∣∣∣∣∣∣∣pmeas0 (x, λ1)

pmeas0 (x, λ2)
− p0(x, λ1)

p0(x, λ2)

∣∣∣∣∣∣∣∣2 +
1

2

∣∣∣∣∣∣∣∣pmeas0 (x, λ2)

pmeas0 (x, λ3)
− p0(x, λ2)

p0(x, λ3)

∣∣∣∣∣∣∣∣2 . (2.49)

2.4.3.3 Elliptic sensitivity to absorption and scattering

In addition to absorption-scattering non-uniqueness, the initial pressure and therefore

the error functional differ in their sensitivity to perturbations in absorption and scattering

– often by several orders of magnitude. If we consider the error function between a

measured image, pmeas0 , and the absorbed energy density at an estimate of the absorption
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and scattering coefficients, p0(µa, µs),

ε =
1

2
||pmeas0 − p0(µa, µs)||2 , (2.50)

which with Γ = 1 can be written as

ε =
1

2
||pmeas0 − µaΦ(µa, µs)||2 . (2.51)

Derivatives with respect to µa and µs gives

∂ε

∂µa
= −(pmeas0 − µaΦ(µa, µs))

[
Φ(µa, µs)− µa

∂Φ(µa, µs)

∂µa

]
(2.52)

∂ε

∂µs
= −(pmeas0 − µaΦ(µa, µs))

[
−µa

∂Φ(µa, µs)

∂µs

]
. (2.53)

The term inside the square brackets in Eq. (2.52) will in general be much larger than the

term in the square brackets in Eq. (2.53) because Eq. (2.52) contains the large fluence

term. As such, ∂ε
∂µa

will typically be much greater than ∂ε
∂µs

. The consequence of this is

that when absorption and scattering are being estimated simultaneously in an inversion,

convergence in the scattering is slow and inaccurate due to the error surface exhibiting

elliptic sensitivity to µa and µs, with much larger gradients in the absorption axis [98].

There are preconditioning schemes, whereby the error surface is ‘sphered’, in order to

make the gradients along the absorption and scattering axes more similar in magnitude,

but the stronger dependence of the error functional on µa is inherent as the absorbed

energy density depends on the absorption coefficient directly, whereas it only depends

on the scattering coefficient through the fluence.

There has been some investigation into the extent to which the accuracy of the absorption

estimate – which is generally the quantity of interest given that it is often closely linked

with physiology – depends on the accuracy of the scattering estimate. It has been shown

that significant inaccuracies in the estimate of the scattering distribution yields highly
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inaccurate estimates of the absorption coefficient; however, if the mean of the scattering

coefficient is accurately estimated, then the absorption coefficient can be recovered

accurately as well [98].

2.4.3.4 Large scale

The inverse problem in PAT is referred to as being ‘large scale’ due to the number

of unknowns. PAT images are high resolution, volumetric datasets that can be cubic

centimeters in size with resolution in the tens to hundreds of microns; this leads to

images with several million voxels. The optimisation approaches described in Section

2.4 require gradient information, which can either be a functional gradient or an image

Jacobian. Functional gradients contain the same number of elements as the domain,

while the (full) image Jacobian can contain the number of elements in the domain

squared (in practice, prior classification of the image into different regions can reduce

the number of unknowns). While the former may only require MB of computational

memory for typical high resolution PAT images, the latter can require well into the

TB range of memory to store for the same size/resolution image. As such, memory

limitations play a crucial role in selecting suitable optimisation algorithms for use in the

optical inversion (discussed in Chapter 4). It is worth noting that this problem is inherent

to QPAT as the objective is to image structures, which may have differing chromophore

concentrations, at very high resolution, which in turn results in a large scale inverse

problem when estimating these concentrations.



Chapter 3

Estimating blood oxygen saturation

from multiwavelength

photoacoustic images

Blood has a fundamental role in the body, key of which is transporting oxygen toward

tissues where the partial pressure of oxygen is low and carbon dioxide along the op-

posite gradient. As such, blood oxygen saturation, also termed blood oxygenation or

sO2 , is a key indicator of tissue function and pathology and is defined as the ratio of

oxygenated haemoglobin concentration to total haemoglobin concentration (i.e. the sum

of oxygenated and deoxygenated haemoglobin concentrations). The ability to measure

blood oxygenation is therefore of significant interest in clinical and pre-clinical settings

because it has potential usefulness in characterising and staging cancers [119, 120], as

well as monitoring brain activation [121–123].

Measuring blood oxygenation noninvasively is nontrivial; a century ago oxygen partial

pressure could be measured invasively via catheterisation of a blood vessel and using

gas extraction [124]. Contemporary noninvasive methods such as BOLD-MRI (Blood

Oxygenation Level Dependent Magnetic Resonance Imaging) [125] and optical methods

such as diffuse optical tomography (DOT) suffer from significant limitations; as well

as having limited spatial resolution, the BOLD signal is sensitive to changes in both

65
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blood volume and/or venous deoxy-haemoglobin concentration [126] and therefore

cannot measure oxygenation directly, while purely optical methods like DOT [127],

NIRS [128] and pulse-oximetry [129] can measure oxygenation accurately but have

limited penetration depth and resolution due to the high degree of optical scattering in

tissue.
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F I G U R E 3 . 1 : Absorption spectrum of blood (150gl-1 total haemoglobin concentration)
for oxygenation levels between 10% and 100% as a function of wavelength between

500-1000nm.

Fig. 3.1 shows the dependence of the absorption coefficient of blood (150gl-1 total

haemoglobin concentration) on oxygenation level as a function of wavelength between

500-1000nm. The sensitivity of PAI to changes in oxygenation through changes in the

absorption coefficient means that it is in principle possible to recover sO2 from PA mea-

surements made at one or more wavelengths. This can be achieved via arterial blood

sampling for calibration of photoacoustic signals in the single wavelength case [130],

however this method is not readily extendable to in vivo applications. Calibration-free

methods are desirable as they do not require prior knowledge of the true oxygenation

against which the PA measurement must be calibrated. Such approaches require ad-

ditional information, which can for instance be a measurement at another wavelength

or oxygenation level because this helps remove system-dependent (and wavelength-

independent) parameters and is sometimes assumed to remove the impact of the fluence,

which in general depends on wavelength.
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Approaches to remove system-dependent and fluence effects have been attempted by

assuming that the internal fluence distribution does not change with oxygenation in a ves-

sel of interest [131] or that the fluence is simply independent of wavelength [20, 87–92].

These assumptions require in-depth evaluation as they are unlikely to apply in general

and the circumstances in which they do apply are of interest, given the challenges asso-

ciated with modelling the fluence, as described in Chapter 2 and in subsequent chapters

of this thesis. This chapter primarily investigates the spectroscopic case, i.e. the latter of

the two above assumptions, through a series of simulations. Two numerical phantoms

are considered: a homogeneous absorbing-scattering medium in which a blood-filled

tube is submerged as well as a highly vascularised block of tissue. Section 3.0.4 describes

the relationship between the photoacoustic image and the fluence, and how oxygen satu-

ration can be estimated from multiwavelength photoacoustic images. The model of light

transport used to simulate the PA images is then provided. It is first demonstrated that

using several wavelengths across the 500-1000nm range yields inaccurate sO2 estimates,

while using pairs of wavelengths in this range can significantly improve the accuracy

of oxygenation estimates; it is observed that the choice of wavelengths depends on the

oxygenation of the blood in the tube. These observations are largely consistent with

those made regarding the tissue phantom simulations considered in Section 3.2.

3.0.1 Estimating blood oxygenation from photoacoustic images

In Chapter 1, the photoacoustic forward model for a single voxel and N wavelengths and

M chromophores was presented. We can re-write this equation under the assumption

that the only chromophores present at the given position that are optically absorbing at

wavelengths λ1...λN are oxy- and deoxy-haemoglobin:


p0(λ1)

...

p0(λN )

 = κ


Φ(λ1) . . . 0

...
. . .

...

0 . . . Φ(λN )



αHbO2(λ1) αHb(λ1)

...
...

αHbO2(λN ) αHb(λN )


cHbO2

cHb

 . (3.1)
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where κ represents a detection system calibration factor and the photoacoustic efficiency,

and cHbO2 and cHb are the concentrations of oxy- and de-oxyhemoglobin respectively.

cHbO2 and cHb can be estimated from the photoacoustic amplitudes by inverting Eq. (3.1)

with the full inversion given by

cHbO2

cHb

 =
1

κ


αHbO2(λ1) αHb(λ1)

...
...

αHbO2(λN ) αHb(λN )


† 

1/Φ(λ1) . . . 0
...

. . .
...

0 . . . 1/Φ(λN )



p0(λ1)

...

p0(λN )

 ,(3.2)

where † is used to indicate the pseudoinverse. In a ‘linear inversion’, the fluence matrix

is treated as being proportional to the identity matrix, i.e. constant, Φ ∝ I. Thus, the

linear inversion is given by

cHbO2

cHb

 ∝

αHbO2(λ1) αHb(λ1)

...
...

αHbO2(λN ) αHb(λN )


† 

p0(λ1)
...

p0(λN )

 , (3.3)

and demonstrates that this inversion exlicitly assumes proportionality of the PA amplitude

to the absorption coefficient.

As oxygenation is defined as a ratio,

sO2 =
cHbO2

cHbO2 + cHb
, (3.4)

the photoacoustic efficiency and system-dependent parameters, i.e. the constants of

proportionality, cancel out in Eq. (3.4), as they are independent of wavelength, and this

assumption allows the fluence also to cancel. It is this assumption, that Φ(λ) = constant,

that is investigated in this chapter.

Another assumption requiring consideration given its prevalence in the literature [11, 93–

96], is that the fluence can be approximated by a 1D or Beer-Lambert type correction
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factor. Solutions for the fluence in homogeneous slab geometry, illuminated at its centre

in the z-direction and integrated along the x- and y- directions, follow an exponential

relationship as the loss in fluence per incremental length dz is proportional to the light

fluence at that position:

dΦ(z)

dz
∝ −Φ(z), (3.5)

with Φ(z) =
∫ ∫

Φdxdy which can be re-expressed as an equality with a constant of

proportionality µ,

dΦ(z)

dz
= −µΦ(z). (3.6)

Solutions for Φ(z) of this first-order ODE are exponential in form:

Φ(z) = Φ(z = 0) exp(−µz). (3.7)

The value of µ depends on the optical properties of the slab; under the diffusion approx-

imation, i.e. far from the slab surface at z = 0 and in a high albedo medium (µs � µa),

µ is a function of the absorption coefficient, µa, the scattering coefficient, µs, and the

anisotropy factor, g; for a purely absorbing medium, µ = µa. In a real imaging sce-

nario the optical properties are heterogeneous, so slab geometry does not apply, and

are unknown; nevertheless, photoacoustic images obtained using one-sided illumina-

tion exhibit decreasing intensity with increasing depth, due to wavelength-dependent

absorption and scattering of light in the tissue. Thus, we can attempt to compensate

for the wavelength-dependent depth-dependence of the fluence using a 1D exponential

model given in Eq. (3.7). As we do not have prior knowledge of the value of µ we can

extract it by fitting a straight line to the log of the initial acoustic pressure integrated

over the x- and y- directions as a function of depth z, with µfit as the decay coefficient:
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Φ(λ) = exp(−µfit(λ)z). The accuracy of this model when used in forming sO2 estimates

is the second assumption investigated in this chapter.

The objective of this chapter is to evaluate the impact of the unknown fluence on the

accuracy of a linear inversion and to identify situations in which spectral colouring, i.e.

the variation of the fluence’s spectrum with absorption, is minimised. It is important to

note that throughout this chapter it was assumed that κ = 1, which comes at no loss

of generality as it cancels in Eq. (3.4) because the focus is to determine the effect the

fluence’s wavelength-dependence has on the accuracy of oxygenation estimates. For the

same reason, it was assumed that the initial acoustic pressure was reconstructed perfectly

from boundary acoustic measurements, without any artefacts from, for instance, limited

sensor aperture or bandlimited detection of acoustic frequencies. If an inversion is not

accurate under these ideal circumstances, it is unlikely to perform more accurately with

bandlimited or partial data.

3.1 Modelling Light Transport in Tissue: Monte Carlo Simula-

tions

Light can be modelled in tissue using a variety of techniques. We require a model that is

accurate for heterogeneous, anisotropic turbid media. Finite element implementations

of the RTE satisfy these conditions, but due to significant computational demands of

spatial and angular discretisation, this method becomes intractable for this study, while

the diffusion approximation is not sufficiently accurate in the near-field. Monte Carlo

models (discussed in more depth in Chapter 4) have relatively modest memory require-

ments which scale linearly with the number of voxels in the grid. Simulations involve

propagating ‘photon packets’ or ‘energy packets’ along random walks, depositing ‘weight’

as a function of of the absorption coefficient. ‘Photon packets’ in the simulation are

non-interacting meaning that each packet (hereinafter referred to as ‘photon’) can be

simulated independently, which can be efficiently run using parallel computing architec-

tures such as GPGPUs. The code used here was MCX[132], which has been validated
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extensively and is GPU-accelerated, offering relatively short computation times even for

the large number of photons required for convergence.

Monte Carlo models are stochastic in nature so, despite them being considered the ‘gold

standard’ [133] model of light transport, it must be appreciated that the fluence in each

voxel will exhibit some variance, and convergence to a solution of the RTE requires the

number of photons simulated to tend to infinity; as this is practically impossible, we can

require that the variance in a given voxel (the ‘MC noise’) falls below some threshold.

In this particular study, this threshold must be low enough to ensure that oxygenation

estimates made using initial pressure distributions obtained using MC exhibit a negligible

level of variance due to uncertainties in fluence estimates (i.e. the variance in the sO2

estimates due to MC noise falls below the precision with which we are trying to estimate

oxygenation).

For a two-wavelength inversion (Eq. (3.2) with M = 2), the standard deviation in

oxygenation in a particular voxel, σsO2 , can be estimated from the standard deviation in

the initial acoustic pressure simulated for that voxel, σp0(λi), by assuming that the initial

pressure at the two wavelengths, p0(λ1) and p0(λ2), are uncorrelated [134] and using

the standard formula

σsO2 = sO2

√(
∂sO2

∂p0(λ1)

)2

(σp0(λ1))2 +

(
∂sO2

∂p0(λ2)

)2

(σp0(λ2))2, (3.8)

where the partial derivatives of sO2 with respect to initial pressure can be computed from

Equations (3.3) and (3.4). The standard deviation σp0(λi) was estimated from multiple

simulations in the same domain with the same number of photons, taking care to re-seed

the random number generator to ensure different photon trajectories from simulation to

simulation. Running the simulation multiple times at a pair of wavelengths allowed σsO2

to be calculated. As this quantity is domain-dependent, this parameter was calculated in

each phantom examined in this chapter and this is addressed in the relevant sections.
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3.1.1 Digital phantom

The first phantom used to examine the assumptions outlined in Section 3.0.4 was com-

posed of a cubic domain 5mm×5mm×5mm in size – of a similar order to in vivo studies

from literature [135] – with isotropic voxel size of 25µm (similar scale to what can be

achieved in PAT) and index-matched, non-scattering boundaries. The illumination was

a collimated beam of light, 5mm diameter (top-hat profile), which is representative of

illumination from a fibre tip in real-life experiments. The convergence analysis described

in Section 3.1 was performed by running the MC model at 500nm and 800nm (chosen

due to the significant difference in the absorption of blood at these wavelengths). The

maximum relative uncertainty (coefficient of variation) in the fluence between the two

wavelengths and all 10 model runs was 0.16% which, propagating to the absolute un-

certainty in sO2 in the tube using Eq. (3.8), gives a maximum σsO2 value in the tube

of 0.34%, indicating that uncertainties in sO2 estimates due to MC noise are negligible.

Note that this was corroborated by directly computing the standard deviation in the sO2

estimates themselves.

A blood-filled tube, 250µm in diameter, was embedded in the domain at a depth of 1mm,

parallel to the y-direction. The blood within the tube had total haemoglobin concentra-

tion, cHbT , of 150gl-1 and oxygen saturation of 90% (cHbO2 = 135gl-1 and cHb = 15gl-1).

The scattering coefficient in the tube followed the relationship 21.3mm-1
(

λ
500nm

)−1.2
.

The arrangement is shown in Figure 3.2.

In the first instance, in order to carefully assess the impact of spectral colouring on

sO2 estimates made in the blood-filled tube, two seperate cases were considered: one

where the background had no spectral dependence, and one where the background

was composed of 55% water and 45% blood with a total haemoglobin concentration,

cbgHbT , of 5.63gl-1 and 60.7% oxygenation (cHbO2 = 3.42gl-1 and cHb = 2.11gl-1) and was

used to represent the capillary bed. The wavelength-dependent scattering coefficient of

the background was the same as that of the tube. (The optical properties of the back-

ground were chosen in order to be consistent with simulations later in this paper). The

Henyey-Greenstein phase function was used throughout this paper, with the background
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F I G U R E 3 . 2 : Schematic of 5mm×5mm×5mm domain with blood vessel and colli-
mated wide-field illumination.

anisotropy factor consistently set at g = 0.9 and that of blood being 0.9945. All of the

above optical properties are consistent with values quoted in literature [9].

Figure 3.3 shows examples of the initial acoustic pressure and fluence distributions

at 580nm and 600nm with a spectrally-dependent background. Both are maximum

intensity projections (MIP) in the y-direction, and are normalised by the maximum value

of acoustic pressure or fluence, respectively.
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F I G U R E 3 . 3 : Top row: MIP of initial acoustic pressure in tube phantom with spectrally-
dependent background illuminated with top hat profile at 580nm and 600nm, nor-
malised by maximum acoustic pressure value. Bottom row: MIP of fluence in tube phan-
tom with spectrally-dependent background illuminated with top hat profile at 580nm

and 600nm, normalised by maximum fluence value.

The key observation that can be made regarding Fig. 3.3 is that despite the fact that

absorption coefficient in the tube is homogeneous, the initial acoustic pressure across

the tubes is heterogeneous due to the heterogeneity of the fluence. In addition, the

fluence distribution is different at each wavelength, meaning oxygen saturation cannot

be estimated accurately without knowledge of the fluence. This is demonstrated in the

subsequent sections.

3.1.2 Estimates using 26 wavelengths over the 500-1000nm range

The domain was illuminated at wavelengths in the 500nm to 1000nm range at 20nm

intervals and sO2 was computed according to Eqs. (3.3) and (3.4), assuming Φ−1 = I,

the identity matrix, using all wavelengths at each voxel. Defining the absolute error in

oxygenation as |sOtrue
2 − sO2| (a definition used consistently throughout this thesis), this
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quantity is shown as a MIP in the x-z plane half way along the y-axis of the domain

in Fig. 3.4 and histograms showing the oxygenation estimate at various depths, for

both the spectrally-independent and spectrally-dependent backgrounds. The histograms

represent the distribution of sO2 estimates in voxels contained in x-y slices through the

tube at four depths (a, b, c, d), where each x-y slice is orthogonal to the x-z slice shown

on the left sOmean
2 (i) (i=[a,b,c,d]) represent the mean of the sO2 estimates of the voxels

contained within the tube for each x-y slice. The global mean of sO2, shown on the right-

hand side of Figure 3.4 represents the mean of the sO2 estimates in all voxels enclosed

within the entire tube.
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F I G U R E 3 . 4 : Oxygenation estimates made in 250µm tube using 26 equally spaced
wavelengths in 500-1000nm range. Top row: x-z slice of error in oxygenation mid
way along tube’s length when the background is spectrally-independent and the error
originates from spectral colouring of the fluence in the blood-filled tube. Dashed lines
used to indicate four x-y slices (a-d) from which histograms of sO2 are formed (true
value of 90% indicated by black line). Bottom row: x-z slice of error in oxygenation mid
way along tube’s length when the background properties vary with wavelength. Dashed
lines used to indicate four x-y slices (a-d) from which histograms of sO2 are formed
(true value of 90% indicated by vertical black line). sOmean

2 (a), sOmean
2 (b), sOmean

2 (c)
and sOmean

2 (d) represent the mean of the sO2 estimates of the voxels contained within
the tube in slices a, b, c and d, respectively. The global mean sO2 estimate averaged
over all voxels enclosed within the entire tube is shown to the right of the histograms.
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It can be seen from the x-z slices in the error in sO2 is minimised near the tube surface,

near the surface where the illumination was applied. The minimum error, obtained at the

most central region in the tube in the x-y plane of slice ‘a’, for the spectrally-independent

background was about 6% and increased to almost 27% with a spectrally-dependent

background. With increasing depth the minimum error increased to 27% and 59% for

the spectrally-independent and spectrally-dependent backgrounds, respectively. The

significant errors in the oxygenation estimates is the result of spectral colouring which

describes the nonlinear, wavelength-dependent relationship between p0(λ) and µa(λ);

this nonlinearity is highlighted in Fig. 3.5, where the initial acoustic pressure (normalised

by its maximum value) is plotted against the normalised absorption coefficient.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

µ
a
 in tube [mm−1]N

or
m

al
is

ed
 m

ea
n 

p 0(λ
) 

in
 tu

be
 [a

u]

 

 

Spectrally−independent b/g

Spectrally−dependent b/g

Fit to linear regime

F I G U R E 3 . 5 : Plot of average initial acoustic pressure in 250µm tube as a function of
absorption coefficient in tube. Fluence simulated using Monte Carlo with 1012 photons,
collimated, illuminated 2.5mm in diameter at wavelengths in 500-1000nm range. Black

line fit to linear region of acoustic pressure vs µa.

As the background contained blood, this would in part have been responsible for spectral

colouring of the fluence. For this reason, the poor level of accuracy in estimates made in

the when the background was spectrally-independent may be somewhat surprising; how-

ever, the back-scattered light from within the tube was coloured as it travelled through

the tube, which was spectrally-dependent. This effect was also present in the phantom

where the background was spectrally-dependent, but the effect of spectral colouring is

much more severe here, resulting in significantly more inaccurate oxygenation estimates

in the tube.

It can be seen in Fig. 3.4 that there was a tendency to underestimate oxygenation

relative to the true value of 90%. This effect arises due to weighting of the inversion
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by the fluence at wavelengths where it undergoes large changes, e.g. between 500nm

and 600nm. This is illustrated in Fig. 3.6 which shows the spectrum of the absorption

coefficient and the fluence averaged over the volume of the tube. As one might expect,

large variations in fluence are correlated with significant changes in absorption; when

wavelengths in the 500-600nm range were omitted and the inversion was computed

using the data at the remaining 20 wavelengths (>600nm), sO2 was overestimated

relative to 90%.
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F I G U R E 3 . 6 : Plot of absorption spectrum in tube (blue) for 90% oxygenated blood
and average fluence spectrum (green) in tube. Fluence simulated using Monte Carlo
with 1012 photons, collimated, illuminated 2.5mm in diameter at wavelengths in 500-

1000nm range and averaged over tube volume.

In order to determine whether oxygenation estimates converge to the true value when

spectral colouring of the fluence is reduced through the application of the fluence cor-

rection, the initial acoustic pressure at each wavelength was averaged in the x- and y-

dimensions and a straight line was fit to the log of the image as a function of z to com-

pute µfit(λ). Each voxel in p0(λ) was then divided by the exponential model of Eq. (3.7)

and the linear inversion was performed as described above. The resulting estimates are

displayed in Figure 3.7.
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F I G U R E 3 . 7 : Oxygenation estimates made in 250µm tube using 26 wavelengths
in 500-1000nm range, with initial pressure distributions corrected by 1D expoential
fluence correction. x-z slice of error in oxygenation for fluence-corrected initial pressure
distirbutions in spectrally-dependent background. Dashed lines used to indicate four
x-z slices (a-d) from which histograms of sO2 are formed (true value of 90% indicated
by vertical black line). sOmean

2 (a), sOmean
2 (b), sOmean

2 (c) and sOmean
2 (d) represent the

mean of the sO2 estimates of the voxels contained within the tube in slices a,b,c and
d respectively. The global mean sO2 estimate averaged over all voxels enclosed within

the entire tube is shown to the right of the histogram.

Figs. 3.7 and 3.4 demonstrate that the fluence correction improves oxygenation esti-

mates made in the tube immersed in the spectrally-dependent background by between

20% and 30%. Despite these improvements, the error remains significant, at 7% at

shallow regions in the tissue and up to 30% in deeper regions of the tube. It is tradition-

ally believed that using wavelengths across a wide band of the NIR-visible yields more

accurate oxygenation estimates [136], possibly applying the thinking that a better fit is

obtained when fitting to more data. This may not be applicable to a linear inversion in

QPAT and, in fact, the inclusion of data obtained at wavelengths where the absorption

coefficient of blood is high (λ < 620nm) may reduce the accuracy of the inversion be-

cause spectral colouring is more marked at these wavelengths [137]. The validity of this

assertion is examined in the next section.
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3.1.3 Determining optimal wavelengths in the 500-1000nm range

It was shown in the previous section that a linear inversion using many wavelengths

across the 500-1000nm range yielded inaccurate oxygenation estimates in a tube im-

mersed in an absorbing-scattering background when the background was spectrally-

independent as well as when it was spectrally-dependent. This was found to be due to

spectral colouring of the fluence, whereby the fluence’s spectrum is coloured as it passes

through the medium which has wavelength-dependent absorption and scattering. Given

a small change in the absorption coefficient, δµa, the resulting change in fluence and

therefore initial acoustic pressure can be written as,

δp0 = κ [δµaΦ + µaδΦ + δµaδΦ] , (3.9)

where µa = µa(λ1), Φ = Φ(λ1) and κ is a factor that takes into account the Grüneisen

coefficient and the detection sensitivity of the system (which cancels out in Eq. (3.4)).

Dividing through by p0 yields,

δp0

p0
=
δµa
µa

+
δΦ

Φ
+
δµa
µa

δΦ

Φ
. (3.10)

Using the notation, δ̂x to denote δx
x , we require

∣∣∣ δ̂Φˆδµa ∣∣∣� 1 and ˆδµaδ̂Φ to be negligible in

order for Equation (3.10) to show

ˆδp0 ≈ ˆδµa, (3.11)

i.e. when the dependence of the fluence on the absorption coefficient is minimised, the

change in the initial pressure approaches that of the absorption coefficient. This means

for the relative change in acoustic pressure to be predominantly due to a change in the
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absorption coefficient, the relative change in the absorption coefficient must far exceed

the relative change in the fluence, which may only be true for particular wavelength

pairs.

A linear inversion was performed for all pairs of the 26 wavelengths in the 500-1000nm

range and considering the sO2 estimates for which
∣∣∣ δ̂Φˆδµa ∣∣∣ is minimised. sO2 was cal-

culated for each pair of the 26 wavelengths, giving 26C2 = 325 sets of oxygenation

estimates; with the estimates for each pair of wavelengths averaged over the tube

volume, the most accurate were those obtained at wavelengths between 620nm and

1000nm, for both the spectrally-independent and spectrally-dependent backgrounds; for

the spectrally-dependent case, the 1D fluence correction, discussed in Section 3.0.4, was

applied to the initial pressure distribution. Figure 3.8 shows histograms of sO2 estimates

in each voxel in the tube, obtained using a pair of wavelengths for the two background

types and for estimates made with the 1D fluence correction, when
∣∣∣δ̂Φ∣∣∣ ≤ 0.01

∣∣∣ ˆδµa

∣∣∣ and

when
∣∣∣δ̂Φ∣∣∣ > 0.01

∣∣∣ ˆδµa

∣∣∣. Note that the wavelengths chosen (620/920nm and 700/820nm,

respectively) yielded the most accurate sO2 estimates on average over the tube in each

case.

It can be seen in Fig. 3.8(a) that sO2 is accurately estimated (to within 0.5%) when

the background is spectrally-independent, and that estimates made under the condition

that the relative change in the absorption coefficient far exceeds that of the fluence

(in red) are more accurate. The red band of the most accurate oxygenation estimates

in Fig. 3.8(a) is composed of the most superficial voxels in the tube, at the centre of

the illumination in the x- and y- directions. For the spectrally-dependent background

in Fig. 3.8(b), it can be seen that oxygenation estimates are less accurate with 1-2%

errors relative to the true value of 90% and the variance of estimates is much higher.

Applying the threshold δ̂Φ
ˆδµa

< 0.01, no voxels satisfy this relationship due to spectral

colouring; however, the application of the fluence correction shifts the oxygenation

estimates toward the true value in Fig. 3.8(c), with the red bars in the histogram

representing the values which satisfy the above inequality.
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F I G U R E 3 . 8 : Histograms of sO2 estimates in each voxel within the tube for (a)
spectrally-independent (SI) with mean sO2 of 90.3%, (b) spectrally-dependent (SD)
background with mean sO2 of 91.6%, and (c) spectrally-dependent with 1D fluence cor-
rection (SD background corrected, see Section 3.0.4) with mean sO2 of 88.8% obtained
using linear inversion at 620/920nm, 700/820nm, 700/820nm, respectively; sO2 esti-
mates for which δ̂Φ

ˆδµa
< 0.01 shown in red and δ̂Φ

ˆδµa
≥ 0.01 in black. Notes: vertical line

indicates true oxygenation of 90%; there are no sO2 estimates for which δ̂Φ
ˆδµa

< 0.01

for SD background (uncorrected) due to severity of spectral colouring of fluence; note
the scale change on vertical axis between SI background to SD background. These
wavelength pairs yielded the most accurate sO2 estimates of all pairs examined. sOmean

2

represents the mean of the sO2 estimates all voxels enclosed within the entire tube and
is termed the global mean sO2.

The above result is in line with the prediction that the accuracy of oxygenation estimates

can be improved by ensuring the change in fluence is small compared to the change

in absorption. In practice this is not a useful guide as δ̂Φ
ˆδµa

is unknown (and therefore

cannot be used directly as an indicator of the accuracy of the sO2 estimate). A more

useful result, and one that could be more applicable in general, would be to find which

– if any – wavelengths pairs are best-suited to recovering sO2. Fig. 3.9 shows the error

in oxygenation, averaged over the tube, obtained at wavelengths λ1 and λ2 when the

background was spectrally-dependent. Four different values of oxygenation in the tube,

sOtube
2 , were considered: 70%, 80%, 90% and 100%. In each plot, the bottom-left

triangle in the matrix shows values obtained without the 1D fluence correction, while

the top-right triangle contains values obtained from data using this correction.
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F I G U R E 3 . 9 : Matrix of average error in oxygenation for 26 wavelength pair combina-
tions in 500-1000nm range for different values of oxygenation in the tube, sOtube

2 . In
each figure, the bottom-left triangle represents sO2 estimates made with a spectrally-
dependent background and the top-right triangle represent sO2 estimates made with
a spectrally-dependent background using a 1D fluence correction. The white pixels

represents estimates with an error >100%.

A number of observations can be made regarding Figure 3.9. Comparing the bottom left-

and top right-hand triangles, it can be observed that if wavelengths between 600nm and

1000nm are chosen, the fluence correction has little impact on the accuracy of results. On

the other hand, the effect of the correction is significant when one wavelength lies in the

500-580nm range where spectral colouring is more severe. The practical implication of

this is that the spectral colouring may yield more accurate sO2 estimates in applications

where high SNR is required.
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With or without the fluence correction, the most accurate oxygenation estimates are

obtained in the 620-1000nm range, regardless of the sO2 value in the tube. However,

few wavelength pairs in this range yielded a reasonable degree of accuracy (≤10% error)

and those that did in the case where sOtube
2 = 100%, produced lower accuracy estimates

when sOtube
2 = 70%. This is due to blood absorption, and its wavelength dependence,

at wavelengths below the isobestic point at 800mn increasing with decreasing sO2. As

such, the number of wavelength pairs yielding reasonable accuracy also decreases with

decreasing sOtube
2 .

Based on these findings, it is of interest whether the use of more than two wavelengths in

the 620-920nm range affords more accurate oxygenation estimates, as it is in this range

that the absorption coefficient undergoes minor changes, meaning the corresponding

change in fluence is also likely to be small (see Fig. 3.6). Oxygenation was computed

in each voxel for every possible combination of 2 to 26 wavelengths and then averaged

over the tube volume, giving on the order of 67 million (
∑26

r=2
26Cr=6.71×107) unique

estimates. The majority of the most accurate estimates were obtained using combinations

of wavelengths in the 620-1000nm range. Nevertheless, it is not possible to determine

optimal wavelength sets without prior knowledge of the internal fluence distributions

and the true oxygenation. Thus, wavelengths between 620nm and 1000nm are most

likely to provide accurate oxygenation values. This rule-of-thumb depends on a number

of factors such as tissue geometry and composition and will vary from one imaging target

to another, as well as depending on the oxygenation state of the target (discussed in

more detail in Section 3.1.4). Moreover, it was only possible to obtain this rule-of-thumb

using explicit knowledge of internal fluence distributions.

3.1.4 Dependence of accuracy of sO2 estimates on background oxygena-

tion

Given the sensitivity of sO2 estimates made in the tube to the tube oxygenation, it is

of interest to determine how strong the dependence of the accuracy of estimates on

the background oxygenation, sObg
2 , is. A separate set of experiments was conducted to

examine how physiologically realistic changes in background oxygenation, ranging from
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60% to 90%, affect the accuracy of oxygenation estimates with sOtube
2 = 90%. Due to the

extended computation times of running the MC model for 26 illumination wavelengths

and 4 values of sObg
2 , Toast++ [138], an open-source FE model of the DA was used

instead. The domain was again 5mm×5mm×5mm in size but was composed of mesh

elements with edge lengths of approximately 0.056mm, rather than 0.025mm, due to

the significant memory demands of dense meshes in FE simulations. The simulations

used top-hat square illumination on the top surface of the domain (rather than top-hat

circular illumination in the MC simulations) and the boundaries were index-matched

as above. The fluence correction was applied in a similar manner as before (i.e. by

fitting to the log of the image averaged over the x- and y-directions to obtain a decay

coefficient, µfit), with the data being interpolated to a regular 3D grid with 100µm voxel

edge length.



Chapter 3 : Estimating blood oxygen saturation from multiwavelength photoacoustic
images 85

λ
1
 [nm]

λ 2 [n
m

]
sO

2
bg=60%

520 560 600 640 680 720 760 800 840 880 920 960 1000

520 

560 

600 

640 

680 

720 

760 

800 

840 

880 

920 

960 

1000

λ
1
 [nm]

λ 2 [n
m

]

sO
2
bg=70%

520 560 600 640 680 720 760 800 840 880 920 960 1000

520 

560 

600 

640 

680 

720 

760 

800 

840 

880 

920 

960 

1000

λ
1
 [nm]

λ 2 [n
m

]

sO
2
bg=80%

520 560 600 640 680 720 760 800 840 880 920 960 1000

520 

560 

600 

640 

680 

720 

760 

800 

840 

880 

920 

960 

1000

λ
1
 [nm]

λ 2 [n
m

]
sO

2
bg=90%

 

 

520 560 600 640 680 720 760 800 840 880 920 960 1000

520 

560 

600 

640 

680 

720 

760 

800 

840 

880 

920 

960 

1000

er
ro

r 
in

 s
O

2 2 %

0

10

20

30

40

50

60

70

80

90

100

with 1D fluence correction

w/o 1D fluence 
correction

F I G U R E 3 . 1 0 : Matrix of average error in oxygenation for 26 wavelength pair com-
binations in 500-1000nm range for different values of oxygenation in the background,
sObg

2 . In each figure, the bottom-left triangle represents sO2 estimates made with a
spectrally-dependent background and the top-right triangle represent sO2 estimates
made with a spectrally-dependent background using a 1D fluence correction. The white

pixels represent estimates with an error >100%.

Comparing Fig. 3.10 with Fig. 3.9, there are only minor discrepancies in the distribution

of the error in sO2 estimates. The most significant differences occur at the shorter wave-

lengths (500-600nm), which is most likely due to the fact that the albedo throughout

the domain is much smaller at these wavelengths, thus resulting in modelling error of

the DA relative to MC. In the dark regions between 600nm and 1000nm, the error

estimates in Fig. 3.10 are within ∼3% of those in Fig. 3.9 obtained using the MC model.

Looking at the variation in accuracy in this region with changing sObg
2 , there is very little

variation overall. The most notable change is a reduction in accuracy at wavelengths
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straddling 800nm, the isosbestic point of blood, with increasing sObg
2 . This is likely to be

due to the difference in absorption coefficient at wavelengths surrounding the isosbestic

point increasing with increasing sObg
2 (see Fig. 3.1), resulting in a greater degree of

spectral colouring. The reason for the relatively weak dependence of the the accuracy

of sO2 estimates made in the tube to the background oxygenation value is likely to be

due to the absorption coefficient in the background being 12-15× smaller than in the

tube, meaning a large proportion of spectral colouring in these simulations occurs in the

tube, rather than outside it. This is consistent with observations made when comparing

the accuracy of inversions with and without spectral dependence of the background in

Section 3.1.2.

3.1.5 Pessimal wavelengths

Thus far, the wavelength pairs that appear to be optimal in terms of accurately estimat-

ing sO2 are those in the 600-1000nm range and the optimal wavelengths are largely

independent of sObg
2 and sOtube

2 , though more accurate estimates are generally obtained

at these wavelengths when sOtube
2 is nearer 100%. Nevertheless, from Figs. 3.9 and

3.10 it is clear that there are certain wavelength pairs that are far from optimal; these

are represented by the white regions in Figs. 3.9 and 3.10 below 600nm and between

approximately 800-920nm. The former is, for the most part, the result of severe spectral

colouring at the short wavelengths as already described in this chapter. The latter occurs

in a region of the spectrum where spectral colouring is minimal due to low absorption

and a relatively flat spectrum of blood; the poor accuracy in the estimates made in this

small region is due to the lack of linear independence of the spectra of oxy- and deoxy-

haemoglobin, which means that α, the matrix of molar absorption coefficients (see Eq.

(3.3)), is ill-conditioned for those wavelength pairs. This is confirmed by considering a

plot of the log10 of the condition number of α as a function of the two wavelength pairs

as shown in Fig. 3.11.
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F I G U R E 3 . 1 1 : Matrix of log10 of condition number on α for wavelength pairs in
500-1000nm range.

Novel wavelength selection techniques that exploit independence of the spectra in the

target have been proposed [95, 139]. As observed above, the condition number on α

must be kept sufficiently low to prevent the inversion becoming ill-conditioned and blow-

ing up any noise in the data, otherwise oxygenation estimates can have errors >100%.

Nevertheless, the studies by Luke et al. ignore the impact of spectral colouring which

can result in equivalently large errors in sO2 estimates, evidenced by the white regions

between 500nm and 680nm in Fig. 3.9 which correspond to relatively low condition

numbers of 6-50, as shown in Fig. 3.11. The above analysis has demonstrated that

optimal wavelengths for imaging a blood-filled tube are those between 600-1000nm,

which avoid regions of the spectrum where spectral colouring is greatest; however, re-

gions of the spectrum where αHbO2 and αHb change little with wavelength must also

be avoided. These conclusions were reached with the PA image data being completely

noise-free. With this in mind, the presence of noise may have significant implications on

the accuracy of sO2 estimates made using the guidelines above, given that the absorption
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coefficient of blood is much lower in the 600-1000nm range compared with those in the

500-600nm range. The effects of noise are explored below.

3.1.6 Trade-off between Signal-to-Noise and accurate sO2 estimation

It was found earlier in this chapter that oxygenation estimates made using a linear in-

version will be most accurate when spectral colouring is minimised, which is equivalent

to stating that the relative change in the absorption coefficient must far exceed the

corresponding change in fluence, or that the relative change in PA amplitude must be

predominantly due to a relative change in absorption (δ̂p ≈ ˆδµa). This relationship poses

the significant issue that if the change in PA amplitude falls below the noise floor, the

inversion will become inaccurate or ill-posed. This is likely to be the case when using

wavelengths above 620nm, where blood absorption is two orders of magnitude smaller

than in the 500-600nm range, meaning we are faced with a choice: using shorter wave-

lengths affords sufficient SNR at the expense of a greater degree of spectral colouring

of the fluence, or SNR is sacrificed in favour of accuracy in oxygenation estimates. This

trade-off is made evident by considering that we require that the change in the initial

pressure, as a result of a change in oxygenation state or illumination wavelength, ex-

ceeds the noise equivalent pressure of the detection system, η: |δp0| > η. Substituting

Equation (3.11),

|δµa| >
√

2
η

ΓΦ
. (3.12)

η, the noise equivalent pressure of the detection system can be measured, while the

Grüneisen parameter is in this case assumed to be unity and Φ is in general unknown.

Note that the
√

2 factor on the right-hand side of Equation (3.12) is obtained by assuming

that p0(λ1) and p0(λ2) are uncorrelated and have equal SNR such that their variance is

additive [140].

The 325 wavelength pairs in the 500-1000nm range were used to form sO2 estimates

averaged over the tube volume were used to test the inequality in Eq. (3.12). Typical
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values were used for the parameters in Eq. (3.12): η = 0.2kPa, Γ = 0.15 [141]. In order

to obtain fluence distributions in realistic units, the MC-generated fluence distribution

was normalised by the maximum value atthe centre of the most superficial surface and

then scaled by 20mJcm-2, the maximum permissible exposure for tissue. The resulting

SNR from these parameters were in the range of 26.5dB-45.7dB, averaged over the

entire image volume, depending on wavelength and the value of the tube sO2; these

SNRs are significantly higher than those of high quality in vivo photoacoustic images

of superficial blood vessels [142, 143] and thus provide favourable conditions for the

inversion. Fig. 3.9 was re-plotted ‘rejecting’ sO2 estimates made at wavelengths that did

not satisfy the inequality in Eq. (3.12); the estimates that were rejected are coloured in

light blue as shown in Fig. 3.12.
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F I G U R E 3 . 1 2 : Matrix of average error in oxygenation for 26 wavelength pair com-
binations in 500-1000nm range for tube oxygenation values of 70%, 90% and 100%.
Bottom-left triangles: sO2 estimates made with spectrally-dependent background. Top-
right triangles: sO2 estimates made with spectrally-dependent background using 1D
fluence correction. The white pixels represent estimates with an error >100%. Light
blue regions indicate wavelengths that do not satisfy the condition in Equation (3.12).

It is immediately evident that with realistic levels of noise in the images, the number of

wavelength pairs that can be used to obtain a reasonable sO2 estimates is much reduced.

This is due to the fact that many wavelength pairs do not yield sufficiently large |δµa|

to satisfy Eq. (3.12). In addition, it is noticeable that the 1D fluence correction often

provides a clear improvement in accuracy, particularly for low values of sOtube
2 and for

wavelengths in the 500-620nm range where SNR is typically high. Thus, while spectral
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colouring is aggravated when using these shorter wavelengths, it can be moderated by

the application of the fluence correction.

Many regions in Fig. 3.12 appear to yield ‘reasonably’ accurate estimates. The most

notable regions are marked ‘a’, ‘b’ and ‘c’ for reference. For sOtube
2 = 100% and sOtube

2 =

90%, the regions labelled ‘a’ and ‘b’ provide accurate estimates with errors predominantly

below approximately 10%. However, as sOtube
2 decreases, the number of wavelengths

yielding sufficient SNR decay away because, as oxygenation decreases, the absorption

coefficient of blood also decreases. Thus, these spectral bands may be useful when

estimating sO2 in vessels where it is known a priori that oxygenation is high (>90%);

however, as demonstrated in the figures for sOtube
2 = 70% and sOtube

2 = 80%, using

wavelengths in these bands may result in highly erroneous estimates when oxygenation

is low.

Given that the spectral range labelled ‘c’ is present, at least for λ2=600nm, in for the tube

sO2 values between 70-100%, this may be a more useful range for implementation in

practice. With one wavelength set to 600nm and the other between 800nm and 1000nm,

the chosen wavelength pair will not only satisfy Eq. (3.12) but will also yield reasonable

accuracy for all the sOtube
2 values represented in Fig. 3.12. This spectral band emerges

because blood absorption at 600nm is high so µa is large enough to satisfy Eq. (3.12)

but not so high as to introduce excessive spectral colouring. Despite this band appearing

to be a panacea, it should be noted that estimates made made with sOtube
2 = 100% have

very low errors between 2.8% and 8.10%, depending on the choice of λ1, but errors

grow to between 7.7% and 18% when sOtube
2 = 70%. The wavelength pair that yielded

the best accuracy across all four sO2 values in Fig. 3.12 was found to be 600/800nm

with an error ranging from 9.8% for sOtube
2 = 70% to 3.6% for sOtube

2 = 100%.

It may seem as though estimates with <10% error can be obtained using a wavelength

pair of 600/800nm. However, the simulations in this study represent the ‘best case

scenario’, in which it is assumed that the images are perfectly reconstructed and the

only heterogeneity in the domain is the tube; in practice neither apply so lower accuracy

than that predicted by these simulations can be expected. In addition, the typical SNR

achieved in vivo is likely to be significantly lower than used in these simulations. Not
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only will this have the effect of reducing the number of wavelengths that satisfy Eq.

(3.12), but for the wavelengths that do satisfy it, noise in p0(λ) will corrupt the accuracy

of estimates. This is compounded by the fact that the accuracy of the estimate made

at this seemingly ‘optimal’ wavelengths also depends on the value of sOtube
2 . Thus, in

practice, not only will accuracy be compromised by lower SNRs and image reconstruction

artefacts but there is no way of knowing a priori which wavelengths will provide even

these compromised estimates since they depend strongly on the sOtube
2 which is unknown.

This presents a formidable twofold challenge.

3.2 Estimating sO2 in a Realistic Tissue Phantom

The tube phantom in Section 3.1.1 is not representative of many PAT imaging geometries,

as the imaging target often consists of a highly vascularised volume of tissue rather than

just a single vessel. Attempts to obtain absolute or relative measures of oxygenation in

the brain using PAI are common in the literature [20, 92, 130, 144–152]. This reason,

combined with the fact that anatomically the brain is representative of many highly

vascularised tissues, is why a mouse brain phantom is used for this portion of the study,

which aims to address the following questions:

• Do the simple guidelines for wavelength selection obtained from analysing data

from the tube experiments help us obtain more accurate sO2 estimates in this

tissue-realistic phantom?

• Does a simple exponential correction to the fluence improve oxygenation estimates

when the tissue is both multilayered and contains a complex network of blood

vessels?

3.2.1 Digital phantom design

The phantom was generated from a µCT image of a mouse brain vascular cast, which has

high contrast of the vasculature with 2.5µm isotropic resolution. The image volume was
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down-sampled to 25µm isotropic voxel size and segmented using two methods. First,

thresholding was used to remove noise; the second step used connected-component anal-

ysis to identify the connected portions of the vasculature. The vessel of interest (VOI)

was selected by choosing the largest component produced from connected-component

analysis and the smaller components were determined to form the background vascula-

ture.
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F I G U R E 3 . 1 3 : MIPs (coronal view) of µCT vascular cast (left), segmented µCT vascu-
lar cast (centre) and segmented and dilated (via Minkowski addition) µCT vascular cast
(right) with skin and skull layers. Background tissue and vasculature, skin and skull,

and vessel of interest (VOI) denoted.

The total haemoglobin concentration in vasculature in the brain was 150gl-1 and back-

ground tissue was assumed to consist of a 55% water volume fraction and 45% haemoglobin

volume fraction with total haemoglobin concentration cbgHbT = 5.63gl-1 and sO2 = 60.7%

oxygenation – values taken from rat brain cortical tissue [153]. The lack of skin and skull

layers in the original dataset meant that these had to be introduced via post-processing.

The enveloping skin and skull layers were generated by dilating the segmented image

volume (via Minkowski addition using an isotropic cubic 500µm kernel) by 500µm in

all directions, twice sequentially, producing two layers, variable in thickness, that were

approximately 500µm thick on average (realistic values from literature [154, 155] for

mice). Of course, in practice, the skull does not adhere to the cortical surface and is

separated by cerebrospinal fluid (CSF). The impact of CSF on the fluence distribution

can be significant, but effect on the fluence’s spectrum in the brain is likely to be quite

small because of the low-absorbing, low-scattering nature of the CSF. The skin layer

had cskinHbT = 0.48gl-1 at 98.5% oxygenation, 0.87% melanosome volume fraction with the

absorption coefficient following the trend µa,mel = 0.452
(

λ
500nm

)−3
, and 21.4% water

volume fraction [9]. The skull had wavelength-dependent absorption and scattering
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coefficients between 0.025mm-1 and 0.036mm-1, for µa, and 25mm-1 and 45mm-1, for

µs, where the scattering coefficient was obtained by fitting to scattering data of cortical

bone [156].

The scattering coefficient of the background tissue and skin regions varied as a function

of wavelength according to µ′s = A
(

λ
500nm

)−B
[9]. The brain and blood regions of the

phantom had A = 2.14mm-1 and B = 1.20, the skin region had Askin = 2.97mm-1 and

Bskin = −0.705. The anisotropy factor was heterogeneously distributed with g = 0.9 for

the tissue background and skin and g = 0.9945 for blood vessels.

Simulation of the fluence inside the phantom was achieved using MCX [132] with the

phantom illuminated using a top-hat profile at z = 0mm in the +z direction at wave-

lengths in the 500-1000nm range at 20nm intervals. The illumination was collimated in

the z-direction, 11.7mm in diameter, and consisted of 1014 photons (deemed sufficient

by performing a convergence test in Section 3.1).

3.2.2 Estimates using 26 wavelengths in the 500-1000nm range

As with the tube phantom, a common approach for estimating blood oxygenation is

to perform a linear inversion using many wavelengths across a wide band of the NIR-

visible spectrum [136] as it is believed that the inclusion of more data leads to a more

accurate fit. All 26 images at wavelengths in the 500-1000nm range were used in

the linear inversion described described by Eq. (3.3). Fig. 3.14 shows the maximum

intensity projection (MIP) in the y-direction of the oxygenation estimate made in the

VOI, overlayed on the anatomy of the brain in greyscale. The oxygenation estimates in

the VOI are of very limited accuracy and only a few voxels near the surface of the brain,

around 1mm in depth, contain accurate oxygenation values to within 20% of the true

value of 90% (absolute error calculated as |sOtrue
2 − sO2|). The impact of the 1D fluence

correction is very small and only marginally improves the accuracy of sO2 estimates

made using 26 wavelengths. The oxygenation estimates obtained with this phantom are

of equivalently poor accuracy compared with those obtained in the tube phantom.
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F I G U R E 3 . 1 4 : MIPs of oxygenation estimates in VOI made using 26-wavelength linear
inversion with wavelengths in range 500-1000nm without fluence correction (left) and
with fluence correction (right), both overlayed on greyscale phantom. True oxygenation

was 90%. White indicates sO2 estimates outside valid range of 0-100%.

3.2.3 Estimates using two or more wavelengths

Since similar observations can be made when using wavelengths from a broad spectral

range for the brain phantom compared with the tube phantom, it is worthwhile testing

multiple pairs of wavelengths between 500nm and 1000nm. The decay coefficient, µfit
a ,

used to apply the fluence correction to the images was obtained in a slightly different

manner compared with the tube experiments in Section 3.1.1; due to the presence of

skin and skull layers, the fit was performed to the data between the first maximum in the

image averaged over x and y (at approximately 500-800µm below the surface) and the

end of the most highly absorbing region. The data omitted is circled in grey in Fig. 3.15,

which shows the decay in the PA image (averaged over the x- and y- directions) at 840nm

with the straight line (in blue) fit to the data between 0.675mm and 7.88mm along the

z-axis. The oxygenation estimates made using each wavelength pair was then averaged

over the entire vessel-of-interest (VOI) and plotted in a matrix for each wavelength pair in

Figure 3.16; the bottom-left triangle represents estimates made using a linear inversion

without fluence correction and the top-right triangle represents estimates made with the

fluence correction.
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F I G U R E 3 . 1 6 : Matrix of average error in oxygenation in vessel of interest in tissue
phantom for 26 wavelength combinations in 500-1000nm range. Bottom-left triangle:
sO2 estimates made without depth-dependent fluence correction. Top-right triangle:
sO2 estimates made with depth-dependent fluence correction. Blue dashed circle in-
dicates wavelength pairs which yielded substantial improvement in accuracy of sO2

estimates due to application of 1D fluence correction.

It can be seen that using uncorrected images, many wavelengths paired with those in the

600-1000nm range yield average oxygenation estimates over the VOI well within 30%
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of the true value of 90%. This is a slightly narrower wavelength range to that observed

with the tube phantom, but overall estimates are of lower accuracy in the mouse brain

phantom. Given that the wavelengths that yielded the more accurate sO2 estimates are

different from those in the tube phantom, the question ‘are the optimum wavelengths

dependent on the target geometry?’ can be asked. However, swapping the VOI and

the background vasculature (see Figure 3.13) did not have a significant effect on the

optimal wavelength pairs (i.e. 600-1000nm remained the optimal range). This suggests

therefore that in highly vascularised media, the specific geometry may not determine

which subset of wavelengths in the 600-1000nm range is most accurate; nevertheless,

using wavelengths outside this range will lead to highly inaccurate oxygenation estimates

everywhere except in the most superficial regions.

The 1D fluence correction reduces the range of wavelengths that yield the most accurate

sO2 estimates from 600-1000nm to 600-920nm while also improving the overall accu-

racy of sO2 estimates; a much greater number of elements in the top-right triangle in the

matrix show an error of less than 30% compared with the estimates obtained without the

fluence correction. The most accurate average sO2 estimate was obtained using 640nm

and 840nm, which gave a minimum average error over the VOI of 2.9%, compared with

7.6% when the inversion is performed without correcting the PA images. Figure 3.17

shows oxygenation estimates made in the VOI using the optimal 640/840nm wavelength

pair with and without a 1D fluence correction.

F I G U R E 3 . 1 7 : MIPs of oxygenation estimates in VOI made using two-wavelength
linear inversion at 640/840nm without fluence correction (left) and with fluence cor-

rection (right), both overlayed on greyscale phantom. True oxygenation 90%.
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Without the fluence correction, oxygenation estimates are predominantly above 95%,

while when the image is divided through by exp(−µfitz) ∀x, y, the values are centered

around the true value of 90% plus-or-minus a few % and show less variation with

depth. In practice, however, without knowing the true oxygenation, it is impossible to

choose the optimal wavelengths, and the image will be corrupted with some level of

noise. The wavelengths, 640nm and 840nm, provide little signal at depth in practice,

which may compromise the ability to accurately estimate sO2. In Section 3.1.6, it was

found that the change in PA amplitude from one wavelength to another must exceed the

NEP of the system in order for the inversion to yield a plausible oxygenation estimate.

Using this relationship it was derived that under a wavelength change λ1 ↔ λ2 the

corresponding change in absorption must exceed
√

2 η
ΓΦ(λ1) . Typical values were selected

for these parameters: η = 0.21KPa (selected to be consistent with image SNRs obtained

experimentally [142, 143]), Γ = 0.15 [141]; the fluence in this expression was computed

using the MC-generated fluence used in the inversion, and was then normalised by its

maximum value and scaled by 20mJcm-2, the maximum permissible exposure for tissue.

Fig. 3.17 was then reproduced, but only showing the sO2 estimates for which this

condition is satisfied, shown in Fig. 3.18.

F I G U R E 3 . 1 8 : MIPs of oxygenation estimates in VOI made using two wavelength
linear inversion at 640/840nm without fluence correction (left) and with fluence cor-
rection (right), both overlayed on greyscale phantom. Only values satisfying condition

|δµa| >
√

2 η
ΓΦ(λ1) shown. True oxygenation 90%.

The application of this condition demonstrates that oxygenation can only be estimated

at less than 3mm at these wavelengths. At depths greater than 3mm, the SNR is in-

sufficient and will yield spurious estimates of sO2, demonstrating again that there is
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an inherent trade-off between using wavelengths that are optimal for estimating sO2

and wavelengths that yield sufficient SNR over the entire imaging volume. Moreover,

accurate estimates to a depth of 3mm were only possible because optimal wavelengths,

which required knowledge of the true oxygenation, were chosen; without access to the

ground truth value, it would be impossible to know how accurate estimates are and the

presence of noise in an experimental setting would lead to further inaccuracies in sO2

values. This suggests that a linear inversion, with or without a simple fluence correction,

may be of limited value in in vivo PA imaging beyond very superficial depths.

3.3 Summary

In this chapter, the accuracy with which oxygenation estimates obtained using simple

linear spectroscopic inversions was investigated. This was carried out in two separate

phantoms; the first consisted of a tube submerged in an absorbing-scattering background,

while the second was a realistic phantom of vascularised tissue. It was also examined

whether oxygenation estimates are more accurate when the PA image is divdided through

by a simple 1D exponential decay, with the decay coefficient obtained by fitting a straight

line to the log of the PA image averaged over the (transverse) x- and y- directions. It

was found in both phantoms that using several wavelengths across a wide band of the

NIR-visible spectrum yields inaccurate sO2 values, except at the most superficial regions

of the vessel of interest. Moreover, there was a tendency to underestimate oxygenation

when wavelengths in the 500-600nm range were used, due to the fact that the absorption

coefficient, and therefore the fluence, undergoes large changes at these wavelengths.

Based on these observations, pairs of wavelengths were tested which allowed trends of

which regions of spectrum are better suited to estimating oxygenation using a linear in-

version to be identified. It was found that spectral colouring of the fluence is minimised

at wavelengths in the 620-1000nm range and that the simple 1D fluence correction

could be used to improve estimates, provided optimal wavelengths were chosen. How-

ever, wavelengths in the range deemed optimal do not provide as high SNR as those

in the shorter range (≤600nm). Thus, the key conclusion was that wavelengths more
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likely to yield accurate sO2 estimates do not provide sufficient SNR to obtain accurate

estimates beyond a few mm in depth, as oxygenation estimates become corrupted with

measurement noise beyond this depth. Even selecting wavelengths found to provide the

most accurate oxygenation values (on average in the complex geoemtry of the mouse

brain phantom) did not yield accurate sO2 values at a depth greater than 3mm. Further-

more, the determination of the optimal wavelengths required prior knowledge of the

ground truth sO2 value. Thus, there are very few scenarios in practice in which a linear

inversion (with or without 1D fluence correction) is likely to yield accurate oxygenation

estimates.

The above trends may not extend to dynamic sO2 estimation, discussed in Section 3.1.2,

which relies on the background absorption coefficient not changing under oxygenation

changes [131], and photoacoustic microscopy, which is an inherently superficial imaging

technique. As mentioned in Chapter 1, PAM exists in acoustic-resolution (AR-PAM) and

optical-resolution modalities (OR-PAM), each of which may find a means of minimising

the effect of spectral colouring on sO2 estimation. Guo et al. [157] argue that in AR-

PAM the fluence within a diffusely illuminated blood vessel will be a radial function of

absorption of the form exp(−µar) with r the radius; this would be a viable method for

estimation of the absorption coefficient in the vessel (from which sO2 can be computed)

if the fluence were not coloured by wavelength-dependent absorption in the interstitial

diffusing medium, which in practice is not likely to be the case as has been demonstrated

[158]. OR-PAM involves focusing of the light field, so if the optical focus is unaffected

due to wavelength dependence of the external optics (e.g. laser, optical fibre, lenses)

which in practice can be measured anyway, spectral colouring of the fluence in the tissue

is minimal due to the limited penetration depth; whether the distance travelled by the

light into the tissue is sufficiently small to have a negligible impact on the fluence at the

focus requires further investigation.

While it is possible to measure the fluence incident on the tissue surface, and thereby

correct for system wavelength-dependent factors, it is not possible to make internal

measurements. Thus, for PAT, to obtain estimates that are accurate beyond a few mm,

modelling of the internal fluence distribution is a necessity. One model of particular
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interest, due to its parallelisability, is the Monte Carlo method, which is described in

detail in Chapter 4.

3.4 Future work

In this chapter it was observed that the accuracy of certain wavelength pairs was better

than others due to better image SNR, reduced spectral colouring and/or better condi-

tioning of α. The degree to which these factors impact the accuracy of the oxygenation

estimate are unknown a priori and will depend on the experimental imaging condi-

tions (e.g. tissue geometry and composition, illumination conditions, detection scheme,

amongst many other experimental features). This of course makes optimal wavelength

selection impossible without prior modelling of the internal fluence distribution. The

investigation proposed herein is to acquire images at as many wavelengths across the

NIR-visible spectrum as possible (laser linewidth and acquisition time permitting) and

perform linear inversions for every pair of wavelengths; the expectation is that while

certain pairs of wavelengths will yield wholly inaccurate – and even physiologically im-

plausible – estimates, a number of wavelength pairs will ensure that sufficiently low

spectral colouring of the fluence has taken place thus resulting in fairly accurate oxy-

genation estimates. Initial investigations were performed using the tube phantom of

Chapter 3 with 19 illumination wavelengths spaced by 20nm in the 520-920nm range.

The light model used here was TOAST++ [138]. Linear inversions were applied to

the initial acoustic pressure at the 153 wavelength pairs. This was carried out for tube

oxygenationation values, sOtube
2 , of 70%, 80%, 90% and 100%. Histograms of the sO2

estimates averaged over all the voxels in the tube are plotted for each value of sOtube
2 .

Note that only estimates between 0% and 100% were included when the averaging was

performed, i.e. voxels with estimates outside this range were rejected.

It can be seen from Fig. 3.19 that this sO2 estimation technique yields a spread of sO2

estimates that appear to be centred near the true oxygenation value, sOtube
2 , indicated by

the black vertical line. The most likely value in the histograms occurs nearly at the true

value, possibly suggesting this approach may yield accurate oxygenation estimates in



102
Chapter 3 : Estimating blood oxygen saturation from multiwavelength photoacoustic

images

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

sO
2
 %

N
o 

vo
xe

ls

sO
2
tube=70%

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

sO
2
 %

N
o 

vo
xe

ls

sO
2
tube=80%

0 20 40 60 80 100
0

1000

2000

3000

sO
2
 %

N
o 

vo
xe

ls

sO
2
tube=90%

0 20 40 60 80 100
0

1000

2000

3000

sO
2
 %

N
o 

vo
xe

ls

sO
2
tube=100%

F I G U R E 3 . 1 9 : Histograms of sO2 estimates averaged over all voxels in the tube
obtained using every combination of 26 wavelengths in the 500-1000nm range for

different values of sOtube
2 .

other imaging scenarios. This of course comes with the caveat that this technique may no

longer yield reasonable estimates in the presence of noise; however, as the noise in p0(λ1)

and p0(λ2) is uncorrelated, the effect of noise in the images is likely only to increase the

spread of the distribution of sO2 estimates, rather than to introduce a systematic error

that shifts the position of the largest bin.

The method described above was applied to in vivo data. A dataset containing recon-

structed images of a mouse flank at wavelengths between 680nm and 910nm with

10nm separation were used. Here, a blood vessel was manually segmented and the

two-wavelength inversion procedure was applied to every voxel in the segmented vessel

giving 351 estimates for each position in the vessel. However, due to very few wave-

length pairs providing valid sO2 estimates in the 0-100% range (sometimes only a pair

of wavelengths provided a valid estimate), the mean of the values was used. Fig. 3.20(a)

shows a maximum intensity projection of the blood vessel in the z-direction obtained

at 900nm and Fig. 3.20(b) shows a maximum intensity projection in the z-direction

of the mask used to segment the voxels in the vessel. One adjustment to the method

described above had to be made due to the fact that the acquisition at each wavelength

takes on the order of 2 minutes, meaning the animal moved due to breathing. Upon
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each inversion, therefore, one image was registered to the other using Matlab’s rigid

registration tool. The voxel-wise distribution of sO2 values obtained using this method

is shown in the histogram in Fig. 3.20(c) with the estimates then plotted spatially inside

the vessel in Fig. 3.20(d) as an MIP.
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F I G U R E 3 . 2 0 : (a) MIP of PA image of mouse flank; (b) MIP of manually segmented
mask of large vessel shown in (a); (c) Histograms over sO2 estimates in each voxel in
the mask in (b); (d) MIP of sO2 estimates obtained using linear inversions using all

possible combinations of illuminations plotted in the vessel.

The distribution of the values in each voxel in Fig. 3.20(c) demonstrates quite promising

results given that the majority of the values lie in the physiologically expected range for

a vein. Although it is unknown whether the segmented vessel is a vein, consideration of

the images on either side of the isosbestic point demonstrated a decrease in the average
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image intensity of the segmented vessel with increasing wavelength. This is supported by

the fact that nearby vessels, thought to be arteries, increased with increasing wavelengths

on either side of the isosbestic point. Although the mean value of 68% for the entire

vessel appears to be low, the mouse was under isoflurane which is linked to decreased

systemic oxygenation [159]. Nevertheless, the mouse was ventilated using 100% O2,

which is likely to have increased systemic sO2 . Despite these confounding factors, the

oxygenation estimates are within a reasonable range for a superficial vein.

By using multiple two-wavelength inversions to construct a distribution of sO2 estimates,

the preliminary experiments above demonstrate that this approach has the capability

to estimate sO2 in vivo. The vein in the example above was very shallow, at a depth of

less than 750µm, but provides a compelling argument for further investigation into this

approach.



Chapter 4

Monte Carlo modelling of light

transport

The Monte Carlo method is a statistical technique that uses the law of large numbers to

approximate the expectation value of a given quantity. The method has application in

numerical integration, whereby the integral is approximated by summing the function

of interest evaluated at randomly sampled points in the function’s domain, as well as

solving integral equations in physics and chemistry. The application of the Monte Carlo

method discussed here is that of the transport of light energy through biological tissue.

The aim is to simulate the propagation of packets of energy through the domain to form

the quantity of interest – often termed a ‘scored quantity’ – which, in PAT, is typically the

fluence or absorbed energy density.

The basic algorithm can be derived from either the integral [160] or derivative form of

the RTE, but in this thesis only the derivation from the latter form is presented, treated in

Section 4.1. The Monte Carlo method for light transport involves propagating an energy

packet a distance s before depositing a fraction of its energy, or weight W , and being

scattered by some angle, determined by sampling the scattering phase function; this

process is repeated until the packet’s weight has decayed below some threshold value.

Note that in the rest of this thesis the term ‘photon’ is used to refer to an energy packet or

ensemble of photons rather than a distinct photon. The distinction however is important

105
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as the absorption of individual photons occurs, resulting in an overall reduction of the

packet energy. An illustration of a photon packet’s trajectory is shown in Fig. 4.1. In

a Monte Carlo simulation, as the number of photons simulated tends to infinity, the

quantity of interest tends to its true value; i.e. in the case of the fluence, it would tend

to the value predicted by the RTE. A simulation using a finite number of photons will

therefore produce a result that is not completely accurate because it will be a sample of

a field with some variance. The degree variance in the estimate is a function of many

parameters, including spatial discretisation in the domain and the number of photons.

Despite this drawback, the variance in fluence estimates reduces sufficiently quickly

with increasing number of photons so as to be useful as a forward model in PAT, as

discussed in Chapter 3. This chapter presents a novel Monte Carlo model that simulates

the radiance rather than the fluence and is hence termed radiance Monte Carlo, or RMC.

F I G U R E 4 . 1 : Illustration of photon packet trajectory, with starting weight is W0.
Photon packet travels a series of steps sn, scattering between steps and undergoing a

reduction in weight Wn upon each stop.

4.1 Derivation of MC method for light transport

The calculation of step length, the weight deposited and scattering angle can all be de-

rived from the RTE by considering trajectories aligned with direction ŝ [57], as described

in the following sections.
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4.1.1 Absorption and scattering

In this section, the absorption of energy and the step length between scattering events

are derived. Writing the time-independent RTE along the ŝ direction,

(ŝ · ∇+ µa(x) + µs(x))φ(x, ŝ) = µs(x)

∫
Sn−1

P (ŝ, ŝ′)φ(x, ŝ′)dŝ′ + q(x, ŝ), (4.1)

allows us to write two separate transport equations for two sources of photons; the

first (Eq. (4.2)) only models the transport of photons emitted by q anywhere along

the trajectory ŝ, while the second (Eq. (4.3)) only models the propagation of photons

scattered inward from directions ŝ′:

(
∂

∂s
+ µa(s) + µs(s)

)
φsources(s; ŝ) = q(s; ŝ) (4.2)(

∂

∂s
+ µa(s) + µs(s)

)
φscattered(s; ŝ) = µs(s)

∫
Sn−1

P (ŝ, ŝ′)φ(x, ŝ′)dŝ′, (4.3)

where φsources and φscattered are the radiances due to the sources and inward scattered

light, respectively. The total radiance along the trajectory in direction ŝ and position s

(using the convention that s = |s| ŝ = sŝ) is equal to the sum of the radiance due to

photon sources and inward-scattered photons: φ(s) = φsources(s) + φscattered(s).

The solution to Eq. (4.2), a first-order differential equation in s [160], is obtained by

considering that contributions to φ in the −ŝ direction, e.g. due to back-scattering or

sources emitting in this direction, are treated by writing Eqs. (4.2) and (4.3) for the −ŝ

direction explicitly. In the case of discrete sources, qns , separated by a distance ∆s, then

the light at position S = Ns∆s along the trajectory ŝ is given by

φsources(S = Ns∆s) = q0 exp

(
−
∫ Ns∆s

0
µt(s)ds

)
+q1 exp

(
−
∫ Ns∆s

∆s
µt(s)ds

)
+ . . .+ qNs , (4.4)

where µt = µa + µs. Exploiting the fact that a product of exponentials is equivalent to

a sum of their exponents, the attenuation over the entire trajectory can be factorised

out, provided source terms after the zeroth one are attenuated over the correct path
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length. This is achieved by changing the sign and limits on the relevant integrals, as

shown below,

φsources(S = Ns∆s) = exp

(
−
∫ Ns∆s

0
µt(s)ds

)[
q0 + q1 exp

(∫ ∆s

0
µt(s)ds

)
+ . . .

+qNs exp

(∫ Ns∆s

0
µt(s)ds

)]
(4.5)

φsources(S = Ns∆s) = exp

(
−
∫ Ns∆s

0
µt(s)ds

)[ Ns∑
ns=0

qns exp

(∫ ns∆s

0
µt(s)ds

)]
.

(4.6)

When the source distribution, q, is a continuous function of s, the summation inside the

square brackets in Eq. (4.6) becomes an integral over s between 0 and the position at

which the radiance is calculated, which in this case is Ns∆s,

φsources(S = Ns∆s) = exp

(
−
∫ Ns∆s

0
µt(s)ds

)[∫ Ns∆s

0
q(s) exp

(∫ s

0
µt(ζ)dζ

)
ds

]
,

(4.7)

where ζ is an integration variable representing a distance along ŝ between 0 and S.

F I G U R E 4 . 2 : Diagram of trajectory s with source points qns
present.

Eq. (4.3) can be solved in a similar manner, except now the contributions to φscattered

are simply the result of light scattered from the trajectories ŝ′. Let us define a new source

term to account for inward-scattered light qscattered, ns(s) = µs, ns
∫
Sn−1 P (ŝ, ŝ′)φ(x, ŝ′)dŝ′.

Similar to sources of photons on the trajectory, inward-scattered photons are attenuated
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between the position at which they were in-scattered and Ns∆s as shown in Fig. 4.3,

φscattered(S = Ns∆s) = qscattered, 0 exp

(
−
∫ Ns∆s

0
µt(s)ds

)
+qscattered, 1 exp

(
−
∫ Ns∆s

∆s
µt(s)ds

)
+ . . .+ qscattered, Ns . (4.8)

The contributions from light scattered inwards at the positions qns must be summed or

integrated along the trajectory from 0 to Ns∆s such that the radiance in direction ŝ at

position s is given by

φscattered(S = Ns∆s) = exp

(
−
∫ Ns∆s

0
µt(s)ds

)[∫ Ns∆s

0
qscattered(s) exp

(∫ s

0
µt(ζ)dζ

)
ds

]
.

(4.9)

F I G U R E 4 . 3 : Diagram of trajectory s with points at which light is scattered inwards,
qscattered, ns

, present.

We now have a model for how light is accumulated through sources and inward scattering

along the trajectory as well as how light is lost due to absorption and scattering. Writing

the complete expression for the radiance as a sum of the contributions from sources and

inward scattered light at a point S along trajectory ŝ,

φ(S) = exp

(
−
∫ S

0
µt(s)ds

)[[∫ S

0
qscattered(s) exp

(∫ s

0
µt(ζ)dζ

)
ds

]
+

[∫ S

0
q(s) exp

(∫ s

0
(µt(ζ))dζ

)
ds

]]
. (4.10)
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Consider a source of photons at the origin of a trajectory, q0δ(s), with uniform absorption

and scattering coefficients and photons being scattered inward at a position s = S/2,

then Eq. (4.10) simplifies to

φ(S) = exp

(
−
∫ S

0
µt(s)ds

)[[∫ S

0
qscatteredδ(s− S/2) exp

(∫ s

0
µt(ζ)dζ

)
ds

]
+

[∫ S

0
q0δ(s) exp

(∫ s

0
(µt(ζ))dζ

)
ds

]]
.

(4.11)

The second term in the square brackets obviously collapses to q0, while the first term

yields qscattered exp(−µtS/2). Multiplying in the attenuative portion outside of the brack-

ets gives

φ(S) =qscattered exp(−µtS/2) + q0 exp(−µtS) (4.12)

=qscattered exp(−µtS/2) + q0 exp(−µaS) exp(−µsS). (4.13)

The energy from the source at the origin will have been attenuated due to absorption

according to exp(−µaS) and scattering according to exp(−µsS). The probability per unit

length of a photon travelling a distance S before being scattered is

P (S) = µs exp(−µsS). (4.14)

In order to determine S, the cumulative probability density function, cPDF (s) is sam-

pled using a uniform random variable on [0, 1], U([0, 1]). The cPDF is formed by inte-

grating (4.14) between 0 and S

cPDF (s) = µs

∫ S

0
exp(−µsζ)dζ = 1− exp(−µsS). (4.15)

Since the domain of a cumulative probability density function is [0, 1], the right-hand

side of Eq. (4.15) can be set equal to U([0, 1]) and solved for S (using the fact that

U([0, 1]) ≡ 1− U([0, 1])):

S = − ln(U([0, 1]))

µs
. (4.16)
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It is useful at this point to introduce the concept of ‘weight’. Weight is a unitless quantity

representing the amount of energy of a photon packet. This allows photon weight as a

function of distance S to be written as

W = W0 exp (−µaS) (4.17)

where W0 is the weight of the photon packet at the start of the trajectory which, if the

photon trajectory starts from the source is just equal to q0 and S is the length of the

trajectory obtained using Eq. (4.16). The weight deposited after a distance S is therefore

∆W = W0 (1− exp(−µaS)) , (4.18)

for the absorbed energy density, and

∆W =
W0

µa
(1− exp(−µaS)) , (4.19)

for the fluence. The above absorption-scattering scheme is described by Sassaroli et al.

[161] as the microscopic Beer-Lambert Law (mBLL) and has been shown to converge

to other weight deposition schemes; in fact, the mBLL approach has been demonstrated

[161] to produce lower variance fluence estimates for a given number of photons com-

pared with other weight deposition schemes, such as the albedo-weight method proposed

by Prahl [162], and for this reason it was selected as the scheme in the RMC algorithm.

Note that the mBLL method can be readily extended to ‘white Monte Carlo’ (WMC)

[163] implementations whereby rather than storing the weight deposited in each voxel,

complete photon trajectories are stored. This involves storing one or more photon

positions between scattering events and the photon weight is modelled by computing

the distances between the positions: W = W0 exp
(
−
∑

ns
µa(rns)Sns

)
, where rns is

the photon’s position at step ns, after travelling a distance Sns . Thus, although this

method is not of any particular value if used once as a forward model, rapid updating

of the distribution of the absorption coefficient allows scored quantities like the fluence

and/or absorbed energy density to be quickly modified. This type of implementation is

suitable when the distribution of the scattering coefficient is known; however this is not
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typically the case in PAT and, thus, photon trajectories must be modelled for each set of

scattering coefficient distributions. Furthermore, the potential application of variance

reduction techniques when source-detector pairs are sparsely distributed makes WMC

more applicable to the quantitative problem in DOT, while in QPAT source-detector pairs

exist for every voxel in the domain resulting in excessive memory demands of storing

billions of photon trajectories.

4.1.2 Deflection of photon packet

Following the absorption event, after travelling a distance S to a new position such that

x′ = x + Sŝ, the photon is scattered. The phase function, P (ŝ, ŝ′), is typically chosen

to be the Henyey-Greenstein phase function [61] because it is a good approximation

for tissue and exists in closed form, making it straightforward to integrate; in order to

determine the scattering angle, the cumulative integral of P (ŝ, ŝ′) must be evaluated:

cPDF3D(ŝ, ŝ′) =

∫ cos(θ3D)

−1

1

2

1− g2

(1 + g2 − 2g(ŝ · ŝ′))3/2
d(ŝ · ŝ′). (4.20)

Eq. (4.20) can now be solved for the deflection angle between ŝ and ŝ′ using θ3D =

arccos(ŝ · ŝ′) by substituting another uniform random variable

θ3D = arccos

(
1

2g

[
1 + g2 −

(
1− g2

1− g + 2gU([0, 1])

)2
])

, (4.21)

for g 6= 0. When g = 0, scattering is isotropic and the deflection angle is selected from a

uniform random variable over [0, 2π]

θ3D = arccos (2U([0, 1])− 1) . (4.22)

In 3D, there is an additional scattering angle, ψ, which rotates ŝ′ isotropically, as shown

in Fig. 4.4.
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F I G U R E 4 . 4 : Diagram of photon scattering from ŝ to ŝ′. The deflection angle, θ, is
selected from the phase function and ψ rotates the new trajectory about the original

trajectory.

As such it is simply chosen using another uniform random variable according to

ψ = 2πU([0, 1]). (4.23)

Then, the updates to the photon direction are given by Peplow et al. [164] and can be

derived by performing a coordinate transform on the scattering angles and rotating the

original photon direction

µx ← µx cos(θ3D) + (µxµz cos(ψ)− µy sin(ψ))

√
1− cos2(θ3D)√

1− µ2
z

(4.24)

µy ← µy cos(θ3D) + (µyµz cos(ψ) + µx sin(ψ))

√
1− cos2(θ3D)√

1− µ2
z

(4.25)

µz ← µz cos(θ3D)− cos(ψ)
√

1− cos2(θ3D)
√

1− µ2
z, (4.26)

where µx, µy and µz are the direction cosines of the incident photon, and the arrow is

used to indicate replacement. Eq. (4.24)–(4.26) collapse to

µx ← sin(θ3D) cos(ψ) (4.27)

µy ← sin(θ3D) sin(ψ) (4.28)

µz ← cos(θ3D), (4.29)
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when µz is very close to unity.

In 2D, there is only one deflection angle, θ2D = arccos(ŝ · ŝ′), and a suitable choice of

scattering phase function to model scattering in biological tissue is analogous to the

Henyey-Greenstein phase function [165]:

P2D(ŝ, ŝ′) =
1

2π

1− g2

(1 + g2 − 2g(ŝ · ŝ′))
d(ŝ · ŝ′), (4.30)

and the cumulative integral can be sampled according to

θ2D = 2 arctan

(
1− g
1 + g

tan(πU([0, 1]))

)
. (4.31)

Based on the scattering angle, the new photon direction is obtained by

µ′x = cos(θ2D)µx + sin(θ2D)µz (4.32)

µ′z = cos(θ2D)µz − sin(θ2D)µx. (4.33)

RMC was only implemented in 2D meaning it was this scheme that was used.

4.2 Implementation of MC

There are a variety of implementational aspects of the basic MC algorithm for light

transport, including spatial discretisation, source implementation, boundary conditions

as well as parallelisation. These are discussed below.

4.3 Spatial discretisation and basis

The quantity of interest, whether it be the fluence or the absorbed energy density, must

be scored in a particular region or subdomain. This is achieved by splitting the domain

into subdomains uj , where Ω = ∪Jj uj , over which there are distributed basis functions

governing the energy deposited in a set of subdomains. Given that Np photons traverse a

subdomain, the fractions of weight they deposit ∆Wnp must be summed over the number
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of photons,
∑Np

np=1 ∆Wnp , and then integrated over the basis function. In the case of

a piecewise constant basis, the integral is performed over the subdomain to form the

total weight deposited: Wtot, j =
∫
uj

∑Np
np=1 ∆WnpdVj where dVj is the volume of the jth

subdomain, uj , (in 2D, the integral is performed over an area). This is consistent with

definitions provided by Boas et al. [166] excluding normalisation, which is addressed in

the next section.

A simple model of tissue is to consider it being composed of a number of stacked semi-

infinite slabs with different optical properties. MCML [167] models the tissue using

multiple homogeneous layers in the xy-directions. As such, this geometry has cylindrical

symmetry and, using a piecewise constant basis, scored quantities are obtained by inte-

grating over the radius and z-axis between zn to zn + ∆z, for layer thickness ∆z and the

nth slab. This way of simplifying tissue geometry is not applicable to most geometries

imaged using PAT; for this reason, this model has recently been extended to include

inclusions, first, of spherical tissues [168] and later spheroidal and cylindrical inclusions

[169], which may be suitable for modelling light transport for lymph node or tumour

imaging.

In order to model light transport in arbitrarily complex geometries, a voxelised grid or

mesh is required. Grids offer the advantage that they are simple to navigate computation-

ally for weight deposition, achieved through simple truncation of the photon’s physical

coordinates. A mesh requires the photon’s coordinates to be mapped to the barycentric

coordinates associated with the mesh element, which is more computationally expen-

sive. However, a grid composed of cuboid elements cannot accurately – or at least not

straightforwardly – account for internal index of refraction mismatch [170] (unless these

occur between cuboid objects), and can only model mismatch at the domain boundaries

[132, 162]; on the other hand, the use of tetrahedral or higher order polyhedral ele-

ments can be used in such a way that surfaces are accurately modelled, thus allowing

regions where there is a refractive index change (e.g. between CSF and the cortex) to

be accurately modelled using ray-polyhedra intersections [133].

The intersection tests required for the refraction of light via index mismatch are also use-

ful for updating the step length of Eq. (4.16) due to changes in the scattering coefficient
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[162]

S ← (S − d)
µs,1
µs,2

, (4.34)

where the arrow is used to indicate replacement, d is the distance from the photon’s cur-

rent position to the nearest polyhedron face that it crossed that has a value of µs,2 6= µs,1,

where µs,1 is the scattering coefficient in the current element (note that with alternative

weight deposition schemes µt = µa + µs is used instead of just µs [161]). It is desirable

to avoid the computationally expensive ray-polyhedra tests, which was achieved by Fang

et al. [132] by propagating the photon in increments, typically less than a voxel edge

length dS, and updating the total step length S according to Eq. (4.34) except with

d = nSdS where nS is the number of voxel edges traversed. Of course, this is likely to

yield a small error, ∆S, in the updated step length as it has travelled this distance in

µs,2 rather than µs,1 as illustrated in Fig. 4.5; the erroneous portion of the expression,

∆µS
µs,2
µs,1

, is very small for changes in media where the scattering coefficient is similar

in magnitude (true for many biological tissues) and the error will also tend to zero as

dS → 0, i.e. as the photon is then stepped in small fractions along the trajectory. RMC

uses the stepping scheme for benefits in terms of speed.

F I G U R E 4 . 5 : Diagram of photon trajectory traversing multiple voxels, illustrating
error in path length, ∆S, when there is a change in the scattering coefficient µs,2 in the

grey region.

This stepping approach is extendable to unstructured grids such as an octree geometry.

Discretisation in an octree consists of a grid with a maxmimum voxel edge length Lmax

and all other voxels are either this size or are the result of subdivision of a parent voxel

nv times, yielding a family of voxels with edge length Lmax/2nv . This offers a great deal
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of flexibility in terms of coarseness of discretisation and has significant benefits in terms

of memory storage of the medium properties and scored quantities; however, in order for

the error in S to remain small, the photon would have to step the minimum Lmax/2
nv

associated with each parent voxel, which is compute intensive.

4.3.1 Normalisation and sources

Quantities output by MC simulations require normalisation so that they are representa-

tive of the energy input and are not scaled by the number of photons simulated. The

latter can be removed by simply dividing the result by the number of photons, while the

former requires the data to be multiplied by the total energy input; e.g. for a 20mJ pulse

of energy, the fluence output from MC must just be multiplied by this number to have

the correct units [171].

Source implementation in grid geometry is straightforward as it simply involves launch-

ing photons from a particular position with a given direction. An isotropic point source,

either inside the domain or on the boundary, simply involves launching photons from

the same starting position and distributing their direction randomly over 4π Steradians:

θin = 2πU([0, 1]) (4.35)

ψin = arccos(2U([0, 1])− 1), (4.36)

where θin and ψin are the polar and azimuthal angles, respectively (in 2D only Eq.

(4.35) is required for an isotropic source). A pencil beam is achieved by launching all

the photons in the same direction, whereas a collimated broadbeam can be achieved by

launching all photons in the direction of collimation and adding uniformly distributed

values in the x- or xy-directions about the central position. Similarly a Gaussian beam

can be used by shifting the launching positions of photons about their central position

using normally distributed random variables and in homogeneous media this can be

realised using convolution with a Gaussian kernel [171].
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4.3.2 Boundary conditions

Treatment of photons exiting the domain often involves ray-polyhedra intersections,

except when the internal and external indices of refraction, ni and ne, are matched

giving a reflection coefficient of zero. This can be generalised to the situation where

there is a non-zero reflection coefficient at the boundary and photons are reflected

specularly: θi = θr i.e. the angle of incidence to the normal is equal to the reflected

angle and the new photon direction is given by ŝ← 2(n̂ · ŝ)n̂− ŝ, where n̂ is the normal

to the reflecting surface. Under these conditions the reflected photon weight is scaled by

R where

R =

(
ni − ne
ni + ne

)2

, (4.37)

which may be representative of many situations in both in vivo and ex vivo PAT imaging,

as the target is often immersed in water or acoustically coupled to the detector using

ultrasound gel. Thus, in the case where ni = ne, the boundary is index matched and

R = 0, meaning no light travels inward from the boundary (except from sources on the

boundary).

4.3.3 Photon termination and variance reduction

Photons that escape the domain are terminated, but those that remain in the domain

must be terminated using a threshold condition as their weight approaches zero asymp-

totically and can survive indefinitely without the application of a threshold, WT . It is

typical to propagate a photon as long as its weight is greater than WT . However, this

is often coupled with a variance reduction scheme called ‘roulette’. Roulette prevents

the propagation of a large number of low-weight photons which do not contribute sig-

nificantly to the result and instead performs unbiased selection of a single photon to

propagate the weight of others; this is achieved by allowing the survival of 1/CT photons

whose weight is below WT , if a uniform random variable U([0, 1]) < CT ; the surviving

photon’s weight is then scaled to be CTW [52]; a typical choice for CT is 1/10.
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Certain variance reduction techniques involve importance sampling which encourages

photon trajectories that are more likely to interact with a light detector to be sampled

more frequently than those that do not yield a detection event [172]. Of course, in PAT,

the optical detector is effectively distributed over the entire domain as light absorption

anywhere in the tissue will yield a PA signal. Domain splitting techniques [173] can also

help reduce variance in fluence estimates, but given that this would involve compromis-

ing resolution in PAT, this is unattractive; nevertheless, this is akin to the octree method

of spatial discretisation described in Section 4.3 and may be useful in variance reduction

away from regions of interest in the inverse problem. A number of other variance reduc-

tion methods exist [174, 175] but are not either applicable to photon transport using

the RTE for a single wavelength/time gate or when optical detection is distributed over

the illuminated volume and isotropic as in PAT.

4.3.4 Parallelisation and hardware

Photons in MC simulations are propagated completely independently, meaning each

photon can be treated using an independent thread with minimal cross-talk between

threads. This has long been an area of reserach [176] in biomedical applications of

MC light transport simulations; however, recent advances in computing hardware have

facilitated highly parallelised MC implementations. The availability of multicore CPU

processors have allowed multithreading of C/C++ MC codes providing approximately an

order of magntidue increase in speed compared with serial implementations, while the

accessibility of high memory (several GB) GPGPUs [177] have allowed the development

of high-speed MC codes such as MCX [132], MMC [133] and a GPU-accelerated version

of MCML, CUDAMCML [178], which provide two to three orders of magnitude speed

up over their serial counterparts. RMC was implemented in ‘Julia’ [179], a high-level

language, which allowed straightforward parallelisation over multiple CPU cores on a

single node.
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4.4 Monte Carlo modelling of the radiance

As discussed in Chapter 2, there are a number of methods that can be used to solve

the RTE for the radiance. However, given that analytic solutions in homogeneous or

layered media are not applicable in QPAT, numerical techniques must be used. FE

modelling of the radiance is a popular approach to simulating the radiance which requires

some discretisation over angle, the most intuitive of which, although not necessarily

optimal, is to take the unit sphere, in 3D, or the unit circle, in 2D, and divide it up

into segments. This piecewise constant set of basis functions over angle may not be

optimal for describing light propagation in PAT; PAT images have a region near the tissue

surface in which ballistic or near-ballistic propagation is prevalent meaning many orders

of discretisation are required to capture the high directionality of the radiance. This

results in excessive memory demands in FE implementations of the RTE [53, 180] as

realistic levels of anisotropy in tissue (e.g. g ≥ 0.9) require greater than 64 angles per

node, which equates to more than 642=4096 elements per node in the system matrix.

This fine discretisation is then poorly utilised deep into the tissue as the light field is

diffusive in this region and therefore dense in this basis.

A number of schemes have been proposed to overcome these limitations when simulating

the fluence. One approach uses a model accurate for directional light propagation,

e.g. the RTE, near the optical source, and the DA using internal sources for the rest

of the domain [53, 181]. A similar approach has been attempted using MC in the

optical near-field and the DA in the far-field [182] but was demonstrated to be of limited

accuracy compared with pure MC simulations and is challenging to implement due to

the combination of computational meshes and the placement of diffuse sources for the

DA simulation.

However, the increasing availability of highly parallel computing platforms means that

the parallelism of the MC algorithm should be exploited; this is especially relevant as the

method is inherently capable of simulating the angularly-dependent radiance because

the directional information is only lost when the implicit integral over angle is performed

in calculating the total weight deposited in a given voxel; with the introduction of some
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angular discretisation, the radiance could be simulated without a substantial increase on

the already modest memory demands.

4.4.1 Angular discretisation and basis

For the reasons described above, it is not attractive to discretise in angle by dividing the

angular domain into segments (also known as the discrete ordinate method). Taking

inspiration from the Pn approximation [63], the field at every position can be expanded

as a series of spherical harmonics [183, 184]. The direct analogue in 2D is to use a

Fourier expansion. The expansion for the radiance in these bases is therefore given by

φ(x, ŝ′) =
∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)1/2

aml (x)Y m
l (x, ŝ′), (4.38)

in 3D, where Y m
l (x, ŝ′) are the real spherical harmonics, expressed as

Y m
l (ŝ′) =


((

2l+1
4π

) ( l−|m|!
l−|m|!

))1/2
(−1)1/2(m+|m|) cos(mψ)P

|m|
l (cos θ) for m ≥ 0((

2l+1
4π

) ( l−|m|!
l−|m|!

))1/2
(−1)1/2(m+|m|) sin(mψ)P

|m|
l (cos θ) for m < 0

(4.39)

In this case, the aml are then given by aml (x) =
∑Np

np=1 dWnp

∫
S2 δ(ŝ − ŝ′np)Y

m+
l (x, ŝ)dŝ,

where + indicates complex conjugation; in the case of real spherical harmonics, the

coefficients are also real, meaning this is equivalent to aml (x) =
∑Np

np=1 dWnp

∫
S2 δ(ŝ −

ŝ′np)Y
m
l (x, ŝ)dŝ. The 3D model was however not implemented, and only the 2D model

is discussed in subsequent chapters of this thesis.

In 2D, the Fourier expansion is simply given by

φ(x, θ′) =
1

2π
a0(x) +

1

π

N=∞∑
n=1

an(x) cos(nθ′) +
1

π

N=∞∑
n=1

bn(x) sin(nθ′), (4.40)
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where

a0 =

Np∑
np=1

dWnp

∫
S1
δ(θ − θ′)dθ =

Np∑
np=1

dWnp (4.41)

an =

Np∑
np=1

dWnp

∫
S1
δ(θ − θ′np) cos(nθ)dθ =

Np∑
np=1

dWnp cos(nθ′np) (4.42)

bn =

Np∑
np=1

dWnp

∫
S1
δ(θ − θ′np) sin(nθ)dθ =

Np∑
np=1

dWnp sin(nθ′np), (4.43)

for every position x in the domain. Thus, at every grid/mesh element, the total weight

deposited, Wtot, is scaled by the coefficient for the associated spherical/Fourier harmonic.

This method of discretisation has two potential benefits over segmenting the unit sphere/-

circle. Firstly, memory demands are reduced as few orders (<3) are required to store

diffuse light fields, although many more are required near the source to adequately repre-

sent directional propagation. The impact of running simulations using a limited number

of Fourier/spherical harmonics is discussed in Sections 4.4.4 and 5.3.3. Secondly, every

photon contributes to the weight deposited in the nth harmonic, while when the unit

sphere/circle is segmented, a photon only deposits weight in the segment corresponding

to the photon’s direction, meaning a greater number of photons would be required to

achieve the same variance. This novel MC model calculates the fluence as it is simply

equal to a0(x), and the directional portion of the field is represented by the higher or-

der terms. This can be illustrated by plotting the energy deposited in each harmonic

from an isotropic point source. The domain was 4mm×4mm with 0.1mm pixel size

and up to second order Fourier harmonics were stored. Figure 4.6 demonstrates an and

bn for n ∈ [0, 2]. The zeroth-order term, a0, is proportional to the fluence and repre-

sents isotropic light propagation, while the higher order terms in the series represent the

directional propagation of light, as is evident from Figure 4.6.
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F I G U R E 4 . 6 : Fourier harmonics an (top row) and bn (bottom row), for n ∈ [0, 2],
simulated using MC model with 106 photons in 4mm×4mm domain and isotropic point

source at centre. Images normalised by maximum value of a0.

4.4.2 Program flow chart

Other than the deposition of weight, the program flow of both the 2D and 3D radiance

Monte Carlo models is the same as that presented by Fang [132] and Prahl [162], as

displayed in Fig. 4.7.
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Launch photon (x, ŝ′)

Sample step length S = U([0, 1])/µs

Step photon distance dS

Cross boundary? Terminate photon

Scale weight by reflection coefficient

Update step length S ← S − dS

Scale step length by µs,1/µs,2 at new position

Deposit weight into harmonic ∆W = W (1− exp(−µadS))

W ≥WT ? Roulette

S < dS?Scatter into new direction

yes

no

yes

F I G U R E 4 . 7 : Flowchart of regular grid radiance Monte Carlo algorithm.

4.4.3 Validation of RMC (2D radiance Monte Carlo model)

It is common to validate other models of light transport against Monte Carlo models

as MC is often considered the gold standard. This is not an option here as MC models
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that compute the radiance are not available. There is a simple analytic solution for

the fluence in a homogeneous 2D half-space illuminated by a pencil beam. This model

indicates that in the far-field, at distances z � 1/µ′s into the domain, the fluence decays

exponentially as exp(−µeffz) [167]. This model derives from the DA in 2D and yields

the effective attenuation coefficient µeff =
√

2µa(µa + µs(1− g)). In order to compare

the 2D radiance MC code against this simple diffusion model in 2D, a MC simulation was

run with a domain 30mm×30mm containing 600×600 pixels illuminated at the centre

of the edge at z=0mm with a collimated pencil beam consisting of 107 photons. The

medium properties were chosen to be typical of tissue and consistent with those used

in the validation performed by Wang et al. [167]: µa = 0.01mm-1, µs = 10mm-1 and

g = 0.9 and the boundaries were index-matched. Comparing the 2D radiance MC code

in the far-field against this diffusion model by fitting a line to the log fluence integrated

in the transverse direction as a function of z, it was found that a sufficiently accurate

far-field fluence estimate is obtained as the predicted value of µeff was 0.1421mm-1 and

the MC simulation yielded 0.1424mm-1, i.e. an error of 0.2%.

0 50 100 150 200 250 300
−5

−4

−3

−2

−1

0

1

2

z [mm]

lo
g(

Φ
(z

))

 

 
RMC

Fit (µ
eff

=0.1421mm−1)

F I G U R E 4 . 8 : Plot of the log fluence in a homogeneous 30mm×30mm domain illumi-
nated by a pencil beam at the centre of the edge at z=0mm, integrated over the x-axis
and plotted as a function of depth, z. A straight line was fit to the region of the black
curve (RMC) between 20mm and 160mm, which yielded a slope of 0.1421mm-1, which
is equal to µeff . The rapid decrease in the black curve after a distance of approximately
220mm is due to light escaping the domain at the index-matched boundary at 300mm.

However, the accuracy of the model in the near-field, particularly the accuracy of ra-

diance estimates, is also of interest. There are few methods by which the radiance
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can be calculated in 2D which have been independently validated. Finite element solu-

tions to the RTE in 2D exist, but these have only undergone basic validation for angle-

independent quantities such as the fluence [180], exitance [53] or transmittance [185]

and have not demonstrated the validity of angle-resolved radiance estimates. Analytic

solutions for the radiance also exist [67, 72, 73, 186] but these suffer from inaccuracies

near the source when evaluated numerically [74] and the methods themselves have only

been validated for semi-infinite or bounded circular media [72]. Nevertheless, good

agreement of the angle-resolved radiance a few mm from the source would provide

some confidence in the accuracy of the radiance MC model proposed in this chapter. Due

to a lack of analytic solutions for rectangular bounded media, the comparison was per-

formed using a large, bounded 15mm×15mm square domain for the MC model with an

isotropic point source at its centre, which emitted 108 photons, and 5 Fourier harmonics

were recorded. The analytic solution was for an infinite domain also illuminated by an

isotropic point source [67]. The radiance was measured as a function of angle at 2mm

and 3mm away from the source in the positive x-direction and is plotted in Fig. 4.9.
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F I G U R E 4 . 9 : Polar plots of the angle-resolved radiance due to an isotropic point source
in a homogeneous domain with µa = 0.01mm-1, µs = 10mm-1 and g = 0.9. Results
from an analytic method (infinite domain) and RMC simulations (15mm×15mm square

domain) shown.

Very good agreement is observed between the two sets of radiance profiles plotted. There

is a very minor discrepancy at zero and π radians (parallel to the horizontal axis), where

the MC model very slightly underestimates the estimate made using the analytic solution.

This discrepancy is more clearly illustrated in Fig. 4.10, which plots the same data as
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in Fig. 4.9 but the log of the angle-resolved radiance. The MC model underestimating

the radiance compared with the analytic solution is most likely due to the fact that

the MC simulation was run in a finite domain meaning the light field decays slightly

more quickly with distance from the source compared with the analytic solution which

is valid for an infinite domain. While this effect is hardly noticeable near the source, at a

distance of 2mm, it is more prominent at a distance of 3mm. Note that comparisons were

also performed using 10, 20 and 40 harmonics in the MC simulations; however, these

were only run using 106 photons due to extended computation times. Good agreement

was observed between the MC model and the analytic solutions, but the high frequency

components were very prominent in the plots because an insufficient number of photons

were simulated for convergence of the MC solution.
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F I G U R E 4 . 1 0 : Plots of the angle-resolved log-radiance due to an isotropic point source
in a homogeneous domain with µa = 0.01mm-1, µs = 10mm-1 and g = 0.9. Results
from an analytic method (infinite domain) and RMC simulations (15mm×15mm square

domain) shown.

4.4.4 Alternative bases

Since a collimated illumination profile is a useful approximation to a beam of laser light,

the capability to model this situation is desirable. The directional portion of the source

term associated with this illumination type is a delta-function, which is not accurately

represented using small N in the corresponding Fourier or spherical harmonic series.

It may therefore be worthwhile to consider an amendment to these bases whereby a

δ-function in the source direction, ŝ0 or θ0, is included explicitly. These alternative series
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can be written as

φ(x, ŝ′) =

∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)1/2

aml (x)Y m
l (x, ŝ′) + aδδ(ŝ− ŝ0), (4.44)

and

φ(x, θ′) =
1

2π
a0(x) +

1

π

N=∞∑
n=1

an(x) cos(nθ′) +
1

π

N=∞∑
n=1

bn(x) sin(nθ′) + aδδ(θ
′ − θ0),

(4.45)

where aδ is the coefficient associated with directional component of the field. Of course,

a photon travelling in the direction ŝ0 will deposit energy into all the angular components

in a given voxel; however, this calculation is unnecessary and the field can be split into

scattered and unscattered components – also referred to as the collided and uncollided

components [62] – with unscattered energy deposited into aδ which then acts as a source

term for the scattered field [185]. This method however was not implemented in this

thesis and, as will be observed later, only 10-20 Fourier harmonics are required when

applying RMC in 2D to the inverse problem in QPAT.

4.5 Summary

This chapter presented fundamental approaches to the development of MC light trans-

port algorithms and demonstrated that, simply by decomposing the incident photon

direction at each voxel into Fourier harmonics scaled by the photon weight, the angularly-

dependent radiance could be simulated. The particular approach applied in solving the

RTE for the radiance was to use ‘frequency’-domain angular discretisation at every voxel,

which were Fourier and spherical harmonics in 2D and 3D, respectively. The 2D code

was validated against analytic solutions for the fluence, in the diffuse regime, and the

angle-resolved radiance was shown to match analytic solutions a few mm away from an

isotropic point source. There are two important benefits of having codes that are capable

of computing the radiance accurately in heterogenous media. Firstly, it can be used

as a forward model of the radiance and offers more compact storage of the radiance
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through the use of Fourier or spherical harmonic angular discretisation. The second,

more crucial, advantage of this radiance MC code in the context of QPAT is that it can be

used in conjunction with an adjoint model to compute gradients of an error functional

for application in the optical inverse problem. This is investigated in the next chapter.





Chapter 5

Computing functional gradients

using an adjoint Monte Carlo model

of radiance

In Chapter 4, 2D and 3D Monte Carlo models capable of modelling the radiance were

presented. The 2D model used a Fourier representation for the angular part of the ra-

diance, while the 3D model used spherical harmonics. Forward models of the radiance

on their own are of limited applicability because measuring the radiance is not straight-

forward and PA images depend on the fluence. The key motivation for computing the

radiance however is that the inverse problem in QPAT is both large scale and nonlin-

ear, meaning the capability to quickly and accurately estimate gradients of the error

between measured and simulated data is desirable. Monte Carlo models of the radiance

are a promising candidate as they are highly parallelisable so simulations can be run

on distributed computing clusters or GPGPUs with minimal cross-talk between nodes

or cores. In this chapter, the radiance Monte Carlo code is extended to compute the

adjoint radiance, which can be used to assist the computation of gradients of an error

functional. The derivation of expressions for functional gradients is demonstrated and

validated against the gold standard method of calculating gradients: finite differencing.
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5.1 Least-squares approach to inverting photoacoustic images

The estimation of the absorption and/or scattering coefficient from PAT images can

be achieved using least-squares minimisation of some error between simulated and

measured data as shown in Eq. (5.1).

arg min
[µa,µs]

ε =
1

2
||pmeas0 − p0(µa, µs)||2 . (5.1)

This inversion approach was chosen here due to it being mature within the field of

QPAT and due to the availability of a number of optimisation routines. In order for

the absorption and scattering coefficients to converge to their true values, i.e. those

that yielded the measured image pmeas0 , gradients of the error functional with respect to

the absorption and scattering coefficients are required for the majority of optimisation

schemes that are applicable to the large scale inverse problem in QPAT. As there is no

closed-form expression for a Monte Carlo model, analytic derivatives of the absorbed

energy density, and hence the error functional, with respect to µa and/or µs cannot be

calculated. Instead, finite differencing using a perturbation in µa or µs can be applied to

approximate the derivative numerically.

5.1.1 Finite difference algorithm for gradient computation

Finite differencing computes the gradient of the error functional about a point χ0 (e.g.

µa) by perturbing the value of χ and measuring the respective change in ε. This typically

involves computing the difference between the perturbed and unperturbed values of ε

over the perturbation magnitude; it is worth noting that this is referred to as a forward-

difference (shown in Eq. (5.2)), but other first-order differencing schemes exist, such as

central differences, as well as higher-order schemes, all deriving from Taylor’s theorem.

∂ε(x)

∂χ

∣∣∣∣
χ0

= lim
δχ→0

(
ε(x, χ0 + δχ)− ε(x, χ0)

δχ

)
, (5.2)

where the derivative is being performed with respect to χ (µa and/or µs in the case of

the inverse transport problem) at position x, χ0 is the current estimate of the parameter
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and δχ is the perturbation. The value of the perturbed error functional is calculated in

the following way

ε(x, χ0 + δχ) =
1

2
||pmeas0 − p0(x, χ0 + δχ)||2 , (5.3)

which in a piecewise constant basis, in a structured or unstructured grid, can be expressed

discretely at the rth voxel as

εr(χ0 + δχ) =
1

2
〈(pmeas0 − p0(χr,0 + δχ))dV, pmeas0 − p0(χr,0 + δχ)〉, (5.4)

where dV is a diagonal matrix containing grid element volumes.

Eq. (5.2) must be evaluated using a sufficiently small value of δχ in order for the

functional gradient to converge to its true value. A typical approach therefore is to test

the convergence of the gradient estimate by progressively decreasing δχ until there is

no noticeable change in ∂ε
∂χ . However, due to the finite variance in quantities estimated

using a MC model, reducing the perturbation magnitude to a very small fraction of χ0

will result in noise dominating the gradient estimate. MC noise in p0(χ0) and p0(χ0 + δχ)

is additive when calculating a difference through Eq. (5.4), resulting in greater noise

levels in ∂ε
∂χ than in just the fluence or absorbed energy density. The consequence of the

noise will become apparent later in this chapter.

The finite difference scheme relies on the perturbation δχ to be applied independently

at every position r where the gradient is to be computed. For large PAT images, which

can contain millions of unknowns, as many model evaluations may be required, each of

which is expensive given the low noise, and therefore large number of photons, required

for accurate finite difference calculation. Thus, in order to obtain an estimate of the

gradient over several voxels in the domain and ensure that the estimate has converged,

the model must be run at several positions, for several values of δχ and for a large number

of photons. Despite the fact that this process introduces extremely large computation

times for accurate 3D transport models, finite difference schemes remain a useful tool in

the validation of alternative gradient computation approaches.
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5.2 Adjoint Monte Carlo model of radiance

The principal attraction of adjoint-assisted gradient calculation compared with finite

differencing is that the gradient can be obtained using two model evaluations per Nvox

unknowns where Nvox is the number of elements in the domain. The computation of

the adjoint radiance, φ∗, is similar to that of the forward radiance, except for the fact

that sources are distributed internally in the domain, emit photons isotropically and the

source strength is scaled by µa (Hmeas −H(µa, µs)), the adjoint source term. In order to

write down the RTE in adjoint form, reciprocity of this equation is exploited, which can

be thought of as propagating photons along −ŝ rather than ŝ, and similarly using the

symmetry of the scattering phase function since P (ŝ′ · ŝ) ≡ P (ŝ · ŝ′):

(−ŝ · ∇+ µa(x) + µs(x))φ∗(x, ŝ) = µs(x)

∫
Sn−1

P (ŝ′, ŝ)φ∗(x, ŝ′)dŝ′ + q∗(x, ŝ).

(5.5)

The particular choice of source term in the adjoint RTE, q∗(x, ŝ), is discussed in Section

5.3, while the implementation of q∗ is discussed below.

5.2.1 Source implementation

Because the absorption of energy in a particular voxel does not depend on angle, and

since the adjoint model represents the probability of energy in the forward model being

absorbed in a given voxel, the emission of photons from adjoint sources must be isotropic.

This was implemented by launching photons from the centre of source voxels xsource

with the position distributed randomly and uniformly over the voxel: xsource + dx
2 U [0, 1],

where dx is the voxel edge length and U is a uniform random variable. Distributing the

starting positions of photons over the voxel in this way is only valid for the piecewise

constant basis used in the adjoint model and other bases would require photons’ starting

positions to be distributed differently. The isotropic initial directions were sampled in

the usual way using Eqs. (4.35) and (4.36).
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Since the source strength at a given voxel is given by µra (Hmeas −H(µra, µ
r
a)), rather than

photons being launched with unitary weight, photon weight must be scaled according to

the source strength with normalisation of the output quantity (i.e. radiance, absorbed

energy density, harmonic, etc.) being Np. It is worth noting that certain voxels will of

course contain negative sources, meaning photon weight is initially negative and weight

deposition is also negative. This has the implication that photon termination occurs when

the absolute value of the photon weight falls below the threshold value: |Wp| < WT (see

Section 4.3.3).

5.2.2 Validation of the adjoint model

In order to determine whether the implementation of the adjoint MC model is genuinely

the adjoint of the forward model, the definition of the adjoint operator was applied:

〈Lx,y〉 = 〈x,L∗y〉, (5.6)

where L and L∗ are the forward and adjoint operators of the RTE and x and y represent

source/measurement operator applied to the resultant field. Specifically, the three cases

that require testing are:

Case 1 x1 = 1
2π δ(r− rs) y1 = δ(r− rd) (5.7)

Case 2 x2 = 1
2π δ(r− rs) y2 = δ(r− rd)Pd(r, ŝ) (5.8)

Case 3 x3 = δ(r− rs)Ps(ŝ) y3 = Pd(r), (5.9)

where rs and rd are the positions of the source and virtual detector, respectively, Pd(r, ŝ)

is the spatial and angular sensitivity of the ‘detector’ and Ps(r, ŝ) is the spatial and angular

sensitivity of the ‘source’. Thus, a summary of the cases being considered are an isotropic

point source-detector pair (Case 1), an isotropic point source and an anisotropic point

detector (Case 2) and an anistropic point source and an isotropic detector distributed

over the domain (Case 3). Substituting the expressions for x1,2,3 and y1,2,3 into Eq. (5.6)
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yields

∫
Ω

∫
2π
φ1(r, ŝ)δ(r− rd)drdŝ =

∫
Ω

∫
2π
φ∗1(r, ŝ)δ(r− rs)drdŝ, (5.10)∫

Ω

∫
2π
φ2(r, ŝ)δ(r− rd)Pd(r, ŝ)drdŝ =

∫
Ω

∫
2π
φ∗2(r, ŝ)δ(r− rs)drdŝ, (5.11)∫

Ω

∫
2π
φ3(r, ŝ)Ps(r)drdŝ =

∫
Ω

∫
2π
φ∗3(r, ŝ)δ(r− rs)Ps(ŝ)drdŝ, (5.12)

where φ1,2,3 and φ∗1,2,3 are the forward and adjoint radiances from computing Lx1,2,3 and

L∗y1,2,3, respectively. Eqs. (5.10), (5.11) and (5.12) simplify to

Φ1(rd) = Φ∗1(rs), (5.13)∫
2π
φ2(rd, ŝ)Pd(rd, ŝ)dŝ = Φ∗2(rs), (5.14)

2π

∫
Ω

Φ3(r)Pd(r)dr =

∫
2π
φ∗3(rd)Ps(ŝ)dŝ. (5.15)

It can be seen from Eq. (5.13) that the case where a pair of isotropic δ-functions are used

for x1 and y1, that we expect the resulting fluence values at their respective positions,

Φ1(rd) and Φ∗1(rs), to be equal. This is an intuitive result given the reciprocity of the RTE

and the angular indpendence of the source-detector combination.

Simulations were performed using a domain 40mm×40mm in size with 101 pixels along

each dimension; 10 Fourier harmonics were used and each source distribution emitted

106 photons. rs was at the centre of the domain with rd moved along the x-direction

across the domain at y=3.6mm from the boundary. The left- and right-hand sides of

Eq. (5.13) are plotted in Fig. 5.1 as a function of rd,x and it can be seen that indeed

the fluences are equal for the range of rd considered. Note that the plots for L∗y1,2,3

are consistently noisier than for Lx1,2,3 because L∗y1,2,3 must be evaluated for several

positions rd meaning the MC model must be re-run for each position. In subsequent

cases a drop in SNR is noticeable which is due to a decrease in signal from introducing

angular dependence in the source/detector.
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<Lx,y>

<x,L*y>

F I G U R E 5 . 1 : Plot of 〈Lx,y〉 = 〈x,L∗y〉 for validation of adjoint model. Plot was
produced with x and y as two isotropic point sources, with x at the centre of the

domain and y translated across the domain at y=23.6mm from the boundary.

However, it is attractive to demonstrate that the equality in Eq. (5.6) holds when an

anisotropic detector is used. The functions chosen for x2 and y2 were: x2 = δ(r − rs)

and y2 = δ(r− rs)
1
π sin2(2θ). The angular portion of y2 is plotted in Fig. 5.2(a). rs was

again placed at the centre of the domain and with rd moved along the x-direction across

the domain at y=23.6mm. The two sides of the equality are plotted as a function of rd,x

in Fig. 5.2(b), where again good agreement is obtained, suggesting the MC model is

correctly modelling L∗.
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<Lx,y>

<x,L*y>

F I G U R E 5 . 2 : (a) Polar plot of source distribution for y2 = δ(r − rs)
1
π sin2(2θ); (b)

Plot of 〈Lx,y〉 = 〈x,L∗y〉 for validation of adjoint model. Plot was produced with x
as an isotropic point source at the centre of the domain and y as a point source with
angular dependence following 1

π sin2(2θ). y was translated across the domain along a
line 4.0mm from the centre of the domain.

In practice, while correct modelling of the angular portion of L∗ is important, the com-

putation of functional gradients is performed using a source which is isotropic and
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distributed in space over the domain as Ps(r). Ps(r) is plotted in Fig. 5.3(a). The ‘detec-

tor’ was the same as that above, and was again translated across the domain, with the

resulting left- and right-hand sides of Eq. (5.15) plotted in Fig. 5.3(b); good agreement

is observed once again.
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<Lx,y>

<x,L*y>

F I G U R E 5 . 3 : (a) Plot of the isotropic detector distribution y3 = Pd(r); (b) Plot
of 〈Lx,y〉 = 〈x,L∗y〉 for validation of adjoint model. Plot was produced with x as
anisotropic point source emitting light over angle following 1

π sin2(2θ) and y was a
distributed-source emitting light isotropically. x was translated along a line across the
domain at y=4.0mm from the centre of the domain, as shown by the grey line dashed

line in (a).

It is worth noting that good agreement was obtained in Case 1 and Case 2, without

any scaling of the left- and right-hand sides, as the angular portion of the source and

detector were properly normalised and spatially they were just δ-functions, meaning the

consideration of the basis functions in space, uj , and in angle, sj , in the integrals was not

necessary. However, in Case 3, y3 is a function of space, meaning that the integral over

Ω of the basis functions requires proper consideration. Substituting the fields projected

into their respective bases into Eq. (5.12) yields

∑
i,j,k,l

∫
Ω

∫
2π
φ3(r, ŝ)i,ju(r)is(r)jPd(r)k,lu(r)ks(r)ldrdŝ

=
∑
i,j,k,l

∫
Ω

∫
2π
φ∗3(r, ŝ)i,ju(r)is(r)jδ(r− rs)Ps(ŝ)u(r)ks(r)ldrdŝ. (5.16)

The integral over space of the basis functions, recalling that a structured grid was used,

produces a factor of (number of elements) × |dr|. The element area |dr| cancels as it

appears on both sides in Eq. (5.16), but Nvox = (number of elements) only appears on
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the left-hand side and does not cancel, as shown in Eq. (5.17)

2πNvox

∑
i,j

∫
Ω
φ3(r, ŝ)iPd(r)iu(r)idr

= 2π
∑
i,j

∫
2π
φ∗3(rs, ŝ)i,jPs(rs)i,j

∫
Ω
u(r)is(r)jdrdŝ, (5.17)

A fourth case, which most closely simulates the conditions present in the inversions in

Chapter 6, involves collimated illumination with a line source on one side of the domain

and an isotropic internal adjoint source distribution. Under these conditions, x consists

of a δ-function in angle, x4 = Ps(x)δ(θ), while y4 is just a distribution of isotropic point

sources through the domain, y4 = Pd(r). The issue with the δ-function in angle is that

very few photons have exactly this direction at the source position on the boundary;

this means that estimates of 〈x4,L∗y4〉 are very noisy as few photons reaching the line

source are travelling at exactly θ = 0 (of course this is only problematic when evaluating

Eq. (5.6), which is not carried out when evaluating functional gradients). In order to

improve the SNR in this case many orders of magnitude more photons would need to

be simulated when applying L∗ to y4. Initial simulations of this fourth case showed

too much noise to determine whether there was good agreement between 〈y4,Lx4〉 and

〈x4,L∗y4〉, even with the acceptance angle of x4 expanded by ±5 degrees. This data is

therefore not presented here, but Cases 1–3 are an adequate demonstration that L∗ is

indeed the adjoint of L.

5.3 Adjoint-assisted gradient computation

Functional gradients can be calculated using the adjoint radiance by differentiating the

expression for the error functional with respect to the model parameters χ = (µa, µs)

[63, 107]. Starting with the definition in Eq. (5.1), this function can be re-expressed
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with an integral over the domain Ω and Γ set to one with no loss of generality:

ε =
1

2
||Hmeas −H(µa, µs)||2 (5.18)

=
1

2

∫
Ω

(Hmeas −H(µa, µs))
2 dr. (5.19)

Taking the derivative with respect to µa in the rth voxel gives

∂ε

∂µra
= −

∫
Ω

∂H

∂µra
(Hmeas −H) dr, (5.20)

which can be re-written using the product rule and the definition H = µaΦ,

∂H

∂µra
=
∂µa

∂µra
Φ +

∂Φ

∂µra
µa. (5.21)

Substituting Eq. (5.21) into (5.20) and using the approximation that the basis function

derivative in the voxel-wise basis is just a delta-function, such that
∫

Ω
∂µa
∂µra

Φdr = δ(x −

xr)Φ, yields

∂ε

∂µra
= Φδ(x− xr) (Hmeas,r −Hr)−

∫
Ω

∂Φ

∂µra
(Hmeas −H) dr. (5.22)

The sensitivity of the fluence to changes in the absorption is generally unknown, but

can be estimated by differentiating the RTE in Eq. (5.23) with respect to the absorption

coefficient

(ŝ · ∇+ µa + µs)φ(ŝ) = µs

∫
Sn−1

P (ŝ′, ŝ)φ(ŝ′)dŝ′ + q(ŝ). (5.23)

(ŝ · ∇+ µa + µs)
∂φ(ŝ)

∂µra
− µs

∫
Sn−1

P (ŝ′, ŝ)
∂φ(ŝ′)

∂µra
dŝ′ = −φ(ŝ)δ(x− xr). (5.24)

At this point, the adjoint model is introduced by calculating the product of φ∗ with Eq.

(5.24) and subtracting the product of −∂φ/∂µra with Eq. (5.5), where φ∗ is the solution
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to the adjoint RTE in Eq. (5.5) with source term µa (Hmeas −H(µa, µs)):

φ∗(ŝ)(ŝ · ∇)
∂φ(ŝ)

∂µra
+
∂φ(ŝ)

∂µra
(ŝ · ∇)φ∗(ŝ)

−φ∗(ŝ)µs

∫
Sn−1

P (ŝ, ŝ′)
∂φ(ŝ′)

∂µra
dŝ′ +

∂φ(ŝ)

∂µra
µs

∫
Sn−1

P (ŝ, ŝ′)φ∗(ŝ′)dŝ′

= −φ∗(ŝ)φ(ŝ)δ(x− xr)− ∂φ(ŝ)

∂µra
µa (Hmeas −H(µa, µs)) . (5.25)

Eq. (5.25) can be simplified by noting that the left-hand side is equal to zero. To show

this, begin by integrating Eq. (5.25) over angle and space,

∫
Ω

∫
Sn−1

φ∗(ŝ)(ŝ · ∇)
∂φ(ŝ)

∂µra
dŝdr +

∫
Ω

∫
Sn−1

∂φ(ŝ)

∂µra
(ŝ · ∇)φ∗(ŝ)dŝdr

−
∫

Ω
µs

∫
Sn−1

φ∗(ŝ)

∫
Sn−1

P (ŝ, ŝ′)
∂φ(ŝ′)

∂µra
dŝ′ dŝdΩ

+

∫
Ω
µs

∫
Sn−1

∂φ(ŝ)

∂µra

∫
Sn−1

P (ŝ, ŝ′)φ∗(ŝ′)dŝ′dŝdΩ

= −
∫

Ω
δ(x− xr)

∫
Sn−1

φ∗(ŝ)φ(ŝ)dŝdΩ

−
∫

Ω
µa(Hmeas −H)

∫
Sn−1

∂φ(ŝ)

∂µra
dŝdΩ. (5.26)

Using an alternative form of the divergence theorem

∫
Ω
ab · ∇cdΩ +

∫
Ω
cb · ∇adΩ =

∫
∂Ω
b · n̂acdΩ, (5.27)

with

a = φ∗(ŝ), b = ŝ and c =
∂φ(ŝ)

∂µra
,
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allows the simplification of Eq. (5.26) to

∫
∂Ω

∫
Sn−1

(ŝ · n̂)φ∗(ŝ)
∂φ(ŝ)

∂µra
dŝdΩ

−
∫

Ω
µs

∫
Sn−1

φ∗(ŝ)

∫
Sn−1

P (ŝ, ŝ′)
∂φ(ŝ′)

∂µra
dŝ′dŝdΩ

+

∫
Ω
µs

∫
Sn−1

∂φ(ŝ)

∂µra

∫
Sn−1

P (ŝ, ŝ′)φ∗(ŝ′)dŝ′dŝdΩ

= −
∫

Ω
δ(x− xr)

∫
Sn−1

φ∗(ŝ)φ(ŝ)dŝdΩ

−
∫

Ω
µa(Hmeas −H)

∫
Sn−1

∂φ(ŝ)

∂µra
dŝdΩ. (5.28)

The boundary conditions state that the adjoint radiance, φ∗, and derivative of the radi-

ance, ∂φ∗/∂µra, go to zero on the boundary meaning the first term in Eq. (5.28) is equal

to zero, giving

−
∫

Ω
µs

∫
Sn−1

φ∗(ŝ)

∫
Sn−1

P (ŝ, ŝ′)
∂φ(ŝ′)

∂µra
dŝ′dŝdΩ

+

∫
Ω
µs

∫
Sn−1

∂φ(ŝ)

∂µra

∫
Sn−1

P (ŝ, ŝ′)φ∗(ŝ′)dŝ′dŝdΩ

= −
∫

Ω
δ(x− xr)

∫
Sn−1

φ∗(ŝ)φ(ŝ)dŝdΩ

−
∫

Ω
µa(Hmeas −H)

∫
Sn−1

∂φ(ŝ)

∂µra
dŝdΩ. (5.29)

The aforementioned symmetry in the phase function (see Section 5.2) means that

∫
Ω
µs

∫
Sn−1

∫
Sn−1

P (ŝ, ŝ′)φ∗(ŝ)
∂φ(ŝ′)

∂µra
dŝ′dŝdΩ (5.30)

=

∫
Ω
µs

∫
Sn−1

∫
Sn−1

P (ŝ, ŝ′)φ∗(ŝ′)
∂φ(ŝ)

∂µra
dŝ′dŝdΩ. (5.31)

and therefore

∫
Ω
µa(Hmeas −H)

∫
Sn−1

∂φ(ŝ)

∂µra
dŝdΩ = −

∫
Ω
δ(x− xr)

∫
Sn−1

φ∗(ŝ)φ(ŝ)dŝdΩ.

(5.32)
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Recalling the definition that Φ =
∫
Sn−1 φ(ŝ)dŝ, allows re-arranging of Eq. (5.32) to

∫
Ω

∂Φ

∂µra
µa(Hmeas −H)dr =−

∫
Ω
δ(x− xr)

∫
Sn−1

φ∗(ŝ)φ(ŝ)dŝdΩ

=

∫
Sn−1

φ∗,r(ŝ)φr(ŝ)dŝ, (5.33)

where φr and φ∗,r are the radiance and adjoint radiance at position r, respectively.

Substitituing into Eq. (5.20) yields an expression for the functional gradient with respect

to absorption at any position in the domain:

∂ε

∂µa
= −Φ(Hmeas −H) +

∫
Sn−1

φ∗(ŝ)φ(ŝ)dŝ. (5.34)

Using the derivative of the error function as the starting point, the sensitivity of this func-

tion with respect to the scattering coefficient can be obtained using a similar procedure

as for the absorption coefficient,

∂ε

∂µrs
= −

∫
Ω

∂H

∂µrs
(Hmeas −H) dr. (5.35)

Differentiating the RTE with respect to µs gives

(ŝ · ∇+ µa + µs)
∂φ(ŝ)

∂µrs
− µs

∫
Sn−1

P (ŝ′, ŝ)
∂φ(ŝ′)

∂µrs
dŝ′ = −φ(ŝ)δ(x− xr), (5.36)

which, in conjunction with the adjoint equation in Eq. (5.37),

(−ŝ · ∇+ µa(x) + µs(x))φ∗(x, ŝ)

= µs(x)

∫
Sn−1

P (ŝ′, ŝ)φ∗(x, ŝ′)dŝ′ + µa (Hmeas −H(µa, µs)) , (5.37)
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allows us to evaluate φ∗×(5.36) −∂φ/∂µrs×(5.5)

φ∗(ŝ)(ŝ · ∇)
∂φ(ŝ)

∂µrs
+
∂φ(ŝ)

∂µrs
(ŝ · ∇)φ∗(ŝ)

−φ∗(ŝ)µs

∫
Sn−1

P (ŝ, ŝ′)
∂φ(ŝ′)

∂µrs
dŝ′ +

∂φ(ŝ)

∂µrs
µs

∫
Sn−1

P (ŝ, ŝ′)φ∗(ŝ′)dŝ′

=

(∫
Sn−1

P (ŝ, ŝ′)φ∗(ŝ)φ(ŝ′)dŝ′ − φ∗(ŝ)φ(ŝ)

)
δ(x− xr)− (5.38)

∂φ(ŝ)

∂µrs
µa(Hmeas −H). (5.39)

Integrating both sides over angle, ŝ, and the domain, Ω,

∫
Ω

∫
Sn−1

φ∗(ŝ)(ŝ · ∇)
∂φ(ŝ)

∂µrs
dŝdΩ +

∫
Ω

∫
Sn−1

∂φ(ŝ)

∂µrs
(ŝ · ∇)φ∗(ŝ)dŝdΩ

−
∫

Ω
µs

∫
Sn−1

φ∗(ŝ)

∫
Sn−1

P (ŝ, ŝ′)
∂φ(ŝ′)

∂µrs
dŝ′dŝdΩ

+

∫
Ω
µs

∫
Sn−1

∂φ(ŝ)

∂µrs

∫
Sn−1

P (ŝ, ŝ′)φ∗(ŝ′)dŝ′dŝdΩ

=

∫
Ω

∫
Sn−1

(∫
Sn−1

P (ŝ, ŝ′)φ∗(ŝ)φ(ŝ′)dŝ′ − φ∗(ŝ)φ(ŝ)

)
dŝ δ(x− xr)dΩ

−
∫

Ω
µa(Hmeas −H)

∫
Sn−1

∂φ(ŝ)

∂µrs
dŝdΩ. (5.40)

Using the statement of the divergence theorem in Eq. (5.27) to write

∫
Ω

∫
Sn−1

φ∗(ŝ)(ŝ · ∇)
∂φ(ŝ)

∂µrs
dŝdΩ +

∫
Ω

∫
Sn−1

∂φ(ŝ)

∂µrs
(ŝ · ∇)φ∗(ŝ)dŝdΩ

=

∫
∂Ω

∫
Sn−1

(ŝ · n̂)φ∗(ŝ)
∂φ(ŝ)

∂µrs
dŝdΩ. (5.41)

we find that the first two terms of Eq. (5.40) are equal to zero as the fluence (and its

derivative with respect to µs) are zero on the boundary. Thus, Eq. (5.40) reduces to

∫
Ω
µs

∫
Sn−1

∫
Sn−1

P (ŝ, ŝ′)φ∗(ŝ)
∂φ(ŝ′)

∂µrs
dŝ′ dŝdΩ

−
∫

Ω
µs

∫
Sn−1

∫
Sn−1

P (ŝ, ŝ′)φ∗(ŝ′)
∂φ(ŝ)

∂µrs
dŝ′dŝdΩ

=

∫
Ω

∫
Sn−1

(
φ∗(ŝ)φ(ŝ)−

∫
Sn−1

P (ŝ, ŝ′)φ∗(ŝ)φ(ŝ′)dŝ′
)
dŝ δ(x− xr)dΩ

+

∫
Ω
µa(Hmeas −H)

∫
Sn−1

∂φ(ŝ)

∂µrs
dŝdΩ. (5.42)
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Once again exploiting the symmetry of the phase function, the left-hand side of Eq.

(5.42) is equal to zero and

−
∫

Ω
µa(Hmeas −H)

∫
Sn−1

∂φ(ŝ)

∂µra
dŝdΩ

=

∫
Ω

∫
Sn−1

(
φ∗(ŝ)φ(ŝ)−

∫
Sn−1

P (ŝ, ŝ′)φ∗(ŝ)φ(ŝ′)dŝ′
)
dŝ δ(x− xr)dΩ. (5.43)

It follows that

−
∫

Ω

∂Φ

∂µrs
µa(Hmeas −H)dΩ (5.44)

=

∫
Sn−1

φ∗,r(ŝ)φr(ŝ)dŝ−
∫
Sn−1

∫
Sn−1

φ∗,rP (ŝ, ŝ′)φr(ŝ′)dŝ′dŝ, (5.45)

which can be substituted into Eq. (5.35) to obtain the expression for the gradient of the

error function with respect to the scattering coefficient at any position:

∂ε

∂µs
=

∫
Sn−1

φ∗(ŝ)φ(ŝ)dŝ−
∫
Sn−1

∫
Sn−1

φ∗(ŝ)P (ŝ, ŝ′)φ(ŝ′)dŝ′dŝ. (5.46)

5.3.1 Expressions using Fourier series

Recall that the MC code presented in Chapter 4 directly computes Fourier coefficients of

the radiance, rather than the angularly resolved radiance required in the expressions for

the functional gradients with respect to absorption and scattering obtained in the previ-

ous section. As such, we wish to evaluate Eqs. (5.34) and (5.46) using the expressions

for the radiance and adjoint radiance in the Fourier domain:

φ(θ′) =
1

2π
a0 +

1

π

N=∞∑
n=1

an cos(nθ′) +
1

π

N=∞∑
n=1

bn sin(nθ′), (5.47)

and

φ∗(θ′) =
1

2π
a∗0 +

1

π

M=∞∑
m=1

a∗m cos(mθ′) +
1

π

M=∞∑
m=1

b∗m sin(mθ′). (5.48)



146
Chapter 5 : Computing functional gradients using an adjoint Monte Carlo model of

radiance

where a∗0, a∗n and b∗n are the Fourier coefficients of the adjoint radiance. Substituting

these expressions into the equations for the functional gradients (Eqs. (5.34) & (5.46)),

∂ε

∂µa
= −Φ(Hmeas −H0) +

∫
S1
φ(ŝ)φ∗(ŝ)dŝ

= −a0(Hmeas − µaa0) +

∫
2π

[
1

4π2
a0a
∗
0 +

1

2π2
a0

∞∑
m=1

a∗m cos(mθ′) +
1

2π2
a0

∞∑
m=1

a∗m sin(mθ′)

+
1

2π2
a∗0

∞∑
n=1

an cos(nθ′) +
∞∑
n=1

∞∑
m=1

ana
∗
m cos(nθ′) cos(mθ′) +

∞∑
n=1

∞∑
m=1

anb
∗
mcos(nθ

′) sin(mθ′)+

1

2π2
a∗0

∞∑
n=1

bm cos(mθ′) +

∞∑
n=1

∞∑
m=1

a∗mbn sin(nθ′)cos(mθ′)
∑
n

∑
m

bnb
∗
m sin(nθ′) sin(mθ′)

]
dθ′,

(5.49)

noting that since Φ =
∫
S1 φ(ŝ′)dŝ′ and that integrals of the sine and cosine terms over

angle equal zero, the fluence is equal to the zeroth order Fourier term of the radiance:

Φ = a0. Using orthogonality, all terms for which n 6= m integrate to zero and Eq. (5.49)

reduces to

∂ε

∂µa
= −a0(Hmeas−µaa0)+

∫
2π

[
1

4π2
a0a
∗
0 +

1

π2

∞∑
n=1

ana
∗
n cos2(nθ′) +

1

π2

∞∑
n=1

bnb
∗
n sin2(nθ′)

]
dθ′,

which is simply

∂ε

∂µa
= −a0(Hmeas − µaa0) +

1

2π
a0a
∗
0 +

1

π

∞∑
n=1

ana
∗
n +

1

π

∞∑
n=1

bnb
∗
n. (5.50)

This closed form expression of the second term in Eq. (5.34) is computationally straight-

forward to evaluate due to the fact that we are simply summing over products of Fourier

coefficients already loaded in memory, meaning numerical integration is not necessary.

This is a significant advantage of having a ‘frequency’-domain representation of the

radiance because the evaluation of integrals numerically can be very expensive com-

putationally. The current RMC implementation has undergone limited parallelisation

meaning the forward and adjoint MC simulations are the bottleneck in gradient computa-

tion. However, the ability to distribute RMC over many cores and multiple nodes means

that the MC simulations can be accelerated significantly, at which point the run-time

bottleneck then becomes the actual computation of the gradients. However, as gradients
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∂ε
∂µa

)nn
computed on nn = 1, ..., Nn nodes can simply be averaged over each node, the

gradient computation can be performed locally (i.e. by each node) and transferred to a

host node for averaging. This has the benefit that all memory- and compute-intensive op-

erations of the gradient calculation are performed in a distributed manner. This benefit

extends to the gradient computations using spherical harmonics as well as the calculation

of the functional gradient with respect to scattering using Fourier/spherical harmonics

dervied below.

The expression for the gradient with respect to scattering in Eq. (5.46) contains two

terms; the first term is the same as the second term in Eq. (5.34), for which we already

have an expression using Fourier coefficients. The second term in Eq. (5.46) is

∫
Sn−1

∫
Sn−1

φ∗(ŝ)P (ŝ, ŝ′)φ(ŝ′)dŝ′dŝ,

which contains the phase function. The analogue to the Henyey-Greenstein phase func-

tion in 2D can be expanded using a Fourier series in powers of g, the anisotropy factor,

[165]:

Pθ(ŝ · ŝ′; g) =
1

2π
+

1

π

∞∑
l=1

gl cos(l∆θ), (5.51)

where ∆θ = arccos(ŝ · ŝ′). Thus we can write,

∫
S1

∫
S1
φ(ŝ′)Pθ(ŝ, ŝ

′)φ∗(ŝ)dŝdŝ′ =

∫
S1

∫
S1

[
1

2π
a0 +

1

π

∞∑
n=1

an cos(nθ′) +
1

π

∞∑
n=1

bn sin(nθ′)

]
[

1

2π
+

1

π

∞∑
l=0

gl cos(l(θ − θ′))

][
1

2π
a∗0 +

1

π

∞∑
m=1

a∗m cos(mθ) +
1

π

∞∑
m=1

b∗m sin(mθ)

]
dθdθ′,

where we let θ and θ′ be the angles between the z-axis and ŝ and ŝ′, respectively; as such,

the scattering angle between the previous direction ŝ′ into the new direction ŝ is given

by (θ − θ′).

It is possible to expand cos(l(θ − θ′)) as cos(lθ) cos(lθ′) + sin(lθ) sin(lθ′) which in turn

allows us to employ orthogonality relationships to simplify the above integrals and write
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∫
S1

∫
S1
φ(ŝ′)Pθ(ŝ, ŝ

′)φ∗(ŝ)dŝdŝ′ =
1

2π
a0a
∗
0 +

1

π

∞∑
n=1

ana
∗
ng

n +
1

π

∞∑
n=1

bnb
∗
ng

n, (5.52)

Substituting this expression into Eq. (5.46), we can write the full expressions for the

functional gradients with respect to the absorption and scattering coefficients:

∂ε

∂µs
=

1

2π
a0a
∗
0 +

1

π

∞∑
n=1

ana
∗
n +

1

π

∞∑
n=1

bnb
∗
n

− 1

2π
a0a
∗
0 +

1

π

∞∑
n=1

ana
∗
ng

n +
1

π

∞∑
n=1

bnb
∗
ng

n (5.53)

=
1

π

∞∑
n=1

[ana
∗
n + bnb

∗
n] (1− gn) (5.54)

Apart from the simplicity of the expression for the gradient in Eq. (5.54), this way of

calculating the functional gradient avoids the need for expensive numerical integration

and can be achieved in a completely distributed manner, where the gradients from

multiple nodes must only be averaged on a host node, with the actual computations

being performed on a cluster.

5.3.2 Expressions using spherical harmonic series

The radiance in 3D can be expanded in a similar fashion to that in 2D, except using a

series of spherical harmonics. Recall the expression from Chapter 4 (Eq. (5.56)) for the

radiance,

φ(ŝ′) =
∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)1/2

aml Y
m
l (ŝ′), (5.55)

then the adjoint radiance is given by

φ∗(ŝ′) =

∞∑
l′=0

l′∑
m′=−l′

(
2l′ + 1

4π

)1/2

am
′∗

l′ Y m′
l′ (ŝ′), (5.56)
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where aml and am
′∗

l′ are the weights associated with the spherical harmonics in the for-

ward and adjoint fields, respectively. These definitions can be substituted into the ex-

pressions for the functional gradients with respect to absorption and scattering, as above.

Starting with the gradient with respect to absorption, noting that Φ =
∫
S2 φ(ŝ′)dŝ′ = a0

0,

∂ε

∂µa
= −a0

0(Hmeas − µaa
0
0) +

∫
S1
φ(ŝ)φ∗(ŝ)dŝ

= −a0
0(Hmeas − µaa

0
0)

(5.57)∫
S2

[ ∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)1/2

aml Y
m
l (ŝ)

][ ∞∑
l′=0

l′∑
m′=−l′

(
2l′ + 1

4π

)1/2

am
′∗

l′ Y m′
l′ (ŝ)

]
dŝ.

(5.58)

Spherical harmonics satisfy the orthogonality relationship
∫
S2 Y

m
l Y m′+

l′ dŝ = δmm′δll′; as

such, cross-products that form as a result of expanding the summations over m, m′, l

and l′ will integrate to zero when these indices are not equal. However, the integral

over angle of products of terms with m = −m′ are non-zero because Y m+
l = Y l

−m and∫
S2 Y

m
l Y m+

l dŝ = δll′ . This leads to the gradient with respect to absorption being

∂ε

∂µa
= −a0

0(Hmeas − µaa
0
0) +

∞∑
l=0

l∑
m=0

(
2l + 1

4π

)
aml a

−m∗
l . (5.59)

As observed in the gradient with respect to scattering in the Fourier domain, the two

terms in this gradient can be expressed using sum of products of spherical harmonic

coefficients. The first term is
∑∞

l=0

∑l
m=0(−1)m

(
2l+1
4π

)
aml a

−m∗
l as in Eq. (5.59), while

the second is obtained by substituting the spherical harmonic series expressions for the

forward and adjoint radiances, and the spherical harmonic expansion, in powers of g,

for the Henyey-Greenstein phase function [165]:

P (ŝ, ŝ′) =
∞∑
l′′=0

l′′∑
m′′=−l′′

gl
′′
Y m′′+
l′′ (ŝ′)Y m′′

l′′ (ŝ), (5.60)
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where g is the anisotropy factor and the superscript + is used to indicate complex conju-

gation. Thus, the second term in Eq. (5.46) is given by

∫
Sn−1

∫
Sn−1

φ∗(ŝ)P (ŝ, ŝ′)φ(ŝ′)dŝ′dŝ

=

[ ∞∑
l′=0

l′∑
m′=−l′

(
2l′ + 1

4π

)1/2

am
′∗

l′ Y m′
l′ (ŝ)

]
[ ∞∑
l′′=0

l′′∑
m′′=−l′′

gl
′′
Y m′′+
l′′ (ŝ′)Y m′′

l′′ (ŝ)

]
[ ∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)1/2

aml Y
m
l (ŝ′)

]
. (5.61)

The integrals above can be performed separately if we define an integral I1

I1(ŝ′) =

∫
S2
I2(ŝ′)

[ ∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)1/2

aml Y
m
l (ŝ′)

]
dŝ′, (5.62)

where

I2 =

∫
S2

[ ∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)1/2

am
′∗

l′ Y m′
l′ (ŝ)

][ ∞∑
l′′=0

l′′∑
m′′=−l′′

gl
′′
Y m′′+
l′′ (ŝ′)Y m′′

l′′ (ŝ)

]
dŝ.

(5.63)

Due to orthogonality of spherical harmonics, I2 becomes

I2(ŝ′) =
∞∑
l′=0

l′∑
m′=−l′

(−1)m
′
(

2l′ + 1

4π

)1/2

gl
′
am
′∗

l′ Y m
l (ŝ′), (5.64)

where the identity Y m+
l = (−1)mY −ml was used. Substituting I2 back into the expression

for I1 gives

I1 =

∫
S2

[ ∞∑
l′=0

l′∑
m′=−l′

(−1)m
′
(

2l′ + 1

4π

)1/2

gl
′
am
′∗

l′ Y m
l (ŝ′)

][ ∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)1/2

aml Y
m
l (ŝ′)

]
dŝ′

=

∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)
glaml a

−m∗
l , (5.65)
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Thus, the full expression for the gradient with respect to scattering is given by

∂ε

∂µs
=

∞∑
l=0

l∑
m=0

(
2l + 1

4π

)
aml a

−m∗
l −

∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)
glaml a

−m∗
l

=
∞∑
l=0

l∑
m=0

[(
2l + 1

4π

)
aml a

−m∗
l

](
1− gl

)
. (5.66)

This expression mirrors that for the gradient with respect to scattering in 2D quite closely;

the expression in 2D there is not contribution from the zeroth terms, i.e. the forward

and adjoint fluence, and although not immediately obvious, this is also the case in 3D.

The zeroth term has l = 0, which results in
(
1− g0

)
in Eq. (5.66) and this equation

could therefore just be written as

∂ε

∂µs
=

∞∑
l=1

l∑
m=0

[(
2l + 1

4π

)
aml a

−m∗
l

](
1− gl

)
.

5.3.3 Selecting the number of harmonics in 2D

When simulating the radiance due to a strongly directional or δ source, it is of course

beneficial to include a large number of harmonics. The field is inherently less directional

when the illumination is formed by internally distributed isotropic sources, meaning a

large number of harmonics is not crucial as the contributions from the higher harmonics

may make little difference to the radiance estimate. This section considers the question

of how many harmonics are required in the forward and adjoint RMC simulations. This

is worthwhile as the number of harmonics simulated affects the cost both algorithmically

and in terms of computational memory; the memory costs can be significant (particularly

in 3D where for every l there are 2l+ 1 harmonics; even for just l = 10, this leads to 120

additional harmonics needing to be calculated and stored which leads to tens of GB in

storage for domains similar in size to high-resolution 3D PAT images!)

The question of how many harmonics are required to accurately represent radiance

estimates is of particular relevance to the functional gradients. This is only treated here

in 2D, but a similar argument applies for the 3D case using spherical harmonics. The

gradient with respect to absorption in 2D in Eq. (5.50) is dominated by the first term
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which depends on the difference between the measured data and the simulated data, so

harmonics beyond the first are unlikely to have a significant impact on the gradient. On

the other hand, the gradient with respect to scattering in Eq. (5.54) is not dominated by

a single term and the decay rate is governed by the factor (1− gn). Plotting the value of

this factor against n for different values of g in Fig. 5.4, it can be observed that when

g > 0 and tends towards unity, the low harmonics carry less weight whilst the higher

ones maintain a large contribution to the gradient. However, when g is close, or equal,

to zero harmonics are weighted more equally. The harmonics themselves however decay

with increasing n as higher frequencies are attenuated rapidly due to the diffusive nature

of scattering; when the light field is completely diffuse, the only non-zero coefficients

remaining are those at n = 0, 1.
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0.4

0.6
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n

(1
−

gn )

 

 

g=0
g=0.1
g=0.5
g=0.8
g=0.95

F I G U R E 5 . 4 : Plot of (1− gn) as a function of n for 5 different values of g.

Thus, although it may seem from Fig. 5.4 that accurate gradient estimates in a domain

with high anisotropy require a high number of harmonics to be simulated (possibly

≥100), this is not the case in general, at least far from boundaries and from the location

of the source used in the forward simulation. This can be demonstrated by considering a

plot of the harmonic an as a function of n (normalised to one for ease visualisation) on

the same plot as the curve for (1− gn). The simulation involved a 4mm×4mm domain,

containing 40 pixels along each dimension, with µa and µs homogeneously distributed

and set to 0.01mm-1 and 5mm-1, respectively, with g = 0.95. The illumination was a

pencil beam at the centre of one axis consisting of 107 photons. Fig. 5.5 shows a plot

of the absorbed energy density with arrows indicating the positions at which an, the

(1− gn) term and their product an(1− gn) are plotted as a function of n.
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F I G U R E 5 . 5 : Absorbed energy distribution from a pencil beam illuminating a homo-
geneous medium. Plots of Fourier coefficients an, (1− gn) term and their product as a
function of n at positions in H as indicated by the arrows showing that fewer harmonics
are required with increasing depth when computing the functional gradient with respect

to scattering.

As might be expected, the magnitude of an at n = 0 is greatest at the voxel nearest the

source and it decays more slowly with increasing n than at the positions further from the

source. This is due to there not only being more light near the source, as it will not have
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yet been attenuated through absorption and scattering, but also frequency content of the

radiance field will be highest near the source. This is particularly true for an compared

with bn due to the alignment of the Fourier series with the source direction (θ′ = 0).

Despite the fact that in practice the gradient contains the term ana
∗
n(1− gn), an(1− gn)

can be used here for illustration since a∗n contains predominantly low frequencies anyway.

In the voxel nearest the source, an(1− gn) has fallen to 37% of the maximum value of

an by n = 20 and only 9% of the maximum value of an remains when n = 40. In the

voxel 1mm away from the source the contribution of an(1− gn) for n = 20 is only 0.7%

of the maximum value and the contribution at 2mm away from the source is negligble.

This is a compelling demonstration of the fact that few harmonics (estimated to be ∼3

from the second plot in Fig. 5.5) are required for accurate gradient calculation far from

sources and boundaries (∼1mm). Although only n = 10 was used in the validation of

the gradient with respect to scattering above, this was sufficient in all regions apart from

the pixels nearest the source given that the product of an and a∗n will decay more quickly

with increasing n than the two quantities individually.

5.3.4 Validation of functional gradients against finite differences in 2D

In this section, adjoint-assisted functional gradients in 2D are validated against gradients

obtained using finite differences. In order for more accurate estimates of the gradients

computed using finite differences, a central finite difference (FD) was used,

∂ε

∂χ

∣∣∣∣
χ0

≈ (ε(χ0 + δχ)− ε(χ0))− (ε(χ0)− ε(χ0 − δχ))

2δχ
. (5.67)

5.3.4.1 Validation of the functional gradient with respect to the absorption coef-

ficient

In this section, the word ‘true’ is used to refer to quantities that are either ‘measured’,

such as the data H true, or parameters used to form the data, such as µtrue
a and µtrue

s . Two

arbitrary distributions were chosen for the true absorption and scattering coefficients, as

shown in the top row of Fig. 5.6. The RMC model was then used to simulate the data
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using a line source at z=0mm consisting of 109 photons and just the zeroth harmonic,

as shown in Fig. 5.6(c). H0 is shown in Fig. 5.6(d) and was calculated assuming µtrue
s

was known and a homogeneous initial guess of the absorption of 0.01mm-1, which is

referred to as µ0
a. 10 harmonics were used in simulating H0, and this number is used in

the subsequent adjoint-assisted gradient calculations.
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F I G U R E 5 . 6 : (a) True absorption coefficient, µtrue
a , with values between 0.01mm-1 and

0.3mm-1; (b) True scattering coefficient, µtrue
s , with values between 5mm-1 and 15mm-1;

(c) ‘Measured’ data, H true, in arbitrary units formed using RMC with 1 harmonic and
109 photons using true absorption and scattering coefficients; (d) Initial estimate of
data, H0, in the same units as (c), formed using RMC with 10 harmonics and 109 using

homogeneous absorption coefficient of 0.01mm-1 and true scattering coefficient.
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The adjoint source was calculated as µ0
a

(
H true −H0

)
and is shown in Fig. 5.7(a), with

the resulting fluence distribution, calculated using the adjoint RMC in (b). The adjoint

model used 10 Fourier harmonics and 109 photons.
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F I G U R E 5 . 7 : (a) Adjoint source, q∗ = µ0
a(H true −H0), used for gradient calculation

for absorption using RMC; (b) adjoint fluence from RMC, Φ∗, used to compute adjoint-
assisted gradient with respect to absorption.

The most prominent feature in q∗ in Fig. 5.7(a) is the inclusion in µa that was clearly vis-

ible in H true, demonstrating a strong inherent sensitivity to differences in the absorption

coefficient in the data. The resulting adjoint-assisted gradient is shown in Fig. 5.8(a).

The FD calculation was run for all z between 0-4mm for x=1.5mm using RMC, where

109 photons and just the zeroth harmonic were simulated. The magnitude of the per-

turbation in the FD calculation, δµa, was 15% of the background µa value (0.01mm-1).

A profile through the domain at x=1.5mm in the adjoint-assisted gradient with respect

to absorption was plotted with the FD gradient, as shown in Fig. 5.8(b). The computa-

tion time required for the adjoint-assisted gradient was ∼1 hour and 25 minutes on a

Dell 2U R820 server with 32 cores, compared with 12 hours and 30 minutes for the FD

calculation on the same system. All gradient calculations were run using UCL’s Legion

cluster.
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F I G U R E 5 . 8 : (a) Adjoint-assisted gradient with respect to absorption computed using
forward and adjoint radiance MC simulations with grey line indicating profile plotted
in (b); (b) profile through adjoint-assisted gradient with respect to absorption plotted
at x=1.5mm for all z positions between 0-4mm; also plotted is gradient calculated
using FD method for same positions and a value of δµa equal to 15% of the background

absorption.

Very good agreement is observed between the two gradient calculation methods. How-

ever, close inspection of the FD gradient shows some noise, particularly in regions where

the gradient is close to zero. This is the result of noise in the fluence estimates made

using RMC being propagated to the gradient estimates. However, the strong dependence

of ε on µa means SNR is high in the gradient with respect to absorption. The much

weaker dependence of ε on µs means that we can expect significantly more noise in the

gradient with respect to scattering when applying the FD method, as is observed in the

next section. Furthermore, the second-order dependence of the fluence on µs means a

smaller perturbation magnitude, δµs, in the FD approach may be required to accurately

estimate the functional gradient; however, reducing δµs will significantly decrease SNR

in the gradient estimate. This problematic trade-off is examined in the next section.
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5.3.4.2 Validation of the functional gradient with respect to the scattering coeffi-

cient

The same domain and true absorption and scattering cofficients were used initially to

evaluate the accuracy of the functional gradient with respect to scattering. However,

here it was assumed that µtrue
a was known and the initial guess of µs was a homogeneous

estimate of 5mm-1, equal to the background value in µtrue
s . The true absorption and

scattering coefficients are shown in Fig. 5.9(a) and (b) with the true absorbed energy

density and an estimate of the absorbed energy density, H0.
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F I G U R E 5 . 9 : (a) True absorption coefficient, µtrue
a , with the background absorption

coefficient set to 0.01mm-1, containing two inclusions with the absorption coefficient be-
tween 0.2mm-1 and 0.3mm-1; (b) True scattering coefficient, µtrue

s , with the background
scattering coefficient set to 5mm-1, containing two inclusions with the scattering co-
efficient between 10mm-1 and 15mm-1; (c) ‘Measured’ data, H true, in arbitrary units
formed using RMC with 1 harmonic and 109 photons using true absorption and scatter-
ing coefficients; (d) Initial estimate of data, H0, in arbitrary units formed using RMC
with 10 harmonics and 109 photons using homogeneous scattering coefficient of 5mm-1

and true absorption coefficient.

The difference in H0 between Fig. 5.6(d) and 5.9(d) is clear: with the true absorption

known, the inclusions in absorption are much more prominent than the inclusions in

scattering. This is more apparent in the adjoint source, plotted in Fig. 5.10(a), which is

expressed as a product of the residual,
(
H true −H0

)
, and µ0

a = µtrue
a . This demonstrates
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a large inherent sensitivity of the error functional to the absorption coefficient, which is

to be expected given the strong dependence of the image on the absorption coefficient

(in diffuse optical imaging this dependence is weaker as the image does not depend

to first-order on µa). Furthermore, the adjoint fluence in Fig. 5.10(b) resembles the

distribution of the absorption coefficient more than that of the scattering coefficient.
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F I G U R E 5 . 1 0 : (a) Adjoint source, q∗ = µ0
a(H true −H0), used for gradient calculation

for scattering using RMC; (b) adjoint fluence from RMC, Φ∗, used to compute adjoint-
assisted gradient with respect to scattering.

The adjoint-assisted gradient yields the largest magnitude of the gradient in the region

where the absorption is greatest, demonstrated in Fig. 5.11(a). Taking the profile

through the adjoint-assisted gradient at x=1.5mm and comparing with the FD calcu-

lation along the same line, which was performed using a perturbation of 15% times

the background µs value (5mm-1), yields a significant discrepancy in regions where the

gradient is non-zero as shown in Fig. 5.11(b). The large negative portion of the two

curves is located between 0.61mm and 1.64mm, which is the region where the inclusion

in µtrue
a is located. Meanwhile, the inclusion in µtrue

s is between 0.61mm and 1.85mm in

the z-direction, suggesting that the gradient estimate using both methods is dominated

by the presence of the region of large µa.
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F I G U R E 5 . 1 1 : (a) Adjoint-assisted gradient with respect to scattering computed using
forward and adjoint radiance MC simulations with grey line indicating profile plotted
in (b); (b) profile through adjoint-assisted gradient with respect to scattering plotted
at x=1.5mm for all z positions between 0-4mm; also plotted is gradient calculated
using FD method for same positions and a value of δµs equal to 15% of the background

absorption.

This issue can be more clearly demonstrated using another domain where there is no

overlap in regions of large µa and µs, as shown in Fig. 5.12. The illumination conditions

were the same as in the simulations above and the number of harmonics used in the

adjoint-assisted gradient calculation was set to 10. The distribution of the scattering

coefficient was fixed as shown in Fig. 5.12(b). Three different magnitudes of the square

inclusions in µa visible in Fig. 5.12(a) were tested. Starting with 5.12(a) the inclusion

magnitude in µa was between 0.1mm-1 and 0.2mm-1, this was then decreased to be

between 0.05mm-1 and 0.08mm-1 in Fig. 5.12(c), and subsequently to 0.01mm-1 in Fig.

5.12(d) (i.e. a homogeneous µa).
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F I G U R E 5 . 1 2 : (a) True absorption coefficient, µtrue
a , with background absorption co-

efficient set to 0.01mm-1, containing two inclusions with the absorption coefficient be-
tween 0.1mm-1 and 0.2mm-1; (b) True scattering coefficient, µtrue

s , with values between
5mm-1 and 15mm-1; True absorption coefficient, µtrue

a , with background absorption
coefficient set to 0.01mm-1, containing two inclusions with the absorption coefficient
between 0.05mm-1 and 0.08mm-1; (d) True absorption coefficient, µtrue

a , with homoge-
neous absorption coefficient of 0.01mm-1.

The FD algorithm and adjoint-assisted gradient computation were run for each pair of µa

and µs above with the zeroth estimate of the absorption coefficient being equal to µtrue
a

and the scattering coefficient set to a homogeneous value of the background (5mm-1).

The FD was run for 40 z-positions for x=1.5mm. The adjoint-assisted gradient was
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plotted for the same positions on the same plot as the corresponding FD gradient for

each of the three pairs of absorption and scattering coefficients, in Figs. 5.13(a)-(c).
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F I G U R E 5 . 1 3 : (a) Plot of adjoint-assisted and FD gradients with respect to scattering
in domain containing two inclusions with the absorption coefficient between 0.1mm-1

and 0.2mm-1 and heterogneous µs (see Fig. 5.12(a) & (b)); (b) Plot of adjoint-assisted
gradient with respect to scattering in domain for homogeneous µa and heterogneous µs

(see Fig. 5.12(d) & (b)). Grey line indicates profile plotted in (d); (c) Plot of adjoint-
assisted and FD gradients with respect to scattering in domain containing two inclusions
with the absorption coefficient between 0.05mm-1 and 0.08mm-1 and heterogneous µs

(see Fig. 5.12(c) & (b)); (d) Plot of adjoint-assisted and FD gradients with respect to
scattering in domain for homogeneous µa and heterogneous µs (see Fig. 5.12(d) & (b)).

Figs. 5.13(a), (c) and (d) show that the region of the gradient obtained using the FD

method is greatest in magnitude between 0mm and 2.8mm. This coincides partly with
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the inclusion in µs, which is located between z=0.8mm and 1.8mm. It may seem there-

fore that the FD method is correctly estimating the gradient with respect to scattering,

regardless of whether there are inclusions in µa. However, comparing the FD and adjoint-

assisted gradients in Fig. 5.13(d) indicates that the FD method is not estimating the

gradient accurately near the source, because an almost zero gradient is expected between

0mm and 0.8mm where the scattering coefficient is equal to the background value. More-

over, the adjoint-assisted gradient when µa was homogeneous, shown in Fig. 5.13(b),

matches more closely the distribution of the scattering coefficient in Fig. 5.12(b). There

are therefore two effects being observed in Figs. 5.13(a), (c) and (d). Firstly, coupling

between µa and µs in the gradients means the gradient with respect to µs will always in

some way be dominated by the presence of inclusions in µa, as illustrated by comparing

the adjoint-assisted gradients in Figs. 5.13(a),(c) with (d). Second, the FD method has

a tendency to overestimate the magnitude of the gradient near the source, evidenced

by the discrepancy between the FD and adjoint-assisted method between z=0.8mm to

1.8mm.

The reason for the FD method overestimating the functional gradient with respect to

scattering is discussed later in this chapter; however, in order to decouple the gradient

with respect to µs from heterogeneity in µa, a simpler domain is used below. Here, µa is

homogeneously distributed (shown in 5.14(a)) and only a single inclusion is present in

µs. The distribution of the scattering coefficient, with the inclusion now at the centre of

the domain, is shown in Fig. 5.14(b). The simulation parameters (illumination, number

of photons, number of harmonics and δµs = 0.15µbgs ) were the same as in the cases

examined above.
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F I G U R E 5 . 1 4 : (a) Adjoint-assisted gradient with respect to scattering computed using
forward and adjoint radiance MC simulations with grey line indicating profile plotted
in (b); (b) profile through adjoint-assisted gradient with respect to scattering plotted
at x=2.0mm for all z positions between 0-4mm; also plotted is gradient calculated
using FD method for same positions and a value of δµs equal to 15% of the background

absorption.

The distribution of the adjoint-assisted gradient with respect to scattering coefficient is

displayed in Fig. 5.14(c). The grey line is used to indicate the profile through the adjoint-

assisted gradient plotted in grey in Fig. 5.14(d) alongside the gradient obtained using

FD. Much better agreement is observed between the two curves when the distribution of

µa is homogeneous, however there is still a significant discrepancy for z<2mm, near the

source. Consider two additional profiles, now for all x positions at z=0.5mm (outside
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the inclusion in µs) and z=2.5mm (inside the inclusion in µs) shown in Figs. 5.15(a)

and (b). The trend observed in the profiles in the z direction are observed once again:

near the source there is a large discrepancy, with the FD gradient underestimating the

adjoint-assisted gradient, and this discrepancy decreases with increasing distance from

the source.
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F I G U R E 5 . 1 5 : (a) Profiles through the domain of the gradient with respect to scatter-
ing at all x positions for z=0.5mm (does not traverse inclusion in µs) obtained using
adjoint-assisted and FD methods; (b) Profiles through the domain of the gradient with
respect to scattering at all x positions for z=2.4mm (traverses inclusion in µs) obtained

using adjoint-assisted and FD methods.

One possible reason for the FD method underestimating the gradient near the source

is that the fluence is much more sensitive to changes in the scattering coefficient in

this region compared with large distances from the source. Recall that the perturbation

magnitude used, δµs, was 15% of the background scattering value. Due to the strongly

nonlinear relationship between the fluence and the scattering coefficient, particularly

near the source, this perturbation magnitude may result in gradient estimates with

significant inaccuracies. The next section discusses why the use of a smaller value of δµs

introduces significant computational challenges.
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5.3.5 Convergence of the FD method in estimating ∂ε/∂µs

Earlier in this chapter it was stated that estimating the gradient with respect to scattering

using the FD approach is subject to a trade-off. Correct application of the FD method

involves calculating ∂ε/∂µs and iteratively decreasing δµs until there is no observable

change in the functional gradient, i.e. reduce δµs until the gradient has converged. This

however was not possible using the RMC model as even decreasing δµs by a factor of 3 to

5% of the background µs resulted in the shape of the gradient no longer being visible due

to the high degree of noise (this result is not presented here). This limitation presents

quite a significant dilemma: validation of the adjoint-assisted gradient is not possible

without reducing the perturbation size in the FD calculation; however, the knock-on

effect of this is that many more photons would be required in the FD calculation. This

leads to the questions of what perturbation size is required for adequate convergence

of the FD calculation in order to be able to validate the adjoint-assisted gradient? And,

how many photons would be required in the MC simulations for the FD calculation to

ensure sufficiently low variance in the gradient estimate?

It would only be possible to answer the above questions using the RMC model with

access to quite substantial computing resources; the gradient calculations above were

run using a 32-core system and computation times were similar to those quoted above

for the gradient with respect to absorption: 1-2 hours for the adjoint-assisted method

and 12-13 hours for the FD approach. Thus, without access to many more nodes or a

very lengthy access period to a 32-node machine, it is not possible to use the RMC model.

Instead TOAST++ [138], a FE model of the DA, was used. Due to the relatively short

run-times of TOAST++, the FD computation could be run at every position throughout

the domain.

Direct comparison between gradients computed using the RMC model and TOAST++

is not possible due to MC being a model of the RTE and TOAST++ simulating the DA.

Under the diffusion approximation the adjoint-assisted gradients can be obtained by

taking derivatives of the forward and adjoint models with respect to µ′s, similar to the

method used in the transport case in Section 5.3. The adjoint-assisted gradient with
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respect to scattering, provided by Cox et al. [115], is given by

∂ε

∂µ′s
= −3D2∇Φ∗ · ∇Φ, (5.68)

where Φ and Φ∗ are the fluence and adjoint fluence, respectively. Thus, instead of

attempting to validate the gradient obtained in the transport case using MC against

those calculated using the DA, the aim is to determine for which value of δµ′s the gradient

obtained using the FD method converges to the adjoint-assisted gradient.

A circular domain, 40mm in diameter, containing 4370 elements was used for this part of

the investigation. The absorption coefficient was set to a homogneous value of 0.01mm-1

and the background reduced scattering was set to 0.5mm-1. There was a 10mm diameter

circular inclusion in µ′s with µ′s equal to 1.5mm-1. The source illuminated one side along

a 6mm arc and was Gaussian in profile (the source is on the right-hand side of the

plots in Fig. 5.16). The boundaries were index-matched. The gradient was computed

using the adjoint-assisted approach,
(
∂ε
∂µ′s

)AA
, and using the FD method,

(
∂ε
∂µ′s

)FD
, with

perturbation magnitudes of 15%, 1.5% and 0.15%. The gradients were plotted alongside

the percent error between these two quantitaties, 100%×
(
∂ε
∂µ′s

)AA
−
(
∂ε
∂µ′s

)FD

(
∂ε
∂µ′s

)FD .

Fig. 5.16 shows plots of the
(
∂ε
∂µ′s

)AA
, in the first column,

(
∂ε
∂µ′s

)FD
, in the second column,

and the percentage error between them in the third column. In each row in Fig. 5.16,

the FD gradient was calculated with a different value of δµs, starting with 15%, and

decreasing through 1.5%, to 0.15%.
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F I G U R E 5 . 1 6 : Functional gradients with respect to scattering obtained using
TOAST++ in a 40mm diameter circular domain, illuminated by diffuse sources on
the boundary. The absorption coefficient was set to a homogeneous value of 0.01mm-1

and the background reduced scattering coefficient was set to 0.5mm-1, with a 10mm
diameter circular inclusion in µ′s equal to 1.5mm-1. Left-hand column represents the
functional gradient obtained using the adjoint-assisted method (see Eq. 5.68), centre
column represents functional gradients obtained using the FD method and right-hand
column shows the percentage error between the adjoint-assisted and FD methods. Each
row represents a difference perturbation magnitude, δµs, being used in the FD cal-
culation: 15% of the background µs (top row), 1.5% of the background µs (middle
row), 0.15% of the background µs (bottom row). The percentage error between the
adjoint-assisted and FD methods is significant with a 15% perturbation, while it drops

significantly when the perturbation is ≤1.5%.

Although it is not immediately clear from looking at the left and middle columns of Fig.

5.16, there is a significant difference in the gradients calculated using each method for

the largest value of δµs. This discrepancy is greatest near the source on the right side of

the plots and decays to zero with increasing distance from the source in the -x direction,

which is consistent with observations made regarding Fig. 5.15 when the gradients were
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obtained using RMC. With an order of magnitude decrease in δµs, the % error decreases

quite significantly and is almost zero everywhere and, with a further order of magnitude

decrease in the perturbation, the FD and adjoint-assisted gradients are almost equal

everywhere throughout the domain. This suggests that indeed the value of δµs used

for the FD calculation for the gradient with respect to scattering using the MC model

was too large, and that a decrease of 1-2 orders of magnitude in δµs would most likely

result in convergence of the FD method to the adjoint-assisted approach. However, in

order to decrease δµs and maintain sufficient SNR, many more photons would have to

be simulated. This is practically intractable with the CPU-parallelised MC code described

in Chapter 4; assuming Poisson statistics apply, at least 102-1002 more photons would

be required for convergence, meaning for the FD calculation to complete execution in

the same amount of time (∼13 hours), 102-104 more cores would be required which is

infeasible using the computing resources available. This problem would be more severe

in 3D where the photon density is inherently lower. Nevertheless, highly optimised 3D

GPU codes, which can compute thousands of threads simultaneously, are currently in

existence [132] and would make this calculation tractable but such fast codes are not

available for 2D simulations.

5.4 Summary

This chapter demonstrated that through the use of an accurate adjoint model of the

RTE, functional gradients with respect to the absorption and scattering coefficients can

be computed given a PAT image. The gradients were calculated using the radiance

Monte Carlo model presented in Chapter 4, which stores the radiance in Fourier or

spherical harmonics, and therefore allows straightforward calculation of the functional

gradients as products of harmonic coefficients. The functional gradients in 2D were

validated against the central finite difference method for gradient calculation, which

yielded very good agreement for the gradient with respect to asborption; however, due

to noise in the forward and adjoint radiance fields computed using RMC, it was not

possible to obtain the same level of agreement between the two methods of gradient

calculation. Nevertheless, the discrepancy between the two methods was demonstrated



Chapter 5 : Computing functional gradients using an adjoint Monte Carlo model of
radiance 171

to be the result of too large a perturbation used in the finite difference calculation, which

was shown to be consistent with the discrepancy between finite difference and adjoint-

assisted approaches using the diffusion approximation. It was also demonstrated that 10-

20 Fourier orders are required for accurate gradient computation, which lies in contrast

to algorithms that implement a discrete ordinate method of angular discretisation that,

even in 2D, require upwards of 60 for the desired level of accuracy in highly anisotropic

media such as tissue.

Computation of functional gradients using a MC model of light transport that only com-

putes the fluence is only possible via the finite difference method. It was observed in

Section 5.3.5 that convergence of the gradient calculated using the finite difference

method would require enormous computing resources. On the other hand, the RMC-

based adjoint-assisted approach to computing functional gradients presented in this

chapter was found to be accurate, and has the potential to be computationally tractable.

Since MC models are accurate in both the ballistic and diffusive regimes, their applica-

tion in the optical inverse problem is highly attractive, but this has not been possible

previously because functional gradients have only been accessible via the finite differ-

ence approach. The method of computing gradients presented in this chapter provides a

new tool for solving the optical inversion, which is demonstrated in the next chapter.





Chapter 6

Inverting for the absorption and

scattering coefficients from PAT

images

In Chapter 5, the calculation of functional gradients with respect to absorption and scat-

tering was demonstrated using forward and adjoint radiance Monte Carlo models in 2D

and the accuracy of these gradients was verified against a finite difference calculation,

to the extent that this is possible. In this chapter, the gradients with respect to absorp-

tion and scattering are applied in the inversion of simulated PAT images. A number of

questions arise in this process, key of which is the choice of optimisation algorithm as

this will determine both the rate of convergence of the inversion as well as its stability.

This is of particular importance because exact inversion of PAT images simulated using

a MC forward model, which contain intrinsic MC noise, is impossible. Furthermore, the

convergence of the inversion is complicated by the presence of noise in the functional

gradients and the error functional due to the variance in the radiance estimates from the

MC simulation. These issue are discussed in detail in this chapter.

173
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6.1 Choice of optimisation algorithm

The presence of variance in quantities estimated using MC models, such as ε and the

functional gradients, means that these parameters are simply samples of their true value,

which have some finite variance. As such, one approach to solving the inverse problem

in the presence of uncertainty on parameters of interest is to consider these parameters

as random variables and treat the inversion as a problem of statistical inference. This

approach comes with added computational load because the distribution on each param-

eter must be calculated and it is therefore unclear to what extent this method would

yield a more stable or rapid inversion, if at all. For this reason, the approach to solving

the inversion used here starts by ignoring uncertainties due to MC modelling and treats

the inversion as a least-squares minimisation problem:

arg min
χ

ε =
1

2
||Hmeas −H(χ)||2 , (6.1)

where χ are the quantities being estimated, i.e. µa and/or µs. The large scale nature

of the inverse problem in QPAT limits the choice of optimisation in the least-squares

framework; linesearch methods are one well-documented approach.

Linesearch methods perform a 1D minimisation, the ‘linesearch’, in the direction p(i) =

−∇ε(i) where ∇ε(i) is the gradient of the error functional with respect to χ. In general,

p(i) is given by

p(i) = −B(i) −1∇ε(i), (6.2)

and is a descent direction if p(i)T∇ε(i) < 0. In the gradient descent (GD) or steepest

descent method, B(i) is just I, the identity matrix, while quasi-Newton methods ap-

proximate the Hessian matrix of second-order derivatives, B(i). A popular choice of

quasi-Newton method is the BFGS or l-BFGS (limited-memory) minimisation procedure

due to their superior rate of convergence over the gradient-descent approach and the

ability to self-correct when a bad estimate of the Hessian has been used for a step [100].

The limited-memory implementation discards some information about the curvature of ε

by only storing B(i) for a limited number of previous iterates, making it suitable for large
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scale optimisation problems such as the optical inversion in PAT. The update in l-BFGS

is given by

∆χ = −α(i)B(i)∇ε(i)(χ), (6.3)

where α(i) is the step length and B(i) is an approximation to the Hessian and is given by

B(i+1) =

(
I − y(i)s(i)T

y(i)T s(i)

)T
B(i)

(
I − y(i)s(i)T

y(i)T s(i)

)
+
s(i)s(i)T

y(i)T s(i)
(6.4)

with s(i) = χ(i+1) − χ(i) and y(i) = ∇ε(i+1) −∇ε(i).

Both methods employ a linesearch that requires two conditions to be satisfied, collectively

known as the Wolfe conditions: the sufficient decrease condition and the curvature

condition [100]. The sufficient decrease condition stipulates that

ε(χ+ α(i)p(i)) ≤ ε(χ) + ν1α
(i)∇ε(i)T p(i), (6.5)

where ν1 ∈ (0, 1), which is typically chosen to be quite small. However, this condition is

not sufficient to ensure the linesearch is efficient because the condition will be satisfied

for arbitrarily small values of α(i) (provided, of course, that p(i) is a descent direction).

The second condition considers whether the slope of the function at a position α(i) is

large and negative as this indicates further minimisation can be performed through the

linesearch. This condition is expressed as

∇ε(χ+ α(i)p(i))T p(i) ≥ ν2∇ε(i)T p(i), (6.6)

where ν2 is chosen to be between ν1 and unity.

Although convergence of quasi-Newton methods is in general faster than the GD method,

the presence of noise in first-order derivatives of the error functional will result in an even

larger degree of noise in second-order derivatives. In the context of the BFGS algorithm,

as there is noise present from the MC model in y(i) (due to noisy gradients, ∇ε(i)), the

noise will be propagated and amplified when calculating B(i+1), which in turn is likely

to result in a search direction p(i) that is sub-optimal. In addition, the self-correcting
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properties of the BFGS algorithm may be compromised if y(i)T s(i) becomes too small

(but remains positive), which also may occur in the presence of large amounts of noise

in the functional gradients. Noise in H(χ(i) = [µa, µs]
(i)), the estimate of the absorbed

energy density, will also result in a non-smooth error functional in the search direction

as at every point χ(i), the error function will be corrupted by some different noise σ:

ε(χ(i) = [µa, µs]
(i)) =

∣∣∣∣Hmeas −H(χ = [µa, µs])(1 + σ(i))
∣∣∣∣2. This may be problematic

within the linesearch, particularly when using the l-BFGS scheme; Nocedal et al. [100]

state that the self-correcting properties of l-BFGS are less effective if the linesearch does

not capture appropriate curvature information of the error functional. Given the noise

levels observed in Chapter 5 in quantities estimated using the RMC model, it may in

many cases be more effective to use the GD approach, rather than the l-BFGS algorithm

as discussed in subsequent sections.

6.2 Noise in Hmeas and the inverse crime

Rather than adding noise to the measured image, Hmeas, in this chapter noise in the data

is simply the result of noise from the MC forward model. The noise from MC simulations

follows a Poisson distribution for high number of expected occurences, which can be

approximated to be Gaussian. The variance of estimates made using MC simulations

depends on domain size, the number of photons simulated, illumination type, the optical

properties of the domain and boundary conditions; however, the primary factors in the

magnitude of variance are the domain size and discretisation, and the number of photons

simulated. In order to estimate typical noise levels in Hmeas, the forward model was run

using a line source illuminating a 4mm×4mm domain containing 40 pixels along each

edge; the optical properties in the domain were homogeneously distributed with µa, µs

and g set to 0.01mm-1, 5mm-1 and 0.9, respectively. The optical properties, domain size

and discretisation are consistent with the gradient computations run in Chapter 5 and

the reconstructions carried out below. The simulation used a single Fourier harmonic

and 105 photons. This was repeated 1000 times in order to estimate the noise, which

was achieved by computing three times the standard deviation of Hmeas from the 1000

model runs, divided by the mean. This yielded a spatially-varying noise level of 6-21%
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with the most common value being 8%. Repeating this procedure using 106 photons

yielded a noise level between 2-8% with most of the pixels having 3% noise. Assuming

Poisson statistics, to estimate the noise as a function of the number of photons simulated,

the model σ = aN
−1/2
p +c where Np is the number of photons simulated, and a and c are

constants, was fitted. This showed that simulating Hmeas using 108 photons would yield

a most probable noise value in the domain of approximately 0.9%, which is similar to

the levels of extreneously added Gaussian noise in Hmeas in other inversion approaches

presented in literature [107].

6.3 Inversions for the absorption coefficient

The reconstruction of the absorption coefficient only was performed on the same domain

used to demonstrate the gradients in Chapter 5; the true absorption and scattering

coefficients are displayed in Fig. 6.2(a) and (b). The measured data was calculated using

108 photons, and the forward and adjoint RMC simulations also used 108 photons. Note

that reconstructions in this chapter are performed under the assumptions that the initial

acoustic pressure is perfectly reconstructed and that the Grüneisen parameter was known.

The inversion was performed using Julia’s in-built optimisation library which implements

both the l-BFGS minimisation and the GD algorithm. The default linesearch in Julia’s

optimisation toolbox is that described by Hager and Zhang [187] (HZ-linesearch) and

utilises a modified version of the second Wolfe condition; the modifications however have

little impact in the presence of noisy estimates of the error functional. The termination

condition for both l-BFGS and GD optimisation algorithms was

∣∣∣ε(i) − ε(i−1)
∣∣∣ / ∣∣∣ε(i)∣∣∣ < 10−9 (6.7)

and 10 iterations of the approximation to the Hessian were stored when using the l-BFGS

algorithm.

Fig. 6.1 shows the log10 value of the error functional (normalised by the value at the

zeroth iteration) as a function of iteration number for the l-BFGS and GD method. The

choice to normalise the error functionals was simply due to the fact that their value was
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not equal at the zeroth iteration due to MC noise in the estimate of H(0). Comparing

the two curves, it can be seen that their convergence rates are quite similar initially with

a larger change in the value of the error functional at the first iteration by the l-BFGS

algorithm; however, the GD approach then outperforms l-BFGS as each step results in

a significant reduction in the value of the error functional where as l-BFGS takes many

steps that do not result in any significant change in ε. Nocedal et al. [100] write that

self-correcting ofB(i) takes place over a few iterations which may explain the trend of the

red curve in Fig. 6.1 to take a large descent step after several small or non-descent steps.

The poor convergence of the l-BFGS optimisation suggests that noise in the Hessian

approximation rarely allows the descent condition, (−B(i) −1∇ε(i))T∇ε(i) < 0, to be

satisfied. This has the consequence that the HZ-linesearch is inefficient; computation

time for the l-BFGS approach, which completed 34 iterations, was ∼15 hours compared

with ∼11 hours for 39 iterations for the GD algorithm. This indicates that the l-BFGS

method used many more runs of the forward model while the optimisation converged

to a much larger value of ε. Note that all reconstructions were carried out using a Dell

2U R820 32-core server on Legion.
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F I G U R E 6 . 1 : Plots of the error functional from l-BFGS (which approximated the
Hessian using information from the 10 previous iterations) and GD optimisations as a
function of iteration when inverting for the absorption coefficient using adjoint-assisted

functional gradients computed using RMC using 108 photons.

The reconstructed absorption coefficient from the GD-based inversion is shown in Fig.

6.2(c), with profiles through the true and reconstructed absorption coefficient at x=1.5mm

for all z-positions shown in (d). It can be seen that the reconstruction of the absorption
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coefficient, µesta , is very accurate throughout the domain. Note that the average relative

error in the reconstructed µa,
∣∣µtruea − µesta

∣∣ /µtruea , was 1.9%. Although not presented

here, the spatial heterogeneity of the fluence remained visible in reconstruction of µa

using the l-BFGS algorithm.
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F I G U R E 6 . 2 : (a) True absorption coefficient with a background absorption coefficient
of 0.01mm-1 and inclusions where the absorption coefficient is equal to 0.2mm-1 and
0.3mm-1; (b) True scattering coefficient with a background scattering coefficient of
5mm-1 and inclusions where the scattering coefficient is equal to 10mm-1 and 15mm-1;
(c) Distribution of reconstructed absorption coefficient using GD algorithm after 39 iter-
ations; (d) Profiles through reconstructed and true absorption coefficients at x=1.5mm

for all z-positions.
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Convergence of the optimisation is strongly dependent on the number of photons sim-

ulated in the forward and adjoint simulations, Np, as this will determine the level of

noise in the gradient as well as in the error functional. Fig. 6.3 shows a plot of log10 of

the minimum value of the error functional once the termination condition was satisfied

against the log10 of the number of photons used in the forward and adjoint models. It

can be seen that the final value of the error functional decreases exponentially with

increasing Np, indicating that performing the inversion with greater values of Np would

allow further reduction of the terminal value of ε. Note that the reduction in the final

value of the error functional is not simply due to a reduction in σ in the expression

||Hmeas −H(χ)(1 + σ)||2, but is predominantly due to the fact that greater Np means

the Wolfe conditions have a higher probability of being satisfied for larger values of α

in the the linesearch, thus allowing more progress to be made in the inversion, and

prevents premature termination of the optimisation.
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F I G U R E 6 . 3 : Plot of the log10 terminal value of the error functional (termination
condition given in Eq. (6.7)) as a function of log10(Np), where Np is the number of

photons used in the forward and adjoint RMC simulations.

It can be seen that the terminal value of the error functional continues to decrease with

increasing number of photons, as might be expected. The termination of the optimisation

for each value of Np was the result of the termination condition in Eq. (6.7) being met,

which was triggered by a non-descent step. A non-descent step is likely to be due to noise

in the gradient resulting from an insufficient value of Np in the forward and adjoint MC

simulations, which in turn results in an upward step being selected from the linesearch.
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Nevertheless, the iteration at which this occurs is implicitly a function of Np which might

mean that it is not necessary for the MC model to use a large number of photons from the

start of the optimisation as it may progress initially even with low values of Np. This idea

is based on the fact that at the start of the inversion, the descent direction is well defined

(i.e. the descent condition is close to -1) because the gradient is large, and for this reason

the direction can be resolved even using MC estimates that have a high variance (i.e.

from low values of Np being simulated). As the optimisation progresses, the magnitude

of the gradient decreases and therefore requires more photons to estimate the gradient

accurately.

This approach was used in the estimation of the absorption coefficient in Fig. 6.2(a)

with a homogeneous initial guess of 0.03mm-1 and the scattering coefficient shown in

Fig. 6.2(b). The optimisation was started using 105 photons in the calculation of the

forward and adjoint fields, which completed 12 iterations before meeting the termination

condition in Eq. (6.7); the optimisation was then restarted using the terminal estimate of

the absorption coefficient from the first inversion but using 106, completing 10 iterations,

and then 107, completing 2 iterations. The inversion then finished after 2 iterations using

108 photons. The benefit of this approach was that the value of the error functional after

the first 20 iterations in the optimisation using 108 photons, which took 5.5 hours,

could be achieved in around 45 minutes using a variable number of photons, thereby

significantly reducing the total time required to perform the inversion. An undesired

effect of using a variable number of photons in the inversion was that the optimisation

terminated at a value 6.3×10-7 compared with 1.3×10-8 for the inversion using a fixed

value of 108 photons. This suggests that noise introduced into the inversion from the

earlier high-variance inversions may have affected the progress of the inversions for

larger Np. The final estimate of the absorption coefficient is shown in Fig. 6.4(b) with

the value of the error functional over the optimisations run using 105-108 photons shown

in Fig. 6.4(a).
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F I G U R E 6 . 4 : (a) Plot of error functional as a function of number of photons used
in inversion for each set of iterations (grey lines). Note that the grey lines do not
join up as the starting value of ε depends on Np. The value of the error functional
at each iteration in which the number of photons was fixed at 108 is plotted in black;
(b) Estimate of absorption coefficient after 26 iterations reconstructed using a variable

number of photons and and known scattering coefficient using GD optimisation.

The convergence of the inversion using a variable number of photons, plotted using a

series of grey lines in Fig. 6.4(a), is much worse than the inversion in which the number

of photons was fixed to 108, plotted in black. This is reflected in the reconstructed

absorption coefficient using the method in which Np is varied in Fig. 6.4(b). The

inclusion nearest the source, in yellow, is reconstructed fairly accurately, with a visible

spread around the true value of 0.2mm-1; however, the inclusion far from the source, in

red, has significant errors on the side furthest from the source deviating by up to 11%

in some pixels relative to the true value of 0.3mm-1. Divergence from the variable Np

optimisations from the black curve occurs initially at around the 10th iteration but the

inversion, using 105 photons, progresses until iteration number 20. At the 20th iteration,

progress can no longer be made, even when 108 photons are used in the inversion. The

failure of the inversion to converge when Np was increased to 108 photons may be due

to a local minimum in the error functional having been found. This is supported by the

fact that the inversion using a fixed Np of 106 photons converged to 4.6×10-7, which is

lower than the value of ε that the inversion with variable Np terminated at which was

6.3×10-7.
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6.4 Inversions for the scattering coefficient

Reconstruction of the scattering coefficient is typically more challenging than inverting

for µa because the image depends on µa to first order, whereas this is not the case for

µs. A consequence of this, as observed in Chapter 5, is that the functional gradient with

respect to scattering is significantly smaller than the gradient with respect to absorption.

This also has the effect that the error functional is much more sensitive to MC noise in

H(i) which impacts the accuracy and efficiency of the linesearch. Recalling the Wolfe

conditions, which require a sufficient decrease in the error function for a step length α(i)

and that the gradient at this step length is less than that at the current position, in the

presence of noise in the error functional many values of α(i) would have to be tested to

satisfy simultaneously the two Wolfe conditions.

The inversion was tested in the same domain in which the gradients were validated

in Section 5.3.4.2. The distribution of µs is reproduced in Fig. 6.5(a) and the true

absorption coefficient was set to a homogeneous value of 0.03mm-1. The data was

simulated using 108 photons, and simulation of the forward and adjoint radiance fields

was also achieved using 108 photons. The GD optimisation was once again used. It

was found that the optimisation spent several hours within the linesearch on the first

iteration testing candidate values of α(i). Recalling that inversions for the absorption

coefficient completed one iteration every 20 minutes on average, this indicates that

the HZ-linesearch performs highly inefficiently in the presence of noise in the error

functional and the small magnitude of the functional gradient. Since requiring that both

Wolfe conditions are satisfied negatively impacts the performance of the optimisation, it

may be worthwhile considering a backtracking linesearch [100], which requires only the

sufficient decrease condition to be satisfied for a given α(i). The backtracking linesearch

starts with a large candidate step length; a suitable choice is α(i,j=0) = 1/max(∇ε(i)).

The sufficient decrease condition (Eq. (6.5)) is then tested for α(i,j)τ whilst iterating

over j, with τ ∈ [0, 1].

The gradient descent optimisation using the backtracking linesearch was used to invert

the image for the scattering coefficient shown in Fig. 6.5(a). The value of ν1 and τ

were set to 0.2 and 0.5 as this yielded positive results. The true absorption coefficient
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was homogeneous and was known when inverting for the scattering coefficient. The

measured data was computed using a line source across all x positions at z=0mm. The

forward and adjoint RMC simulations used 107 photons and 10 Fourier harmonics. The

initial step, α(1), was chosen to be 1012 because this produced an update that would

make a substantial change to the scattering coefficient. Subsequent steps were obtained

using the backtracking linesearch with a starting α of 1012, iteratively decreased by an

order of magnitude. However, to prevent the linesearch from iterating for an extended

period of time and producing an update that was negligble in magnitude, a minimum

step length was set to 106. Note that positivity of the scattering coefficient was enforced

by setting all values of µs < 0 to zero, which is consistent with the definition of the

scattering coefficient. The optimisation was run on a Dell 2U R820 32-core server

on Legion and took about 13.6 hours. The value of the error functional is plotted as

a function of iteration number in Fig. 6.5(c) and the final estimate of the scattering

coefficient is shown in Fig. 6.5(b), with profiles through the true and final estimate of

the scattering coefficent shown in Fig. 6.5(d) at x=2mm for all z positions, indicated by

the vertical black and grey lines in (a) and (b).
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F I G U R E 6 . 5 : (a) True scattering coefficient with a background absorption coefficient
of 5mm-1 and inclusions where the scattering coefficient is equal to 10mm-1 and 15mm-1;
(b) Estimate of scattering coefficient estimated with known absorption coefficient and
GD optimisation using 107 photons; (c) Value of error functional plotted as a function
of iteration during GD optimisation for estimating µs; (d) Profiles through the true and
reconstructed scattering coefficient at x=2mm for all z-positions (positions shown by

the black and grey lines in (a) and (b)).

From the estimate in Fig. 6.5(b), it is clear that edges are not well reconstructed;

this is in part due to the diffusive nature of scattering, but may also be due to early

termination of the optimisation. Reconstruction of the scattering coefficient may benefit

from some regularisation, which has been demonstrated in the literature [107, 109,

113, 188] to improve the quality of the scattering estimate. Specifically, given the
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piecewise constant distribution of µa and µs used here, total variation regularisation

(TVR) [189] may help stabilise the solution. TVR may also be able to suppress the

overestimation of µs on the left- and right-hand sides of the square inclusion as well as

prevent the underestimation of µs in the deeper region, behind the inclusion, through

TVR’s edge preserving properties. Nevertheless, the overall accruacy of the estimate of

µs in the inclusion was quite good and improved with each iteration as demonstrated

by Fig. 6.6 which shows a plot of the maximum and average estimate of the scattering

coefficient in the inclusion converging to their respective true values. Thus, perhaps with

regularisation and if the optimisation were allowed to iterate for longer, a more accurate

reconstruction would have been obtained.
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F I G U R E 6 . 6 : Plot of maximum and average estimate of µs in the inclusion in Fig.
6.5(a) as a function of iteration, and global estimate of µs as a function of iteration.
Plots obtained from GD optimisation used to reconstruct µs using 107 photons in the
forward and adjoint simulations. The true value of µs in the inclusion was 15mm-1 and

the true global average of µs, 5.63mm-1, is plotted in black.

The limited accuracy of the inversions for the scattering coefficient may compromise
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the accuracy of reconstruction of the absorption coefficient when these are estimated

simultaneously. Nevertheless, the primary objective of QPAT is to estimate the absorption

coefficient, given that it is closely linked to physiology through chromophore concen-

trations. Thus, if the accuracy of the estimate of µs in Fig. 6.5(b) is sufficient to allow

accurate estimation of the absorption coefficient then gradient-based inversion using

RMC is a promising approach for use in practice. It has been shown [98] that a homoge-

neous average or background estimate of the scattering coefficient can yield estimates

of the absorption coefficient that are of a useful level of accuracy. Fig. 6.6 also contains

a plot of the estimate of µs averaged over the entire domain for each iteration in the

optimisation, with the horizontal black line showing the average of the true scattering

coefficient over all pixels. Despite the average estimate of µs at the 54th iteration being

lower in accuracy than the average estimate at the 18th and 30th iterations, it may still

be sufficiently accurate to yield an accurate estimate of the absorption coefficient when

inverting for µa and µs simultaneously. This type of inversion is examined in the next

section.

6.5 Inversions for the absorption and scattering coefficients

simultaneously

In order to overcome the nonuniqueness problem in the inversion when estimating µa

and µs simultaneously, at least one additional PAT image is required. As discussed in

Chapter 2, a few approaches are possible, but obtaining images using illuminations from

multiple directions is the scheme used here as it is straightforward to implement in the

MC model. The absorption and scattering coefficients used were the same as when

reconstructing the absorption coefficient and are plotted in Fig. 6.8(a) and (b). One

image was simulated using the same illumination as before: a collimated line source on

the boundary at z=0mm. A second image was simulated using a collimated line source

on the adjacent boundary at x=4mm. The pair of images, Hmeas
ξ , for each illumination

ξ, is shown in Fig. 6.7 with the position of the line source indicated by the white line.

Each image was simulated using the RMC model using 108 photons.
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F I G U R E 6 . 7 : (a) Hmeas
ξ=1 , the true absorbed energy density from line source illumina-

tion at z=0mm, indicated by white line; (b) Hmeas
ξ=2 , the true absorbed energy density

from line source illumination at x=4mm, indicated by white line.

A new error functional must now be formed with a summation over the illumination

index ξ:

ε(i) =
1

2

2∑
ξ=1

∣∣∣∣∣∣Hmeas
ξ −H(i)

ξ

∣∣∣∣∣∣2 , (6.8)

and the functional gradients with respect to absorption and scattering must also be

obtained using the same summation over illumination:

∂ε

∂µa
=

2∑
ξ=1

(
∂ε

∂µa

)
ξ

(6.9)

∂ε

∂µs
=

2∑
ξ=1

(
∂ε

∂µs

)
ξ

. (6.10)

As observed earlier in this chapter as well as in Chapter 5, the magnitude of the gradient

with respect to µs is much smaller than the gradient with respect to µa. The consequence

of this is that a linesearch in the optimisation will yield step lengths, α(i), that would

produce a significant change in µ
(i)
a , with almost no change in µ

(i)
s , because of the

increased sensitivity of ε to µa. ‘Sphering’ of the error surface is therefore performed by
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using a change of variables

µ̂a =
µa

µ
(0)
a

(6.11)

µ̂s =
µs

µ
(0)
s

, (6.12)

where µ(0)
a and µ(0)

s are the initial guesses of the absorption and scattering coefficients,

respectively. With this change of variables, the functional gradients become

∂ε

∂µ̂a
= µ(0)

a

∂ε

∂µa
(6.13)

∂ε

∂µ̂s
= µ(0)

s

∂ε

∂µs
, (6.14)

which will be more similar in magnitude provided we choose µ(0)
a < 1 < µ

(0)
s .

The inversion was performed using 107 photons and 10 Fourier harmonics for each for-

ward and adjoint RMC simulation and for each illumination. µ(0)
a and µ(0)

s were set to

be homogeneous and equal to the background values in the true absorption and scat-

tering coefficients, respectively. The same GD optimisation with backtracking linesearch

(ν1 = 0.2, τ = 0.5) was used, as before when reconstructing the scattering coefficient,

but the range of α(i) had to be adjusted to account for the different magnitude in ∂ε
∂µ̂s

.

The step length was chosen to be between 104 and 106 in the linesearch as this resulted

in sufficiently rapid convergence without producing extremely large estimates of µa and

µs that are outside of the physiological range. Positivity in µa and µs were also enforced.

Inversions in this section were again run on a Dell 2U R820 32-core server on Legion.

The top row of Fig. 6.8 shows the true absorption and scattering coefficients with the

reconstructed µa and µs after 300 iterations shown in the bottom row. 300 iterations

took 11.4 hours, with each iteration requiring between 1.37 minutes on average.
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F I G U R E 6 . 8 : (a) True absorption coefficient with a background absorption coefficient
of 0.01mm-1 and inclusions where the absorption coefficient is equal to 0.2mm-1 and
0.3mm-1; (b) True scattering coefficient with a background scattering coefficient of
5mm-1 and inclusions where the scattering coefficient is equal to 10mm-1 and 15mm-1;
(c) Estimate of absorption coefficient after 300 iterations, recovered using simultane-
ous inversion through GD optimisation using 107 photons; (c) Estimate of scattering
coefficient after 300 iterations, recovered using simultaneous inversion through GD

optimisation using 107 photons.

Comparing Fig. 6.8(a) with (c), it can be seen that the absorption coefficient is recon-

structed accurately far from the sources at z=0mm and x=4mm but many pixels have

significant errors in the regions of the inclusions that are nearest the corner of the domain

at x=4mm, z=0mm. The estimate of the scattering coefficient has significant errors; this
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is highlighted in the plots in Fig. 6.9 which show the average of the estimate of µa and

µs plotted as a function of their true values in the two inclusions, with the maximum

and minimum values in the inclusion indicated by the error bars.
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F I G U R E 6 . 9 : (a) Error bar plots of average estimated absorption coefficient (recovered
using 300 iterations of GD algorithm using 107 photons which reconstructed µa and µs

simultaneously) against true absorption coefficient in inclusions in Fig. 6.8(a); (b) Error
bar plots of average estimated scattering coefficient (recovered using 300 iterations of
GD algorithm using 107 photons which reconstructed µa and µs simultaneously) against

true scattering coefficient in inclusions in Fig. 6.8(b).

While the average estimate in the inclusion is quite near the true value for the absorption

coefficient, the error is significant for the scattering coefficient in both inclusions. This

leads to the following questions:

(1) why is the absorption coefficient reconstructed with a relatively high degree of

accuracy?

(2) can the accuracy of the absorption coefficient be improved beyond the estimate

shown in Fig. 6.8(c)?

Question (1) can be answered in part with reference to the inversion performed in

[98] which attempted to reconstruct simultaneously the absorption coefficient in every

pixel and the value of µs averaged over all pixels. This showed that the absorption

coefficient could be reconstructed quite accurately everywhere in the domain, provided
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the mean estimate of the scattering over the domain was fairly accurate. This may

be the reason why the estimate of µa in Fig. 6.8(c) is quite accurate; the average

scattering coefficient in the domain, plotted above in Fig. 6.6 was near the true value

of 5.96mm-1 at every iteration in the optimisation, and the value at the final iteration

was 5.17mm-1, coresponding to a 13% relative error compared with the true µs. It was

shown in [98] that the sensitivity of the error in the absorption coefficient was shown

to be greatest in the presence of noise in the data and a single line source illumination;

plots of the average error in µesta versus that in µests showed that an average relative error

of 13% in the scattering ceofficient yielded between an 8-11% average relative error

in the absorption. This is greater than the 6.3% relative error in the estimate of µa in

Fig. 6.8(c) when the average error in µests was 13%. This leads onto question (2); by

estimating the mean of the scattering coefficient in all pixels rather than in each pixel,

can the estimate of the absorption coefficient be improved?

The inversion was carried out again, this time only recovering µa in each pixel and the

mean value of µs. This was achieved by computing the gradient in each pixel , j ∈ [1, J ],

(with sphering applied),
(
∂ε
∂µ̂s

)(i,j)
, and then averaging over the gradient before forming

the update to the scattering coefficient given by α(i)

(
− 1
J

∑J
j=1

(
∂ε
∂µ̂s

)(i,j)
)

. The update

to absorption was calculated in the usual way. Again, the foward and adjoint RMC

simulations were run with 107 photons and 10 Fourier harmonics were recorded. Fig.

6.10 shows error bar plots like those in Fig. 6.9, but the plot on the right-hand side

shows the accuracy of the average scattering estimate (which has no spread unlike in

Fig. 6.9(b)).
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F I G U R E 6 . 1 0 : (a) Error bar plots of average estimated absorption coefficient (recov-
ered using 300 iterations of GD algorithm using 107 photons which reconstructed µa

and average value of µs simultaneously) against true absorption coefficient in inclusions
in Fig. 6.8(a); (b) Error bar plots of average estimated scattering coefficient (recovered
using 300 iterations of GD algorithm using 107 photons which reconstructed µa and µs

simultaneously) against average of the true scattering coefficient in Fig. 6.8(b).

The plots above show the improved accuracy in the µa estimate in the two inclusions

with the relative error averaged over the whole domain being 5.1% compared with 6.3%

when the full distribution of the scattering was estimated. This is a slightly curious result

because the average scattering coefficient was estimated to be 5.16mm-1 which is slightly

lower than the average of the distribution in Fig. 6.8(d). This may be due to the fact that

the spread of the scattering coefficient when the full µa and µs distributions were being

recovered simultaneously was negatively impacting the accuracy of the µa estimate. It is

therefore possible that a statistic other than the mean, e.g. the most frequently occuring

µs in the distribution, may be a better choice but this is not investigated here.

Other approaches may be able to improve the estimate in µa. Plotting the log of the error

functional from the case where µa and µs were reconstructed simultaneously at every

pixel in the domain in red in Fig. 6.11 shows that a large change in the error functional is

seen between the zeroth and 50th iteration, with an almost linear region between the 50th

and 300th iteration. This is consistent with observations made in [98], which show that

the initial large change in ε(i) is due to partial convergence of the absorption coefficient;

however, after ∼50 iterations, the estimate of µa cannot converge without improvement
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in the accuracy of µs. This is supported by the fact that performing the same inversion

using an initial guess µ(0)
s = µtrues , the estimate of the absorption coefficient converges

to its true value with a <6% error averaged over all pixels within 50 iterations. Under

the assumption µ
(0)
s = µtrues , the relative error in µa decreased to 2.5% by the 100th

iteration, which is comparable to the case investigated in Section 6.3 where only µa was

estimated using 108 photons in the forward and adjoint RMC simulations. In addition, it

is possible to estimate how many iterations would be required for convergence of both µa

and µs given the non-zero slope in the linear region of Fig. 6.11, which is estimated to be

∼4.03×10-4. In order to determine the minimum expected value of the error functional,

the model was run using 107 photons for each illumination using the true absorption

and scattering coefficients, and the least-squares error between this data and Hmeas
ξ was

calculated. The log of this value was -7.22, although this is of course subject to some

uncertainty due to variance in Hmeas
ξ and Hξ(µ

true
a , µtrues ). Assuming the slope in the

linear region remains constant (which it is unlikely to due to a reduction in magnitude

of the gradient as the true µa and µs values are approached) more than 6000 iterations

would be required. At ∼1.37 minutes per iteration, the inversion would require nearly

90 hours of run-time, which is not possible due to limited access to Legion for such

extended times.
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F I G U R E 6 . 1 1 : Plot of error functional from simultaneous reconstruction of µa and µs

using GD optimisation and 107 photons. Plots for optimisations run for 300 and 500
iterations.

Running the inversion for 500 iterations helps illustrate the above point that iterating
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for longer is likely to result in the ‘absolute’ minimum being attained, subject to the

variance in the data and the forward and adjoint simulations of course. The minor

decrease in the error functional over the additional 200 iterations in Fig. 6.11, is due

to an improvement of the estimate of the scattering coefficient as negligible change

was observed in the absorption coefficient, reflected by the error bar plots in Fig. 6.12

which shows the new range of µa and µs estimates in the inclusions overlayed with the

estimates after 300 iterations, ploted using the asterisk. Thus, provided the SNR in the

gradients remains sufficient, the true values of µa and µs could be estimated to within

the level of uncertainty in the modelled absorbed energy density.
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F I G U R E 6 . 1 2 : (a) Error bar plots comparing average estimated absorption coefficient
recovered using 500 iterations of GD algorithm using 107 photons which reconstructed
µa and µs simultaneously against the absorption coefficient estimated using the same
optimisation after 300 iterations. Average estimate of µa plotted against true µa in inclu-
sions shown in Fig. 6.8(a); (b) Error bar plots comparing average estimated scattering
coefficient recovered using 500 iterations of GD algorithm using 107 photons which re-
constructed µa and µs simultaneously against the scattering coefficient estimated using
the same optimisation after 300 iterations. Average estimate of µs plotted against true

µs in inclusions shown in Fig. 6.8(b).

This is an exciting and promising result because the inversions performed in this chapter,

particularly those in which µa and µs were recovered simultaneously, were not carried

out in optimal conditions. In practice, the data may be corrupted with artefacts from

acoustic reconstruction and greater levels of noise. However, existing model-based in-

version approaches using the FE models of the DA [190], RTE [107] or delta-Eddington
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approximation [191] have achieved levels of accuracy in estimates of µa and µs that is

comparable to estimates presented above (although in the literature µs was sometimes

smooth spatially allowing more accurate reconstruction). The key challenge needing to

be overcome with a RMC-based inversion is the presence of noise in any of the quanti-

ties estimated using MC; firstly, noise in the functional gradients means that the search

direction of the linesearch is not always ‘well chosen’. This has the consequence that

a descent direction is not guaranteed. In isolation, this can be rectified using second

order information in an l-BFGS optimisation as well as through a rigorous linesearch,

but noise in ε(i) results in an inefficient linesearch in inversions for µa where SNR is suffi-

cient for the Wolfe conditions to be satisfied, or a completely ineffective linesearch when

recovering µs. A backtracking linesearch with a well-chosen maximum and minimum

step length allowed the optimisation to progress, but was found to be very unstable as

reflected in the plot of the error functional at each iteration in Fig. 6.5(c).

6.6 Summary

This chapter investigated the possibility of estimating distributions of the absorption and

scattering coefficients from simulated PAT images in 2D using a gradient-based optimi-

sation approach. The reconstructions were peformed under the assumptions that the

PAT image was reconstructed perfectly and that the Grüneisen parameter was known.

A key question that needed to be tackled first was which optimisation algorithm would

be used. The l-BFGS algorithm was believed intially to be the best candidate given its

superlinear convergence and self-correcting properties. Nevertheless, it was found that

noise in the functional gradients, which was propagated into the Hessian approximation,

meant that these properties did not apply. The superior performance of the gradient

descent approach with noisy gradients meant that it was used throughout the chapter

when estimating µa and/or µs. The absorption coefficient could be estimated very accu-

rately when 108 photons was used in the forward and adjoint RMC simulations, yielding

an average relative error in the estimate after 39 iterations of 1.9%, even with the data

containing ∼1% noise from MC simulation. However, the much reduced sensitivity of the

error functional to the scattering coefficient meant that noise in ε prevented progress of



Chapter 6 : Inverting for the absorption and scattering coefficients from PAT images197

the optimisation and required the implementation of a backtracking linesearch with care-

fully chosen maximum and minimum step lengths. The modifications to the optimisation

used to recover µa yielded reasonably accurate reconstructions of the scattering coeffi-

cient, which led to the question of whether µa and µs could be estimated simultaneously

with additional data. A second image was simulated with an illumination along another

boundary, and it was found that the absorption could be estimated with a 6% average

relative uncertainty compared with its true value; it is believed that the relatively high

level of accuracy is due to the fact that the average value of the scattering coefficient was

estimated reasonably accurately, with a 13% relative uncertainty compared with its true

value. The optimisation terminated after the maximum number of permitted iterations

was reached, but it was observed that the error functional had not converged by this

point, suggesting the estimtates could be further improved with many more iterations of

the optimisation.

6.7 Future work

There are a number of features of the RMC-based inversions above that would be worth

exploring further in future. These largely fall into two categories: managing the noise in

the optimisation or reducing noise in the forward and adjoint RMC simulations.

Upward steps in the optimisation were sometimes required in order for the optimisation

to progress, however this would ordinarily result in the termination condition being

satisfied, therefore resulting in premature termination of the optimisation. Schemes to

mitigate against premature termination have been presented in the literature through

nonmonotone linesearch algorithms [192, 193]. One such algorithm [193] uses the

mean value of the error functional over several step lengths to test modified forms of

the Wolfe conditions. This approach may be able to better manage noise the linesearch

which was found to be such a significant obstacle in Sections 6.4 and 6.5. Applying

a penalty term to the error functional, either through Tikhonov or TV regularisation,

may also help manage noise in the inversion by penalising updates with high spatial

frequencies from noise in the functional gradients. Another way of managing the noise is
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through resampling of the gradient. As the estimate of the functional gradient may be an

inaccurate sample of the true gradient, it may be worth resampling the gradient which

would involve re-running the forward and adjoint RMC simulations. As each sample can

be run at lower computational cost, the true value can be inferred using a sufficiently

large number of inexpensive samples, as is performed in the MCMC approach [110].

Running a great number of simulations with a lower number of photons may however

still result in excessive run-times and this does not solve the problem caused by noise in

the error functional when performing the linesearch (although a similar approach could

be applied in resolving this issue). It may therefore be worthwhile to just perform the

gradient calculation using simulations with a greater value of Np, which would require

a more efficient model; suitable approaches to accelerating RMC are discussed below.

The number of photons required in a forward or adjoint simulation to reduce noise levels

in H(i), ∇ε(i) or ε(i) to a level where it no longer impacts progress in the invesion may be

several orders of magnitude greater than the Np used in the optimisations above, partic-

ularly in 3D. To avoid computation times increasing (significantly) beyond the ∼10-13

hours currently required for simultaneous estimation of µa and µs, the MC model would

have to be implemented for execution on massively parallel computing architectures.

MCX [132] and MMC [133] are both 3D Monte Carlo models written in highly opti-

mised CUDA code. MCX can simulate 1012 photons in a 5mm cubic domain with realistic

tissue properties in approximately 20 minutes. However, there can be easily more than

100 runs of the model in an inversion, leading to over 30 hours for an optimisation. In

order to maintain the run-time for an optimisation at around 10 hours, parallelisation to

multiple GPUs would be required. Such computing facilities exist, but implementation

is then complicated by the fact that the data from multiple compute nodes, each with

their own GPU(s), would have to be collected on a common, host node, thus introducing

further implementational challenges. When inverting large 3D datasets, consideration

would have to be given to bottlenecks introduced through transferring large quantities

of data across the interconnect used to pass data between nodes. Extending RMC to such

an implementation is possible but would require substantial computing expertise.
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Conclusion and future work

Conclusion

There have been two principal objectives of this thesis; firstly, it was of interest to

demonstrate the conditions in which a linear inversion, i.e. an inversion that assumes

wavelength-independence of the fluence, can yield accurate oxygenation estimates and

the conditions in which it fails. This is valuable because the linear inversion is frequently

used in the literature without an appreciation of its shortcomings. The second objective

of this thesis was to develop a novel method of performing inversions where the fluence

is accounted for using an accurate, scalable and potentially highly efficient model of light

transport. The outcomes and contributions of this thesis are reviewed below.

• Using a linear inversion, the accuracy with which blood oxygenation can be estimated

is limited and depends strongly on the illumination wavelengths and depth of the

structure being imaged.

Under the assumption that PAT images can be acquired without noise and that the

initial acoustic pressure can be perfectly reconstructed, the accuracy of a linear

inversion used to estimate blood oxygenation from such images relies on two dis-

tinct features. Firstly, the spectra of the chromophores being estimated – in this

199
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case, oxy- and deoxyhaemoglobin – must have sufficient linear independence, oth-

erwise the inversion becomes ill-posed. Secondly, the images must exhibit minimal

spectral colouring as the distortion of the fluence’s spectrum results in nonlinear-

ity between the absorption coefficient and the image. Chapter 3 demonstrated

that, for blood-filled tissues, spectral colouring and ill-conditioning of the matrix

of molar absorption coefficients, α, are prevalent for combinations of wavelengths

from certain regions of the NIR-visible spectrum. The effect of spectral colour-

ing is most severe at wavelengths in the 500-600nm range where the absorption

of blood is high and undergoes large changes from one wavelength to another,

while ill-conditioning of α is significant only at wavelengths where the absorption

spectrum of oxy- and deoxy-haemoglobin both undergo little change. Thus, while

the latter occurs for a small region of the spectrum between 840nm and 920nm,

spectral colouring impacts the accuracy of a linear inversion over a large region

of the spectrum. Moreover, the 500-600nm range offers significantly higher SNR

compared with wavelengths >600nm due to the greater magnitude of the absorp-

tion coefficient of blood in this spectral range. This poses an additional issue and

one that was demonstrated to markedly limit the applicability of a linear inver-

sion in practice; in the presence of noise in the acquisition of acoustic time-series,

the change in pressure from one wavelength to another will fall below the noise

equivalent pressure of the detection system, meaning the inversion will become

ill-posed or wholly inaccurate. It was shown that for a simple phantom consisting

of a blood-filled tube submerged to a depth of 1mm in an turbid medium, the

inversion will yield sO2 estimates with greater than 50% absolute error at most

wavelengths across the NIR-visible spectrum even in the presence of generously

low noise levels. This was observed for a range of physiological sO2 values. The

exception to this trend was that certain wavelength pairs in the 600-1000nm range

yielded sO2 estimates of reasonable accuracy to a depth of a few mm. However,

as the specific wavelength sets that yield an acceptable level of accuracy vary with

tissue composition and geometry, applying this in any real imaging situation is

likely to provide oxygenation estimates of misleading accuracy because the ground

truth sO2 is not known. Thus, without an optimal imaging scenario (e.g. low noise,
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limited depth, minimal acoustic artefacts, high blood oxygenation), modelling of

the fluence would be required to obtain sO2 estimates that are of a useful level of

accuracy.

• The Monte Carlo method for light transport can be readily extended to simulate the

radiance which can be stored compactly using frequency-domain angular discretisa-

tion.

Despite Monte Carlo models of light transport often being considered the gold stan-

dard model of the RTE in biomedical optics, they have found limited application

in QPAT. This is in part due to the computational load associated with simulating

millions, if not billions, of photons to obtain a sufficiently low-variance fluence

estimate, but it is also due to the fact that without both forward and adjoint simula-

tions of the radiance, accurate functional gradients with respect to the absorption

and scattering coefficients are extremely computationally intensive to compute.

Since the Monte Carlo method already models the directional portion of the RTE,

access to the radiance using the MC method is straightforward because directional

information of the field is carried by the photon packets. Thus, simply a method of

measuring and storing the angular part of the field is required, which was demon-

strated in 2D using a Fourier basis. Storing the field in the frequency-domain

reduces the computational load of angular discretisation compared with the dis-

crete ordinate method. The models developed offer a parallelisable approach to

simulating the radiance, which was validated in 2D against analytic solutions for

homogeneous media. The models can be readily applied to the optical inverse

problem in QPAT through calculation of functional gradients with respect to the

absorption and scattering coefficients.

• Forward and adjoint simulations using the RMC algorithm allow accurate and tractable

calculation of functional gradients with respect to µa and µs.

Chapter 5 evaluated the accuracy of functional gradients computed using the 2D

forward and adjoint RMC models compared with gradients calculated via the finite

difference approach using the MC forward model. A major obstacle uncovered
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in this process is the sensitivity of the finite difference estimate of the functional

gradient to noise in fluence estimates obtained using RMC. The finite difference

method requires that the perturbation is sufficiently small for convergence of the

gradient; however, convergence could not be explicitly tested due to the high levels

of noise in the gradient estimates. When the perturbation was large (15% of the

background µs) and 109 photons were simulated, validation of the adjoint-assisted

and finite difference functional gradients was not possible. Reducing the pertur-

bation would require simulation of significantly more photons, particularly in 3D

due to the inherently higher variance in 3D MC models (this was not however

investigated in this thesis). The adjoint-assisted approach to gradient calculation

is much more robust to noise compared with the finite difference method meaning

that the adjoint method could be used to estimate distributions of µa and µs in

QPAT, which had not been achieved using a MC model before.

• Estimation of the distribution of µa and µs, independently and simultaneously, is

possible to a practically useful degree of accuracy using a gradient-based optimisation

and functional gradients obtained using forward and adjoint RMC simulations.

Using the methods presented in Chapter 5 for gradient calculation, inversions for

the absorption and scattering coefficients could be attempted. A significant chal-

lenge encountered in solving the inverse problem was the suitability of the optimi-

sation technique. As the number of photons simulated in the forward and adjoint

Monte Carlo simulations will determine the uncertainty in scored quantities like

fluence estimates and Fourier harmonics, this uncertainty is propagated into the

estimates of the functional gradients and the error functional. The impact of this is

two-fold; firstly, the search direction is not optimal and, secondly, noise in the error

functional will reduce the chance of a step length satisfying the Wolfe conditions

in the linesearch. The former led to the gradient descent algorithm out-performing

the l-BFGS approach in the recovery of µa as the SNR in the functional gradient

and error functional was sufficient when inverting for the absorption coefficient

meaning the inversion could progress efficiently. The inversion yielded an estimate

of the absorption coefficient whose accuracy was to within approximately the same
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noise level on average over the domain as in the measured data. However, when

estimating the scattering coefficient or both µa and µs simultaneously, SNR in the

gradients and error functional became problematic and the optimisation had to

be forced to take steps, otherwise it would not have progressed. This approach

produced relatively accurate reconstructions for the absorption coefficient, but con-

vergence of the scattering coefficient was comparatively much worse (although this

is in part due to the diffusive nature of scattering, i.e. this problem is not restricted

to RMC-based inversions). Since it is the absorption coefficient that is of more

value from a clinical perspective, it can be argued the the accuracy of the scattering

must just be sufficient to provide an accurate estimate of the absorption coefficient.

Preliminary inversions in Chapter 6 revealed that recovery of the average value of

µs over the domain may allow the inversion to yield estimates of the absorption

coefficient that are of a clinically useful level of accuracy.

The highly limited accuracy that can be obtained using inversions that do not account

for the fluence was apparent in Chapter 3. There are, however, many practical and im-

plementational challenges standing in the way of the methods proposed in Chapters 4–6

being useful in a clinical or pre-clinical setting. First, the inversions were attempted in a

near-ideal scenario in which it was assumed that the Grüneisen parameter was known

and that the PAT image was perfectly reconstructed. As discussed in Chapter 1, these

assumptions rarely apply in practice, but approaches to remedy these issues are already

in existence. For example, the Grüneisen parameter can be divided out of the image

using by taking a ratio of images at two different wavelengths [98] or it can be recovered

using additional data [104], and limited-vew artefacts can be reduced using a pair of

orthogonal detectors [194]. The implementational challenges associated with massive

parallelisation of RMC cited at the end of Chapter 6 would need to be tackled in order

for a RMC-based inversion approach to be viable. The primary reason for this is that

although the implementation of radiance Monte Carlo in 3D is quite similar to that in 2D,

several orders of magnitude more photons would be required to minimise noise levels in

the inversions, which would only be possible via quite substantial parallelisation. Never-

theless, the hardware and expertise is available for such advancements meaning Monte
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Carlo methods may become a more commonly used tool in modelling light transport in

QPAT.

Future work

In its current state, the field of QPAT is faced with many challenges. This thesis attempts

to answer two key questions; (a) under what conditions is it necessary to model the

fluence to obtain reasonably accurate quantitative information (sO2 , chromophore

concentrations, etc.)? And (b) how can the computational challenges associated with

modelling the fluence in a model-based inversion scheme be overcome? Although the

conclusions highlighted in the previous section provide a significant contribution to the

field through answering the above questions, the answers are not complete and further

research is desirable. This section aims to underline the aspects of further research that

are expected to yield results that advance the field of QPAT.

Chapter 3 demonstrated that there are a few circumstances in which a linear inversion

will yield accurate results, namely when wavelengths are ‘well-chosen’, the object of

interest is shallow and the noise in the image is low. These parameters are of course

interrelated; additional questions that are therefore worth attempting to answer is what

level of SNR would be necessary for well-chosen wavelengths not to be corrupted by

noise, and how do optimal wavelengths change as the target structure changes with

depth or if the constituent chromophores change (for example through the introduction

of a CSF layer in the brain)? This systematic analysis could be extended to investigate

how the accuracy of a linear inversion changes when an artery is in close proximity to a

vein, which has a differing absorption spectrum.

It was also found in Chapter 3 that if the sO2 estimates obtained using a series of two-

wavelength linear inversions using wavelengths from across the NIR/visisble spectrum

are plotted as a histogram, the mean of the histogram appears to be near the true

oxygenation of the target. This superficial investigation requires a more careful study to

understand why the average of many two-wavelength sO2 estimates tends to the average

vessel oxygenation and whether this observation applies more generally to different
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tissue structures and constititutions. A first approach would be to perform additional

simulations, ideally using a 3D transport model such as Monte Carlo, to investigate

how the shape of the histrogram of sO2 estimates changes with target depth and in the

presence of more vasculature. This could then be extended to tube phantom or in vitro

studies, provided the true chromophore concentration ratio can be ascertained via an

independent measurement.

A more in-depth understanding of the circumstances in which a linear inversion is likely

to yield reliablly accurate sO2 estimates would also help identify when a model-based

inversion is required. Chapter 4 presented a Monte Carlo model of radiance which

was applied within a gradient-based inversion scheme to estimate the absorption and

scattering coefficients. Two limitations of the model are that it is 2D and has undergone

minimal parallelisation. This had the consequence that inversions in Chapter 6 could only

be carried out on 2D problems and computation times when inverting for the scattering

coefficient were in the 11-14 hour range. A 3D GPU-accelerated implementation of the

algorithm, using a spherical harmonic angular basis, would mean that 3D problems could

be solved efficiently and, potentially, improve the estimate of the scattering, given lower

variance gradient estimates could be obtained.

Writing efficient GPU code, e.g. in NVIDIA CUDA, is challenging; for this reason, writing a

3D spherical harmonic RMC from scratch may not be a worthwhile endeavour, especially

with the availability of open-source codes such as MCX [132]. In order to modify this

code, the spherical harmonic coefficients would have to be calculated for each photon

packet in parallel, which would result in slower photon propagation times. Nevertheless,

this would most likely be the most straightforward means of arriving at a GPU-accelerated

3D radiance MC model.

While these areas of research remain key to advancing the field of QPAT, they are by no

means the only challenges. Chapter 2 highlighted a number of other obstacles stand-

ing in the way of obtaining accurate quantitative information using PAT, including the

absorption-scattering nonuniqueness problem and the Grüneisen parameter being un-

known. One strategy for overcoming ill-posedness due to an unknown Grüneisen param-

eter involves using a ratio of PAT images as the data [104]. This is unattractive because
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ratio data contains more noise; however, it is possible to reconstruct the Grüneisen pa-

rameter simultaneously with the absorption and scattering coefficient with additional

data [104]. To reduce instability when inverting for these three parameters simultane-

ously, Pulkkinen et al. have shown that spectral constraints on the scattering using a Mie

scattering relationship and the inclusion of spatial priors that promote structure in the

parameter estimates yields improved accuracy of the reconstruction [195]. Constraints

introduced through spectral classification via a mixture of Gaussians model have also

been shown to improve the accuracy of absorption and scatering estimates [196], and

this method could be extended to reconstruct the Grüneisen parameter simultaneously.

These approaches can be applied in conjunction with the radiance Monte Carlo forward

and adjoint models proposed in this thesis. While parallelisation of the algorithm remains

a priority, the use of multiwavelength data and constraining the wavelength-dependent

scattering coefficient could potentially help reduce ill-posedness and yield better estimate

of µs, improving upon results obtained in Chapter 6.

There is a growing body of methods used to solve inverse problems that have not yet

been applied in QPAT. Much of the focus in QPAT has been on model-fitting approaches,

but the scale of the problem, the spectral case in particular, and the computational

demands of the forward and inverse models are typically so large that these techniques

are impractical. Methods applied in mature fields like image segmentation may provide

worthwhile avenues for research in QPAT; techniques such as machine learning, Markov

random fields and atlas-based methods may be able to exploit the spatial and spectral

information in PAT images to extract quantitative measures.
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