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Abstract

In this paper we propose methodology for inference of binary-valued adjacency matrices

from various measures of the strength of association between pairs of network nodes, or more

generally pairs of variables. This strength of association can be quantified by sample covariance

and correlation matrices, and more generally by test-statistics and hypothesis testp-values from

arbitrary distributions. Community detection methods such as block modelling typically require

binary-valued adjacency matrices as a starting point. Hence, a main motivation for the method-

ology we propose is to obtain binary-valued adjacency matrices from such pairwise measures

of strength of association between variables. The proposed methodology is applicable to large

high-dimensional data-sets and is based on computationally efficient algorithms. We illustrate

its utility in a range of contexts and data-sets.
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1 Introduction

Networks and other non-Euclidean relational datasets have become important applications in mod-

ern statistics. Key considerations include balancing statistical fidelity with computational tractabil-

ity. Much effort has gone into developing parametric models for networks which take account

of such considerations, typically by specifying both node-specific effects such as degree, and

grouped-node effects such as community structure [Holland et al., 1983, Bickel and Chen, 2009,

Rohe et al., 2011, Qin and Rohe, 2013, Wilson et al., 2013]. One of the most widely studied of

these models is the stochastic blockmodel in which (under the assortative assumption) there is a

greater probability of observing an edge (or interaction) between a pair of nodes (or entities) if

they are in the same block, or community. Practical approaches to finding communities in social

and biological networks have been studied for many years [Girvan and Newman, 2002], and real

life examples of this problem include identifying groups of friends in social networks, and identi-

fying functional subnetwork modules in biological networks. In the biological setting, considering

groups of genes defined together as subgraphs can lead to increases in statistical power, aiding

discovery of biological phenomena [Jacob et al., 2012, Li and Li, 2010, Peng et al., 2010].

There are important differences between community detection and clustering. A community

within a network typically refers to a grouping of entities with a strong tendency for direct interac-

tion within the group, such as a friendship group in a social network. On the other hand, a cluster

typically refers to a group of variables which are highly correlated, but these variables do not nec-

essarily represent entities which interact directly. However, practical application of community

detection and clustering methodologies often yield similar results. The stochastic blockmodel is

an efficient method to detect communities in networks, and more generally it can be used to clus-

ter together variables with correlated observations. However, most of the important theoretical

understanding of the stochastic blockmodel has been developed under the assumption of a binary-

valued relationship between the network nodes [Holland et al., 1983, Bickel and Chen, 2009, Rohe
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et al., 2011, Qin and Rohe, 2013, Wilson et al., 2013, Olhede and Wolfe, 2014]. This relationship

corresponds to the presence and absence of network edges between these nodes, and is typically

represented ones and zeros (respectively) in an adjacency matrix. If such theoretical understand-

ing is to be relevant to the use of community detection/ the stochastic blockmodel as a means of

clustering, the data to be clustered must first be transformed into this binary-valued format.

The methodology that we propose in this paper allows a binary-valued adjacency matrix to be

estimated based on association matrices composed of sample covariances, or correlations, or test

statistics from arbitrary known or unknown distributions. This binary-valued adjacency matrix

is then an ideal summary of the relational data-set on which to carry out community detection.

Hence, the main motivation of this paper is to propose methodology to allow continuous-valued

statistics which measure the strength of association between pairs of variables to be transformed

into a binary-valued adjacency matrix format, for use in community detection. In this format, ones

and zeros can be considered to represent variables which are and are not correlated, respectively.

If a binary-valued adjacency matrix is used to define pairs of variables which are correlated, and

other pairs of variables which are not correlated, then the zero entries in this matrix define pairs of

variables which are independent. This relates closely to the ‘probabilistic graphical model’ [Koller

and Friedman, 2009] paradigm, in which a joint probability distribution over a large number of

variables is made tractable by taking advantage of independencies between pairs of variables as

specified by the graphical model. These ideas are also closely related to thresholding a covariance

matrix to a sparse representation [Bickel and Levina, 2008, Rothman et al., 2009, Bien and Tibshi-

rani, 2011], where again zeros in the sparse representation imply independent pairs of variables.

Sparse multivariate methods such as the lasso [Tibshirani, 1996] are also popular for obtaining

sparse representations via linear modelling, and can be extended to networks data via the graph-

ical lasso Friedman et al. [2008]. However the methodology proposed in this paper offers two

main advantages over the lasso in this context. Firstly, the computational implementation is via

a closed-form expression and therefore it is much quicker than the iterative procedures required
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by the lasso. Secondly, the mixture-modelling strategy we employ is precisely specified for the

problem we consider here, unlike the lasso.

This paper is organised as follows. In section 2 we define notation and present the methodology

and practical details for its usage and implementation. Then in section 3, we present examples

to illustrate the performance of this methodology, including a simulation study and several real

data-sets from different contexts.

2 Proposed methodology

We start this section by specifying the model which we will use to estimate the adjacency matrix

A.

Definition 1. For m ∈ N+ define the set of network nodes{1, ...,m}, and for each node i define

a corresponding variable xi. Let zi j represent an observed measure of association/dependence

between variables xi and xj, where:

zi j ∼ N
(
μi j , σ

2
)
.

LetA ∈ {0,1}m×m be an adjacency matrix, the elements of which satisfy:

Ai j =





0, if there is no edge between nodes i and j, implying

that the variables xi and xj are independent,

1, if there is an edge between nodes i and j, implying

that the variables xi and xj are not independent,

and let w= p
(
Ai j = 1

)
. Then, the observed measures of association zi j may be modelled using the
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mixture distribution:

zi j ∼ (1− w) ∙ N
(
0, σ2

)
+ w ∙ N

(
μi j , σ

2
)
. (1)

In section 2.1 we describe how to calculate the observed measures of association/dependencezi j

from sample covariance/correlation matrices. Then, in section 2.2, we describe the equivalent

calculations based on test statistics from arbitrary or unknown distributions. Next, in section 2.3

we describe how the model of definition 1 can be fitted, and how the adjacency matrixÂ can be

estimated from the fitted model. Then in section 2.4, we discuss community detection based onÂ.

2.1 Applying the model to a covariance/correlation matrix

We can estimate an adjacency matrix from a sample covariance or correlation matrix by fitting

the model of definition 1 by starting with the following procedure. Equation 2 defines the sample

covariance matrix̂Σ for the m variables represented by the vectorx, x1, ..., xm, for samplesx(k),

k = 1, ..., n:

Σ̂ =
1
n

n∑

k=1

(x(k) − x̄) (x(k) − x̄)T , where x̄ =
1
n

n∑

k=1

x(k). (2)

By dividing each row and each column ofΣ̂ by the square roots of the corresponding elements of

the leading diagonal, we obtain the sample correlation matrixr̂:

r̂ =
(
diag(Σ̂)

)−1/2
Σ̂

(
diag(Σ̂)

)−1/2
.

The (i, j)th element of̂r, i.e. r̂ i j , is the Pearson correlation coefficient between variablesxi andxj. If

xi andxj are jointly normally distributed, and the
{
xi(k), xj(k)

}
, k = 1, ..., n samples are independent,

the Fisher transform [Fisher, 1915] converts ˆri j to the approximately normally distributed variable

zi j :

zi j =
1
2

ln

(
1+ r̂ i j

1− r̂ i j

)

, (3)
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where

zi j
approx
∼ N

(
1
2

ln

(
1+ ri j

1− ri j

)

,
1
ν − 3

)

,

whereri j is the true correlation coefficient between variablesxi and xj, andν is the degrees of

freedom. Hence, we can model the Fisher-transformed sample correlation coefficientszi j with the

mixture model of equation 1, also with:

μi j =
1
2

ln

(
1+ ri j

1− ri j

)

and σ2 =
1
ν − 3

. (4)

2.2 Applying the model to test statistics from arbitrary distributions

We can also estimate an adjacency matrix by fitting the model of definition 1 when the association

between variablesxi andxj is assessed by a test-statistic from an arbitrary distribution expressed

as a hypothesis-testp-value. Such ap-values may result from test-statistics from any known dis-

tribution, or may even be derived from an unknown distribution, for example by Monte-Carlo

simulation. We can represent thesep-values in the matrixP, wherepi j is the estimated probability

of observing the association test-statistic for the pair of variablesxi andxj under the null hypoth-

esisH0 that there is no association betweenxi andxj (i.e. they are independent). Assuming these

p-values arose from upper-tailed tests, we can apply the inverse-normal transformation as follows:

zi j = Φ−1
(
1− pi j

)
, (5)

with an equivalent expression available for lower-tailed tests. Applying this transformation is

equivalent to applying quantile normalisation, mapping the null distribution ofpi j onto the standard

normalN (0,1) distribution. Hence, after applying this transformation we can again fit the mixture

model of definition 1, and use this model fit to infer the estimated adjacency matrixÂ.
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2.3 Model fitting and adjacency matrix inference

We propose fitting the model of definition 1 with an empirical Bayes procedure used previously

for thresholding [Johnstone and Silverman, 2004]. This method is based on a mixture prior over

μi j , with a Laplace density for the non-zero mean component.

Definition 2. With μi j and w given by definition 1, letγ (∙) represent the Laplace distribution

probability density function with spread parameter a:

γ
(
μi j

)
=

a
2

exp
(
−a

∣∣∣μi j

∣∣∣
)
.

Then, the mixture prior overμi j is defined as:

fprior

(
μi j

)
= (1− wi) δ

(
μi j

)
+ wiγ

(
μi j

)
.

Typically the Laplace spread parameter is taken asa = 0.5. If the mixture components have

Gaussian likelihoodsfN
(
∙
∣∣∣μi j , σ

2
)

as in definition 1, it follows from definition 2 that the posterior

density over the observed measures of associationzi j is:

fposterior

(
μi j

∣∣∣zi j

)
=

(1− wi) δ
(
μi j

)
fN

(
zi j

∣∣∣0, σ2
)
+ wiγ

(
μi j

)
fN

(
zi j

∣∣∣μi j , σ
2
)

fmarginal

(
zi j

) ,

where the marginal density is:

fmarginal

(
zi j

)
= (1− wi) fN

(
zi j

∣∣∣0, σ2
)
+ wig

(
zi j

)
, (6)

whereg
(
μi j

)
is the convolution of the Laplace density with the standard normal density. Comparing

the expression forfmarginal

(
zi j

)
in equation 6 with equation 1, we see that the normally-distributed

non-zero mean mixture component in equation 1 is replaced with the convolution of this Laplace

and normal densities in equation 6. If a Gaussian prior were used here instead of the Laplace prior,

then the marginal density in equation 6 would be exactly the same as equation 1. However, as

noted previously [Johnstone and Silverman, 2004], this empirical Bayes procedure requires a prior
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with tails that are exponential or heavier. Hence we use, as previously, the Laplace rather than a

Gaussian prior. We note that this is a slight model mis-specification.

This procedure results in a separate model being fitted to each pair of variables (xi , xj), based on

the corresponding observed statisticzi j . This methodology was originally developed to be applied

to vector data (in the form of wavelet coefficients) [Johnstone and Silverman, 2004]. Because the

dependency structure of matrix data (such as covariance or correlation matrices) may be different

to that of vector data, we apply the model fitting to each row of the association matrix, i.e. a vector,

separately. As the association matrices under consideration are symmetric, this is equivalent to

applying the method to both rows and columns of the matrix. We then take a conservative estimate,

only inferring an edge in the network when there is agreement between the result of model fitting

with respect to both rows and columns of the association matrix. Applying the methodology in

this way results in a common weightwi being used for all models corresponding to eachxi. This

estimate ofwi is found as the value which maximises the marginal likelihood (equation 7) of the

observed statisticszi j over all the pairwise comparisons ofxi with xj, j , i. This allows the model

for each pairwise comparison (xi , xj) to ‘borrow strength’ from all the other comparisons (xi , xj′),

j′ , i, j′ , j:

ŵi = arg max
w

∑

j,i

log
{
(1− w)φ

(
zi j

)
+ wg

(
zi j

)}
. (7)

For a particularxi, if thezi j are mostly close to zero thenwi will be set low, which means that fewer

edges (Ai j = 1) will be detected: this corresponds toi being a low-degree node. If for a differentxi,

thezi j are generally further from zero, then ˆwi will be set high, which corresponds to more edges

being detected: this corresponds toi being a high-degree node. Hence, setting ˆwi separately for

each variablexi allows adaptation to a heterogenous degree distribution inA.

As in the original use of this methodology [Johnstone and Silverman, 2004], we use the pos-

terior median to calculate ˆμi j . Based on this, we can estimate the corresponding adjacency matrix
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entryAi j as:

Âi j =1 if
∣∣∣μ̂i j

∣∣∣ > 0, (8)

Âi j =0 otherwise.

We make the conservative estimate ofAi j discussed above as follows:

Âi j =1 if
∣∣∣μ̂i j

∣∣∣ > 0 and
∣∣∣μ̂ ji

∣∣∣ > 0, (9)

Âi j =0 otherwise.

We note that requiring agreement between
∣∣∣μ̂i j

∣∣∣ > 0 and
∣∣∣μ̂ ji

∣∣∣ > 0 is likely to result in decreased

sensitivity: this point is discussed further in section 3.1 the context of the simulation study. The

spread parametera in the Laplace prior is set as standard asa = 0.5 [Johnstone and Silverman,

2004]. However, for additional model flexibility where needed,a can also be estimated by marginal

maximum likelihood, in which case we estimateai separately for each variablexi, simultaneously

with wi.

2.4 Community detection

Having inferredÂ, community detection [Girvan and Newman, 2002] may then proceed by fitting

the degree-corrected stochastic blockmodel [Holland et al., 1983, Bickel and Chen, 2009, Rohe

et al., 2011, Qin and Rohe, 2013] directly toÂ. However, to fit the degree-corrected stochastic

blockmodel the number of communities in the model,T, must first be specified; this number can

be estimated by the ‘network histogram’ method [Olhede and Wolfe, 2014]. Using this estimate of

the number of communities, we infer the set of communitiesĈ based on̂A, such that a community

ĉt ∈ Ĉ, t ∈ {1, ...,T}, is a group of variablesxi, i ∈ ĉt. Such a community ˆct would correspond to an

unexpectedly large number of non-zero entries|Σ̂i j | > 0 of the sample covariance matrixΣ̂ for pairs

of variablesxi andxj wherei ∈ ĉt and j ∈ ĉt. Alternatively, the community ˆct would correspond

9
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to an unexpectedly large number of significantp-valuespi j in the matrixP for pairs of variablesxi

andxj again withi ∈ ĉt and j ∈ ĉt.

3 Examples

In this section, we present the results of applying the methodology proposed in section 2 to simu-

lated data, and to publicly available data-sets relevant to genomics and consumer-product reviews.

For each data-set, we carry out network inference as described in sections 2.1 - 2.3 resulting in

a binary-valued adjacency matrix. To each such adjacency matrix, we fit the degree-corrected

stochastic blockmodel, by regularised spectral clustering [Holland et al., 1983, Bickel and Chen,

2009, Rohe et al., 2011, Qin and Rohe, 2013]. Spectral clustering is in general computationally

intensive, as it requires the singular value decomposition (SVD) of a large matrix. However, the

network inference described in sections 2.1 - 2.3 provides us with a sparse binary-valued adjacency

matrix, and efficient computational methods exist to find the top few components in the SVD of

large sparse matrices [Sørensen, 1992, Lehoucq and Sørensen, 1996]. Hence, as we only require

as many SVD components as the number of communities or clusters we are trying to find (which

tends to be two or more orders of magnitude smaller than the dimension of the adjacency matrix,

m), these efficient computational methods can be used here. Relevant software implementations of

these methods are included inMatlab andR, meaning that this methodology is practical for large

data-sets, and is quick to implement for many end-users.

3.1 Simulation study

We first carried out a simulation study, to assess the effectiveness of our network inference method-

ology in the context of generated networks with known community structure. A generative model

for exchangeable random networks with heterogenous degrees is the logistic-linear model [Perry

and Wolfe, 2012]. We use a version of that model here with community structure added, defined
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as:

Logit
(
pi j

)
= αi + α j + θi j

wherepi j defines the probability of an edge being observed between nodesi and j. We choose to

use this model, because the parameters can take any real values, whilst the the edge probabilities

pi j are guaranteed to lie between 0 and 1. This model only deviates from the equivalent log model

when the parameter values become very large - it is this effect that preventspi j from reaching (and

exceeding) 1. The node-specific parametersαi, i ∈ 1, ...,m are elements of the parameter vectorα

which defines a power-law degree-distribution for the nodes. Eachαi is generated as the logarithm

of a sample taken from a bounded Pareto distribution [Olhede and Wolfe, 2012]. We note that

because ourαi are chosen to be random, our generated networks are exchangeable [Kallenberg,

2005], whereas if the elements ofα were defined deterministically, these networks would instead

be generated under the inhomogenous random graph model [Bollobás et al., 2007]. The commu-

nity parameterθi j is allowed to take two values:θi j = θin if i and j are in the same community,

andθi j = θout otherwise. We choose to constrainθi j in this way because it is a simple means of

adding community structure, and it is equivalent to a modelling constraint which improves pa-

rameter identifiability in some formulations of the stochastic blockmodel [Newman, 2013]. After

generating thepi j , the network is generated by sampling eachAi j according to the law of:

Ai j ∼ Bernouilli
(
pi j

)
.

The communities themselves are planted in the network as randomly chosen groups of 150 nodes.

We set the number of communitiesk = 20, and hence the generated networks each comprise

m= 3000 nodes.

Having generated a network with known ground-truth community structure in this way, we use

it to randomly generate a sample correlation matrixr̂ , from which we attempt to reproduce the

known community structure. To do this, we first generate a random sample covariance matrixŜi j
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for each pair of nodesi and j, according to:

Ŝi j ∼Wishart(S, ν)

where

S=




1 rgen

rgen 1




if Ai j = 1, wherergen is the model generative correlation coefficient, and

S=




1 0

0 1




if Ai j = 0, andν is the degrees of freedom. We then calculate the estimate of the sample Pearson

correlation coefficientr̂ i j for nodesi and j asr̂ i j =
(
Ŝi j

)

12
/
√(

Ŝi j

)

11
×

(
Ŝi j

)

22
=

(
Ŝi j

)

21
/
√(

Ŝi j

)

11
×

(
Ŝi j

)

22
.

With all elements of̂r generated in this way, with ˆri j = r̂ ji andr̂ ii = 0 for i, j ∈ {1, ...,m}, we proceed

with network inference and community detection according to the methodology set out in section

2.

We test the proposed methodology on networks generated with values ofθin ∈ {50,30,20,10},

which correspond to within-community edge densityρin ∈ {0.81,0.34,0.15,0.039}. For all net-

works, we setθout = 1, corresponding to between-community edge densityρout = 0.0013. We

generate sample covariance matrices withrgen ∈ (0,1], and degrees of freedomν ∈ {50,100,200}.

For each combination of parameters, we carry out 50 repetitions of network generation followed

by network inference and community detection. These repetitions enable assessment of the vari-

ability of the accuracy of the network inference. To compare detected communities in the inferred

network with the ground-truth planted communities, we use the normalised mutual information

(NMI) [Danon et al., 2005]. The NMI assesses the numbers of nodes which appear together in the

detected communities, compared with whether they appeared together in the planted communities

(adjusted for group sizes). The NMI takes the value 1 if the communities are perfectly reproduced
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in the community detection, and 0 if they are not reproduced at all, and somewhere in between if

they are partially reproduced.

The results of the simulation study are shown in Figure 1. The accuracy of reproduction of the

ground-truth community structure is high (as evidenced by NMI values close to 1), if the generative

correlation coefficient rgen is sufficiently large. There is rapid deterioration of performance below

the optimal range ofrgen, and whenrgen is sufficiently low, no edges are detected. In this regime,

the non-zero mean component of the generative mixture model is centred sufficiently close to

zero that thezi j from this component become categorised together with those from the zero-mean

mixture component. The result is that the model fitting effectively assigns allzi j to the zero-

mean component. However, as long as the generative correlation coefficient rgen is sufficiently

large, the method performs well even with fairly sparse within-community edge density in the

ground-truth planted communities. Typically, the method fails whenrgen falls below roughly 0.45,

0.35 and 0.25 forν = 50, ν = 100 andν = 200, respectively. In the regime where the method

is close to failing, there is an apparent increase in performance before complete failure, which

manifests as the spikes in NMI values seen in in Figure 1 in the range 0.3 < ρgen < 0.4. This

phenomenon occurs because in this regime, there is a transition from mainly larger communities

being detected to many more smaller communities being detected, as evidenced by a decrease in the

mode of the distribution of detected community sizes (Supplementary Figure S1). Community size

is initially maintained in this regime asρgen is decreased below 0.4, and the corresponding decline

in performance occurs because these larger communities only partially overlap with the ground-

truth communities. Asρgen is decreased further and gets close to the point where the methodology

will fail completely, fewer edges are detected overall leading to the larger communities breaking

up into many small communities. These small communities are mostly subsets of the the ground-

truth communities, and this is reflected in the higher NMI values. Asρgen is decreased beyond

this regime, no edges are detected and the method fails completely. We also note that for large

values ofrgen, the performance of the methodology is slightly worse for the largest values ofρin.

13
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The planted ground-truth communities each comprise 150 nodes, and this decrease in performance

occurs because in this regime several of these communities coalesce in the inferred network to

form a much larger connected component (Supplementary Figure S2). This is likely to be due to the

higher false-positive rate in this regime (Supplementary Figure S4) leading to spurious connections

between communities.

The thresholding methodology which underlies the proposed methodology of section 2.3 was

originally developed in the context of thresholding data vectors [Johnstone and Silverman, 2004].

Applying this methodology to relational data matrices such as covariance and correlation matrices

is complicated by the presence of additional dependency structure, and to mitigate spurious detec-

tion, the conservative adjacency matrix estimate of equation 9 is used. To check the performance

of the methodology in this context of adjacency matrix thresholding against the intended vector

thresholding application, we carried out comparative true positive rate (sensitivity) and false pos-

itive rate (1-specificity) analyses. For these analyses the same simulated data is considered as is

presented in Figure 1, and the results appear in the supplement in Figures S3 and S4. True and

false positive rates are calculated for the adjacency matrix inference presented in sections 2.1 -

2.3, and these results are labelled ‘matrix’ in Figures S3 and S4. The equivalent results based on

equation 8 are also recorded for each row of the thresholded adjacency matrix before applying the

conservative estimate of equation 9, and the means of these over each row of the adjacency matrix

are also shown in Figures S3 and S4 and labelled ‘vector’. The true positive rate is only slightly

lower for adjacency matrix inference than for vector thresholding, except whenρin is lowest. The

false positive rate is close to zero in all cases, although it is apparently sufficiently great for the

largest values ofθin andρin to cause spurious coalescence of some communities, as discussed.
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3.2 Comparison with popular clustering methods

The clustering problem is fundamentally different to that of community detection, although there

are nevertheless many similarities. The basic task of clustering is to group together entities (usually

variables or samples) based on their similarity or distance from one another in observation space,

which can assessed by, for example, Pearson correlation. When the entities being grouped are

nodes in a network, the problems of clustering and community detection are very similar. In

this study, we infer binary-valued networks from continuous data before carrying out community

detection. However, a number of popular methods provide alternative means of clustering entities

into groups (which may be considered equivalent to communities) based on continuous data.

A method of clustering which is very popular across the biological and social sciences is hier-

archical clustering. In that method, variables or samples are grouped together according to their

distance from one another. A popular measure of distance between a pairi and j of such variables

or samples is 1−|r̂ i j |, where|r̂ i j | is the absolute value of the Pearson correlation coefficient between

i and j estimated from the available observations. Hence, this method can be easily applied to

data of the type presented here (without carrying out the network inference presented in section

2.3). We tested this method on the simulated data presented in section 3.1, by applying hierarchi-

cal clustering to the generated sample correlation matrixr̂ before comparing the detected clusters

with the planted communities. However, we found that in every case, the result of this comparison

was an NMI value close to 0. Therefore, we may conclude that hierarchical clustering performs

significantly worse than the methods presented here on problems of this type.

One of the most popular clustering methods isK-means. In that method samples (which may

be thought of as equivalent to network nodes) are grouped intoK clusters based on their location in

N-dimensional space. On its own, this method is fundamentally ill-suited to network data because

of the high dimensionality of the problem. However,K-means clustering is often used in spectral

clustering after dimension reduction by SVD: we use that method of spectral clustering in this
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paper to fit the stochastic blockmodel. Spectral clustering can also be used to cluster continuous

data, and so for comparison we have applied regular spectral clustering (without carrying out the

network inference described in sections 2.1 - 2.3) to the simulated data presented in section 3.1.

To do this, we applied spectral clustering as described at the start of section 3 directly to|r̂ |, the

absolute of the generated sample correlation matrix (i.e. to continuous data). The absolute values

are used to ensure that the data is non-negative, as required for spectral clustering [Von Luxburg,

2007]. The results appear in Figure 2. Spectral clustering applied directly tor̂ is generally less

accurate (according to the NMI) than if the network inference/thresholding of sections 2.1 - 2.3

is first applied (Figure 1). One exception when spectral clustering applied directly tor̂ is more

accurate occurs whenrgen is lowest, as in that regime the problem of total failure of the network

inference/thresholding (as discussed in section 3.1) is avoided. Another such exception occurs

whenρin is highest andrgen is large. The reason is that in this regime, the phenomenon of the

ground-truth clusters/communities coalescing due to false positives caused by the network infer-

ence/thresholding (also as discussed in section 3.1) is avoided. However in general, for problems

of the type presented here, applying the network inference/thresholding of sections 2.1 - 2.3 prior

to carrying out spectral clustering produces more accurate results. Furthermore, as this network

inference/thresholding generally results in a sparse adjacency matrix, it allows use of efficient

computational methods to find the top components in the SVD which are required for spectral

clustering.

3.3 Genomics example

We now give an illustrative example of a practical application of these methods to a standard

problem in genomics. Community detection can be used to infer groups of genes which com-

prise functional subnetwork modules, or groups of co-regulated genes. Examples of such groups

are found in gene regulatory networks and protein signalling networks [Shen-Orr et al., 2002].
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Definingx(k) to be the gene expression measurements for samplek for the genesx1, x2, ..., xm, we

calculate the covariance matrix according to equation 2, and carry out network inference as de-

scribed in sections 2.1 - 2.3. We note that the network edges detected in this way may be transitive

edges, i.e. they do not necessarily represent physical interactions between genes and gene prod-

ucts. To determine this would require additional functional data, such as those relating to DNA

binding by gene products (e.g., transcription factors) [Jojic et al., 2013]. However, in general the

groups of genes detected in this way can be expected to form biologically meaningful subnetwork

modules, generating biological hypotheses which may justify further investigation by experimental

scientists.

We carried out this process of network inference and community detection in gene expression

data from 8 different types of cancer: brain, breast, colon, kidney, lung, ovarian, rectal and uterine

(data source: The Cancer Genome Atlas [Hampton, 2006]). Each data set comprises gene expres-

sion measurements for 17505 genes (i.e.,m = 17505). Figure 3 shows the inferred adjacency

matrix after community detection for the lung cancer data-set. The number of communities is es-

timated as 105 by the network histogram method [Olhede and Wolfe, 2014] for this data-set, and

the edge density isρ = 0.062 (which is typical of all 8 gene expression datasets).

We also tested the domain-relevance of the communities detected in the inferred networks. We

tested the overlap of the genes of each detected community separately with each of 10295 known

gene-groups (data source:http://www.broadinstitute.org/gsea/msigdb/ ). This is known as ‘gene set

enrichment analysis’ (GSEA) [Subramanian et al., 2005]. Table 1 shows the percentage of the

communities detected in each cancer data-set which overlapped significantly with at least one of

these known gene-groups. For this purpose, significance is assessed by Fisher’s exact test, with the

significance level set by FDR (false discovery rate) adjustedp < 0.05.

As a benchmark, we also sampled random groups of genes from the 17505 genes represented

in the cancer data-sets, and tested them for overlap with the same 10295 known gene-groups. The

number of genes in each random sample was itself randomly sampled from the distribution of
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the sizes of the communities detected in the cancer data-sets. We took 1000 randomly sampled

groups of genes like this, of which 2% overlapped significantly with at least one of the known

gene-groups. These results show a high level of domain-relevance of the detected communities, in

all 8 genomics data-sets analysed here.

3.4 Consumer product review example

We now give a second, contrasting illustrative example of a practical application of these methods

to real data, based on a consumer-product review dataset. We downloaded movie review data from

theMovie Lensdatabase, which details 1 000 209 reviews of 3952 different movies, by 6040 unique

users who each provided at least 20 different reviews (data source:http://grouplens.org/datasets/movielens/ ).

Covariate information is also available, classifying each user into one of 7 age groups and 20 pro-

fessions; this can be used to verify the detected communities/clusters.

For each pair of users (i, j), we tested the overlap of the movies reviewed by useri with the

movies reviewed by userj with Fisher’s exact test. This provided an estimatedp-value for each

pair of userspi j , under the null hypothesis that there is no significant overlap between the movies

reviewed by usersi and j. These are a one-tailed testp-values corresponding to an alternative

hypothesis that there is more overlap between movies reviewed by usersi and j than would be

expected by chance. Then, we applied the inverse normal transformation to eachpi j to obtain

the values ofzi j , and obtained the estimate of the adjacency matrixÂ as described in sections 2.1

- 2.3. Using the network histogram method [Olhede and Wolfe, 2014], the optimal number of

communities for the blockmodel was estimated as 125. However the granularity of this estimate

is much greater than that of the covariate information we have available for verification of de-

tected clusters. The network histogram method estimates the optimal granularity for the stochastic

blockmodel, however we can also select a smaller number of communities with which to fit the

stochastic blockmodel, whilst noting that this will not result in the optimal blockmodel as assessed
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by the mean squared integrated error (MISE) [Olhede and Wolfe, 2014]. We selected 15 communi-

ties for the blockmodel, which is of the same order as the number of covariate classes, but chosen

to be less than the total number of classes to take account of the fact that many of these classes

are overlapping. The edge densityρ for the inferred adjacency matrix̂A is calculated asρ = 0.16,

which is relatively high.

Figure 4 shows the inferred adjacency matrix after community detection. The detected com-

munities are tested for overlap with the known covariate groups; those which overlap significantly

(Fisher’s exact test, FDR-correctedp < 0.05) are specified along the margin. Almost all of the

detected communities/clusters overlap with at least one covariate group, and several communi-

ties/clusters overlap with multiple covariate groups. Where the overlap is with multiple covariate

groups, there is generally an obvious link between these groups, such as similar age groups, or pro-

fessions which suggest similar demographic groups. These findings show that this methodology is

very effective in the context of this example, in which we obtainÂ from an arbitrary non-Gaussian

distribution, based on correspondingp-values of associationpi j between pairs of variables (xi , xj).

4 Conclusion

In this paper, we have proposed methodology combining estimation of binary-valued adjacency

matrices with community detection via the stochastic blockmodel, based on sample covariance

and correlation matrices or more general test statistics quantifying association between pairs of

variables. We have presented the theoretical basis for this proposed methodology, and provided

practical details for its implementation. We have shown the accuracy of this methodology in the

context of a simulation study, and have shown its effectiveness in several contexts based on multiple

real data-sets, with a range of sparsities. We have also shown that this methodology performs better

than popular clustering methods for discovering latent groupings in data of the type presented here.

An important point to note, is that some network edges inferred from the correlation structure of
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data as in the methodology proposed here may be what are often referred to as ‘transitive edges’.

I.e., an inferred edge may not correspond to a direct physical real-life interaction, instead deriving

from some indirect interaction which may alternatively be mediated via a less direct route through

the network, possibly also involving unobserved variables. Interesting extensions to this method-

ology include consideration of overlapping blocks in the stochastic blockmodel [Latouche et al.,

2011], and development of an online version of the methodology as a computationally efficient ap-

proach to large and growing data-sets [Zanghi et al., 2010]. This methodology would be expected

to work equally well in many other networks contexts, and in more general scenarios where the

aim is to cluster together correlated variables. This methodology can be implemented using readily

available and computationally efficient algorithms, and performs well on large high-dimensional

datasets.
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Breast Colon Brain Kidney Lung Ovarian Renal Uterine
97% 86% 87% 76% 89% 96% 76% 66%

Table 1: Domain-relevance of detected communities in the genomics example.
The table shows the percentage of the communities detected in each cancer data-set which overlap signifi-
cantly (Fisher’s exact test, FDR-adjusted p< 0.05) with at least one known gene group.
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Figure 1: Simulation study: performance of proposed methodology.
Normalised mutual information (NMI) compares detected community structure with ground-truth planted
communities. Each line corresponds to a different within-community edge-density; these are set as
ρin ∈ {0.81, 0.34, 0.15,0.039} by settingθin ∈ {50, 30,20, 10}. The degrees of freedom,ν, are set as
ν ∈ {200,100, 50}. For each network, the number of nodes m= 3000, the ground-truth number of com-
munities is k= 20, and the between-community edge density is set asρout = 0.0013by settingθout = 1.
Dashed lines indicated quartiles.

26
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
M

I

rgen

ν = 50

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
M

I

rgen

ν = 100

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
M

I

rgen

ν = 200

ρin = 0.8
ρin = 0.34
ρin = 0.15
ρin = 0.039

Figure 2: Simulation study: spectral clustering without network inference.
Normalised mutual information (NMI) compares detected community structure with ground-truth planted
communities. Each line corresponds to a different within-community edge-density; these are set as
ρin ∈ {0.81, 0.34, 0.15,0.039} by settingθin ∈ {50, 30,20, 10}. The degrees of freedom,ν, are set as
ν ∈ {200,100, 50}. For each network, the number of nodes m= 3000, the ground-truth number of com-
munities is k= 20, and the between-community edge density is set asρout = 0.0013by settingθout = 1.
Dashed lines indicated quartiles.
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Figure 3: Detected communities in a gene expression data set, relating to lung cancer.
Entries in the adjacency matrix equal to 1 (representing a network edge) are coloured blue, and detected
communities are outlined in black.
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Figure 4: Detected communities in the movie review data set.
Entries in the adjacency matrix equal to 1 (representing a network edge) are coloured blue, and detected
communities are outlined in black.
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