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Abstract 

  

 Prevalent paedomorphy and convergence in salamander morphology has made it 

difficult to resolve relationships using purely morphological characters. However, many new 

fully articulated fossil salamanders have emerged, especially from China, and it is important to 

be able to place them within a phylogenetic framework to better understand the origin and 

radiation patterns of early salamanders.  

 This study looks at the phylogeny of extant taxa using both molecular and 

morphological datasets. In deciphering the phylogeny of modern day taxa the limitations and 

caveats of the data were explored. The extent of the influence homoplasy and convergence 

have on the phylogenetic topology has been assessed using methods designed to identify 

and/or down-weight homoplasy in morphological characters.  Once characters had been 

identified as potentially homoplasious and removed from the dataset, further analyses were 

performed on reduced datasets.  

 Fossils were simulated by creating subsets of characters (those commonly found in the 

fossil record) for extant taxa. Analyses using parsimony and Bayesian inference were 

performed to test the robustness of the placements of these simulated fossils. The impact of 

missing data caused by poor preservation and incomplete specimens was tested by simulating 

reduced/limited character scores for living taxa, and then comparing the phylogenetic 

placement of these artificially degraded taxa with their ‘true’ position based on complete data. 

This paves the way for the inclusion of the fossils. 

 While this study has not resolved the relationships between salamander families it has 

allowed a deeper understanding of the data, and assesses the confidence with which the 

placement of key fossils can be made in a new way. This novel method has further implications 

for the fitting of fossils within a phylogenetic framework in other problem clades. 

Biogeographic hypotheses can then be tested. 
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1. Introduction  

1.1 Project Aims 
 

This chapter outlines the background and current questions regarding the phylogeny of 

salamanders and the impact the inclusion of fossils might have on this group’s biodistribution 

and early radiation patterns. The aims of this study are to investigate the biological signal in 

the data commonly used to reconstruct salamander phylogeny. This study incorporates both 

nuclear and mitochondrial DNA within a Bayesian framework, and osteological and soft body 

characters within both a Parsimony and Bayesian framework. Comparisons between the 

phylogenies created by nuclear and mitochondrial DNA were drawn and congruence between 

the morphological and molecular phylogenies was assessed using symmetric differences and 

agreement subtree values. The difference in signal emerging from the osteological and soft 

body characters was investigated by comparing their phylogenies to the molecular tree.  

 The issue of convergence in the morphological dataset was addressed by evaluating 

each character using two different methods for detecting homoplasy. Once the character set 

had been reduced, in a bid to remove convergent characters, they (Le Quesne dataset – 

Appendix A and RI dataset – Appendix B) were tested for the robustness of fitting fossils within 

both a Parsimony and Bayesian framework by simulating fossils and observing their position 

within a phylogeny relative to its expected known position (according to molecular evidence). 

Tracing synapomorphies within a phylogeny gives insight into the support for each clade. Using 

the results from these analyses, the RI dataset was used to fit the Mesozoic fossils in a 

Bayesian framework. The results of which might shed some more light on biogeographical 

hypotheses proposed by Milner (1983).  

 

 

 

 

 



12 
 

1.2 Introduction to Salamanders 

 

Living salamanders (crown-group Urodela) form part of the Lissamphibia together with 

modern frogs (Anura) and extant caecilians (Gymnophiona). Urodela are a diverse group with 

around 66 genera within ten families. The number of extant species is currently about 668, but 

new taxa are frequently discovered and described and others become extinct (Duellman and 

Trueb, 1986; AmphibiaWeb 2012). Salamanders are distinguished from other lissamphibian 

clades (frogs and caecilians) by the possession of a suite of morphological characters. They 

possess an open temporal region which lacks postparietals, postorbital, jugals, quadratojugal, 

tabulars, supraoccipital, basioccipital, ectopterygoids and supratemporals (Duellman and 

Trueb 1986; AmphibiaWeb, 2012). Spinal nerve cord support projections occur in the neural 

canal of the vertebrae in urodelans and not in anurans, or gymnophionia (Wake and Lawson 

1973; Anderson et al. 2007). Almost all salamanders possess ribs, and teeth in both jaws 

(where maxillae and mandibles are present), and the adductor mandibulae internus 

superficialis muscle originates on the top and back of the skull (Duellman and Trueb 1986). The 

ten currently recognised extant monophyletic families are: Cryptobranchidae (Fitzinger, 1826), 

Hynobiidae (Cope, 1859), Proteidae (Gray, 1825), Sirenidae (Gray, 1825), Dicamptodonidae 

(Tihen, 1958), Ambystomatidae (Hallowell, 1856), Salamandridae (Gray, 1825), Plethodontidae 

(Gray, 1850), Amphiumidae (Gray, 1825) and Rhyacotritonidae (Tihen 1958). 

Salamanders generally have a biphasic life cycle characteristic of modern amphibians. 

Hatching as aquatic larvae they grow and metamorphose into an adult terrestrial form. The 

larval traits that are most common are the retention of external gills, gill slits and the lack of 

eyelids; others include retention of the aquatic body plan and small or absent limbs (Zug et al. 

2001). Some species undergo complete metamorphosis, changing from an aquatic larva to a 

fully terrestrial adult (e.g. some salamandrids, Rhyacotriton, Dicamptodon, and some 

ambystomatids) while others lack metamorphosis altogether (e.g. some plethodontids) or only 

change minimally from aquatic larvae to aquatic adults which retain some larval characteristics 

such as external gills or general morphological adaptations to an aquatic lifestyle like 

dorsoventrally flattened tails (e.g. cryptobranchids, proteids, sirenids , and some salamandrids 

and Dicamptodon). Other species are facultatively metamorphic (e.g. some ambystomatids) 

and change to a terrestrial adult form only under certain environmental conditions, but 

retaining the ability to live and breed in their aquatic adult form until then. A change in 

environmental conditions triggers metamorphosis thus allowing the organism to invade a new 

and usually more favourable niche (usually terrestrial) (Whiteman 1994). Most of the 

plethodontid salamanders lack a larval stage altogether and hatch on land as miniature 
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versions of the adult. These are especially common in terrestrial forms which, as adults, usually 

lack lungs and respire through their skin. Adult amphiumids, seemingly counter-intuitively, lack 

gills, and breathe using lungs even though their adult forms are aquatic.  

Heterochrony which is the change of timing in the development of an animal, has 

occurred many times in salamander history through paedomorphosis (interspecific retention 

of larval traits) and paedogenesis (intraspecific) (Gould 1977; Alberch et al. 1979; McKinney 

and McNamara 1991; Gould 1992; Klingenberg 1998; De Beer 2008). The monophyly of crown-

group Urodela (Milner 2000; Zhang et al. 2005; Roelants et al. 2007; Vieites et al. 2009; Zhang 

and Wake 2009) and the monophyly of each of the ten families of living genera within Urodela 

has, through recent molecular and combined analysis, been supported (Larson and Dimmick 

1993; Duellman and Trueb 1994; Gao and Shubin 2001; Mueller et al. 2004; Weisrock et al. 

2005; Wiens et al. 2005; Roelants et al. 2007; Vieites et al. 2009). The interrelationships of 

these families are not yet well resolved (Wiens et al. 2005; Frost et al. 2006; Zhang and Wake 

2009). Early phylogenetic analyses using purely morphological characters obtained little 

consensus because of the number of convergent paedomorphic adult forms (Larson and 

Dimmick 1993; Duellman and Trueb 1994; Wiens et al. 2005). 

Apart from common possession of derived characters due to descent from a common 

ancestor, similarity in morphology between species occurs in one of several ways; through lack 

of change, and so the similarities in structures indicate a plesiomorphic state, or through 

parallel evolution, convergence or reversal of derived features back to the ancestral condition. 

Homoplasy was found to be hugely prevalent in modern salamander families (Wake 1991).  

1.2.1 Is it possible to correct for the signal caused by convergence in the 

morphological data? 

 

 The suspected homoplasy in salamanders has been the subject of previous 

phylogenetic studies (i.e. Wiens et al. 2005) which have been unable to fully correct for the 

convergence signal in the data. The methods for evaluating the characters for signs of 

homoplasy used in this study employed tree dependent and tree independent tests to create a 

new morphological dataset that would reflect true biological phylogenetic signal and avoid 

bias from convergence.



1.3 The Origins of Salamanders 
 

Crown-group salamanders (Urodela) and their stem taxa form a total group called 

Caudata, while the crown-group frogs (Anura) and their stem fossils form Salientia (Zardoya 

and Meyer 2001; Meyer and Zardoya 2003). Albanerpetontidae, a group of extinct 

salamander-like animals, previously assigned to the Caudata is now thought to represent a 

fourth lissamphibian group (Fox and Naylor 1982; McGowan and Evans 1995; Evans and Milner 

1996; McGowan 2002) which might form the sister clade to Salientia and Caudata (Gardner 

2001) or to Gymnophonia (Ruta and Coates 2007; Anderson et al. 2007; Anderson et al. 2008).  

The origins and monophyly of the Lissamphibia are still debated. Three main 

hypotheses have been proposed regarding the Palaeozoic origins of modern lissamphibians. 

The first of these proposes Lissamphibia is monophyletic within Temnospondyli (see figure 

1.3.1) (Bolt 1977; Milner 1988; Trueb and Cloutier 1991; Milner 1993; Gardner 2001; Ruta et 

al. 2003; Zhang et al. 2005; Anderson et al. 2007; Anderson et al. 2008). Several different taxa 

emerge as the sister-group to temnospondyls in separate studies using morphology to create 

phylogenies. Doleserpeton (Bolt 1969) Doleserpeton and Amphibamus (Ruta et al. 2003) or the 

Branchiosauridae (Milner 1993) have all been suggested as sister taxa to salamanders as well 

as salamanders being a sub-group of the Branchiosauridae (Trueb and Cloutier 1991). This view 

has recently been supported by the discovery of Gerobatrachus (Anderson et al. 2007), which 

is an amphibamid temnospondyl fossil, and has morphological features in common with crown 

group salamanders, stem salamanders such as Karaurus, Triadobatrachus (a stem group frog) 

and crown group frogs (Anderson et al. 2007; Anderson et al. 2008). This apparent stem 

batrachian from the Early Permian, with characters that are so similar to both frogs and 

salamanders, is purported to lie on the stem of Batrachia, after their divergence from 

Gymnophiona ancestors (Anderson et al. 2007; Anderson et al. 2008).  
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Figure 1.3.1 Tetrapod phylogeny according to the temnospondyl ancestor relationship (Bolt 1977; 

Milner 1988; 1993; Anderson 2008; Gardner 2001) 

 

A second hypothesis, that Lissamphibia are monophyletic and derived from 

Lepospondyli rather than temnospondyls, is shown in Fig. 1.3.2 (Laurin 1998; Vallin and Laurin 

2004). This hypothesis was put forward based on morphological characters. The hypothesis 

gained support recently from both molecular analyses and morphological phylogenies in which 

the divergence dates of the amphibian groups and morphological similarity between 

amphibians and lepospondyls purportedly matched with an origin from the ‘microsaurian’ 

lepospondyls (Laurin and Reisz 1997; Marjanovic and Laurin 2007; Marjanović 2008; San 

Mauro 2010).  

 

Figure 1.3.2 Tetrapod phylogeny with the ancestors of Lissamphibia originating within the Lepospondyli 

(Laurin and Reisz 1995, 1997; Marjanovic and Laurin 2007; Marjanovic 2008; San Mauro 2010) 
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A third hypothesis posits that Lissamphibia are polyphyletic (not sharing the same 

ancestor) with the origins of Salientia (sometimes with Caudata) occuring within the 

temnospondyls and the origins of Gymnophiona (sometimes with the Caudata) occuring within 

lepospondyls (Fig. 1.3.3) (Carroll and Currie 1975; Schoch and Carroll 2003; Carroll 2004; Lee 

and Anderson 2006; Carroll 2007; Skutschas and Martin 2011).  This hypothesis has been 

suggested to account for the differences in morphology between batrachians (frogs + 

salamanders) and caecilians, and also the differing opinions on the divergence dates between 

these clades. The earlier divergence of the caecilians from the Batrachia and the characteristics 

of the skull and elongate body have been suggested to indicate more affinity with the Permian 

microsaur Rhynchonkos rather than any of the temnospondyls (Carroll 2007). 

 

Figure 1.3.3 Lissamphibia have a polyphyletic origin within the Tetrapod phylogeny, with frogs and 

salamanders clustering together under Batrachia order originating within the temnospondyli and the 

caecilians originating from within the Lepospondyli (Lee and Anderson 2006). 

 

 There has been much support over the years for the monophyly of Lissamphibia 

(Parker 1956; Lombard and Bolt 1979; Gardiner 1982; Gardiner 1983; Milner 1988; Bolt 1991; 

Roelants et al. 2007). Recent analyses using nuclear or mitochondrial genes or a combination 

of both have been employed to create large data sets to reach consensus on the monophyly of 

the Lissamphibia and the clades within it (Hedges et al. 1990; Hedges and Maxson 1993; Hay et 

al. 1995; Feller and Hedges 1998; Zardoya and Meyer 2001; Zhang et al. 2005). The support for 

a polyphyletic ancestry of Lissamphibia seems to be based heavily on morphological 

characters. It is known that homoplasy is common in modern amphibians, and so the 
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polyphylotic origin for Lissamphibia is less well supported in recent literature with most 

workers supporting a monophyletic origin for modern amphibians. 

However recent studies using molecular evidence have yet to reach agreement on the 

divergence dates within the lissamphibian clade and between the modern lissamphibians and 

their as yet unresolved ancestral relatives (Zhang et al. 2005; Roelants et al. 2007; Zhang and 

Wake 2009; San Mauro 2010; Pyron 2011). 

While results of the molecular studies are dependent on the methods used and choice 

of DNA, the fossil evidence suggests that the Caudata must have diverged from Salientia at 

least by the Early Triassic. If Caudata are the sister clade to Salientia, as the molecular evidence 

suggests (see below), then the presence of the very earliest stem-frogs (Triadobatrachus from 

Madagascar and Czatkobatrachus polonicus from Poland) in the Early Triassic (Evans and 

Borsuk-Białynicka 1998; Borsuk-Białynicka and Evans 2002) implies Caudata must also have 

existed at this time. This predates the break-up of Pangea (San Mauro et al. 2005; San Mauro 

2010) when salientians were already evidently widespread globally. 

Recent molecular and combined evidence analyses have placed the Caudata as the 

sister taxon to Salientia (forming the Batrachia), with Gymnophiona as their sister clade 

(Benton 1990; San Mauro et al. 2005; Zhang et al. 2005; Roelants et al. 2007; Zhang and Wake 

2009; San Mauro 2010; Pyron 2011; Skutschas and Martin 2011). However this was not always 

the consensus with previous analysis of mitochondrial and nuclear ribosomal DNA (Hedges et 

al. 1990; Hedges and Maxson 1993; Feller and Hedges 1998) placing Caudata as sister clade to 

Gymnophiona in what is known as the Procera hypothesis (Lee and Anderson 2006). This 

hypothesis was based on the geographic distribution and fossil record of the three living 

lissamphibian clades. Frogs and their fossils are found world-wide while salamanders are 

mainly restricted to Laurasia while caecilians have a distinct Gondwanan distribution pattern 

(Hedges et al. 1993; San Mauro et al. 2005). However modern day distribution patterns do not 

always reflect past biodistributions. Early studies lacked extensive taxon and data sampling, 

and recent molecular and morphological studies, some of which have included fossil taxa, 

seem to be reaching a consensus that the batrachian clade hypothesis is increasingly well 

supported (Milner 1988; Trueb and Cloutier 1991; Milner 1993; Duellman and Trueb 1994; 

Zardoya and Meyer 2001; Ruta et al. 2003; Zhang et al. 2005; Roelants et al. 2007; Ruta and 

Coates 2007). 

 



1.4 Previous Phylogenies 

 
Early phylogenetic analyses using morphological characters attempted to correct for 

the extensive convergent evolution in this group and focused on characters less likely to be 

biased by convergence resulting from paedomorphosis (Edwards 1976; Estes 1981; Milner 

1983; Duellman and Trueb 1994). However, the range of phylogenetic results produced using 

both Parsimony and Bayesian methods of phylogenetic analyses, with purely morphological 

character matrices, still reflected convergence. (Duellman and Trueb 1994; Wiens et al. 2005; 

Wang and Evans 2006; Zhang et al. 2009; Gao and Shubin 2012). Systematic problems are also 

caused when species within a family display different life histories thus contributing to very 

different morphological information to phylogenetic analyses. The plethodontids, 

dicamptodontids and amphiumids have species which are paedomorphic and aquatic as adults 

and others that are fully terrestrial. Despite convergence biasing phylogenetic relationships, a 

stable position for Cryptobranchoidea emerged early on (Milner 1988; Duellman and Trueb 

1994). Cryptobranchoidea (Cryptobranchidae + Hynobiidae) are usually placed as the sister 

taxon to all the other crown group salamanders (Estes 1981; Wiens et al. 2005; Frost et al. 

2006; Wang and Evans 2006; Roelants et al. 2007; Vieites et al. 2009; Zhang et al. 2009; Gao 

and Shubin 2012) or all other crown group salamanders without Sirenidae (Larson and 

Dimmick 1993; Duellman and Trueb 1994; Zhang and Wake 2009).  

 

Figure 1.4.1 The Urodela family level phylogeny based on morphological characters only, taken from the 

Biology of Amphibians (Duellman and Trueb 1994). 
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With the inclusion of molecular data, the family-level relationships within the Urodela 

began to become clearer. Molecular phylogenies created for salamanders have included 

Mitochondrial (Zhang and Wake 2009), Nuclear (Wiens et al. 2005; Vieites et al. 2009), and a 

combination of both kinds of DNA information over the years (Chippindale et al. 2004; Pyron 

and Wiens 2011). Mitochondrial DNA is thought to be less able to resolve deep nodes and 

rapidly diversifying clades because of its high saturation potential for mutations (Weisrock et 

al. 2005). Mitochondrial genes have been prone to introgression and ancient lineage sorting in 

other studies (Krystyna Nadachowska and Wiesaw Babik 2009) and some salamander species 

are known to hybrodise (Majtánová et al. 2016). This study aims to address the relationships 

between families of salamanders only. While mitochondrial DNA is easier to sequence in its 

entirely because it is shorter than nuclear DNA it has a limited potential for base pair 

mutations. Nuclear DNA is longer and thus contains potentially more informative base pairs 

but it is often not all sequenced because of its length.  

An early study by Hay et al. (1995) used mitochondrial fragments of both 12S and 16S 

to shed light on amphibian relationships. They used neighbour-joining analysis (Jukes-Cantor 

distance with pairwise deletion) and included similar outgroups to the study presented here: 

amniotes including mammal (human), bird (domestic fowl) and Sphenodon (tuatara). Their 

results (Fig. 1.4.2) supported monophyly of frogs, salamanders and caecilians. Within 

salamanders they found support for sirenids as sister clade to all other salamanders, but they 

did not find any support for the monophyly of either the Salamandroidea or the 

Cryptobranchoidea. While Hay et al. found salamanders and frogs to be more closely related 

than either were to caecilians, using the 12S and 16S combined dataset, statistical support was 

very low.  

 They further investigated the hypotheses for amphibian relationships by adding 18S 

and 28S rRNA genes. This extra analysis comprised only a single representative species from 

each amphibian clade (i.e., one salamander: Siren intermedia; one frog: Xenopus laevis and 

one caecilian: Typhlonectes natans; together with a rat outgroup: Rattus rattus). They were 

not looking at internal branching relationships and so used only representative taxa for the 

increased gene dataset. The result of this analysis (Fig. 1.4.3) placed salamanders as more 

closely related to caecilians than to frogs, although again the statistical support for this 

relationship was not strong.  

 A study by Larson and Dimmick (1993) used both mitochondrial DNA and 

morphological characters combined to create a total evidence tree. This analysis supported the 

monophyly of the internally fertilising salamanders which was found by Duellman and Trueb 
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(1986) by using comparative morphology, but still only used small amounts of DNA material. 

More recent studies using more complete mitochondrial genomes have since found support 

for the Batrachia clade of frogs + salamanders (Zardoya and Meyer 2001; San Mauro et al. 

2004; Zhang and Wake 2009) using purely molecular data. 

 

 

Figure 1.4.2: Lissamphibian relationships based on analysis of combined mitochondrial 12S and 16S 

rRNA gene sequence (Hay et al. 1995). The node numbers are confidence values from an interior-branch 

test. 
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Figure 1.4.3 The relationships among the three amphibian orders, using a combined dataset of 12S, 16S, 

18S and 28S genes. The numbers at the nodes represent the confidence values  from the interior-branch 

test (Hay et al. 1995). 

 

Weisrock et al. (2005) compared the signal between mitochondrial DNA (2100 base 

pairs from the genes encoding ND1, ND2, COI, and the intervening tRNA genes) and one 

nuclear gene (RAG-1) and concluded that the mitochondrial results were probably erroneous. 

However, Weisrock et al. (2005) based this assessment on their view that the ‘right’ tree was 

one that correctly separated internally and externally fertilising salamanders into the ‘correct’ 

clades. The study presented here instead looked at the hypothesised relationships of the 

outgroups as a guide to the reliability of ingroup relationships. It expanded on Weisrock et al.’s 

finding by using mtDNA genes (genes used in previously published analyses of salamander 

phylogeny e.g., Hay et al. 1995, Zhang et al. 2009, Pyron and Wiens 2011) compared to the 

results of those of an analysis using nDNA genes (also genes previously used in salamander 

phylogenies e.g., Pyron and Wiens 2011 and Frost et al. 2006) without an a priori agenda for 

the topology. These results suggest that differing types of DNA produces different results with 

the nuclear DNA supporting a Salamandroidea affiliation of Sirenidae while mtDNA supports 

Sirenidae as the sister clade to all other salamanders.  

One of the early analyses including molecular data (Larson and Dimmick 1993) based 

on total evidence analysis using 32 morphological characters and 177 rRNA molecular 

characters obtained a family level phylogeny with 40 equally most parsimonious trees (MPT) 

through 10 heuristic searches. Each tree was 460 steps in length for a total character matrix of 

209 characters. A strict consensus tree of the 40 MPTs is shown in Fig. 1.4.4.  
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Figure 1.4.4: A strict consensus of 40 MPTs generated from 10 heuristic searches from the complete 

character matrix for extant salamanders (Larson and Dimmick, 1993) 

 

After excluding 28 characters that displayed evidence for homoplasy the heuristic 

searches then found 60 MPTs, the one analysed by Larson and Dimmick for morphological 

changes is displayed below (Fig. 1.4.5). Larson and Dimmick (1993) then followed the character 

performances and calculated the strength of the characters to determine which were 

significant in influencing the phylogeny.  
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Figure 1.4.5: One of 60 most parsimonious trees used to track character changes in salamander 

characters (Larson and Dimmick, 1993). 

 

 The characters used were divided into fourteen categories consisting of: cloacal 

anatomy; head and trunk morphology; small subunit rRNA; ten divergent domains of large sub-

unit rRNA; and interdomain regions of large subunit rRNA. Using ACCTRAN character 

optimisation (the acceleration of the evolutionary transformation of a character), character 

changes were counted for all of the regions (351 in total). While each character on average 

underwent 0.5 more changes than the minimum number of changes required if there was a 

single origin for each derived character state, some required more changes than others. The 

characters of the head and trunk morphology (1.2 changes more than the minimum required 

for a single origin of the derived state) and the small D10 domain of the rRNA large subunits 

(1.5 changes more than the minimum required for a single origin of the derived state) had the 

highest number of extra changes per character. In this way Larson and Dimmick (1993) were 

able to identify characters which were highly homoplastic. 
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In a later study Wiens et al. (2005) tried to make comparisons between phylogenies 

that used a morphological character matrix and those that used molecular data. The resultant 

phylogenies showed disparate results. The results of the parsimony analyses using the 

morphological dataset resulted in the anuran “outgroup” emerging within the urodelan tree 

between Cryptobrancoidea and all other salamanders. Wiens et al. (2005) drew attention to 

the importance of species selection for inclusion in an analysis.  

The species they highlight in grey in Figs. 1.4.6 and 1.4.7 also 1.4.8 and 1.4.9 below, are 

aquatic, paedomorphic species. They cluster together in a paraphyletic group (a group not 

sharing a single common ancestor). The problems caused by convergent characters are most 

obvious in these clades and the selection of the representatives of these clades is important. 

However, when Wiens et al. (2005) included molecular characters to create a phylogeny using 

a purely molecular dataset, the paedomorphic species cluster within their respective family 

clades regardless of their body plan or mode of life. 

 

Figures 1.4.6 Wiens et al.’s Parsimony trees using all morphological data (Wiens et al. 2005). 
The paedomorphic salamander taxa are shaded and the numbers above the nodes indicate bootstrap 
values >50%. 
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Figures 1.4.7 Wiens et al.’s Parsimony trees with 30 putative paedomorphic characters excluded (Wiens 
et al. 2005). The paedomorphic salamander taxa are shaded and the numbers above the nodes indicate 
bootstrap values >50%. 

 

Wiens et al. (2005) ran their combined evidence phylogeny using both morphological 

and nuclear ribosomal data from previous analyses (Larson and Dimmick 1993; Duellman and 

Trueb 1994; Gao and Shubin 2001) and also included new data from RAG-1. They used model-

based methods for both molecular and morphological data and removed misleading 

“paedomorphic” characters from the dataset. The results (Figs 1.4.10 and 1.4.11) were similar 

to the results of Larson and Dimmick (1993).  

The results of the combined evidence analyses do not agree on the position of 

Sirenidae but other clades are supported with high bootstrap values. Although the monophyly 

of Cryptobranchoidea is supported, its position in the Bayesian analysis differs from that of 

Larson and Dimmick (1993). Wiens et al. (2005) placed Sirenidae as the sister group to the 

internally fertilising Salamandroidea and the Cryptobranchoidea as the sister group to all other 

salamanders. Wiens et al. (2005) considered the Bayesian analyses to be less sensitive to long-

branch attraction which may bias the results somewhat in salamanders; and other studies 

using nuclear genes have also found Cryptobranchoidea to be the sister group of all other 

living salamanders including Sirenidae (Frost et al. 2006; Roelants et al. 2007). The monophyly 
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of the Salamandroidea was supported. Plethodontidae is more closely related to Amphiumidae 

in both analyses, which supports the earlier findings of Larson and Dimmick (1993). They 

further agreed that Rhyacotritonidae is the sister clade to Amphiumidae + Plethodontidae 

(Wiens et al. 2005). The monophyly of the Salamandroidea is supported. Proteidae is 

confirmed as monophyletic but its relationships within the Salamandroidea are unclear. 

However, there is some support in the Bayesian analysis for Proteidae as the sister taxon to 

the highly stable Dicamptodontidae + Ambystomatidae. 

 
Figure 1.4.10: The total evidence results of Wiens et al. (2005) study using Parsimony analyses (Wiens et 
al. 2005). The paedomorphic salamander taxa are shaded and the numbers above the nodes indicate 
bootstrap values >50%. 

 

 

Figure 1.4.11: The total evidence results of Wiens et al. (2005) study using Bayesian analyses (Wiens et 
al. 2005). The paedomorphic salamander taxa are shaded and the numbers above the nodes indicate 
bootstrap values >50%. 
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Figure 1.4.12: Phylogeny produced by Zhang and Wake (2009) using the complete mitochondrial DNA 
suggesting an Early Jurassic origin for salamanders and a Late Permian origin for Lissamphibia. 

One of the most recent phylogenetic studies was that of Zhang and Wake (2009) using 

the complete mitochondrial genome (Fig. 1.4.12). Mitochondrial DNA (mtDNA) is relatively 

easier to sequence compared to nuclear DNA, thus providing substantial amounts of DNA data 

for the analysis. Zhang and Wake (2009) followed previous studies and recovered robust 

phylogenies using mtDNA (Mueller et al. 2004; Zhang et al. 2005; Zhang et al. 2006). They 

found support for the monophyly of the internally fertilising salamanders (Salamandroidea) 

and the externally fertilising salamanders (Cryptobranchoidea) and Sirenidae. This phylogeny 

supports the Plethodontidae + Amphiumidae relationship in agreement with previous 

molecular studies (Larson and Dimmick 1993; Chippindale et al. 2004; Wiens et al. 2005; 

Roelants et al. 2007; Cannatella et al. 2009) as well as the (Ambystomatidae + 

Dicamptodontidae) + Salamandridae clade recovered by both molecular and morphological 

analysis (Larson and Dimmick 1993; Chippindale et al. 2004; Wiens et al. 2005; Cannatella et al. 

2009). 

There thus seems to be some stability emerging due, in part, to the addition of 

molecular, soft body and behavioural characters to the previously established morphological 

data sets (Larson 1991; Zhang and Wake 2009). Previous studies have suggested that the signal 
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produced by soft body characters are more congruent with molecular results than results 

produced using osteology or teeth characters as it may contain more variations to measure, 

thus providing more characters to score for a phylogenetic analysis (Gibbs et al. 2000). This 

might be the case for salamanders. The monophyly of Salamandroidea, including 

Plethodontidae, Amphiumidae, Rhyacotritonidae, Ambystomatidae, Dicamptodontidae and 

Proteidae is supported (Larson and Dimmick 1993; Duellman and Trueb 1994; Hay et al. 1995; 

Wiens et al. 2005; Roelants et al. 2007; Zhang and Wake 2009; Gao and Shubin 2012). 

Salamandroidea is sometimes split up into: Plethodontoidea (Plethodontidae, Amphiumidae 

and Rhyacotritonidae), Proteoidea (Proteidae) and Salamandroidea (Ambystomatidae, 

Dicamptodontidae and Salamandridae) (Cannatella et al. 2009). 

(Plethodontidae + Amphiumidae) is strongly supported with, usually (but not always), 

Rhyacotritonidae as their sister taxon. (Ambystomatidae + Dicamptodonidae) is another 

strongly supported clade, usually (but not always) with Salamandridae as the sister taxon. The 

monophyly of Proteidae is supported, and most analyses have placed it within the 

Salamandroidea (Frost et al. 2006).  

The externally fertilising families consist of the Sirenidae (although reproductive 

behaviour has not yet been directly observed) and the Cryptobranchoidea (Cryptobranchidae + 

Hynobiidae) (Duellman and Trueb 1994). There is no strong consensus for the position of the 

sirenids, with studies (using molecular, morphological or combined evidence character 

matrices) placing them as sister group to all other salamanders (Milner 1983, 1988; Larson and 

Dimmick 1993; Duellman and Trueb 1994; Milner 2000; Zhang and Wake 2009) or (mainly 

using morphological characters) within the salamanders as sister-clade to the salamandroids 

(Wiens et al. 2005; Wang and Evans 2006; Roelants et al. 2007; Vieites et al. 2009; Zhang et al. 

2009; Gao and Shubin 2012). Previous studies have failed to reach agreement on the position 

of Sirenidae within the Salamander phylogeny with some results from molecular analyses 

supporting Sirenidae as the sister clade to all other salamanders (Larson and Dimmick 1993; 

Chippindale et al. 2004; Zhang and Wake 2009), while others support the placement of 

Sirenidae within Salamandroidea, or as its sister clade (Wiens et al. 2005; Frost et al. 2006; 

Roelants et al. 2007; Vieites et al. 2009). The result of the molecular analyses in this thesis 

using both nDNA and mtDNA, supports the placement of Sirenidae within Salamandroidea (Fig. 

3.5). However, the analyses were unable to resolve the relationships within Salamandroidea 

and so determining the position of Sirenidae within Salamandroidea needs further work.  

 More recent studies collated yet larger molecular datasets by collecting both 

mitochondrial and nuclear DNA which showed better resolution in the resulting trees and 
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more congruence with morphological studies (Roelants et al. 2007). This led to studies using 

complete mitochondrial genomes (Zhang and Wake 2009) and large-scale analyses using both 

nuclear and mitochondrial genes and a very large number of amphibian taxa (Frost et al. 2006; 

Pyron and Wiens 2011). 

 The results of these large scale studies show incongruence between datasets that has 

yet to be explored, and a lack of agreement between the molecular data based phylogenies. 

The complete mitochondrial genome produced a phylogeny that placed Sirenidae as the sister 

taxa to all other salamanders (Zhang and Wake 2009) (Fig. 1.4.13) whereas in both Frost et al. 

(2006) and Pyron and Wiens (2011) the phylogenies place Cryptobranchoidea 

(Cryptobranchidae + Hynobidae) as the sister clade to all other salamanders.  

 The work presented in this thesis will seek to uncover the origins of the signals being 

expressed by the data, both molecular and morphological, for extant salamanders. An 

understanding of the data might elucidate the reasons differing salamander phylogenies have 

been produced by different authors over the years. 

 

Figure 1.4.13 Phylogenetic results of Zhang and Wake (2009). Analysis of the full mitochondrial genome 
sequence. The branch support values are given below the phylogeny using (ALL) codon positions or (E3) 
without the third codon position. ML BS – Maximum likelihood bootstrapping; aLRT – aLRT test values; 
BI PP – Bayesian posterior probabilities. 
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1.4.1 Do soft body characters give a more reliable and congruent signal 

relative to molecular results than the signal from the osteological data?  

 

   Early morphological phylogenies displayed convergence by placing aquatic 

paedomorphic taxa together in paraphyletic groupings (Duellman and Trueb 1986; Wiens et al. 

2005). It is interesting to investigate the origin of this signal and determine if this is reflected in 

the osteological or soft body data because of the implication this has in fitting fossils within a 

phylogeny. If the osteological data shows better congruence with molecular data, then fitting 

fossils (with incomplete osteological datasets) within phylogenies will give a higher confidence 

in the resulting topology than if the dataset is inherently compromised by convergent signal. 

 

1.5 The Mesozoic Fossil Record 

 

The Mesozoic fossil record of salamanders has had many new exciting additions in 

recent years. The earliest caudate fossils are possibly as old as the Early Jurassic of North 

America (Curtis and Padian 1999) although these are isolated elements and unfortunately 

unidentifiable to a family level. Further Jurassic material has been recovered from North 

America, Europe and Asia with some of the Late Jurassic fossils showing remarkable 

preservation. Many new fully articulated fossils have been found in recently discovered 

localities in China and these finds have particularly enriched the caudate fossil record in the 

last ten years.  

Salamanders have a variety of life histories and this is often evident in the fossil record 

of adult specimens. Tooth-bearing vomers may be present in adult paedomorphic fossils as 

well as in larval forms as they are important for feeding in early life stages. Similarly, reduced, 

obsolete or absent maxillae is another larval trait that can be retained by sexually mature 

paedomorphic adults often in conjunction with the presence of vomers. Many features found 

in fossil specimens may also allow habitat reconstruction. The aquatic species often retain 

external gills, long haemal arches on the caudal vertebrae denoting a transversely flattened 

tail. Alternatively, well ossified scapula and coracoid together with a robust skeleton and 

ossified carpals and tarsals might indicate it had a more terrestrial habitat. 

 Much of the material found in the USA and Europe consists of isolated elements, 

usually vertebrae, atlantes, dentaries and other skull fragments (Gardner 2003, Gao and 

Shubin 2003; Skutschas 2009). Rarer, fully or partially articulated material is known from the 
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Late Jurassic of Kazakhstan and North America, the Late Jurassic/Early Cretaceous of China, 

and the Early Cretaceous of Spain (Estes and Sanchíz 1982, Shubin and Gao 2003, Wang and 

Rose 2005; Carroll and Zheng 2012, Demar 2013). 

Current hypotheses of phylogenetic affinity: 

Genus Family/clade affinities Morphology in common with the affiliated clade Author(s) 

Marmorerpeton Sister taxon to Urodela - Absence of spinal nerve notch or foramen in the 
atlas 

(Evans et al. 1988; 
Skutschas and Martin 
2011) 

Eoscapherpeton Scapherpetontidae 
Cryptobranchoidea 

- Midline contact along the dorsal processes of the 
premaxillae 

- Frontal-maxillary contact 
- Parietals strongly overlapped by frontals 
- No distinct medial process on the pterygoid 
- Pterygoid-parasphenoid contact 

 

(Gao and Shubin 
2003; Skutschas 
2009) 

Chunerpeton Cryptobranchidae - Unicapitate ribs 
- Number of rib-bearing anterior caudal vertebrae 

reduced to two or three 
- Nasal narrower that interorbital width 
- Nasal-prefrontal contact absent 
- Lacrimal absent 
- Frontal extends anteriorly to lateral border of 

nasal 
- Anterior process of parietal extends along lateral 

border of frontal 
- Internal carotid foramina penetrate palatal 

surface of parasphenoid 
 

(Shubin and Gao 
2003) 

Urupia Outside of crown group 
Urodela 

- Lacks spinal nerve foramina in the atlas 
- Presence of atlantal transverse processes 
- Vertebral sculpturepresent 

(Skutschas and 
Martin 2011; 
Skutschas and 
Krasnolutskii 2011) 

Kokartus Karauridae - Monocuspid teeth 
- Dermal sculpturing on skull 
- Squamosal fused to supratemporal 

 

(Skutschas and 
Martin 2011) 

Karaurus Karauridae 
 
Sister taxon to crown-
group salamanders 

- Monocuspid teeth 
- Dermal sculpturing on skull 
- Squamosal fused to supratemporal 

 

(Skutschas and 
Martin 2011; Maddin 
et al. 2012) 

Liaoxitriton Hynobiidae - Ossified hypobranchial II 
- Ossified ceratobranchial II 

 

(Wang 2004) 

Jeholotriton Urodela 
Cryptobranchoidea 
 

- Dentition present on the vomer, palatine and 
pterygoid 

- Unicapitate postatlantal ribs 
- Squamosal contact with the parietal or other 

roofing elements present 
- Maximum skull length/width greater than 1.2 
- Longitudinal vomerine tooth row 

 

(Wang and Rose 
2005; Carroll and 
Zheng 2012) 

Pangerpeton - Placed close to the 
base of the crown 
group Urodela  

- Sister taxon to 
Jeholotriton 

- Unicapitate ribs (Wang and Evans 
2006) 

Beiyanerpeton - Sister taxon to 
Salamandroidea 

- Nasals separated by anterodorsal fenestra 
without a midline contact 

- Angular fused to prearticular 
- Articular absent by fusion to prearticular 

(Gao and Shubin 
2012) 
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- Double-headed ribs associated with dorsal 
vertebrae 

- Anterior of parietal extending to midlevel of 
orbit 

- Parietal-prefrontal contact medially above orbit 
 

Iridotriton Salamandroidea 
 
 
 
Stem Salamandroidea/ 
Cryptobrachoidea 

- Spinal nerve foramen in caudal vertebrae 
- Imperforate parasphenoid 
- Fused ulnare + intermedium 
 
- Gracile skull bones without sculpture 
- Triangular squamosal 
- Quadratojugal absent 
- Notochordal ectochordal vertebrae 
- Unicapitate ribs 

 
 
 
 
 

(Evans et al. 2005) 
 
 
 
(Gao and Shubin 
2012) 

Paranecturus Stem-
Proteidae/Necturus 

- Atlas with shallowly concave anterior cotyles 
- Alar-like process of the atlas 
- Solid dorsal rib-bearers 
- Mediolateral groove on the posterior face of the 

neural arch spanning between the neural spine 
and postzygapophyses present on the trunk 
vertebrae 

- trunk vertebrae with unicipitate neural spines 
and divergent rib-bearers 
 

(Demar 2013) 

Proamphiuma Amphiumidae - Postzygapophyseal crests on the trunk vertebrae 
- Prominent or flattened anterior basapophyses 
- Spinal nerve foramen present on the caudal 

vertebra 
 

(Estes 1981; Gardner 
2003) 

Scapherpeton Cryptobranchidae/ 
Scapherpetontidae 

- Angular and prearticular separate 
- Anterior cotyles of atlas slightly oval 
- Strong subcentral keel 
- Prominent neural spines 

 

(Estes 1981) 

Prodesmodon Batrachosauroididae - opisthocoelous trunk vertebrae 
- elongate body shape 

(Estes 1964; Naylor 
1979; Estes 1981) 

Galverpeton Salamandridae or 
Plethodontidae 

- Opisthocoelous vertebrae 
- At least some of its spinal nerves intravertebral 

 

(Estes and Sanchíz 
1982) 

Kababisha Sirenidae - non-pedicellate teeth 
- dentaries lacking lateral sensory foramina 
- highly reduced odontoid process 
- vertebrae with vertebrarterial canals including a 

dorsoventral passage 
- accessory anterior and posterior crests and deep 

anterior fossae on the vertebrae 
- strong ventral keels on trunk vertebrae 
- transverse processes not rib-bearing on most 

trunk vertebrae 
- caudal transverse processes with faceted tips 
- paired tall crests on ventral surface of caudal 

vertebrae  
- caudal vertebrae small in relation to trunk 

vertebrae 
- in some vertebrae the neural spine is weakly 

bifurcated 

(Evans et al. 1996) 
 
 
(Rage et al. 1993; 
Evans et al. 1996; 
Rage and Dutheil 
2008)  

Noterpeton Kababisha 
 
Sirenidae 

- sculpture on the neural arches  
- continuous surface joining the two cotyles 
- Procoely of vertebrae 

(Rage et al. 1993) 
 
(Evans et al. 1996) 
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Piceoerpeton Scapherpetontidae - bicipital rib-bearers  
- deeply amphicoelous cotyles 
- anterior position on neural spine 
- enlarged anterior vertebrarterial fossa 

(Estes 1969) 

Valdotriton Within the 
Salamandroidea 

- Derived spinal foramina condition 
- Single prearticular-angular ossification 
- Double-headed rib-bearers 

 

(Evans and Milner 
1996; Wang and 
Evans 2006; Gao and 
Shubin 2012) 

Opisthotriton Batrachosauroididae - atlas has deeply concave anterior cotyles  
- atlas has a weak odontoid process 

 

(Estes 1981) 

Lisserpeton Scapherpetontidae - Anterior cotyles of atlas slightly oval 
- Strong subcentral keel 
- Prominent neural spines 

 

(Estes 1981) 

Nesovtriton Cryptobranchoidea - fully enclosed spinal nerve foramina in the atlas 
- vertebrae lack any sculpture  
- unicapitate transverse processes 
- lack of spinal nerve foramina in the trunk and 

anterior caudal vertebrae 
 

(Nesov 1981; 
Skutschas 2009) 

Parrisia Batrachosauroides - Pterypophyseal process 
- Ventral keel present on trunk vertebrae 
- Closely approximated rib bearers and ventral 

laminae of the transverse process  
- anterior cotyles of the atlas which are deeply 

concave 
- reduced odontoid process 
- opisthocoelus vertebral condyles bearing a 

notochordal pit 
 
 
 
 
 

(Milner 1983; Denton 
and O'Neill 1998) 

Regalerpeton Sister taxon to 
Cryptobranchidae 

- Absence of lacrimal 
- Pterygoid process with an additional distinct 

anteromedial process 
- Anterolateral process of parietal present and 

makes up less than 50% of the total length of the 
parietal 

- Nasal-prefrontal contact absent 
- Vomerine dentition marginal 

 

(Zhang et al. 2009) 

Habrosaurus Stem Sirenidae - The marginal teeth are lost and replaced with a 
horny beak 

- The dorsal part of the premaxilla arises laterally 
and articulates along the lateral edge of the 
nasal 

- The parasphenoid projects anteriorly between 
the paired vomers and the dorsal part of both 
premaxilae 
 

(Gardner 2003) 

Table 1.1 The current affinities of the fossil taxa and the morphology they have in common with their 

proposed clade. 

 

Morphological characters are still the only way to incorporate fossils into phylogenies. 

Placing these fossils has many pitfalls. The degradation of morphological characters in fossils 

creates difficulties especially when comparing them to extant relatives. Placement of taxa on 
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the stem of extant clades often reflects the absence of certain derived features (Briggs 2010; 

Sansom et al. 2010). There is a history of palaeontologists studying the decay of living 

organisms and using their observations to understand fossil preservation better (Briggs and 

Kear 1993; Hellawell and Orr 2012). The sequence of character loss is thought to be non-

random, at least in chordates, which will create a bias in fossil interpretation (Sansom et al. 

2010). 

 The effect data paucity has on the placement of taxa and topology of other more data 

rich taxa has been discussed in the past (Donoghue et al. 1989; Huelsenbeck 1991; Anderson 

2001). Briggs (2010) studied how decay might distort true ancestry signal. He found (by looking 

at the decay of extant forms that were similar to early chordates) that the attributes tended to 

decay in the opposite order to that in which they evolved so that the more ancestral 

morphology remained. He suggests that stem-ward slippage is widespread as fossil animals 

with a high proportion of missing information tend to fall out near the base of the evolutionary 

tree (Briggs 2010).  

 A recent study by Sansom et al. (2010) looked at the non-random decay of characters 

in chordates and how this non-random loss of data affected the taxon’s position in a 

phylogeny. Later Sansom and Wills (2013) specifically set out to measure the stem-ward 

slippage of simulated fossils. Their simulated fossils were composed of osteological characters 

only, to mimic the commonly fossilised parts of a chordate. The results were compared to 

those of the combined dataset of osteological and soft body characters. They found that while 

missing data in itself should not present a problem for reconstructing phylogeny, the 

incompleteness, i.e., the absence of soft tissue, might cause systematic errors. This deletion of 

soft body characters causes significantly more loss of phylogenetic signal than deleting 

characters at random (Sansom and Wills 2013).  

 
 There have been a few studies that have included a selection of fossil salamanders 

together with extant taxa (Shubin and Gao 2003; Evans et al. 2005; Wang and Evans 2006; 

Zhang et al. 2009; Gao and Shubin 2012). Karaurus is usually designated as the outgroup, 

although sometimes Marmorerpeton is included. Recently a study including eight Mesozoic 

fossil salamanders in a phylogeny of extant taxa was published (Gao and Shubin 2012). This 

paper describes a new taxon, Beiyanerpeton, and places it in a phylogenetic context. The 

authors used 105 morphological characters and 26 taxa with Karaurus as the outgroup. They 

reweighted characters by using the maximum value of the rescaled consistency indices (Farris 
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1989) and ran the Parsimony analysis in PAUP 4.0. Their results are shown in the time-

calibrated cladogram Fig 1.5.1.  

 
 
Figure 1.5.1 Calibrated cladogram showing the relationships of Beiyanerpeton to other fossil and extant 
salamander clades, and the timing of the Salamandroidea splitting from Cryptobranchoidea (solid dot) 
as indicated by the fossil record (Gao and Shubin 2012). 
 

 The taxon of focus, Beiyanerpeton, was placed on the stem of Salamandroidea. 

Pangerpeton, Chunerpeton, Iridotriton, and Liaoxitriton were placed within Cryptobranchoidea 

and Valdotriton was included within Salamandroidea. These taxa (excluding Beiyanerpeton) 

had previously been included in other phylogenetic analyses (Wang and Evans 2006; Zhang et 

al. 2009) but their relative positions differ slightly. Other fossil salamanders had usually either 

been assigned to one of the extinct families i.e., Scapherpetontidae and Batrachosauroidea, or 

to the Cryptobranchoidea and Salamandroidea based on shared characteristics.  

 The Scapherpetontidae (Estes 1981) is a ‘family’ of fossil salamanders from the 

Cretaceous of North America and Uzbekistan and includes Eoscapherpeton, Lisserpeton, 

Piceoerpeton, and Scapherpeton (see Table 5.1). This extinct family has historically been hard 

to diagnose because many of their distinctive features are linked with neoteny. No uniquely 
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derived features are known that unambiguously differentiate scapherpetontids from all other 

salamanders (Gardner 2012). They are similar to living Cryptobranchoidea in that their angular 

is separate from the prearticular, and have previously been assigned to Dicamptodontidae 

because of the similarity in spinal nerve foramina (Edwards 1976). The assignment of 

Piceoerpeton to Scapherpetontidae is problematic because of the similarity in morphology to 

Batrachosauroididae (Milner 2002). Although the trunk vertebrae of Piceoerpeton are typical 

for Scapherpetontidae (Estes and Hutchison 1980; Estes 1981; Naylor and Krause 1981) the 

reduced odontoid process and deeply concave anterior cotyles of the atlas are more similar to 

the batrachsauroidid condition such as in Opisthotriton (Gardner 2012). However the latest 

results place Piceoerpeton as part of Scapherpetontidae (Demar 2013) with a suggestion that it 

might even be a descendant of Lissotriton (Naylor and Krause 1981).  

 Batrachosauroididae (Auffenberg 1958) is a family of fossil salamanders from the 

Cretaceous and Cenozoic of North America and the Cenozoic of Europe. It includes 

Opisthotriton, Parrisia, and Prodesmodon. Batrachosauroididae has been referred to the 

Salamandroidea (Noble 1931; Taylor and Hesse 1943) and there have been suggestions that 

they are related to the family Proteidae (Estes 1975; Naylor 1979; Estes 1981; Naylor 1981; 

Milner 1983; Skutschas and Gubin 2012) although a recent phylogenetic analysis of vertebral 

characters only has placed Proteidae as more closely related to Scapherpetontidae than 

Batrachosauroididae (Demar 2013). Batrachosauroididae is characterised by an atlas with 

large, deeply concave anterior cotyles but a weak or absent odontoid process. They also have 

presacral vertebrae that are either opisthocoelous (in early forms) or amphicoelous (in later 

forms); the skull is paedomorphic with long posterior processes of the premaxillae, broad 

vomers, a broad parasphenoid, and retention of maxillae. Their bodies are often elongated 

with reduced limbs (Estes 1981).  

 There are several enigmatic fossils from the southern hemisphere which have been 

identified as salamanders. Kababisha sudanensis, Kababisha humarensis from North and 

Eastern Africa and Noterpeton bolivianum from Bolivia and Niger share sculpture on the neural 

arches and a continuous surface joining the two cotyles (Evans et al. 1996). Their similarity 

with Sirenidae has been noted (Rage et al. 1993; Evans et al. 1996; Rage and Dutheil 2008) 

though others disagreed (Gardner 2003), but so far they have not been included in a 

phylogenetic analysis. 
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1.6 Biogeography  

1.6.1 Introduction to biogeography 

  

 The study of the distribution and evolution of organisms through space and time is at 

the heart of biogeographic studies (Ball 1975). The creation of geographical barriers causing 

speciation is called vicariant speciation (Rosen 1975; Rosen 1978; Ronquist 1997; Sanmartín 

and Ronquist 2004; Upchurch 2008). The creation of this geographical barrier may affect more 

than one organismal lineage. The patterns of distributions of sister species may be seen in 

multiple lineages and could mirror the history of the formation of the barrier. Conversely 

dispersal is the expansion of a species range as a geographical barrier is removed and this may 

distort the vicariance pattern (Upchurch et al. 2002; Lieberman 2003). Although geodispersal 

can overprint the vicariance signal, it is also an important prerequisite for vicariance. Taxa 

need to have a wide geographic distribution in order to be affected by barriers that form later. 

Other phenomena such as: post speciation dispersal, allopatric speciation by dispersal 

(dispersal of te species to such an extent that there is disrupted gene flow causing speciation), 

phylogenetic errors and extinction events could all distort a vicariance signal but would most 

likely be clade specific as they would affect each clade in a different manner. The inclusion of 

fossils to form ancestral area cladograms somewhat dampens the distortion created by 

extinction in the vicariance signal but only if there is no missing information caused by rock 

preservation potential bias (Barrett et al. 2009; Butler et al. 2009; Crisp et al. 2011; Upchurch 

et al. 2011). There is also a chance that an area cladogram (a cladogram that depicts the 

relationships of different areas instead of organisms) formed from a phylogeny could mirror 

biogeographical history by chance (pseudo-congruence) (Page 1991; Hunn and Upchurch 

2001).  

Some dichotomies (sister taxa relationships) are not easily explained by geographic 

events and so cannot reasonably be attributed to vicariance. However with the knowledge 

that facultative and permanent paedomorphosis occur within living ambystomatids, 

Dicamptodon and plethodontids it is reasonable to assume that dichotomies that occur 

between paedomorphic urodeles and their terrestrial sister clade may be because of 

heterochrony (Milner 1983). 

1.6.2 Salamander geographic distribution 

 

Apart from two recent southward migrations to northern South America by 

plethodontids (Hanken and Wake 1982) and Northern Africa by salamandrids (Veith et al. 
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1998; Steinfartz et al. 2000) all living salamanders and most fossil taxa are found in previously 

Laurasian continents (Davic and Welsh 2004). This distribution pattern suggests all modern 

salamander lineages arose in Laurasia (Savage 1973) with diversification occurring through 

continental break up (vicariance theory) or range disruptions (Milner 1983) 

The salamander stem ancestor may have been cosmopolitan throughout Laurasia by 

the Middle Jurassic. If salamanders were globally distributed before the break up of Pangaea, 

why do they not currently have a wider geographical distribution? It may be because of range 

restriction, to the northern parts of Pangaea, during initial divergence and radiation. If stem 

salamanders were aquatic they may have been restricted to a specific habitat and favourable 

climate zones (Romer 1968).  

 1.6.2.1 Gondwana 

 

There are currently five records of fossil material found in what were once Gondwanan 

continents. The status of Ramonellus (Lower Cretaceous, Israel) remains uncertain pending 

restudy (Nevo and Estes 1969). There is then the enigmatic material from Bolivia, Niger, 

Morocco, and Sudan, represented, so far, by isolated atlantes, vertebrae and skull bones. 

(Rage et al. 1993; Evans et al. 1996; Rage and Dutheil 2008). Evans et al. (1996) suggested 

these salamanders might be closely related to the Sirenidae. Their position in the phylogenetic 

tree could shed light on the origins and early radiation of early salamanders. If these Late 

Cretaceous taxa lie towards the base of the tree, their position may suggest that salamanders 

once had a more global distribution but were later restricted to the Northern continents (San 

Mauro et al. 2005). However, if these fossils nest amongst recent groups it would suggest that 

salamanders could have dispersed, in limited numbers, from Laurasia to Gondwana, before or 

during the Cretaceous, as some modern plethodontid forms have done one or more times 

within the last 3-5 million years (Hanken and Wake 1982). Milner (1983) noted that, during the 

late Jurassic, Laurasia may have been in contact with northern Gondwana. If correct, it may 

account for the presence of the enigmatic fossil salamanders in the southern hemisphere 

during the Cretaceous if the phylogeny supports the dispersal theory (Ezcurra and Agnolin 

2012). 

1.6.2.2 Laurasia 

 

By the Upper Jurassic the Turgai Sea had divided Laurasia into east and west 

landmasses with Cryptobranchoidea on the Asian landmass in the east, and sirenids, proteids, 

plethodontids and salamandrids on the western Euramerican landmass. Marine barriers 

formed at least four times with the potential to result in phylogenetic dichotomies (Hallam 
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1981). However, there are three proposed mechanisms by which dichotomies are formed: 

geographical events leading to endemism through vicariance, ontogenetic dichotomy between 

terrestrial and paedomorphic groups, and ecological divergence (Upchurch, 2008). Milner 

proposed that the split between the Cryptobranchoidea and Salamandroidea occurred 

because of the formation of the Turgai Sea approximately 150 million years ago. Although 

some aspects of Milner’s (1983) phylogeny are now out of date his hypothesis concerning the 

impact of certain continental movements on the radiation patterns of early salamanders can 

still be tested.  

Zhang and Wake (2009) found that sirenids diverged from all other living salamanders 

at around 183 million years ago just as the North Atlantic started to open (Hallam 1994). This 

would have restricted sirenids to the small land margins along eastern North America, South 

America and Africa. However if Cryptobranchoidea are placed as the sister taxon to all other 

salamanders it would suggest an Asian origin for Urodela as Chunerpeton (a cryptobranchoid) 

is proposed as the oldest crown group salamander (Shubin and Gao 2003). Several 

inconsistencies cast doubt on this Asian origin theory. The date estimates of the Chunerpeton 

fossil horizon have been fiercely contested with age estimates spanning the Middle Jurassic to 

the Early Cretaceous (Gradstein et al. 2004; He et al. 2004; Liu et al. 2006; Yanxue et al. 2006; 

Ren and Oswald 2002; Zhang et al. 2006; Wang et al. 2005). Apart from other fossil Caudata 

found in Europe and North America that may prove inconsistent with an Asian origin until 

placed in a phylogeny, molecular studies have recently supported the divergence of Sirenidae 

from the other Urodela before the Cryptobranchoidea diverges from Salamandroidea, but 

these differing phylogenetic signals are based on the analysis of different types of molecular 

data. 

Several further dispersal events might also account for modern day distribution 

patterns.  Naylor (1981) proposed that cryptobranchids originated in North America  while 

Milner (1983) suggested it was more parsimonious to hypothesise that the clade originated in 

Asia with subsequent dispersal to North America via a land bridge. Chunerpeton in China and 

other possible cryptobranchoid salamanders from the Jurassic/Cretaceous supports the theory 

of an Asian origin for the Cryptobranchoidea clade (Gao and Shubin 2001, 2003; Wang 2004) 

although there are few Jurassic deposits and only very rare Jurassic salamander fossil material 

from North America available to challenge this hypothesis. The current distribution of 

cryptobranchids in North America might be because of a dispersal event across the Bering land 

bridge (Milner 1983; Zhang and Wake 2009).  
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The common ancestor of the Salamandroidea may have been distributed through 

Euramerica by the Mid-Jurassic according to a recent molecular clock analysis (Zhang and 

Wake 2009). This is at odds with the fossil calibrated supertree produced by Marjanović and 

Laurin (2007) which suggests that Salamandroidea originated only 80 million years ago, but in 

Appendix 1 of their supplementary information they do allow that the fossils they have used, 

and the uncertain phylogenetic placement of the species, means that their divergence 

estimation may be too young. In contrast, Zhang and Wake (2009) suggest that their older date 

of 160mya is consistent with the earliest representatives of Late Jurassic salamandroid-related 

fossils such as Iridotriton (Evans et al. 2005). 

Zhang and Wake (2009) found that the three most speciose salamander clades 

(Plethodontidae, Salamandridae and Hynobiidae) initially diversified at nearly the same time  

approximately 96-100 million years ago. At this time in the Late Cretaceous, the climate was 

very warm with significantly higher temperatures in northern latitudes (Zachos et al. 2001; 

Jenkyns et al. 2004). This may have caused previously continuous clades to split into 

geographically fragmented groups through shrinking habitats and extinctions, perhaps 

resulting in the diversification of plethodontids in America, salamandrids in Europe and 

hynobiids in Asia (Vieites et al. 2007).  

1.6.2.3 What is the position of Sirenidae in relation to other salamanders? Are the 

enigmatic Gondwanan fossils (Kababisha and Noterpeton) related to Sirenidae? 

 

 Previous studies have failed to reach agreement on the position of Sirenidae within the 

Salamander phylogeny with some results from molecular analyses supporting Sirenidae as the 

sister clade to all other salamanders (Larson and Dimmick 1993; Chippindale et al. 2004; Zhang 

and Wake 2009), while others support the placement of Sirenidae within Salamandroidea, or 

as its sister clade (Wiens et al. 2005; Frost et al. 2006; Roelants et al. 2007; Vieites et al. 2009). 

Within the phylogeny the position of Sirenidae will help to clarify the possible place of origin 

for crown group Urodela. With the robust placement of Sirenidae and its purported relatives 

(Habrosaurus from North America and Kababisha and Noterpeton from Africa and South 

America respectively) at the base of the salamander phylogeny, the Pangea-wide origin of 

Salamanders can be supported. If it turns out Cryptobranachoidea is the sister clade to all 

other salamanders, then a Laurasian origin and diversification/distribution pattern for 

salamanders is more likely. 

Rage (1993) suggested that together the Kababisha and Noterpeton might form a sister group 

to salamanders that was caused by a vicarient event. The Late Cretaceous age of this clade and 

the presence of earlier crown group salamanders found in previously Laurasian continents 
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precludes this hypothesis. Kababisha + Noterpeton material of an older age would need to be 

found for this hypothesis to merit a review. The affinities of this clade in relation to other 

salamanders remain problematic. However, the result has interesting implications on the 

distribution potential between the Gondwanan continents (Africa + South America) as 

Noterpeton has been discovered in both Bolivia and Niger in Late Cretaceous age 

sediments(Rage et al. 1993; Rage and Dutheil 2008). Its possible relationship with Caudata also 

highlights interesting questions about the origins and diversification of Lissamphibia. 

1.6.2.4 Can fossils be placed robustly at a Family and/or 

Salamandroidea/Cryptobranchoidea level? 

  

 Although there is some consensus of internal relationships of salamanders emerging 

(e.g. Ambystomatidae + Dicamptodon, and Cryptobranchidae + Hynobiidae), there are still 

other families, apart from Sirenidae, that are not consistently placed in the same location on 

the tree (e.g. Proteidae). This uncertainty of the internal relationships of salamander families 

makes it difficult to place fossils with confidence. The ability to be able to distinguish between 

the Salamandroidea and Cryptobranchoidea in morphological data would allow for the 

placement of fossil taxa at this level. This important distinction could lead to a phylogeny that 

would allow for the hypothesised split between these two main clades due to vicariance to be 

addressed. The ability to place fossils even at a higher level is significant in salamanders 

because it will help gain a more complete view of salamander radiation through time. 

This thesis will use molecular and morphological data to unravel the phylogenetic 

signal in chapter 2. Chapter 3 shows the results of the tree dependent and tree independent 

character evaluation and uncover evidence of stem-ward slippage when phylogenetic analysis 

uses morphological data. Finally, chapter 4 will show how robustly fossils can be placed in a 

phylogeny using morphological data. 
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2. Phylogenetic relationships of 
extant salamanders using 
molecular and morphological 
characters 
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2.1 Introduction: 

 

The increased use of molecular data has shed new light on many phylogenies because 

molecular data are thought to be influenced less by convergence and homoplasy than 

morphological data (Lee 2005, Wiens 2005). Molecular methods have an advantage over 

morphological methods as there is often far more data available and so more characters to use 

to evaluate the relationships of different taxa. However morphological methods are capable of 

including both fossils and museum specimens that are unable to yield DNA material for 

analysis. It has been noted that perhaps a more biologically reasonable phylogeny can be 

produced by including fossils (Lee 2005) and this can only occur with the inclusion of 

morphological data.  

Many studies are thought to have benefitted from the inclusion of molecular data in 

resolving previously controversial phylogenies (e.g. Teeling et al. 2005; Wiegmann et al. 2009). 

However, creating new phylogenies that conflict with morphological phylogenies does not 

bring resolution, just a different result based on an alternative form of data (Patterson et al. 

1993). Often congruence between different molecular analyses is as elusive as congruence 

between different morphological studies and again between molecules and morphology 

(Patterson et al. 1993). 

There are problems associated with both molecular and morphological data and each 

analytical method should be carefully considered (See Chapter 1.4). Certain types of DNA e.g., 

mitochondrial DNA (mtDNA), are thought to evolve rapidly and so run the risk of reaching 

saturation and might be unable to resolve deep nodes or short branches (Weisrock et al. 

2005). Furthermore, the inclusion of too many distant outgroups could promote long branch 

attraction (Lukoschek et al. 2011). 

Here representative salamander taxa are used in both molecular and morphological 

datasets that are then compared, not only to each other but also in a combined total evidence 

approach. The possible cause of the different phylogenetic signals seen in both the results of 

the study presented here and published phylogenies are then explored. The placement of 

Sirenidae is examined, and the relationship between the phylogenetic results of soft body and 

also osteological characters are compared to the phylogenetic results of molecular data. 
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2.2 Materials and Methods 

2.2.1 Molecular data 

A reduced version of the Pyron and Wiens (2011) genetic dataset was used as a base 

to which extra outgroups were added. A reduced version was necessary because the genes 

chosen by Pyron and Wiens covered all amphibian groups which included hundreds of taxa. 

Therefore, once most of the frogs and caecilians had been removed there were some gaps in 

the data where many of the salamander taxa had not been sequenced for every gene. 

However, the number of genes was reduced from 12 to 11 based on the completeness of data 

for the selected taxa. Three mitochondrial genes were included: cytochrome b (cyt-b), and the 

large and small subunits of the mitochondrial ribosome genes (12S/16S; omitting the adjacent 

tRNAs as they were difficult to align and represented only a small amount of data), and the 

nuclear genes, sodium–calcium exchanger (NCX1), solute-carrier family 8 (SLC8A3), C-X-C 

chemokine receptor type 4 (CXCR4), pro-opiomelanocortin (POMC), seventh-in-absentia (SIA), 

rhodopsin (RHOD), histone 3a (H3A) and recombination-activating gene 1 (RAG1) were 

selected to include both mitochondrial and nuclear DNA. (The species that had been coded for 

the morphological dataset were almost all represented in the molecular dataset.) Salamanders 

are represented by 26 extant species from all ten of the living families (Appendix A). 

As the closest living clade to salamanders, frogs were chosen as one of the outgroup 

clades. Representative taxa were selected from the sister group to all other frogs, Ascaphus 

and Leiopelma and also a more derived frog, Bombina. Caecilians, as sister taxa to Batrachia 

were also included as outgroups and representative taxa were chosen based on the Zhang et 

al. (2009) study which included; Ichthyophis bannanicus, Ichthyophis tricolor, Rhinatrema 

bivittatum, and Typhlonectes natans.  A range of further outgroups were chosen for the 

molecular analysis from clades less closely related to salamanders such as representatives 

from Rhynchocephalia, Squamata, Crocodylia, Aves, Dipnoi, Mammalia, and Actinistia.  

The available genes for Sphenodon punctatus, Takydromus tachydromoides, Caiman 

crocodilus, Alligator mississippiensis, Gallus gallus, Protopterus dolloi, Homo sapiens, and 

Latimeria chalumnae were downloaded from GenBank to add to the Urodela dataset, together 

with the selected frog and caecilian sequences. Alignment was carried out using the clustal 

function in Jalview and then the multiple alignment tool in Geneious using the default 

Blosum62 model with gap open penalty of 12 and gap penalty of 3. Each alignment was then 

manually checked and trimmed with the hair-pin bends removed from the 12S and 16S genes.  
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The final dataset consisted of a total of 45 species with 10085 base pairs. The mean 

length per species is 4485 bp (44.5% of the total length of the matrix, 10085 bp), with a range 

from 869 to 9744 bp (8.6–96.6%) (See Table 2.1). 

 

         Table 2.1 – Breakdown of the 11 genes in the combined molecular dataset 

Molecular substitution models were selected for each gene individually using 

partitionfinder (Lanfear 2012). The nuclear genes were split into codons and individual models 

were assigned to their relevant codon using Bayesian Inference Criterion (BIC) (Schwarz 1978) 

(Table 2.2).  

The molecular dataset was analysed using MrBayes version 3.2 (Ronquist and 

Huelsenbeck 2003; Ronquist et al. 2009). MrBayes is a program that uses a Bayesian method 

for calculating the best topology for a given dataset using the Markov chain Monte Carlo 

(MCMC) method for predicting the posterior probability. The Bayesian method was used 

(rather than Parsimony) on the molecular dataset because Bayesian analysis incorporates 

explicit models of DNA sequence evolution and so may give a more accurate estimate of 

phylogeny than parsimony (Weisrock et al. 2005). Bayesian analysis may also be less prone to 

long branch attraction (Alfaro et al. 2003). However Alfaro et al. (2003) also suggested that 

Bayesian analysis may sometimes produce unduly high support for questionable branch nodes.  

Each gene was unlinked from the other genes in each analysis so the rate of evolution 

of one gene did not influence or impact on the rate of evolution of any other gene in the 

dataset. Full constraints (i.e., no other taxa can intrude on the monophyly of the specified 

clade constraints) and partial constraints (i.e., floating taxa, not specified in the constraint, are 

allowed to intrude on the specified constrained clades) were utilised in different analyses to 

Gene Gene Length (b.p) Number of species  Coverage of dataset 

16S 1880 41 91% 

12S 971 39 87% 

Cvt-b 1096 42 93% 

RHOD1 315 9 20% 

SIA 315 9 20% 

POMC 553 13 29% 

H3A 332 15 33% 

CXCR4 714 13 29% 

NCX1 278 16 36% 

SLC8A3 1132 21 47% 
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group together taxa with well-supported phylogenetic positions according to previously 

published studies. 

Two runs were used as recommended by the algorithm authors because the program 

is designed to recognise that a good posterior probability has been reached by comparing the 

similarity of trees in each run. Each run had six mcmc chains in every Bayesian analysis of this 

study (this means there were five hot chains and one cold chain in each run).  A swap 

frequency of 1 was also used for each Bayesian analysis and was chosen to compliment the 

Temp setting. In this study a temp setting of 0.1 was used throughout all analyses. The 

temperature of the hot chains is an indication of the tree space sampled. The higher the Temp 

setting the “hotter” the chain and the further the chain samples the available tree space, but 

this is often off-set with the ability of the hot chains to swap with the cold chains. Through the 

failure of run convergence of early analyses an optimal value of 0.1 was found that allowed the 

convergence of the runs without taking an impractical amount of time to complete. The swap 

setting has to change in conjunction with the Temp setting so that the chains swap information 

to allow them to converge towards a statistically significant consensus tree.  

The sample and print frequencies were set at 100 each. These settings control how 

many times the trees generated in the search were sampled, in this case once every 100th 

generation. This setting was optimised to be the highest number of times the trees could be 

sampled without creating unmanageably large tree files. Each sampled tree topology and 

branch length is written to the tree file and simultaneously printed to the output screen. The 

percentage of trees removed from the cold chain tree file before all the trees are combined 

into a consensus tree was set at the recommended default setting of 25%. This was not 

changed in any of the analyses. 

Several criteria were used to assess whether the chains had converged on a 

statistically significant tree topology. The average standard deviation of split frequencies value 

had to be below 0.01, the average Estimated Sample Size (ESS) must be above 100 (otherwise 

it may indicate that the parameter is under-sampled), and the Potential Scale Reduction Factor 

(PSRF) should approach 1.000 as the runs converge (Gelman and Rubin 1992). Posterior 

probability values are used to infer robustness of nodes in the Bayesian phylogenies. 

Constraints were applied to the data restricting the following outgroup taxa to fall 

outside of salamanders: Protopterus dolloi, Latimeria chalumnae, Alligator mississippiensis, 

Caiman crocodilus, Takydromus tachydromoides, Sphenodon punctatus, Homo sapiens, and 

Gallus gallus. Frogs and caecilians were similarly constrained each to form a monophyletic 

group consisting of Ascaphus montanus, Ascaphus truei, Bombina bombina, Bombina 
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variegate, Leiopelma hamiltoni, Pelobates cultripes and Pelobates fuscus, also Ichthyophis 

bannanicus, Ichthyophis tricolor, Rhinatrema bivittatum and Typhlonectes natans respectively. 

No constraint was applied to the relationships between the various outgroup clades. No other 

constraint was applied to force the salamander species to cluster together and they were free 

to fall outside of the crown group Caudata if need be. Although they could not breach the 

constraints mentioned above, they could form sister taxa to any of the outgroups. The rooted 

outgroup taxon was assigned to Latimeria by putting it as the first species listed in the 

MrBayes script. 

A MrBayes analysis was run with a temperature setting of 0.1 for the hot chain and 

both the print frequency and the sample frequency were set to one every 100. There were two 

runs, each with six chains, and after a burnin fraction of 25% a majority rule consensus tree 

was obtained (using the sump and sumt commands). To check that the resultant tree topology 

in each run, of each chain, were converging on the same result (with an acceptably low level of 

variation), the average standard deviation of split frequencies values was calculated to indicate 

the level to which the two runs have converged. An optimum level of 0.01 was used to indicate 

that the runs had converged sufficiently. ESS and PSRF scores were also used to further assess 

whether the individual runs in each chain had sampled enough of the data to form robust 

posterior probabilities at each node. An ESS value had to be over 100 to represent adequate 

posterior sampling and the PSRF value should approach 1.000 as the runs converge. All node 

values are posterior probability percentage values. Further analyses were completed using 

subsets of the molecular data. The three mitochondrial genes were analysed separately from 

the eight nuclear genes. This was done to test the hypothesis that the disparity in placement of 

Sirenidae was due to the type of genetic material sampled (e.g., mitochondrial v nuclear 

genes). The same MrBayes settings that were applied to the total molecular dataset were used 

again in each of the analyses using the nuclear and mitochondrial dataset. 
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Table 2.2 – Results of Partitionfinder assigning best fit model of rate of evolution to each gene/codon 

region. 

 

2.2.2 Morphological data 

  

A comprehensive literature review was undertaken to collect morphological characters 

and data used in previous salamander phylogenies (Edwards 1976; Sever and Trauth 1990; 

Hanken and Hall 1993; Larson and Dimmick 1993; Duellman and Trueb 1994; Gao and Shubin 

2001; Wiens et al. 2005; Wang and Evans 2006; Zhang et al. 2009). The list of morphological 

Gene Model 

12S GTR+I+G 

16S GTR+I+G 

cytb GTR+I+G 

NCX1 Codon 1+2 – GTR+I+G 

Codon 3 – SYM+I+G 

SIA Codon 1 – K80+g 

Codon 2+3 – GTR+I+T 

SLC8A3 Codon 1 – SYM+I+G 

Codon 2+3 – GTR+I+G 

POMC HKY+G 

RHOD Codon 1 – K80+G 

Codon 2 – GTR+I+G 

Codon 3 – GTR+G 

CXCR4 Codon 1 – K80+G 

Codon 2 – GTR+I+G 

Codon 3 – GTR+G 

H3A Codon 1 – GTR+G 

Codon 2 – GTR+I+G 

Codon 3 – JC+I 

RAG1 Codon 1 – GTR+I+G 

Codon 2 – SYM+I+G 

Codon 3 – GTR+I+G 
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characters was edited to exclude overlapping characters and states and also modified by 

expanding character states to encompass all taxa and outgroups. Twenty new osteological 

characters were also created through personal specimen observation. The final character 

matrix consists of 249 discreet characters (19 were ordered multistate characters, the rest 

were unordered), made up of 197 osteological, and 52 soft-body and behavioural characters 

(see Appendix B). The osteological characters cover the entire skeleton but especially focusing 

on parts that are commonly preserved in the fossil record. These characters were scored for 27 

extant taxa, 6 outgroups, and 34 fossil taxa and the matrix is stored in an excel spreadsheet 

(Microsoft Excel 2010) (see Appendix C). The extant taxa were scored for a combination of 

computerised tomography (CT) images [3D images were created from micro-CT scans of 

specimens at the NHM using the free software Spiers (Sutton et al. 2012)], whole specimens 

donated by the NHM to Evans Lab and 3D scans from Digimorph.org (Appendix D). The fossil 

taxa were scored from specimens where possible (as they are kept in museums around the 

world) and from the available literature where not. Notable exclusions to the fossil taxa list 

include Ramonellus (Early Cretaceous, Israel), Sinerpeton and Laccotriton (Jurassic/Cretaceous, 

China) that are genera that need further work on their descriptions and interpretations before 

being included in phylogenetic analyses. Kiyatriton (Early Cretaceous, Siberia) was scored using 

the available literature, however the final reduced dataset did not include enough scored 

characters to be included in a phylogenetic analysis at this time (see Further Work section in 

Chapter 5). 

Taxa were selected to match those used in previous studies and were further 

influenced by the availability of molecular data and of osteological specimens for examination. 

Each family is represented by at least two species except for Sirenidae and Dicamptodon, each 

of which are represented by only one species (Sirenidae has only four species within two 

genera, and Dicamptodon is a single genus). The larger, more speciose families, such as 

Salamandridae and Plethodontidae, have had species selected from across as many 

subfamilies as possible (See Appendix D).  

Outgroups were chosen from a wide range of taxa starting at the closest living relative 

to the salamanders, frogs. The morphological outgroups include Rana as a representative of a 

common frog used in previous studies and the fossil Triadobatrachus massinoti as one of the 

earliest representatives of fossil frogs. Caecilian representatives were chosen based on the 

Zhang et al. (2009) study and include Typhlonectes natans which is nested high in the caecilian 

phylogeny and also Eocaecillia micropodia representing the earliest fossil caecilian. They were 

chosen to represent the whole Caecillian clade from the most basal to the clades nested higher 

in the group. 
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Further outgroups were chosen from among Temnospondyli (Schultze and Trueb 

1991): Gerobatrachus hottoni (Anderson et al. 2007; Anderson et al. 2008) and Doleserpeton 

annectens (Sigurdsen and Bolt 2010). They were chosen because their placement relative to 

salamnders is well known and it is likely that they are ancestral to salamanders (Maddin et al. 

2012).  

The phylogenetic program used for all parsimony analyses is the Willi Hennig Society 

edition of TNT (Tree analysis using New Technology) (Goloboff et al. 2008; Goloboff et al. 

2008) version 1.1 (published July, 2011). TNT is a free software tool used to create and analyse 

phylogenetic relationships using Parsimony. Constraints were applied to the outgroups to 

follow the relationships shown below in Fig. 2.1. A strict constraint was placed on these 

relationships so that they fell outside the crown group Urodela. The designated outgroup 

taxon in each script was Doleserperton as it is the sister taxon to all other ougroups + 

salamanders. Gerobatrachus formes the sister taxon to frogs and salamanders according to 

previous published phylogenies (Anderson et al. 2007; Anderson et al. 2008; Maddin et al. 

2012). 

 

Figure 2.1 The proposed relationships of the outgroups used in this study as suggested by a parsimony 

analyses Maddin et al. 2012. (Figure after Maddin et al. 2012) 

MrBayes (version 3.2) was used for the Bayesian analysis of the morphological data 

and the combined data analysis. Both ordered and unordered characters were used (19 

ordered and 230 unordered) as was the default rate of evolution in MrBayes which is similar to 

a homogeneous rate of evolution such as the Jukes Cantor model (Jukes and Cantor 1969). 

Constraints were applied to the frog and caecilian taxa so that they each formed a 

monophyletic group, but the frog and caecilian clades were not restricted in their relationships 
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to any of the other outgroups. No other inter-relationship constraints were applied to any of 

the other outgroups on MrBayes, but they were constrained to be outside Urodela.  

All TNT analyses used 20 random seed starts in the ‘New Technology Search’ option 

(Goloboff et al. 2008) as this is a large enough number to get a random sample of tree space 

for the start of the tree search. The New Technology searches used drift, sectorial searches 

and Tree Fusing options which are three different algorithms for searching for the optimal 

trees which gives and increased chance for success. Stabilising consensus value of five was 

used in each analysis which was three more than the default setting. This ensures that a 

minimum tree length is hit upon at least 5 times in the search. In order to search for additional 

topologies, the trees from the New Technology were stored in RAM and used as the starting 

trees in a Traditional search using tree bisection-reconstruction (TBR). The constraints were 

enforced in the Traditional Search. Agreement subtrees were calculated in each case where 

more than one most parsimonious tree (MPT) was found. If, for some reason, the taxon (or 

taxa) under scrutiny in an analysis was not included in the agreement subtree a strict 

consensus tree was produced. Once the most parsimonious trees had been found, 

subsampling was used in each analysis to provide relative support values allowing an 

assessment of relationship robustness. GC bootstrap values were calculated (1000 replicates) 

using the Traditional Search option in TNT. The New Technology Search option was not used in 

the bootstrap analyses as it crashed every time. The resultant tree topology was sometimes 

slightly different to the results of the New Technology Search because the different search 

methods found different topologies for their MPTs. The New Technology Search + Traditional 

Search combination always found shorter MPTs than the Traditional Search option alone, and 

so it was used in each parsimony analysis within this study. 

 The full morphological dataset was analysed using an extant frog (Rana catesbeiana) 

and an extant caecilian (Typhlonectes natans) as outgroups to provide a comparison with a 

phylogeny that was produced using morphological data that also includes fossil outgroups. In 

MrBayes this initial morphological analysis had a partial constraint applied where the frog and 

caecilian species were constrained to fall outside of the salamander clade. The caecilian 

species was designated as the root because earlier results from the molecular analysis and 

previous studies placed caecilians as sister clade to Batrachia (frogs + salamanders).  

 However further analyses were conducted on the morphological dataset using more 

extensive outgroups including Temnospondylii, Gerobatrachus hottoni and Doleserpeton 

annectens, and also the stem frog (Triadobatrachus massinoti) and stem caecilian (Eocaecillia 

micropodia), as well as the extant Rana catesbeiana and Typhlonectes natans. This was done 
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to test the resolution of the phylogenies when more outgroups are included. Also as fossils are 

introduced, more appropriate outgroups had to be included in the matrix. In all analyses of the 

morphological data the settings in MrBayes remained the same. The 19 ordered characters 

were included using the ‘ctype ordered’ function and the print frequency and sample 

frequency were both set to one in every 100. The burnin rate and temperature for the hot 

chains were the same as the molecular analysis settings i.e. 25% and 0.1 respectively. The 

analyses consisted of two runs each with three chains. In both TNT and MrBayes, constraints 

were in place to force the outgroup taxa to fall outside of salamanders. A hard constraint was 

applied in TNT to the outgroup taxa so that their internal relationships were unmovable with 

Doleserpeton annectens as the ultimate outgroup with the other taxa constrained as depicted 

in Figure 2.2. 

 
Figure 2.2 The constraint placed on the outgroup taxa on the morphological data used in the parsimony 
analysis in TNT 

 In the analyses designed to look at the signal in different parts of the anatomy, the 

same additional outgroups were kept. It has previously been suggested that molecular 

phylogenies reflect the topology resulting from the soft body anatomy of some clades better 

than the osteological data (Gibbs et al. 2000) and so this was tested by dividing the 

morphological data into skeletal characters and soft body and behavioural characters. 

However, because the soft body dataset had to be scored from literature sources, a 

hypothetical all zero outgroup had to be included as specific data for the outgroup taxa was 

not available to allow for the scoring of the characters.  
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2.2.3 Combined Molecular and Morphological data 
 

 The molecular data comprising the full eleven genes plus the full 249 morphological 

characters was analysed using MrBayes. The outgroups used included both the outgroups used 

in the first molecular dataset and a reduced set from the morphological analysis (just the 

representative for frogs and caecilians). The settings are consistent with the previous analyses. 

The constraints include restricting the outgroups to fall outside of the salamander clade.  

2.2.4 Tree comparisons 
 

 Several methods for comparing trees are implemented within PAUP (Phylogenetic 

Analysis Using Parsimony) version 4.0 (Swofford 2003). Comparisons between trees using 

agreement subtrees, and Symmetric differences (Robinson folds) show the similarity of 

topology between the resultant trees. Tree results from morphological datasets and molecular 

datasets were compared to see the level of congruence in the results. The hypothesis that soft 

body characters produce a tree more similar in topology to the molecular results, compared to 

osteological results, is tested by comparing the results of the parsimony and Bayesian analyses 

of the soft body characters and the results of the parsimony and Bayesian analyses of the 

osteological results to the full molecular tree. 

 The outgroups were removed and the datasets reduced to their lowest common taxa 

set before being imported into PAUP. Rooted trees were used in every case and similarity in 

topology of just the common taxa in each tree, were assessed. 

2.2.5 Character mapping 

 

 Characters were mapped onto a strict consensus tree to detect synapomorphies that 

support clades. The dataset was imported into Mesquite (version 3.0) and the MPT(s) or 

Bayesian consensus tree was attached to the data file using the ‘included’ function in the File 

menu. Once the trees had been linked to the dataset, a strict consensus tree was created for 

the TNT results (as the Bayesian results already consisted of a consensus tree). Character 

histories were traced onto the consensus tree using a parsimony framework. Synapomorphies 

were then noted by manually searching character by character. 
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2.3 Results 

2.3.1 Molecular results 

2.3.1.1 Combined mtDNA and nuDNA molecular phylogeny 

The analysis of the full molecular dataset comprising eleven genes and 44 taxa resulted 

in a phylogeny that supports the monophyly of Batrachia with caecillians as their sister clade.  

All currently recognised salamander families are monophyletic. This analysis places the 

cryptobranchid and hynobiid taxa together in a monophyletic group (the Cryptobranchidae) 

which is sister to all other salamanders (Fig. 2.3.1). All the remaining salamanders are placed 

within Salamandroidea. Sirenid is placed as the sister taxon to all other Salamandroidea. 

Dicamptodon is more closely related to Ambystoma than to any other salamander family but 

support is poor. Amphiuma is placed as more closely related to plethodontids than to any 

other salamanders but support is again poor. 

 

 

Figure 2.3.1 Result of the Bayesian analysis of eleven genes. Average standard deviation of split 
frequency value 0.005357. The average ESS for each partition was over 1000 and every partition’s PSRF+ 
= 1.000 All Bayesian node values are posterior probability values 
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2.3.1.2 Nuclear DNA phylogeny 

The nuclear tree is less resolved than the previous full molecular tree. The phylogeny result supports the monophyly of the Batrachia clade 

(61 BPP) (Fig. 2.3.2) but salamanders are not resolved as monophyletic. Caecilians are placed as the sister clade to Batrachia with moderate support. 

None of the salamander families are confirmed to be monophyletic except for Amphiuma and Ambystoma but only with poor support. The phylogeny 

does not show any clear distinction between the Cryptobranchoidea and the Salamandroidea + Sirenidae. But in this tree Amphiuma and Sirenidae 

are more closely related and Dicamptodon is most closely related to ambystomatids, which is consistent with the previous combined genetic dataset 

result. 

 

Figure 2.3.2 Result of a Bayesian analysis of eight nuclear genes in MrBayes version 3.2, with an average standard deviation of split frequency value of 0.009838. 

Bayesian posterior probability values at the nodes
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2.3.1.3 Mitochondrial DNA phylogeny 

This analysis of the mitochondrial DNA still supports the monophyly of Lissamphibia. The tree show that salamanders and caecilians are more 

closely related, with frogs forming their sister clade with moderate support. All salamander families have been resolved as monophyletic, however 

support is low. Cryptobranchoidea is monophyletic, but Salamandroidea is paraphyletic. Siren is placed as the sister taxa to Cryptebrancoidea. 

 

Figure 2.3.3 Bayesian analysis of the three mitochondrial genes. The analysis resulted in an average standard deviation of split frequency value of 0.004379. 

Bayesian posterior probability values at the nodes 
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2.3.2 Morphological Results 

2.3.2.1 Full Morphological dataset with extant outgroups 

 

Figure 2.3.4 Bayesian analysis of the full morphological dataset with extant outgroups. This reached an average standard deviation of the split frequency value of 

0.005371. Values at the nodes are Bayesian posterior probabilities.
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 This phylogeny (Fig. 2.3.4) comprises a polytomy of Rhyacotritonidae, (Salamandridae 

+ Plethodontidae), Dicamptodon, Cryptobranchidae, (Amphiumidae + Proteidae + Sirenidae), 

Ambystoma opacum and (Ambystoma tigrinum + Ambystoma mexicanum). Sirenidae is 

grouped with Proteidae and Amphiumidae, and is not placed as the sister group to all other 

salamanders. Similarly, Cryptobranchoidea and Salamandroidea do not form monophyletic 

groups. 

 

Figure 2.3.5 Parsimony agreement subtree of full morphological dataset with extant outgroups made 

from three MPTs each 660 in length in TNT. CI = 2.74, RI = 0.322 

Figure 2.3.6 GC bootstrap tree (1000 replicates) of the full morphological dataset with extant outgroups 
generated in TNT (Traditional search). 

 

 In contrast to the Bayesian analysis of the full set of morphological characters, the 

parsimony analysis supports a monophyletic Cryptobranchoidea and places it as sister clade to 

all other salamanders, although the support values are relatively low (Fig 2.3.6). The support 
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values throughout the Salamandroidea are extremely low but it is monophyletic. 

Amphiumidae + Sirenidae + Proteidae form a sister clade, with relatively high bootstrap 

support.  

2.3.3 Full Morphological dataset with fossil outgroups  

The resulting Bayesian topology does not support the monophyly of Hynobiidae nor, 

therefore, of Cryptobranchoidea. The other family which does not emerge as monophyletic is 

Ambystomatidae as Ambystoma opacum forms part of a polyphyletic group comprised of 

(Sirenidae + Proteidae + Amphiumidae), (Plethodontidae + Salamandridae) and (Ambystoma 

mexicanum + Ambystoma tigrinum). Dicamptodon forms the sister clade to the 

aforementioned polytomy and Rhyacotron is placed as the sister taxon to all other 

salamanders excluding Cryptobranchidae and the Hynobiidae. In this tree the outgroup taxon 

Gerobatrachus is placed as the sister group to salamanders, but caecilians are the sister clade 

to (salamanders + Gerobatracus) and frogs. 

 

Figure 2.3.7 Bayesian analysis of the full morphological dataset including fossil outgroups. Average 

deviation of the split frequencies value of 0.006565 with an average ESS of 500.87 and a PSRF value of 

1.001 Node values are Bayesian posterior probability percentages 

 

 The synapomorphies supporting the lettered nodes follow the format of character number 

(from Appendix B) followed by state A- 116:2, 117:2, 174:1; B - 153:2, 181:1, 202:1, 242:1, C – 50:1, D – 

169:1,171:1; E – 199:2, 211:1, 212:1; F – 122:2, 214:3; G – 50:3, 165:1, 214:2, 230:1, 238:1; H – 50:2, 

244:1; J – 62:1, 104:3, 203:2, 223:1, 248:1; K – 232:1, 240:1 
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Figure 2.3.8: Agreement subtree made from the parsimony analysis of the full morphological dataset 

including fossil outgroups made from three MPTs, 699 steps in length CI = 0.376, RI = 0.587 

 

The synapomorphies supporting the lettered nodes follow the format of character number (from 

Appendix B) followed by state A- 116:2, 117:2, 174:1; B  - 153:1, 206:1; C – 50:1, D – 166:1; E – 199:2, 

211:1, 212:1; F – 122:2, 214:3; G – 50:3, 165:1, 214:2, 230:1, 238:1; H – 50:2, 244:1; J – 62:1, 104:3, 

203:2, 223:1, 248:1; K – 232:1, 240:1 

 
Figure 2.3.9 GC bootstrap tree of the parsimony results using the full morphological dataset including 

fossil outgroups (Traditional search in TNT). 

 

 The parsimony analysis resulted in a different topology to the Bayesian analysis, with 

the major difference is that the Cryptobranchoidea is monophyletic, but Salamandroidea is 

not.  The Salamandridae and Plethodontidae cluster together with Ambystomatidae as their 

sister clade. Although Ambystomatidae is monophyletic in this tree the bootstrap support 

values are extremely low.  Dicamptodon is the sister taxon to Cryptobranchoidea. The clade 
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formed by Amphiumidae, Siren and Proteidae is the same as in the Bayesian analysis the 

support values are far lower. The only taxon missing from the agreement subtree is one of the 

Salamandridae (Taricha torosa).  

 In both the Bayesian and parsimony results it is clear that there are no 

synapomorphies for Rhyacotriton or Hynobiidae. The other families (represented by more than 

one taxon) form monophyletic groups Figs. 2.3.7 and 2.3.8. 

Table 2.3.1: The agreement subtree and symmetric differences (Robinson–Foulds metric) results of the 

comparison between the full molecular tree and the morphological tree using either extant outgroups 

or fossil outgroups. 

 

The Molecular tree topology was compared to the results of the Bayesian and 

parsimony analyses of the full morphological dataset using just extant outgroups and then also 

the parsimony and Bayesian trees with temnospondyl outgroups. The results show that the 

molecular tree (Fig. 2.3.1) shared more clades in common according to the agreement 

subtrees values with the parsimony morphological tree with just extant outgroups (Fig. 2.3.5) 

and differs the least (according to the symmetric differences test) when compared to the 

Bayesian results of the morphological data with just extant outgroups (Fig. 2.3.4).

Combined Molecular 

tree vs combined 

Morphological tree 

(temnospondyl OG 

or ExtantOG) 

Bayesian Parsimony 

 Extant 

outgroups 

Temnospondyl 

outgroups 

Extant 

outgroups 

Temnospondyl 

outgroups 

Agreement sub-trees 7/24 8/24 9/24 8/24 

Symmetric diff 29 30 37 30 
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2.3.2.2 Morphological phylogeny (osteological) 

 

 

 Figure 2.3.10 Bayesian analysis of the osteological characters including fossil outgroups. Average standard of split frequency value 0.004453. The average 
ESS value equalled 530.09 and the PSRF was 1.000. Values at the nodes are Bayesian posterior probability  

The synapomorphies supporting the lettered nodes follow the format of character number (from Appendix B) followed by state: A – 30:1, 116:2, 117:2, 174:1, 174:1; 
B – 171:1, C – 50:3, 165:1; D – 122:2; E – 50:2; F – 50:1; G – 62:1
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 The tree in Fig. 2.3.10 is the result of the Bayesian analysis of the osteological 

characters and is less resolved that the full morphological result (Fig. 2.3.1) because it has a 

very large polytomy consisting of Rhyacotriton, (Salamandridae + Plethodontidae), 

Dicamptodon, Hynobiidae, (Cryptobranchidae + Amphiumidae + Proteidae + Sirenidae), 

Ambystoma opacum, (Ambystoma tigrinum + Ambystoma mexicanum). Sirenidae is not placed 

as the sister clade to all other salamanders. Cryptobranchoidea (cryptobranchids + hynobiids) 

is not monophyletic. Ambystoma is not monophyletic and there are no osteological 

synapomorphies for Amphiuma or Hynobiidae. 

 

 

Figure 2.3.11: Agreement subtree resulting from a parsimony analysis of the osteological characters – 

based on two MPT both 610 steps in length CI = 0.351, RI = 0.513 

The synapomorphies supporting the lettered nodes follow the format of character number (from 

Appendix B) followed by state: A – 30:1, 116:2, 117:2, 174:1, 174:1; B – 171:1, 169:1; C – 166:1; D – 50:3, 

165:1; E – 122:2; F – 50:2; G – 50:1; H – 62:1  
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Figure 2.3.12 GC bootstrap value tree resulting from a parsimony analysis of the osteological characters 
(Traditional search in TNT). 

 

 The phylogeny resulting from the parsimony analysis of the osteological characters 

shows that Cryptobranchoidea no longer forms a clade and Hynobiidae forms the sister clade 

to all other salamanders. However, the bootstrap support values are extremely low 

throughout the tree. The only taxon missing from this agreement subtree is one of the 

Salamandridae (Pleurodeles walti). The characters supporting the nodes are almost exactly the 

same as in the Bayesian results except Ambystoma is monophyletic and supported by common 

possession of spinal nerves that exit intravertebrally in some presacral vertebrae (node C, Fig. 

2.3.11).  

2.3.2.3 Morphological phylogeny (soft body) 

 

The outgroup (and root) for both the Bayesian and parsimony analyses is a 

hypothetical all zero species. The bayesian analysis places Sirenidae in an unresolved 

relationship with the hypothetical outgroup and all other salamanders. The cryptobranchids 

and hynobiids form a monophyletic Cryptobranchoidea. Within the monophyletic 

Salamandroidea (excluding Siren), Plethodontidae forms a clade with Proteidae and 

Rhyacotriton and together they provide one branch in a polytomy with Dicamptodon and 

Ambystomatidae. Salamandridae forms the sister clade to this polytomy and Amphiumidae 

forms the sister clade to all other Salamandroidea.  
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Figure 2.3.13 Bayesian analysis of the soft body characters with a hypothetical all zero outgroup. This 

analysis ran for 1000000 generations and reached an average standard deviation value of 0.008918. 

Values at the nodes are Bayesian posterior probability percentages 

The synapomorphies supporting the lettered nodes follow the format of character number (from 

Appendix B) followed by state: A – 205:2, 207:1, 247:1; B – 201:1; C – 208:1, 235:1; 236:1, 239:1, 249:2; 

D – 232:1, 240:1; E – 214:3, 233:1; F – 203:2, 223:1, 248:1; G – 214:2, 230:1, 238:1 

 

Figure 2.3.14: The most parsimonious tree resulting from parsimony analysis of the soft body characters. 

It is 82 steps in length CI = 0.646, RI = 0.894 

The synapomorphies supporting the lettered nodes follow the format of character number (from 

Appendix B) followed by state: A – 205:2, 207:1, 247:1; B – 201:1; C – 208:1, 235:1; 236:1, 239:1, 249:2; 

D – 232:1, 240:1; E – 214:3, 233:1; F – 203:2, 223:1, 248:1; G – 214:2, 230:1, 238:1 

 The parsimony analysis places Sirenidae as the sister clade to all other salamanders 

whereas the (traditional search) bootstrap tree placed Cryptobranchoidea as the sister clade of 

Salamandroidea (excluding Siren).  
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Figure 2.3.15: GC bootstrap tree of the soft body characters (Traditional search in TNT).  

Molecular tree vs 
Osteological or Soft Body 
datasets 

Bayesian Parsimony 

 Osteological Soft Body Osteological Soft Body 

Agreement sub-trees 7/24 11/24 15/24 11/24 

Symmetric diff 21 17 20 17 

Table 2.3.2 The agreement subtree and symmetric differences (Robinson–Foulds metric) between the 

combined molecular tree and osteological and soft body trees. 

The molecular tree topology (Fig. 2.3.1) was compared to the results of the Bayesian 

and parsimony analyses of the osteological and soft body morphological datasets. The results 

show that the molecular tree shared more clades in common according to the agreement 

subtree when compared to the parsimony result of the osteological only data (Figs. 2.3.11) 

than the Bayesian and parsimony soft body morphological trees and the Bayesian Osteological 

tree (Figs. 2.3.13, 2.3.14, and 2.3.10). The molecular tree differs less (according to the 

symmetric differences test) with the soft body trees in both the parsimony and Bayesian 

results (Figs. 2.3.13 and 2.3.14) when compared to the osteological results. 
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2.3.3 Molecular and Morphological data  

2.3.3.1 Combined molecular data with all morphological data 

This total evidence analysis places salamanders, frogs and caecillians each as 

monophyletic. However, the relationship between the amphibian clades places the frogs as 

sister clade to all other taxa except Latimeria (which was constrained as the root taxa). 

Caecillians are more closely related to all the other outgroup taxa than with the other 

amphibian groups. The relationships between the salamander families in the combined data 

results exactly matches the relationships in the molecular tree (Fig 2.3.1). 

 

 

Figure 2.3.16 Bayesian analysis of the combined molecular and morphological datasets. Both extant and 
fossil outgroups were included. This analysis ran for 1468000 generations and reached an average 
standard deviation of the split frequencies value of 0.007414. Values at the nodes are Bayesian 
posterior probability percentage. 

 

2.4 Discussion 

2.4.1 Molecular discussion 

 

 The analysis presented here resulted in a molecular phylogeny, using eleven genes, 

which (Fig. 2.3.1) places salamanders, frogs and caecilians as more closely to one another than 

any one of them is to either fish or amniotes supporting previous studies (e.g. Parker 1956; 
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Lombard and Bolt 1979; Gardiner 1982; Gardiner 1983; Milner 1988; Bolt 1991; Roelants et al. 

2007). This study also finds support for the Batrachia clade of salamanders plus frogs with 

caecilians as the sister clade to Batrachia in agreement with Benton (1990), San Mauro et al. 

(2010), Zhang et al. (2005), Roelants et al. (2007), Zhang and Wake (2009), San Mauro (2010), 

Pyron (2011) and Skutschas and Martin (2011).  

 This study’s molecular results placed Cryptobranchidae and Hynobiidae together to 

form a monophyletic Cryptobranchoidea which agrees with previously published topologies 

such as Estes (1981), Frost et al. (2006), Wang and Evans (2006), Roelants et al. (2007), Vieites 

et al. (2009), Zhang et al. (2009) and Gao and Shubin (2012). The rest of the salamander 

families in this study form a monophyletic Salamandroidea clade which includes Sirenidae as 

found in Wiens et al. (2005), Frost et al. (2006), Roelants et al. (2007), Vieites et al. (2009), 

Pyron and Wiens (2011) and Gao and Shubin (2012).  

 Within the Salamandroidea there seems to be evidence supporting the stable 

relationship between Ambystomatidae + Dicamptodonidae  as seen in previous studies such as 

Larson and Dimmick (1993), Chippindale et al. (2004), Wiens et al. (2005), Cannatella et al. 

(2009), Pyron and Wiens (2011). Plethodontidae is more closely related to Amphiuma  with 

Rhyacotriton as their sister taxon which is consistent with the findings of Wiens et al. (2005), 

Frost et al. (2006), Roelants et al. (2007) and Pyron and Wiens (2011). Sirenidae is placed as 

the sister taxon to the internally fertilising Salamandroidea. (Hay et al. 1995; Wiens et al. 2005; 

Wang and Evans 2006; Roelants et al. 2007; Vieites et al. 2009; Zhang et al. 2009; Gao and 

Shubin 2012) 

 To further test the origins of the molecular phylogenetic signal, the molecular data 

were divided up and analysed to obtain a phylogeny made from nuclear genes and a separate 

phylogeny derived from mitochondrial genes. The results showed that there is a different 

signal from each of the different types of molecular data.  

 The nuclear DNA phylogeny still supports Batrachia with Caecilia as its sister clade, 

however there is no resolution that places salamanders as monophyletic. Cryptobranchoidea is 

not supported and neither is Salamandroidea, which is contrary to previous studies that have 

supported the monophyly of salamanders and frogs within Batrachia. The nodes in this 

phylogeny have low support values, and there is very little internal resolution of familial 

relationships. 

 The mitochondrial DNA generates a phylogeny that has the internal familial 

salamander relationships that resemble the full molecular result in this study and agrees with 
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early studies by e.g., Hay et al. in 1995 which placed frogs as the sister clade to salamanders + 

caecilians. Both the monophyly of Cryptobrancoidea and Salamandroidea are supported in this 

phylogeny.  

  It seems that the mitochondrial DNA results give a more resolved internal phylogeny 

with fewer polytomies than the tree produced by the nuclear DNA. This is in line with Zhang et 

al. (2009) as they posited that mitochondrial DNA would be able to resolve phylogenies with 

deep nodes despite saturation issues. However, the Batrachia clade is unsupported which 

reflects earlier studies (Hay et al. 1995) but is contrary to later studies which find support for 

Batrachia (Benton, 1990, San Mauro et al. 2010, Zhang et al. 2005, Roelants et al. 2007, Zhang 

and Wake 2009, San Mauro 2010, Pyron 2011 and Skutschas and Martin 2011). 

 

2.4.2 Morphological discussion 

 

 The initial analysis using just the extant outgroup taxa produced an unresolved 

salamander phylogeny in MrBayes with neither Cryptobranchidae nor Sirenidae forming the 

sister clade to all other salamanders contrary to the molecular results. The only family that 

does not emerge as monophyletic is Ambystomatidae, however Ambystoma opacum has a 

completely different life history to other Ambystoma species and lays its eggs on dry land as 

opposed to laying eggs in water like the other memebers of that Family (Nussbaum 1985). This 

difference in habitat might produce varying superficial morphological characters from the 

other taxa in the genus. Both Ambystoma tigrinum and Ambystoma mexicanum share an 

overlapping procoracoid and coracoid and a suprascapula that is not expanded in width 

(characters 169 and 171 in Appendix B) however all the Ambystoma species in this study share 

spinal nerves that exit intravertebrally in some presacral vertebrae. This suggests that 

vertebral characters (specifically spinal nerve foramina characters) are especially useful in 

supporting monophyletic groups using purely morphological data in salamanders. Ambystoma 

opacum was included in this study to provide additional congruence with the taxon lists of 

previous studies. Cryptobranchidae emerges as monophyletic but with very poor posterior 

probability support whereas the plethodintid + salamandrid sister group relationship receives 

high support.  

 In order to include fossils in the morphological data analysis, additional fossil 

outgroups had to be incorporated so that the fossils could fall on the stem of salamanders. The 

resultant phylogenies which include two temnospondyls, Gerobatrachus hottoni and 

Doleserpeton annectens (Figs 2.3.7 and 2.3.8), show better resolution within salamanders as 
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there are fewer polytomies. However, cryptobranchids and hynobiids no longer group within a 

monophyletic Cryptobranchoidae in the Bayesian result, and Cryptobranchoidea was weakly 

supported in the parsimony analysis but no longer forms the sister clade to all other 

salamanders. The agreement subtree and symmetric difference analyses suggest that there 

are fewer clades in common (and more differences) between the morphological tree using 

fossil outgroups than there are with the tree using just extant outgroups in both the parsimony 

and Bayesian results respectively. However, in order to incorporate fossil taxa, which may fall 

outside of the salamander crown clade (Urodela), these fossil outgroups will be used in further 

analysis.  

 It has been proposed that phylogenies based on soft part characters are more accurate 

(i.e. are more congruent with molecular phylogenies) than are those based on osteological 

data (Gibbs et al. 2000). This was tested here by examining the phylogenetic signal of the two 

different morphological datasets independently.  

 The osteological dataset resulted in a Bayesian tree topology that somewhat 

resembles the total morphological dataset. The monophyly of Cryptobranchoidea is not 

supported, and the monophyly of Hynobiidae has low support from Bayesian posterior 

probability. Salamandridae and Plethodontidae are still placed as sister taxa in the total 

morphological dataset. The monophyly of the Amphiumidae + Sirenidae + Proteidae clade is 

also still well supported. The parsimony analysis shows a similar result to the Bayesian tree, 

with Cryptobranchidae as the sister clade to Proteidae + Sirenidae + Amphiumidae. However, 

Hynobiidae is placed as the sister clade to all other salamanders.   

 In contrast the soft body topology of the Bayesian analysis (with a hypothetical all zero 

outgroup) shows a very different result (Fig. 2.3.13).  Sirenidae is placed as the sister clade to 

all other salamanders and Cryptobranchoidea and Salamandroidea are found to be 

monophyletic, although the monophyly of Cryptobranchidae does not have very strong 

support. This is the case in both the Bayesian and parsimony results.  

The results of the agreement subtree analysis show there is less congruence between 

the molecular tree (Fig. 2.3.1) and the soft body trees (Fig. 2.3.14 and 2.3.13) than between 

the molecular tree and the osteological tree (Fig. 2.3.11). However, the results of the 

symmetric differences analyses shows there is more congruence between the molecular tree 

and the soft body trees in both the parsimony and Bayesian results when compared to the 

oseological results. The soft body phylogeny is more resolved with fewer polytomies than the 

osteological tree even though there are only 52 characters in the soft body dataset and 197 

characters in the osteological dataset. This might mean that the osteological dataset is more 
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prone to homoplasy. The next results chapter will investigate homoplasy in the morphological 

characters and what this might mean for fitting fossils into a phylogeny. 

 

2.4.3 Total evidence discussion 

 

 The total evidence analysis, with the fossil outgroups included, resulted in less 

resolution of the relationships between the outgroup taxa. Both the frog and caecilian clades 

were placed in positions not supported by previous studies (Fig. 2.3.16). However, the internal 

familial relationship of the salamanders reflects the relationships exhibited in the full 

molecular results. It was shown in the earlier morphological analysis that the use of molecular 

data was sufficient to produce a consensus tree that found support for the monophyly of both 

the Batrachia and Amphibia. However, it is clear that the inclusion of morphological data had 

decreased resolution of amphibian relationships. Thus it is the total evidence consensus tree 

that shows that further work is needed to dissect the signal within the morphological data so 

that fossils can be included with confidence. 

 

2.5 Conclusions  

 

A monophyletic Batrachia (salamanders + frogs) is supported as is a monophyletic 

Lissamphibian (with caecilians placed as the sister taxon to Batrachia) within the molecular 

results. Within salamanders some consensus has been reached with the externally fertilising 

salamanders (i.e., Cryptobranchoidea) generally supported as monophyletic and as the sister 

clade to all other salamanders. Salamandroidea, including Sirenidae, is also found to be 

monophyletic. It is clear that there are many different signals emerging from different data 

types i.e., molecular vs morphological but also from within each data type i.e., mitochondrial 

DNA vs nuclear DNA and osteological characters vs soft body characters. The analysis using the 

nuclear dataset seemed to yield a more coherent tree that was consistent with the results 

produced by previous studies i.e a monophyletic Batrachia (Larson and Dimmick 1993; 

Chippindale et al. 2004; Wiens et al. 2005; Frost et al. 2006; Zhang and Wake 2009). The 

results presented in this study highlights that caution should be taken when selecting genes 

and choosing just mitochondrial or just nuclear genes in future molecular analyses of 

salamanders. 



72 
 

There is still little congruence between the molecular and morphological results except 

for the monophyly of Cryptobranchoidea which can be seen in both the molecular and some of 

the morphological trees. The soft body characters did not produce a tree that was significantly 

more similar to the molecular tree (in this study) than the osteological tree was to the 

molecular tree.  

 

In conclusion, there are still issues with the morphological data as the characters do not 

yet resolve the interfamilial relationships as well as the molecular data. There are also 

inconsistencies between the parsimony and Bayesian analyses. This may be due to 

convergence in morphological data influencing the parsimony analyses more than the Bayesian 

analyses. In order to place fossils within this morphological framework, with confidence, 

further investigation into the morphological dataset is required, specifically the robustness of 

characters (a topic covered in Chapter 3).  
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3. Testing a morphological dataset – a 
new method for estimating 
confidence in fossil placement within 
a phylogeny 

 

  



74 
 

3.1 Introduction 

3.1.1 Homology within the dataset 

 

 It has long been known that data are particularly susceptible to convergent 

evolution and with morphology, it really depends on character atomisation, sample 

size, and other factors that might create errors in phylogenetic analysis (Hedges and 

Sibley 1994; McCracken et al. 1999). Parsimony analyses assume that convergence is 

not an issue a priori (Wiley and Lieberman 2011), but in many cases (including 

salamanders) convergence has a strong influence on phylogenetic analysis that needs 

to be taken into account. Wiens et al. (2003) suggested that certain criteria need to be 

taken into account to establish if a phylogenetic analysis has been compromised by 

convergent characters. 

 These criteria are; characters that support the membership of the convergent clade 

are associated with the selective pressures of the shared environment, and a convergent clade 

which is supported with morphological characters but are unsupported in two or more 

unlinked molecular analyses. 

 A test of the robustness of the salamander morphological data was published by 

Wiens et al. (2005) which made it clear that there are issues of convergence associated with 

the salamander dataset. However, despite the possibility of convergence influencing the 

resultant phylogeny, morphological characters are still the only way to incorporate fossil 

salamanders. This study will try to identify the convergent characters that support 

relationships and then test the accuracy of the placement of simulated fossils using characters 

that display the least homoplasy.  

3.1.2 Problems with fitting fossils 

 

 The identification of shared characters (synapomorphies) is the basis on which 

evolutionary analysis ultimately rests. Our view of the fossil record is obscured by the fact that 

most organisms are not preserved and those few that are fossilised are never complete 

(Sansom et al. 2010). The information used to facilitate a fossil’s incorporation into any matrix 

depends on the amount of decay it underwent and speed of fossilisation. The process of decay 

and preservation might distort characteristics and the results of subsequent phylogenetic 

analyses (Donoghue and Purnell 2009). 
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 Many fossil salamanders are known only from isolated vertebral elements. The earliest 

known salamanders, the Middle Jurassic Marmorerpeton and Kokartus  are known mostly from 

atlantal and vertebral elements (Evans et al. 1988). In the Cretaceous record of North America 

salamander fossil record consists for the most part of fragmentary vertebral elements from 

Habrosaurus, Lisserpeton, Opisthotriton, Proamphiuma, and Piceoerpeton. The vertebral 

structure is thought to be constant within families and therefore it may help decipher 

relationships between families (Naylor 1979). This might be enough to place a fossil if extant 

salamander representatives are included. Simulating fossils that reflect the paucity of the 

actual salamander fossil record and including them in the analyses allows assessment of the 

confidence with which we can place real fossils.  

 The main aims of this study are to identify the convergent characters in the 

morphological dataset by using both tree dependent and tree independent methods of 

character evaluation. Once the highly convergent characters are removed, the resulting 

reduced character set will be analysed by including simulated fossils into the matrix and 

observing their placement relative to the known placement of the simulated fossil taxa.  

 

3.2 Material and Methods 

3.2.1 Tree dependent character evaluation 

3.2.1.1 Retention Index  

 

The Retention Index (ri) is a tree-dependent method of character evaluation and gives 

an indication of how well synapomorphies explain the given phylogenetic tree. By comparing 

the observed and expected number of changes for each character in a tree an ri value can be 

calculated. If the minimum amount of changes observed in a character is the minimum amount 

possible for the given tree then ri = 1, indicating that it is a perfect synapomorphy (Farris 1989; 

Egan 2006).  

A starting tree was constrained to reflect the results of previous analysis of the full 

morphological dataset in this study (Fig 2.3.4, see also Fig. 3.1 ) and was then exported 

together with the data matrix to Mesquite (version 3.0) (Maddison 2008). The 

Crytobranchoidea was placed as sister taxon to all other salamanders to reflect the growing 

consensus mentioned in Chapter 1. The internal family relationships remain largely unresolved 

as this study is interested in assessing the inter-clade relationships. The retention index for 

each character was calculated using the ‘Parsimony Statistics’ function. With the starting tree 
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open in the viewing window, the ‘Values for Current Tree’ option was used. As the ri value 

increases towards one, the better the character fits the tree. The characters with an ri of 0.5 or 

higher were kept in the matrix and those that did not reach this threshold were discarded as 

homoplasious. This resulted in a dataset consisting of 122 characters which will hereafter be 

referred to as the RI dataset (Appendix E). 

 

Figure 3.1: The constrained tree reflecting the uncertain relationships between the salamander families, 
used to find the retention index for the tree dependant character evaluation analysis 
 

3.2.1.2 RI dataset 

 

 After the tree-dependent character evaluation methods was applied to the full 

morphological dataset (Appendix B) the reduced RI character set (Appendix E) retained 42 out 

of 99 skull characters, 9 out of 22 atlantal characters, 12 out of the 20 presacral vertebrae 

characters, 5 out of 11 caudal vertebrae characters, 3 out of 10 rib characters, all 4 spinal 

nerve characters, 8 out of 17 pectoral girdle characters, only 1 of the 14 pelvic girdle 

characters and 38 of the 52 soft body characters. 
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3.2.2 Tree independent character evaluation 

3.2.2.1 Le Quesne Probability randomisation test 

 

Le Quesne (1969) proposed a method for finding the probablility that a character’s 

features were distributed independently, and at random, among taxa of a given data matrix 

(Lequesne 1969, 1972; Sober 1994). The Le Quesne probability randomisation test was applied 

to the data in this study, to test that the characters were no less incompatible with the other 

characters in the data than a random character (Wilkinson 1997, 2001). This is a tree 

independent method that assesses character fit in comparison with the other characters, and 

compared to the fit of a random character. The analysis was performed using the free software 

PICA version 4.0 (Wilkinson 2001). All the ordered multistate characters (16 characters) were 

recoded into binary states and linked using the ‘codes’ function in each analysis. This was done 

by breaking down each multistate ordered character into multiple individual characters so that 

the sum of the new states in binary characters equal the original multistate character (Table 

3.1 below). Polymorphic characters were recoded as unknown (i.e. ?). The data included 33 

taxa with six of those designated as outgroup taxa (Doleserpeton, Triadobatrachus, Eocaecilia, 

Gerobatrachus, Rana and Typhlonectes). 265 Characters were included (the original 249 

characters inflated to 265 as a result of the binary recoding) and 999 random character 

permutations were run.  

A lack of compatibility i.e. the actual number of steps per character being greater than 

expected, may indicate homoplasy. So a “boil down” method of character assessment and 

removal was implemented. In the first round all the characters that had a higher number of 

incompatibilities observed relative to the number that were expected were removed from the 

analysis. The reduced dataset (173 characters) was run through PICA again and the results 

were filtered to remove all characters that had a Le Quesne probability higher than 0.1. A Le 

Quesne probability of 0.1 was recommended by the author as a threshold to remove 

characters that were demonstrating convergence but not the characters that might show true 

biological relationships. The result was a dataset with 105 characters which, after a final run 

through PICA, and a further removal of four more characters, identified a final list off 101 

characters used in the analyses. This reduced dataset was analysed in exactly the same way as 

the full morphological dataset was in the previous chapter 2. GC bootstrap support values 

were calculated with TNT using 1000 replicates in a Traditional Search framework. 
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 Original 
multistate 
coding 

= New binary 
character 
state 1 

New binary 
character 
state 2 

New binary 
character 
state 3 

Sum of 
character 
states of new 
binary 
characters 

Species A 0 = 0 0 0 0 

Species B 1 = 1 0 0 1 

Species C 2 = 1 1 0 2 

Species D 3 = 1 1 1 3 

Table 3.1: Example of binary recoding of one ordered multistate character consisting of one characters 
with four states between four taxa that share this character.  

  

3.2.2.2 The Le Quesne dataset  

 

 The Le Quesne character set (Appendix F) is made up of 31 out of 99 skull characters, 

five out of 22 atlas characters, six out of the 20 presacral vertebrae, two out of 11 caudal 

vertebrae characters, three out of 10 rib characters, all four spinal nerve characters, six out of 

17 pectoral girdle characters, only one of the 14 pelvic girdle characters and 38 of the 52 soft 

body characters. 

 

3.2.2.3 Tree comparison statistics 

 

 Trees were compared in a number of ways. Agreement subtrees test the similarity of 

topology by depicting relationships among groups of taxa that branch identically in two or 

more trees. Paup version 4.0 (Swofford 2003) returns a ratio for the similarity as it counts the 

number of similar nodes in each tree compared to the total number of nodes. Robinson-Foulds 

(RF) metric (symmetric differences) (Robinson and Foulds 1981) calculates the sum of the 

number of partitions of data implied by the first tree but not the second tree and the number 

of partitions of data implied by the second tree but not the first tree. This additional measure 

of the differences in topology of two trees was used to further test the similarity of different 

phylogenetic results. Outgroups were removed and the datasets reduced to their lowest 

common taxa set before being imported into PAUP. 
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3.2.2.4 Simulating fossils 

 

 The full morphological dataset of 249 characters is made up of 197 skeletal and 52 soft 

body and behavioural characters (as described in the Materials and Methods section of 

chapter 2). Fossils rarely have soft body parts preserved and therefore only have a chance to 

score up to about 80% of the characters due to preservational bias (Sansom et al. 2010 and 

Sansom and Wills 2013). However, in real life this is rarely the case as the entire skeleton is not 

always preserved. Even fully articulated skeletons lose some information because the internal 

structure of the vertebral centrum and braincase, and articulation surfaces are usually 

unavailable for study.  

 For this study simulated fossils were made up using just characters of the presacral 

vertebrae and atlas. These are characters commonly found in fragmentary, disarticulated 

specimens and provide a realistic simulation of the completeness of character scoring available 

in typical fossil deposits. This simulation was applied to selected extant taxa, each with a 

known place in the salamander phylogeny, based on molecular data. Then the morphological 

dataset was analysed using both Parsimony and Bayesian methods to observe the placement 

of the artificially reduced character set of the “fossil” taxa. If the simulated fossils were placed 

in their expected position within the phylogeny, then we can be reasonably confident in the 

placement of actual fossils. In this way the robustness of the morphological dataset can be 

explored and its strengths and weaknesses assessed. 

 Further tests of the reduced RI dataset were performed with a reduced taxic selection. 

The study presented here also considers the result of the stem-ward slippage effect on 

salamander data. As in the previous analyses, the placement of simulated fossils is tested, but 

this time no extant relatives of the simulated fossil were included. This might shed light on the 

placement of fossils that have no obvious affinities to modern salamander families.  

3.3 Results 
 

3.3.1 Tree dependent phylogeny results 

Bayesian result: 

The tree (Fig. 3.3) shows the results of the Bayesian analysis of the reduced 

morphological dataset, once the characters with an RI value below 0.5 were removed. 

Cryptobranchoidea and Salamandroidea are both monophyletic. Amphiumidae is 
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monophyletic but Hynobiidae is not. Sirenidae is more closely related to Amphiumidae than 

either is to Proteidae but together they still form a monophyletic group. 

 

 

Figure 3.3: Bayesian analysis of the RI morphological dataset. Consensus tree from a Bayesian analysis 
that ran for 2000000 generations; Average standard deviation of the split frequency value: 0.004980; av 
ESS: 636.05; PSRF+: 1.000 
The following synapomorphies support the following clades: 
A - Urodela is characterised by possessing a fully enclosed atlantal spinal nerve foramen, four facetted articulation of exoccipital 
and atlas present, and loss of quadratojugal. 
B - Cryptobranchoidea all share 2-3 pairs of ribs on anterior caudal vertebrae, and unicapitate ribs (Including 1 of characters 111, 
112, 92, and 88 – See Appendix E) 
C - Salamandroidea in this study share one central element in manus, and free ribs absent on anterior caudal vertebrae (in 
addition to sharing state 1 of character 89, and 117 - See Appendix E) 
D - Cryptobranchidae in this study share no derived features. 
Sirenidae differ from all other Urodela by possessing between 40 and 55 diploid chromosomes 
E - Ambystoma have a Meckel’s cartilage that extends to the mandibular symphysis, spinal nerve exits intravertebrally in some 
presacral vertebrae, and Ambystoma mexicanum and Ambystoma tigrinum share a suprascapula that is not expanded. 
F - Amphiuma are characterised by presence of amphiumid pit glands and the presence of additional female cloacal glands. 
G - Proteidae is characterised by having 19 haploid chromosomes, more than ten pairs of rugae in the male cloaca, two pairs of 
larval gill slits, and prootic-exoccipital fused, separate opisthotic. 
H - Plethodontidae all share the presence of caudal pelvic glands, presence of a common tube to the spermathecae, laterally and 
posteriorly replacement pattern of vomerine teeth, dorsal and ventral roots of presacral vertebrae that exit through separate 
foramina, and loss of pterygoid. 
J - Salamandridae all share medial pattern of vomerine teeth replacement. 
K - Plethodontidae and Salamandridae are placed together because they share a small periotic cistern, presence of fibrous 
connective tissue around amphibian periotic canal, and periotic canal with one or more flexures. 
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Parsimony result: 

The Parsimony analysis of the RI dataset results in a similar topology to the Bayesian 

analysis. Cryptobranchoidea and Salamandroidea are both monophyletic. Within the first, both 

Hynobiidae and Cryptobranchidae are monophyletic. Salamandroidea is made up of (Sirenidae 

+ Amphiumidae + Proteidae + Rhyacotriton), (Ambystomatidae + Dicamptodon), and 

(Plethodontidae + Salamandridae) in an unresolved trichotomy. The only taxa not included in 

the agreement subtree are two of the Salamandridae (Taricha torosa and Tylotriton 

verrucosus). 

 

Figure 3.4: Parsimony analysis of the RI morphological dataset. Agreement sub-tree made of two MPT 

each 338 steps in length CI = 0.44, RI = 0.74 
The following synapomorphies support the following clades (Appendix F): 

A - Urodela have four-faceted articulation of the exoccipital and atlas, and fully enclosed spinal nerve foramen in atlas. 

B -  Cryptobranchoidea have two to three pairs of ribs on anterior caudal vertebrae, and fusion of first hypobranchial and first 

ceratobranchial. 

C - Salamandroidea have free ribs absent on anterior caudal vertebrae, one central element in manus, first hypobranchial and first 

ceratobranchial separate, absence of second ceratobranchial, pubotibialis and puboischiotibialis as separate muscles, less than 40 

diploid chromosomes, and a incomplete lateral wall of nasal capsule. 

D - Ambystoma all share spinal nerves that exit intravertebrally in some presacral vertebrae, but Ambystoma tigrinum and 

Ambystoma mexicanum share a suprascapula which is expanded, about same width as dorsal width of scapula to the exclusion of 

Ambystoma opacum. 

E - Proteidae share two pairs of larval gill slits, more than ten pairs of rugae in the male cloaca, and 19 haploid chromosomes. 

F - Amphiuma share presence of amphiumid pit glands and the presence of additional female cloacal glands. 

G - Salamandridae share medial vomerine dentition pattern 

H - Plethodontidae share dorsal and ventral roots of presacral vertebrae exit through separate foramina, both laterally and 

posterior vomerine dentition, presence of caudal pelvic glands, presence of a common tube to the spermathecae. 



82 
 

 

 

 

Figure 3.5: GC bootstrap values for the Parsimony analysis of the RI morphological dataset with 
traditional search option. 

 The Parsimony analysis of the RI dataset results in a similar topology to the Bayesian 

analysis. Cryptobranchoidea and Salamandroidea are both monophyletic. Within the first, both 

Hynobiidae and Cryptobranchidae are monophyletic. Salamandroidea is made up of (Sirenidae 

+ Amphiumidae + Proteidae + Rhyacotriton), (Ambystomatidae + Dicamptodon), and 

(Plethodontidae + Salamandridae) in an unresolved trichotomy. The only taxa not included in 

the agreement subtree are two of the Salamandridae (Taricha torosa and Tylotriton 

verrucosus). 

 

3.3.2 Tree independent results 

Bayesian Result: 

The Bayesian analysis of the Le Quesne morphological dataset (Fig. 3.6) results in a tree that 

looks similar to the full morphological tree (Fig. 2.3.7). The Cryptobranchoidea and 

Salamandroidea are both monophyletic with the Cryptobranchoidea as the sister clade to 

other salamanders (Salamandroidea). The other families are all monophyletic except for 
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Ambystomatidae where the position of Ambystoma opacum is unresolved in relation to 

Salamandridae + Plethodontidae and the other two Ambystoma species, and Hynobiidae 

which forms part of an unresolved relationship with Cryptobranchidae. 

 

 

Figure 3.6: Bayesian analysis of the Le Quesne morphological dataset. Consensus tree from a Bayesian 
analysis that ran for 2000000 generations, resulting in an average standard deviation of split frequency 
value of  0.003710; av ESS: 743.1; PSRF+: 1.001 
 
The following synapomorphies support the following clades: 
A – Cryptobranchoidea share unicapitate postatlantal ribs,  fusion of the first hypobranchial and first ceratobranchial, fusion of the 
pubotibialis and puboischiotibialis muscles. 
B - Salamandroidea share no distinct angular in adults, free ribs absent on anterior caudal vertebrae, one central element in the 
manus, absence of second ceratobranchial, incomplete lateral wall of nasal capsule. 
C - Cryptobranchidae and Hynobiidae have no synapomorphies. 
D - Ambystoma tigrinum and Ambystoma mexicanum share a suprascapula that is about the same width as the dorsal width of the 
scapula.  
E - Plethodontidae have all lost their pterygoid, dorsal and ventral roots of their presacral vertebrae exit through separate 
foramina, a vomerina teeth replacement pattern that starts from the posterior of the vomer, presence of a common tube to the 
spermathecae, and presence of caudal pelvic glands. 
F - Salamandridae lack vomerine teeth on the postchoanal process. 
G - Amphiumidae share three pairs of larval gill slits, presence of additional female cloacal glands, and amphiumid pit glands. 
H - Proteidae all share a highly reduced odontoid process, two pairs of larval gill slits, more than ten pairs of rugae in the male 
cloaca, and haploid chromosome numbers reduced to 19. 
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Parsimony result: 

 

 The Parsimony results look slightly different to the Bayesian analysis of the same Le 

Quesne morphological dataset. Salamanders are not monophyletic as Cryptobranchoidea and 

Salamandroidea are placed in an unresolved relationship with frogs. The Le Quesne dataset is 

missing two atlantal characters that were retained in the RI dataset that are common in 

Urodela (Character 116 and 117 Appendix B).  Salamandroidea form a clade but the internal 

relationships differ from the Bayesian analysis. Ambystomatidae is not monophyletic and 

Dicamptodon is part of an unresolved polytomy including Rhyacotriton and Ambystomatidae + 

(Salmandridae + Plethodontidae). The agreement subtree excluded Dicamptodon, A. opacum, 

Hydromantes italicus, and Taricha torosa from the phylogeny as they did not occur in the same 

place in the topology of all 24 MPTs. 

 

 
Figure 3.7: Agreement subtree of the Parsimony analysis of the Le Quesne morphological dataset made 

from 24 MPTs trees each 289 steps in length CI = 0.429, RI = 0.751 
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Figure 3.8: Strict consensus from the Parsimony analysis of the Le Quesne morphological dataset made 

from 24 MPTs trees each 289 steps in length. 

 

The following synapomorphies support the following clades: 

A - Cryptobranchoidea share pubotibialis and puboischiotibialis muscles that are fused, and the first 

hypobranchial and first ceratobranchial fused. 

B - Cryptobranchidae share the following character: vomer articulates with pterygoid. 

C - Salamandroidea share two to three pairs of ribs on anterior caudal vertebrae, one central element in 

the manus, loss of second ceratobranchial, and incomplete lateral wall of nasal capsule. 

D - Amphiuma share three pairs of larval gill slits, presence of additional female cloacal glands, and 

presence of amphiumid pits. 

E - Proteidae share 19 haploid chromosomes, greater than ten pairs of rugae in the male cloaca, and two 

pairs of larval gill slits. 

F - Plethodontidae share the loss of Pterygoid, dorsal and ventral roots of presacral vertebrae exit 

through separate foramina, both laterally and posteriorly pattern of vomerine teeth replacement, 

common tube to the spermathecae present, and caudal pelvic glands present. 

G - Salamandridae share a medial pattern of vomerine teeth replacement. 

Ambystoma share a suprascapula about same width as dorsal width of scapula 
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Figure 3.9: GC bootstrap values for the Parsimony analysis of the Le Quesne morphological dataset with 

traditional search option 

3.3.3 Tree comparison results 

The results of the agreement subtrees show the number of shared nodes between the 

molecular tree (fig 2.3.1) and the ri tree (fig. 3.3 and 3.4) and the molecular tree and the Le 

Quesne tree (fig. 3.6 and 3.7) (Table 3.2). The results of the Symmetric difference test show 

the number of differences in taxa placement between the molecular tree (fig. 2.3.1) and the ri 

tree (fig. 3.3 and 3.4) and the molecular tree and the Le Quesne tree (fig.3.6 and 3.7). 

Tree comparison method Bayesian Parsimony 

 RI Le Quesne RI Le Quesne 

Agreement sub-trees 10/25 11/25 14/23 15/25 

Symmetric diff 33 34 14 18 

Table 3.2 Agreement subtree and Symmetric difference values when the RI and Le Quesne trees are 
compared to the full molecular tree found in this study 
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3.3.4 Simulated fossils using RI subset 

3.3.4.1 Bayesian analysis results: 

The simulated Hynobius fossil species does not form a monophyletic group with the 

other Hynobiidae taxon but it does fall within a monophyletic Cryptobranchoidea. The 

Bayesian posterior probability value supporting this clade is low. The simulated Hynobius fossil 

shares unicapitate ribs with the other Cryptobranchoidea but lacks mid-dorsal keel on the 

presacral vertebrae like Onychodactylus. It differs from the other Cryptobranchoidea by 

possessing anterior basapophyses on the presacrals. 

 Although Desmognathus was placed correctly as a simulated fossil (it shared dorsal 

and ventral roots of spinal nerves that exit through separate foramina in presacral vertebrae, 

with all other Plethodontidae), not all Plethodontidae are placed as accurately when they are 

converted to “fossils”. The simulated Pseudotriton fossil relationship is unresolved as it forms a 

polytomy with the other Plethodontidae and Salamandridae species, but it is at least in the 

correct part of the tree topology. The simulated Pseudotriton fossil shares dorsal and ventral 

roots that exit through separate foramina of the presacral vertebrae with the other 

plethodontids, but it is still placed in an unresolved position. Both Pseudotriton and 

Desmognathus share spinal nerves that exit intravertebrally in some vertebrae with 

Salamandridae, Sirenidae, and Plethodontidae. 

 The Bayesian analysis does not place the simulated Amphiuma fossil in the same clade 

as the other Amphiuma species but places it in an unresolved relationship with Amphiuma 

means and Siren lacertina. The simulated Amphiuma fossil shares a pointed dorsal outline of 

posterior margin of the atlas neural arch roof, and intravertebral spinal nerve exits in some or 

all caudal vertebrae with Amphiuma means.  

3.3.4.2 Parsimony analysis results: 

   The simulated Proteus fossil was not included in the agreement subtree and 

the strict consensus result did not place the simulated Proteus fossil in a monophyletic group 

with Necturus. Instead it joins Necturus in an unresolved relationship with Rhyacotriton, Siren + 

Amphiuma and Salamandridae + Plethodontidae in the strict consensus tree. The simulated 

Proteus fossil only shares a highly reduced odontoid process with Necturus. The lack of data for 

some of the other taxa has allowed the possibility that this is not a synapomorphy for this 

clade. 

The simulated Hynobius fossil’s placement is very unstable as it is not included in the 

agreement subtree. The strict consensus places the simulated Hynobius fossil into an 
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unresolved relationship with Onychodactylus japonicus, Cryptobranchoidea, and 

Salamandroidea. Not only is Hynobiidae not monophyletic, Cryptobranchoidea is not 

monophyletic either. The bootstrap support values are extremely low. The simulated Hynobius 

fossil shares no vertebral characters exclusively with the other members of the 

Cryptobranchoidea in this phylogeny however the ancestral state reconstruction has 

hypothesised that it probably had unicapitate ribs. 

Simulated salamander Bayesian placement   Parsimony placement 

Ambystoma correct   correct 

Amphiuma incorrect   correct 

Rhyacotriton correct   correct 

Andrias correct   correct 

Hynobius incorrect   incorrect 

Salamandra correct   correct 

Pseudotriton Incorrect   correct 

Desmognathus correct   correct 

Proteidae correct   incorrect 

Table 3.3 Summary of results of the placement of the simulated fossils using the RI dataset 

Bayesian analysis using all simulated fossils: 

The Bayesian analysis has placed the simulated fossils in similar positions to those in 

which they were placed when they were run individually. The simulated Andrias, Proteus, 

Amphiuma and Desmognathus fossils were placed in their respective families. Dicamptodon 

was placed in the same position as in the tree using the RI subset of data. The simulated 

Ambystoma and Hynobius fossils were both placed in unresolved positions. The simulated 

Siren fossil was not placed in the same place as when it was run in the analysis individually, it is 

now in an unresolved relationship with the Salamandridae species and the simulated 

Salamandra fossil.  The results of the Parsimony analysis were very similar, with low bootstrap 

support for most clades. 
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Figure 3.10: Consensus tree from a Bayesian analysis including all the simulated fossils using the RI 
dataset (in red outline) that ran for 2000000 generations, resulting in an average standard deviation of 
split frequency value of 0.005134; av ESS: 653.09; PSRF+: 1.000 Node values are Bayesian posterior 
probability values 

 

3.3.5 Simulated fossils using the Le Quesne subset 

Bayesian analysis results: 

 

The simulated Ambystoma fossil is placed as the sister taxon to Ambystoma 

mexicanum but does not form part of a monophyletic Ambystomatidae. Ambystoma opacum’s 

position is unresolved as it forms part of a polytomy together with Plethodontidae + 

Salamandridae and the simulated Ambystoma fossil + Ambystoma mexicanum. The simulated 

Ambystoma fossil shares presence of basapophyses on the atlas with Ambystoma mexicanum, 

while Ambystoma opacum lacks them. The simulated Ambystoma fossil also shares presence 

of a partial bony lamina between diapophyses and paraphyses with Ambystoma mexicanum 

while it is absent in Ambystoma opacum. 
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 The simulated Hynobius fossil forms a trichotomy with other cryptobranchoids and a 

monophyletic Salamandroidea. Unicapitate rib morphology is a character that has been 

reconstructed as shared with the other Cryptobranchoidea. 

 Although the simulated Desmognathus fossil was placed correctly, the Pseudotriton 

fossil is placed as the sister taxon to Salamandridae. The simulated Pseudotriton fossil shares a 

separate form of the odontoid process with all Salamandridae, except T. verucosus, while all 

the other Plethodontidae species in this study have dorsoventrally flattened odontoid process. 

The simulated fossil differs from Salamandridae by the presence of posterior basapophyses on 

the presacral vertebrae. The presacral spinal nerves exit intravertebrally in both the 

Salamandridae and Plethodontidae in this study. The presacral vertebrae have dorsal and 

ventral roots of the spinal nerves exiting through separate foramina of both the simulated 

plethodontid fossil, and the other plethodontid taxa.  

 The simulated Amphiuma fossil is placed in a trichotomy with Amphiuma means and 

Proteidae + Sirenidae. The simulated Amphiuma fossil shares an odontoid process which is 

partially separate in the middle, and a pointed dorsal outline of posterior margin of the atlas 

neural arch roof with Amphiuma means. It differs from A. means by having a smaller neural 

canal relative to the anterior cotyle of the atlas. 

Parsimony analysis results: 

 

 The simulated Ambystoma fossil is placed as the sister taxon to Ambystoma 

mexicanum but not within a monophyletic Ambystomatidae family, as the position of 

Ambystoma opacum is as sister taxon to Salamandridae + Plethodontidae. The simulated 

Ambystoma fossil is placed as sister taxon to Ambystoma mexicanum because they both share 

basapophyses present on the atlas, and a bony lamina between the diapophyses and 

parapophyses of the presacral vertebrae, however Ambystoma opacum differs from A. 

mexicanum and the simulated Ambystoma fossil because it does not possess either of these 

traits. 

 The simulated Pseudotriton fossil is placed in a large polytomy that includes frogs. 

Whereas the simulated Rhyacotriton fossil is placed in a polytomy together with Rhyacotriton 

variegatus, Dicamptodon, (Amphiuma + Siren + Proteidae), and (A. opacum, + [A. tigrinum + A. 

mexicanum], + [Plethodontidae + Salamandridae]). The simulated Rhyacotriton shares 

odontoid process that is slightly separate with Amphiuma, posterior basapophyses with 

Rhyacotriton variegatus, A. mexicanum, Desmognathus and Pseudotriton. The simulated fossil 
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also shares intravertebral spinal nerve exits in some or all caudal vertebrae with Dicamptodon, 

Rhyacotriton variegatus, and Amphiuma. 

 The simulated Salamandra fossil is placed in a polytomy with the other Salamandridae 

species and Plethodontidae. The simulated fossil shares opisthocoelous presacral vertebrae 

with both the other Salamandridae and Plethodontidae. 

 The simulated Hynobius fossil is not included in the agreement subtree and is placed in 

an unresolved relationship with Dicamptodon, Onychodactylus, frogs, Rhyacotriton, 

Cryptobranchidae, (Amphiuma + Siren + Proteidae), and (Ambystoma + Salamandridae + 

Plethodontidae) in the strict consensus tree. There are no synapomorphies that the simulated 

Hynobius fossil shares with either Onychodactylus or with either of the Cryptobranchidae. The 

simulated fossil shares spinal nerves that exit intervertebrally in the presacral vertebrae with 

other taxa in the polytomy. 

 The simulated Proteus fossil is not placed in the agreement subtree and is positioned 

in an unresolved relationship with Siren, Necturus, and Amphiuma in the strict consensus tree. 

The simulated Proteus fossil only shares a highly reduced odontoid process with Necturus. The 

results of all the simulated fossils are summarised in Table 3.4. 

Simulated salamander Parsimony placement  Bayesian placement 

Ambystoma incorrect   incorrect 

Amphiuma correct   incorrect 

Rhyacotriton incorrect   correct 

Andrias correct   correct 

Hynobius incorrect   incorrect 

Salamandra incorrect   correct 

Pseudotriton incorrect   incorrect 

Desmognathus correct   correct 

Proteidae incorrect   correct 

Table 3.4 Summary of results of the placement of the simulated fossils using the Le Quesne dataset 
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Bayesian analyses including all simulated fossils: 

The Bayesian analysis has resulted in a tree that is poorly resolved, but 

Cryptobranchoidea and Salamandroidea are both monophyletic as are Rhyacotriton, 

Proteidae, Plethodontidae, Salamandridae and Cryptobranchidea, whereas Ambystomatidae, 

Amphiumidae, and Hynobiidae are unresolved. 

 

 

Figure 3.11: Consensus tree from a Bayesian analysis of the Le Quesne dataset including all simulated 
fossils that ran for 2000000 generations, resulting in an average standard deviation of split frequency 
value of 0.007661; av ESS: 681.17; PSRF+: 1.000 Node values are Bayesian posterior probability 
percentage 

 

   

 

 



93 
 

Parsimony analyses including all simulated fossils: 

The parsimony analysis (fig. 3.22) has resulted in a tree that places frogs in an 

unresolved relationship with the taxa typically comprising the Cryptobranchoidea and 

Dicamptodon. Neither Cryptobranchoidea nor Salamandroidea are monophyletic, nor are 

Ambystomatidae, Cryptobranchidae or Hynobiidae. The bootstrap support throughout the tree 

is extremely low. 

 

 
Figure 3.12: The agreement subtree created from the Parsimony analysis of the Le Quesne dataset that 
included all the simulated fossils, made from 24 MPTs each 235 steps in length. 
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Figure 3.13: Strict consensus tree resulting from the Parsimony analysis of the Le Quesne dataset 
including all the simulated fossils, made from 24 MPTs each 235 steps in length. 

 
Figure 3.14: GC Bootstrap values from the Parsimony analysis of the Le Quesne dataset that included all 

the simulated fossils in TNT 
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Tree comparison summary: 

 The results of the placements of the simulated fossils are summerised below in tables 

3.8 and 3.9. The number of simulated fossils placed correctly either to family (table 3.8) level is 

higher when the RI dataset is used within a Parsimony framework. And both the Bayesian 

results and the Parsimony results placed the simulated fossils correctly to 

Cryptobranchoidea/Salamandroidea level when the RI dataset was used. 

 Bayesian Parsimony 

RI 6 of 9 7 of 9 

Le Quesne 5 of 9 3 of 9 

 

 

 Bayesian Parsimony 

RI 9 of 9 9 of 9 

Le Quesne 8 of 9 7 of 9 

 

 

 

3.3.6 Stem-ward slippage results of the Bayesian and Parsimony analysis of 

the RI dataset 

 

 Simulated fossils (Hynobius, Dicamptodon, Desmognathus and Pseudotriton) are 

placed in exactly the same place in the Bayesian analysis as in the results of the analysis of the 

full RI dataset, once their living relatives had been excluded from the dataset. In the Parsimony 

analysis only the Plethodontidae simulated fossils were positioned in the same place as in the 

phylogeny resulting from the analysis of the full RI dataset. Some of the other simulated fossils 

were not placed as accurately.  

Rhyacotritonidae 

 Rhyacotriton is placed as the sister taxon to all other salamandroids in both the 

Bayesian and Parsimony analyses, which is the same placement as in the results of the 

Table 3.8: Number of simulated fossils placed correctly to Family level within a Bayesian or Parsimony framework 
using the RI or Le Quesne datasets 

Table 3.9: Number of simulated fossils placed correctly to cryptobranchoid/salamandroid level within a Bayesian or 
Parsimony framework using the RI or Le Quesne datasets 
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Bayesian analysis of the full morphological dataset (Chapter 2, Fig. 2.13). However, it has 

slipped stem-ward in placement compared to the Bayesian analysis of just the RI data (Fig. 

3.3).  

Proteidae 

 In the Bayesian analysis the simulated fossil Proteus has changed position in the 

phylogeny and is no longer sister taxon to Amphiuma + Siren. However, it still falls in the same 

place as in the Bayesian analysis of the RI dataset (Fig. 3.3). It is rather Amphiuma + Siren that 

have moved stem-ward to form an unresolved relationship with Ambystoma, Dicamptodon 

and a Rhyacotriton + Proteus + Plethodontidae + Salamandridae clade. The Parsimony analysis 

has placed the simulated Proteus fossil as the sister taxon to Rhyacotriton with the lowest 

Bootstrap support possible. Proteus + Rhyacotriton form a sister clade to all other 

Salamandroidea which is a slightly more stem-ward position in the phylogeny than in the 

Parsimony analysis of the full RI dataset (Fig. 3.4).  

Amphiumidae 

 The simulated Amphiuma fossil has moved from being a sister taxon to Siren to an 

unresolved relationship with Proteidae + Sirenidae, Plethodontidae + Salamandridae, and 

Rhyacotriton in the Bayesian analysis. The simulated Amphiuma fossil is placed as the sister 

taxon to Ambystoma + Dicamptodon in the Parsimony analysis. This is a change in position 

from the results of the Parsimony analysis of the whole RI dataset, where Amphiuma is placed 

as the sister clade to Siren, but not a slip stem-ward.  

Ambystomatidae 

The simulated Ambystoma fossil is placed in a similar place to that of the Bayesian 

analysis of the RI data but its position is less resolved. The Parsimony analysis placed the 

simulated fossil in the same position (sister taxon to Dicamptodon) as in the Parsimony 

analysis of the RI dataset.  

Cryptobranchidae 

The simulated Andrias fossil is placed as the sister taxon to all other Salamandridae in 

the Bayesian analyses, but it is no longer part of a monophyletic Cryptobranchoidea. In the 

parsimony analysis the simulated Andrias fossil is not included in the agreement subtree but is 

rather placed in an unresolved position including the Hynobiidae and Salamandroidea in the 

strict consensus.  
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Sirenidae: 

 This study included only one species of Siren, but this changes position when it is in 

simulated fossil form. Both the Bayesian and Parsimony analysis places the simulated Sirenidae 

fossil in a monophyletic group including all Salamandridae. The internal relationships within 

this Salamandridae + Sirenidae clade are mostly unresolved in the Bayesian phylogeny.  

Hynobiidae 

 The Bayesian analysis of the simulated Hynobius fossil placed it in the same position as 

the Bayesian analysis of the full RI dataset, as the sister taxon to Cryptobranchidae within a 

monophyletic Cryptobranchoidea. However, Hynobius is not placed in the agreement subtree 

and is located within Salamandroidea in the strict consensus tree, in an unresolved 

relationship.  

Dicamptodonidae: 

 The Bayesian analysis of the simulated Dicamptodon fossil placed it in exactly the same 

position as the Bayesian analysis of the full RI dataset, but the Parsimony analysis of the same 

simulated fossil places it as sister taxon to Siren + Amphiuma.  

No. of correctly placed simulated fossils:  
Bayesian 

 
Parsimony 

Relative to the previous position within the 
phylogeny 

5/9 2/9 

At Cryptobranchoidea/ Salamandroidea level 8/9 7/9 

Table 3.10: Number of simulated fossils placed in the same place within the topology as in the results of 

the Bayesian and Parsimony analysis of the RI dataset and the number of simulated fossils placed 

correctly within either a monophyletic Cryptobranchoidea or Salamandroidea within a Bayesian or 

Parsimony framework. 

 

The simulated fossils were placed more accurately, once their extant relatives were 

removed from the matrix, using the RI dataset within a Bayesian framework. The Parsimony 

results were very poor with only two out of the nine simulations placed correctly. The 

placement of the simulated fossils to Cryptobranchoidea/Salamandroidea level was slightly 

better using the Bayesian framework. 
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3.4 Discussion 

 

 The lack of congruence between the molecular and morphological trees in the study 

by Wiens (2005), even after removing putative juvenile characters from the morphological 

dataset, was attributed to some alternate, as yet unknown biological signal. However, it might 

be that their method of character exclusion was flawed. One cannot use a priori bias towards 

character fit as a reason to exclude characters. The fact that some characters are a 

consequence of the paedomorphic life history of a species does not mean they are not useful 

when trying to elucidate the relationships of salamander clades. In this study convergent 

characters (not simply characteristics associated with paedomorphy) were removed using both 

tree dependent and tree independent methods of character evaluation. An example of a 

character that was identified as convergent is the presence of dermal sculpture on the skull 

roof, which occurs in some stem-group salamanders and also in Salamandridae. The resultant 

reduced character sets showed that there was more agreement between the tree dependent 

and tree independent method of character evaluation on the soft body characters than the 

osteological characters. Both the RI and Le Quesne datasets included exactly the same soft 

body characters. Proportionally more soft body characters were retained in both the RI and Le 

Quesne datasets with 73% showing no homoplasy. The osteological characters displayed more 

homoplasy with only 29% and 42% of characters retained in the reduced Le Quesne and RI 

datasets respectively. This supports the hypothesis that the loss of soft body characters may 

distort the biological signal more than the loss of osteological data (Sansom et al. 2010; 

Sansom and Wills 2013).  

 The results, using the reduced datasets, still show some incongruence with the 

combined morphological and DNA trees from both the study presented in this thesis and 

previously published studies (Larson and Dimmick 1993; Wiens et al. 2005). Both the RI and Le 

Quesne phylogenies are significantly different from the nDNA phylogeny (Fig. 2.3.2) but the Le 

Quesne phylogeny shows marginally more similarities to the molecular phylogeny (Fig. 2.3.1) 

and the nDNA phylogeny (Fig. 2.3.2) than the RI dataset result did. Both the reduced datasets 

can reliably recover a monophyletic Cryptobranchoidea and monophyletic Salamandroidea as 

found by many other published phylogenies (Duellman and Trueb 1986; Larson and Dimmick 

1993; Wiens et al. 2005; Roelants et al. 2007). However, in the Parsimony analysis of the Le 

Quesne dataset, frogs are included in the unresolved relationship with Cryptobranchoidea and 

Salamandroidea meaning that if any fossils (simulated or real) are included and fall to the base 

of either Cryptobranchoidea or Salamandroidea the relationship to either might be 

unresolved. This is most likely a resolution issue with the reduced dataset. 
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  The RI dataset performed better than the Le Quesne dataset in the Parsimony analysis, 

given that previous analyses of both the full morphological data and the molecular data [both 

herein and in the work of other authors, (Hay et al. 1995)] show that salamanders are 

monophyletic and frogs form their sister clade. Although the morphological data (reduced 

through tree dependent or independent methods) still provides little resolution to the 

interfamilial salamander relationships, it can still allow us to place fossils (even fossils with 

limited character availability) with some confidence at least within a monophyletic 

Salamandroidea and Cryptobranchoidea. The RI dataset performed better than the Le Quesne 

dataset in placing more simulated fossils to family level although their placement was 

frequently only supported by reconstructed characters. 

 The family that showed consistent non-monophyly when simulated fossils were 

included in the matrix was the Hynobiidae. The simulated hynobid fossil was at least placed 

within Cryptobranchoidea in both the Bayesian and Parsimony analysis using the RI dataset, 

but it did not form a monophyletic Hynobiidae in any of those results. Hynobiidae has caused 

problems in previous systematic analyses (Schultze and Trueb 1991). Although Hynobiidae 

differ from Cryptobranchidae by having more complete metamorphosis they still share a suite 

of characteristics that have led previous studies to place them within Cryptobranchoidea 

(Edwards 1976; Estes 1981). Historically it has been suggested that Hynobiidae might be 

related to the Ambystomatidae due to similarities in feeding mechanisms of metamorphosed 

forms (Regal 1966). Further analysis of the morphology and genetic information has confirmed 

Hynobiidae monophyly (Zhang et al. 2006) although Hynobiidae morphological characteristics 

clearly still provide a challenge for accurate placement at family level.  

 Among the other genera that were misplaced was the plethodontid Pseudotriton 

which displays a superficial resemblance to the salamandrid Notophthalmus viridescens 

(Howard and Brodie 1971) and whose adult forms can be both aquatic and terrestrial. 

Pseudotriton actually forms part of the subfamily Spelerpinae within which previous 

researchers have recovered substantial cryptic diversity (Chippindale 2000; Hillis et al. 2001; 

Wiens et al. 2003; Bonett and Chippindale 2004). This subfamily is made up of species with 

very different life histories including the traditional biphasic life history, as well as aquatic and 

the perennibranchiate. Some Spelerpinae are trogloditic (cave-dwelling) and exhibit a range of 

convergent morphological features that have previously hampered attempts to infer 

phylogenetic relationships based on morphological data (Sweet 1982; Chippindale 2000; Wiens 

et al. 2003). 
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 The other genera that were occasionally misplaced as simulated fossils were the 

permanently aquatic Proteus and Amphiuma. Proteidae in the full morphological dataset tree 

in the previous chapter (Fig. 3.13) were made up of one skull, one atlantal, and two soft body 

characters. The simulated fossil only has one atlantal character exclusively in common with 

Necturus which was not always enough to place them in a monophyletic Proteidae. 

Ambystoma opacum had previously not been placed in a monophyletic Ambystomatidae 

however the Le Quesne dataset failed to place A. opacum in a monophyletic clade with the 

two other Ambystoma species. One of the characters observed to support the monophyly of 

Ambystoma using the RI dataset was a character relating to spinal nerve foramina, but the 

recoding of this ordered multistate character in the Le Quesne dataset divided it into two 

separate characters, neither of which supported a monophyletic Ambystoma.  

 The RI dataset was then used to test for stem-ward slippage by removing the living 

relatives of the simulated fossil from the dataset. The Bayesian analysis of the RI dataset shows 

less stem-ward slippage of taxa run as simulated fossils (i.e., reduced to just vertebral and 

atlantal characters) than the Parsimony analysis.  Many of the simulated fossils were placed in 

very similar positions compared to when the full matrix was analysed with their extant 

relatives included, although the relationships of Amphiuma, Proteus and Ambystoma were less 

resolved and Salamandra was classified as a plethodontid. The only exception was the 

placement of the simulated Andrias fossil, which did not group with Hynobiidae in a 

monophyletic Cryptobranchoidea (however, it still maintained its place outside of 

Salamandroidea). This is contrary to the findings of Sansom and Wills (2013) even though they 

used a more relaxed approach to simulating fossils. Their use of the whole osteological 

character set to simulate fossils (while removing just the soft body characters) still lead to the 

apparent stem-ward slippage of 61% of significantly shifting taxa. Although this study 

presented here did not rigorously test the data by comparing the movement of the simulated 

fossils to a simulated fossil with randomly deleted characters, the position of the simulated 

fossil taxa was still observed relative to the position before being “fossilised”. This study did 

not show quite the same high proportion of simulated fossils that exhibited stem-ward 

slippage as Sansom and Wills (2013), perhaps because the morphological dataset focused on 

the elements commonly found in the fossil record (i.e. vertebral characters) and the RI dataset 

retained a higher proportion of atlantal, presacral and spinal nerve characters relative to the 

skull and appendicular parts of the body (approx. 54% of vertebral characters were retained 

which makes up 31% of the RI osteological characters). Stem-ward slippage still occurred in 

just less than half of simulations in this study and is a phenomenon that needs to be taken into 

consideration when interpreting results of actual fossil placement.   
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3.5 Conclusions 

  

The soft body characters showed less homoplasy than osteological characters with 

73% of soft body characters remaining after the homologous characters were removed. 

Compared to 43% of osteological characters that remained, soft body characters may show 

less homoplasy than osteological characters. The Le Quesne tree showed more symmetric 

differences with molecular phylogenies (in this study) than the RI phylogeny. 

The RI dataset places all the simulated fossils accurately in Cryptobranchoidea and 

Salamandroidea within both the Bayesian and Parsimony framework. But it was the Parsimony 

analyses that accurately placed more simulated fossils to a family level than the Bayesian 

analysis. However, the Bayesian phylogenies exhibited better support values even though 

many of these simulated fossils often had no synapomorphies supporting their placement. 

Simulated fossils (with extant relatives removed) were placed within their respective 

Cryptobranchoidea and Salamandroidea clade more accurately using the RI dataset within a 

Bayesian framework (although the resolution of relationships was not high). With the poor 

performance of the Parsimony analyses of the RI dataset, it was concluded that further 

analyses in this study, to place actual fossils would use the Bayesian analysis of the RI dataset. 

Phylogenetic analysis of fragmentary fossils may therefore yield some useful results, (provided 

there are not too many of them in any one analysis) but stem-ward slippage is still a real 

concern. 

Although the reduced datasets still show some incongruence with the combined 

morphological and DNA trees, there are still uses for the new morphological datasets. 

Cryptobranchoidea and Salamandroidea are still monophyletic using both the RI and Le 

Quesne datasets. And the placement of simulated fossils within Cryptobranchoidea and 

Salamandroidea is robust and consistent for the Bayesian analysis of the RI and Le Quesne 

dataset.  

 The RI dataset performed better than the Le Quesne dataset in the parsimony analysis 

because we know from our previous analyses of both the full morphological data and the 

molecular data that Salamanders are monophyletic and frogs form their sister clade. Although 

the morphological data (reduced through tree dependent or independent methods) still 

provides little resolution to the interfamilial salamander relationships (except the Bayesian 

analysis of the RI dataset) it can still allow us to place fossils within an extant framework with 
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confidence that they will place at least within a monophyletic Salamandroidea and 

Cryptobranchoidea if not with/within their respective families. 

 The trees lose resolution as more than one simulated fossil is added to an analysis 

however in the Bayesian analysis of both the RI and Le Quesne datasets the full set of 

simulated fossils still placed accurately in Cryptobranchoidea and Salamandroidea. The 

Bayesian analyses accurately placed more simulated fossils than the parsimony analysis and 

with higher support. The inclusion of fossils can therefore be done with confidence as long as 

there are not too many of them in any one analysis.  
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4. Using a new morphological 
dataset to test the phylogenetic 
placement of fossil salamanders 
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4.1 Introduction 

Although the earliest Salientia fossils are known from the Early Triassic, salamanders 

do not appear in the fossil record until the Middle Jurassic (See Chapter 1 section 1.4). There 

are several stem-group salamanders: Karaurus sharovi, Kokartus honorarius, Urupia 

monstrosa, Marmorerpeton kermacki, and Marmorerpeton freemani, however their position in 

relation to crown-group salamanders has yet to be tested all together. Skutschas (2011) 

suggested that Urupia could not be placed in a phylogenetic analysis based on the available 

material (i.e. atlantal centrum, presacral fragments and associated elements of dentaries and 

broken femur) but the new data set presented in this thesis has demonstrated the potential to 

place simulated fossils with reduced characters relatively accurately to Cryptobranchoidea and 

Salamandroidea-level. These early fossils lack key derived characters such as an enclosed nerve 

foramen in the atlas and so have been placed on the stem of Caudata (see table 1.1).  

All stem salamanders used to be attributed to the family Karauridae (Skutschas and 

Martin 2011) but this is now thought to be a paraphyletic grouping (Evans et al. 2005; 

Averianov et al. 2008). Marmorerpeton was excluded from Karauridae by Skutschas and Martin 

(2011) because it had weak or no sculpture on the premaxilla and maxilla and bicuspid teeth, 

whereas Karaurus and Kokartus both have monocuspid teeth. Marmorerpeton further differs 

from Kokartus by having a circular dentary symphysis (it is rectangular in Kokartus) (Skutschas 

and Martin 2011). All Karauridae and other stem group salamanders are thought to be aquatic, 

and so this might have been the ancestral life strategy for the Caudata (Skutschas and Martin 

2011; Skutschas and Krasnolutskii 2011). The placement of these Middle Jurassic fossils in a 

phylogeny might lead to the elucidation of early salamander biogeographic and diversification 

patterns.  

 Although many of the Late Jurassic and Cretaceous salamanders have been included in 

phylogenetic analyses, either in matrices which have included other fossil salamanders or 

exclusively extant taxa, very few of these analyses have used the same character set or 

phylogenetic method. It has been demonstrated that the inclusion of multiple simulated fossils 

(chapter 3) results in lower phylogenetic resolution but the analysis of individual taxa results in 

a high chance of the “correct” placement of the simulated fossil to either Cryptobranchoidea 

or Salamandroidea. As a result, we can have some confidence when actual fossils are included 

in a phylogenetic analysis using this dataset, that they will be placed relatively accurately at a 

high taxonomic level.  This study will aim to place Mesozoic fossil salamanders using the tested 

dataset and the same method as in previous chapters (2 and 3), and compare the results with 

those of previously published phylogenies or hypothesised affinities. 
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4.2 Material and Methods 

 

 The placement of Mesozoic fossil salamanders is analysed using the newly tested RI 

dataset within a Bayesian framework. The results of chapter three showed that simulated 

fossils were placed relatively accurately (although some were based on reconstructed 

characters) together with their closest relatives according to the molecular evidence and also 

exhibited the least amount of stem-ward slippage as long as a close relative was included 

(although the simulated fossils were often placed in unresolved relationships with other 

clades). The same settings and constraints used in Bayesian analyses of previous chapters 

(three and four) were applied.  These constraints did not apply to the fossils and they were 

free to fall anywhere except within frogs or caecilians (although they could be placed as the 

sister taxon to either).  

Total evidence analyses were also performed using the nuclear DNA and the RI 

morphological dataset to test the placement of the fossils as a whole. The settings for MrBayes 

were exactly the same as in all the previous Bayesian analyses using nDNA but with one 

addition: a partial constraint was used that separated the outgroups and the extant 

salamanders while still allowing the fossils to fall anywhere in the topology.  
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4.3 Phylogenetic results of Bayesian analysis of the RI dataset 
 

4.3.1 Stem-group fossils 
 

 When Karaurus, Kokartus, Urupia monstrosa, and Marmorerpeton were analysed 

individually none of them were placed as the sister taxon to all other salamanders (i.e. neither 

taxon was placed on the stem of Caudata). When all stem-group taxa were analysed together 

the putative stem-caudate taxa are unresolved within Amphibia, with Urupia monstrosa 

emerging as the sister taxon to frogs. Kokartus and Karaurus were not placed within a 

monophyletic Karauridae. 

 

Figure 4.1: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and the stem-

group fossils. The analysis ran for 2000000 generations, resulting in an average standard deviation of 

split frequency value of 0.005323; av Ess: 749.44; PSRF+: 1.000 

 

 

 



107 
 

4.3.2 Scapherpetontidae:  

 

 Scapherpeton is placed in an unresolved relationship with Cryptobranchidae, 

Hynobiidae, and Salamandroidea. Scapherpeton shares a fully enclosed atlantal foramen and 

four-faceted articulation of exoccipital and atlas with the other Urodela taxa. It also shares 

bicapitate ribs with Salamandroidea (except Siren). 

 Lisserpeton is placed outside of the crown group Urodela, in an unresolved amphibian 

position, when analysed without other Scapherpetontidae taxa. Lisserpeton does however 

share a fully enclosed atlantal foramen with Urodela. Lisserpeton also shares bicapitate 

transverse processes with Salamandroidea (except Siren), and has a small ventral keel on 

presacral vertebrae like Siren and an anterodorsal keel on the transverse process like 

Salamandridae and Siren. 

 Eoscapherpeton is placed in an unresolved relationship with Cryptobranchus and 

Andrias within Cryptobranchidae. It shares unicapitate ribs with Cryptobranchidae and 

Hynobiidae. 

 The Piceoerpeton species do not form a monophyletic group and instead Piceoerpeton 

naylori is placed as sister taxon to Siren lacertina, while Piceoerpeton willwoodense is placed in 

an unresolved relationship with Proteidae, Amphiumidae and Piceoerpeton naylori + Siren. 

Both Piceoerpeton species share the presence of a large ventral keel on the presacral 

vertebrae with Siren. P. naylori shares a reduced odontoid process with Proteidae (P. 

willwoodense was uncoded for this character). 

When all the fossils previously assigned to the Scapherpetontidae were analysed 

together they do not form a monophyletic group. Eoscapherton is placed as the sister taxon to 

Cryptobranchidae and Scapherpeton is still placed outside Salamandroidea, in an unresolved 

relationship with Salamandroidea, Cryptobranchidae + Eoscapherpeton, and Hynobiidae. 

Lisserpeton is now placed in an unresolved relationship with Cryptobranchidae + 

Eoscapherpeton, Scapherpeton, Hynobiidae, and Salamandroidea, within Urodela. 

Piceoerpeton is placed in exactly the same place as when it was analysed individually and is the 

only member of the Scapherpetontidae to be placed within Salamandroidea. 
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Figure 4.2: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and all 

Scapherpetontidae. The analysis ran for 2000000 generations, resulting in an average standard deviation 

of split frequency value of 0.008791; av Ess: 693.44; PSRF+: 1.000 

                   

4.3.3. Batrachosauroididae: 

 Opisthotriton is placed within Salamandroidea in an unresolved relationship with Siren, 

Amphiuma, and Proteidae. It shares an atlas that has an enclosed spinal nerve foramen with 

Urodela, lacks free ribs on anterior caudal vertebrae like the other Salamandroidea, and shares 

a reduced odontoid process with Proteidae. 

 Parrisia is placed in an unresolved relationship with the Salamandridae. It shares an 

enclosed atlantal spinal nerve foramina with Urodela, bicapitate transverse processes with 

Salamandroidea (except Siren), a reduced odontoid process with Proteidae, opisthocoelous 

presacral centra with Salamandridae, and a subcentral keel on the presacral vertebrae with 

Siren.  
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 Prodesmodon has been placed as the sister taxon to Urodela. It shares unicapitate 

transverse processes with Cryptobranchoidea, a mid-ventral keel on the presacral vertebrae 

with Siren, opisthocoelous presacral centra with Salamandridae, and a reduced odontoid 

process with Proteidae and other Batrachosauroidea. 

When Mesozoic Batrachosauroididae are analysed together they are all placed within 

Salamandroidea, although they do not form a monophyletic group. Batrachosauroididae 

(except Prodesmodon) share the presence of an atlantal spinal nerve foramen with Urodela. 

They all lack four facetted articulations of the exoccipital and atlas due to the reduction of the 

odontoid process. Batrachosauroididae also shares a massively reduced odontoid process with 

Proteidae. Parrisia and Prodesmodon share opisthocoelous presacral centra with 

Salamandridae, and a large mid-ventral keel on the presacral vertebrae with Siren. 

 

Figure 4.3: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and all 

Batrachosauroididae. The analysis ran for 4000000 generations, resulting in an average standard 

deviation of split frequency value of 0.007779; av Ess: 1470.88; PSRF+: 1.000 
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4.3.4. Sirenidae-like fossils: 

The two Kababisha species and Noterpeton bolivianum form a monophyletic group 

which is placed in an unresolved position within Amphibia. Kababisha lacks an atlantal spinal 

nerve foramen and four facetted articulations on the exoccipital and atlas, which are features 

common to Urodela. However, the absence of the exoccipital-atlantal articulation character 

may not be significant as both Kababisha possess a highly reduced form of the odontoid 

process, which also occurs in Proteidae and Siren. Both Kababisha and Noterpeton share a lack 

of postatlantal ribs with Siren. They also share the presence of a mid-ventral keel with 

Amphiuma means. Noterpeton shares a Meckel’s cartilage that extends to the mandibular 

symphysis with Ambystoma. Kababisha sudanensis and Noterpeton both possess a procoelous 

presacral centra. 

 Habrosaurus is placed within Salamandroidea but in an unresolved relationship with 

Amphiuma, Proteidae, (Salamandridae + Plethodontidae), Rhyacotriton, and Siren. 

Habrosaurus shares a mid-ventral keel on the presacral vertebrae with Siren, and a fenestra in 

the anterior keel of the presacral vertebrae with Siren and Salamandridae. 

 

Figure 4.4: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa, Habrosaurus, 

Kababisha and Noterpeton. It ran for 4000000 generations, resulting in an average standard deviation of 

split frequency value of 0.007605; av Ess: 1489.21; PSRF+: 1.000 
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 When all the fossils that have previously been associated with Sirenidae are analysed, 

together they fall in exactly the same place as they did when analysed separately. They do not 

form a monophyletic group with one another, or with Siren. 

 

4.3.5 Fossil salamanders that have previously been placed outside of 

Salamandroidea: 

 Regalerpeton is placed as the sister taxon to Cryptobranchoidea, with which it shares 

unicapitate ribs. 

 

 

Figure 4.5: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and Regalerpeton. 

It ran for 2000000 generations, resulting in an average standard deviation of split frequency value of 

0.005614; av Ess: 677.21; PSRF+: 1.000 
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 Pangerpeton is placed as the sister taxon to Salamandroidea. It possesses unicapitate 

ribs which also occurs in Cryptobranchoidea, and the presence of one phalanx on digit one of 

the pes with Plethodontidae + Salamandra salamandra. 

 

 
Figure 4.6: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and Pangerpeton. 

It ran for 2000000 generations, resulting in an average standard deviation of split frequency value of 

0.005572; av Ess: 908.26; PSRF+: 1.000 

 
 Chunerpeton is placed in an unresolved relationship with Salamandroidea, 

Cryptobranchidae, and the two Hynobiidae species. It shares a multi-branched, second 

basibranchial morphology with Siren, and unicapitate ribs with Cryptobranchoidea. 
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Figure 4.7: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and Chunerpeton. 
It ran for 2000000 generations, resulting in an average standard deviation of split frequency value of 
0.006845; av Ess: 626.98; PSRF+: 1.000 

 

 

Figure 4.8: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and Jeholotriton. 
The analysis resulted in an average standard deviation of split frequency value of 0.006984 
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Jeholotriton is placed outside of Urodela in an unresolved position within Amphibia 

(Fig. 4.7) Liaoxitriton zhongjiani and Liaoxitriton daohugouensis do not form a monophyletic 

group (Fig. 4.8). They are placed separately in an unresolved relationship with Salamandroidea 

and Cryptobranchoidea. Liaoxitriton zhongjiani and Liaoxitriton daohugouensis differ in that L. 

zhongjiani has a vomer with a postchoanal process and L. daohugouensis lacks the postchoanal 

process. They both share unicapitate ribs with Cryptobranchoidea. 

 

 

 

Figure 4.9: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and Liaoxitriton. 
The analysis ran for 2000000 generations, resulting in an average standard deviation of split frequency 
value of 0.007875; av Ess: 762.79; PSRF+: 1.000 
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Nesovtriton is placed in an unresolved relationship with Salamandroidea, 

Cryptobranchidae, and the two Hynobiidae species. It shares unicapitate transverse processes 

with Cryptobranchoidea. Nesovtriton shares basapophyses on the atlas with Ambystoma and 

Desmognathus. It differs from all other Urodela by its lack of a four facetted articulation of 

exoccipital and atlas. 

 

 

Figure 4.10: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and Nesovtriton. 

The analysis ran for 2000000 generations, resulting in an average standard deviation of split frequency 

value of 0.007419; av Ess: 754.71; PSRF+: 1.000 
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Iridotriton is placed in a trichotomy with Salamandroidea and Cryptobranchoidea. It 

shares unicapitate ribs with Cryptobranchoidea. Iridotriton also possesses a fused prootic-

exoccipital with separate opisthotic, as does Proteidae. 

 

 

 

Figure 4.11: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and Iridotriton. 

The analysis ran for 3673400 generations, resulting in an average standard deviation of split frequency 

value of 0.007027; av Ess: 1064.52; PSRF+: 1.000 
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When all of these Mesozoic fossil salamanders that have previously been placed 

outside of Salamandroidea are analysed together form a polytomy with Salamandroidea, 

Doleserpeton, caecilians + Gerobatrachus, frogs, Cryptobranchidae, and Hynobiidae. 

 

 

 

 

Figure 4.12: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and all fossils 
previously placed outside of Salamandroidea (and not assigned to Batrachosauroididae or 
Scapherpetontidae). The analysis ran for 4000000 generations, resulting in an average standard 
deviation of split frequency value of 0.005408; av Ess: 1340.54; PSRF+: 1.000 
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4.3.6 Fossils previously assigned to Salamandroidea: 

Valdotriton is placed within Salamandroidea in an unresolved position. It lacks a 

distinct angular and has no free ribs on anterior caudal vertebrae, which are two characters it 

has in common with the other taxa in Salamandroidea. Valdotriton also shares bicapitate 

transverse processes with all other Salamandroidea except Siren. It possesses spinal nerves 

that exit intravertebrally in some or all caudal vertebrae, which is a character it has in common 

with Amphiuma, Dicamptodon, and Rhyacotriton. Valdotriton shares a Y-shaped second 

basibranchial with Ambystoma tigrinum and Dicamptodon, also basapophyses on the atlas 

with Ambystoma and Desmognathus. 

 

 

 

Figure 4.13: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and Valdotriton. 

The analysis ran for 2000000 generations, resulting in an average standard deviation of split frequency 

value of 0.005532; av Ess: 716.21; PSRF+: 1.000 

 



119 
 

 

 

Proamphiuma is placed as the sister taxon to Siren lacertina with Amphiuma forming 

their sister clade. Proamphiuma shares bicapitate transverse processes with the other taxa in 

Salamandroidea, the presence of a mid-ventral keel on the presacral vertebrae with Siren, and 

intravertebral spinal nerve foramina in some or all caudal vertebrae with Amphiuma, 

Rhyacotriton, and Dicamptodon. 

 

 

 

Figure 4.14: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and 

Proamphiuma. The analysis ran for 2000000 generations, resulting in an average standard deviation of 

split frequency value of 0.005250; av Ess: 764.13; PSRF+: 1.001 
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Paranecturus has been placed within Salamandroidea in a polytomy with Amphiuma, 

Proteidae, and Siren lacertina. The fossil taxon has a four facetted articulation of the 

exoccipital and atlas like the other Urodela, and bicapitate transverse processes like all other 

Salamandroidea except Siren. Paranecturus shares the presence of a mid-ventral keel on mid-

body presacrals with Siren. 

 

 

 

Figure 4.15: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and 

Paranecturus. The analysis ran for 2000000 generations, resulting in an average standard deviation of 

split frequency value of 0.003865; av Ess: 721.26; PSRF+: 1.000 
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Beiyanerpeton is placed as sister taxon to Salamandroidea, in exactly the same place as 

the results of the study by Gao and Shubin (2012). Beiyanerpeton shares a mid-ventral keel on 

the presacral vertebrae with Siren. 

 

 

 

 

Figure 4.16: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and 

Beiyanerpeton. The analysis ran for 3000000 generations, resulting in an average standard deviation of 

split frequency value of 0.004418; av Ess: 1115.71; PSRF+: 1.000 
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Galverpeton is placed as the sister taxon to Salamandridae + Plethodontidae, within 

Salamandroidea in exactly the position hypothesised by Estes and Sanchiz (1982). Galverpeton 

shares opisthocoelous vertebrae with Salamandridae, and spinal nerves that exit 

intravertebrally in some presacral vertebrae with Ambystoma. 

 

 

 

Figure 4.17: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and Galverpeton. 

The analysis ran for 2000000 generations, resulting in an average standard deviation of split frequency 

value of 0.006500; av Ess: 622.76; PSRF+: 1.000 
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Figure 4.18 is a tree with all the Mesozoic salamander fossils that have previously been 

placed within Salamandroidea (or as a stem Salamandroidea taxon). Opisthotriton, both 

Piceoerpeton species, Parissia, Prodesmodon, Valdotriton, Paranecturus, Proamphiuma, 

Habrosaurus are all placed within Salamandroidea. Beiyanerpeton is placed on the stem of 

Salamandroidea. 

 

 

Figure 4.18: Consensus tree from a Bayesian analysis of the RI dataset with extant taxa and fossils 

previously attributed to Salamandroidea. The analysis ran for 2000000 generations, resulting in an 

average standard deviation of split frequency value of 0.006500; av Ess: 622.76; PSRF+: 1.000 
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4.4 Discussion 

 

 In this new analysis, many of the Mesozoic fossil salamanders have been placed in 

relatively unresolved positions. The putative stem-group salamanders (Karaurus, Kokartus, 

Marmorerpeton, and Urupia) have not been placed on the stem of Caudata as was expected 

based on previously published studies (Evans et al. 1988; Ruta et al. 2003; Skutschas and 

Martin 2011). Previous phylogenetic analyses also placed Karaurus and Kokartus as sister taxa 

in a monophyletic Karauridae and placed this family as sister to crown group salamanders 

(Skutschas and Martin 2011). The study presented here does not recover a monophyletic 

Karauridae or place any of the putative stem group fossils as sister to all salamanders. The 

dermal sculpture on the skull (Estes 1981) character was removed by the tree dependant and 

tree independent methods of character evaluation, as it was deemed to display a high level of 

convergence. This dermal sculpture character needs further evaluation as there is certainly 

evidence of dermal sculpture on skull bones of some derived Urodela [e.g. Tylototriton (Noble 

1928)]. However, this is not a suggestion that these taxa (Karaurus and Kokartus) are not more 

closely related to salamanders than to other lissamphibians, but alternative characters are 

needed in the current matrix to determine if these taxa really do lie on the stem of Caudata. 

The results presented here are almost certainly due to a resolution issue. The results for 

Urupia may also reflect a resolution issue because only 11 characters for this taxon survived 

the character evaluation process, and only eight of these were vertebral characters. Skutschas 

and Krasnolutskii (2011) were probably correct in suggesting further phylogenetic analysis wait 

until more material is found for this taxon. 

 Most of the taxa previously assigned to Scapherpetontidae have been placed outside 

of Salamandroidea except for Piceoerpeton. Piceoerpeton is placed within Salamandroidea 

making Scapherpetontidae non-monophyletic contrary to Estes (1969; 1981). Similarities in 

atlas morphology in Batrachosauroididae and Piceoerpeton have been noted by Gardner 

(2012) and others (Estes and Hutchison 1980; Naylor and Krause 1981). This study reveals 

similarities in presacral ventral keels with Siren, and pterygoid morphology with Siren, 

Amphiuma, and Proteidae, that may support placement of Piceoerpeton within one or other of 

these clades. The main argument against placing Piceoerpeton with the batrachosauroids was 

that the similarity of the atlantal and vertebral characters was considered as evidence of 

convergence (Estes 1981). With the removal of convergent characters in this dataset, and 

subsequent testing, this study supports placement of Piceoerpeton within Salamandroidea 

(Edwards 1976).  



125 
 

 Although this study does not support a monophyletic Batrachosauroididae, they were 

at least all placed within Salamandroidea as expected (Noble 1931; Taylor and Hesse 1943; 

Auffenberg 1958; Auffenberg 1961; Demar 2013). A sister relationship of Batrachosauroididae 

with Proteidae was proposed in early studies due to the similarity in odontoid process 

reduction (Estes 1975; Naylor 1978) but a more recent phylogeny proposed the Proteidae 

belongs in a sister relationship with ‘Scapherpetontidae’ (Demar 2013). A highly reduced 

odontoid process is seen in Piceoerpeton (previously attributed to Scapherpetontidae) which is 

similar to the condition found in Proteidae and may have placed Proteidae closer to 

Scapherpetontidae than to Batrachosauroididae in Demar’s results, especially as he used only 

vertebral characters. Demar added the caveat that the inclusion of more taxa and characters 

would resolve the relationship of his taxa at a higher level. The results presented here have 

placed Opisthotriton in an unresolved relationship with Proteidae, Siren, and Amphiuma. 

Parrissia was placed as closely related to the Salamandridae rather than Proteidae, which is a 

position that agrees with the proposal of Denton and O’Neill (1998). The shared 

opisthocoelous condition of the trunk vertebrae influenced the position of Parrissia as this is a 

derived feature present in Salamandridae. Prodesmodon was placed as sister taxon to all 

salamanders when analysed separately, as it possesses unicapitate rib transverse processes, 

which is often thought to be a diagnostic character for the Cryptobranchoidea (Skutschas and 

Martin 2011). However, when included in an analysis with the other supposed 

Batrachosauroidea, Prodesmodon moved to within Salamandroidea in an unresolved 

relationship with the other supposed Batrachosauroididae and Salamandroidea clades.  

 The sirenid-like fossils (Habrosaurus, Kababisha, and Noterpeton) did not cluster 

together, or with sirenids, or even within the same higher level clade. Habrosaurus was placed 

within Salamandroidea as proposed by Gardner (2003). Although Habrosaurus does share 

characters with Siren, they are apparently not sufficient to place it as sister taxon to Siren. 

Despite the similarity in morphology with Sirenidae noted by Evans et al. (1996), Kababisha 

and Noterpeton form a clade that is placed in an unresolved position among the sampled 

amphibian taxa and not within Caudata or even on the Caudata stem. While Kababisha and 

Noterpeton share synapomorphies with some of the Salamandroidea clades, they lack the four 

facetted articulations of exoccipital and atlas and atlantal spinal nerve foramen, which are 

features common to Urodela. Additionally, the two Kababisha species, found in Africa, are not 

placed as sister taxa, instead K. sudanensis is placed as sister taxon to Noterpeton because of 

their shared atlantal centrum morphology. This suggests that Kababisha sudanensis, which is 

found in Sudan, is more closely related to a genus that is found in both Niger and Bolivia, than 

to Kababisha humarensis from the same locality in Sudan. The suggestion that Kababisha and 
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Noterpeton were related was first proposed by Evans et al. (1996) based on shared features 

such as continuous surface joining the two cotyles and procoely of vertebrae.  

 Pangerpeton was initially placed towards the base of Urodela (Wang and Evans 2006) 

supported by the presence of unicapitate ribs, vomerine teeth placement, and head 

measurements. In this study Pangerpeton is placed as sister taxon to Salamandroidea. It differs 

from Salamandroidea in possessing unicapitate ribs but shares the possession of one phalanx 

on digit one of the pes, with Plethodontidae and Salamandra salamandra. However pes 

morphology may be relatively plastic (Bishop 1947) and unicapitate rib morphology is not 

diagnostic for Cryptobranchoidea as it is also found in a Salamandroidea taxon, Prodesmodon. 

Continuous measurement characters [such as those used by Wang and Evans (2006)] were not 

included in this study and so could not influence the placement of Pangerpeton, but further 

morphometric work might help resolve the relationships of fossils (especially those known only 

from isolated material – see further work Chapter 6). 

 Regalerpeton was placed in a very similar position (sister taxon to living 

Cryptobranchoidea + Chunerpeton) as in the analysis by Zhang et al. (2009). The placement of 

Galverpeton and Beiyanerpeton here also agrees with previous studies (Estes and Sanchíz 

1982; Gao and Shubin 2012), but this is not the case for some of the full bodied salamander 

fossils. The positions of Chunerpeton, Nesovtriton, Jeholotriton, and Liaoxitriton are unresolved 

and Jeholotriton has slipped stem-ward. Previously Jeholotriton was placed as sister taxon to 

Pangerpeton (Wang and Evans 2006), or as the sister taxon to Cryptobranchidae + 

Chunerpeton + Regalerpeton supported by synapomorphies that included, lack of contact 

between squamosal and roofing elements, and dentition present on vomer, palatine, and 

pterygoid (Zhang et al. 2009). However, in my study, the character relating to the contact of 

squamosal and roofing elements was removed by both methods of character evaluation 

employed to detect homoplasy. Stem-ward slippage is still an issue which this dataset has yet 

to resolve, which is likely to be affecting Jeholotriton as it apparently has no taxon close 

enough in the phylogeny to help stabilise its placement. 

  Valdotriton has previously been placed essentially as a stem-salamandroid (Evans and 

Milner 1996; Wang and Evans 2006), in an unresolved relationship with Salamandroidea, 

Cryptobranchidae, and Hynobiidae (Zhang et al. 2009) and within Salamandroidea (Gao and 

Shubin 2012). The study presented here agrees with Gao and Shubin and places Valdotriton 

within Salamandroidea. The result supports the idea that Valdotriton is the earliest 

Salamandroidea fossil in Europe (published so far), although there is some unpublished 

material from Purbeck that is almost certainly salamandroid (Evans pers. comm. 2012) that 
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should push this record further back. Iridotriton was initially placed on the stem of 

Salamandroidea based mainly on the presence of spinal nerve foramina in the caudal 

vertebrae (Evans et al. 2005), however subsequent phylogenetic analyses have placed 

Iridotriton within Cryptobranchoidea (Zhang et al. 2009; Gao and Shubin 2012). This study did 

not support either hypothesis as Iridotriton was placed in an unresolved relationship with both 

Cryptobranchoidea and Salamandroidea. The affinities of this Jurassic North American fossil 

are important to help elucidate the origins of Cryptobranchoidea and Salamandroidea. Milner 

(1983) proposed that the Turgai Sea had divided Laurasia into east and west landmasses with 

Cryptobranchoidea on the Asian/Russian landmass in the east, and sirenids, proteids, 

plethodontids and salamandroids on the western Euramerican landmass by the Upper Jurassic. 

However, Iridotriton in North America raises questions about the origin and dispersal of 

whichever clade it belongs to.  

 Proamphiuma was not placed together with Amphiuma, as proposed by Estes (1969; 

1981) and suggested by Gardner (2003). Instead it was placed as the sister taxon to Siren. 

Proamphiuma shares some morphological characters with Amphiuma in this study’s character 

set but they are characters also shared with other taxa. In this study the synapomorphies 

supporting Amphiuma were specialised amphiumid pit glands and female cloacal glands, so 

the ultimate phylogenetic position of a fossil relative would have to rely on the shared 

characteristics common to both Amphiuma and other clades. This study can only support the 

placement of Proamphiuma within Salamandroidea. 

 Paranecturus is also placed within Salamandroidea as suggested by Demar (2013) but 

does not provide support for a sister group relationship of Paranecturus + Proteidae. 
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4.5 Conclusions 

 

Many fossil taxa cannot be placed within the phylogeny with high resolution. Previous 

analyses by other authors have made assumptions about the placement of many of the fossil 

taxa that cannot be supported by this analysis such as the placement of Jeholotriton, 

Kababisha, and Noterpeton. Furthermore, Scapherpetontidae is not found to be monophyletic 

and neither is the Batrachosauroididae. Piceoerpeton is placed within Salamandroidea 

whereas the other Scapherpetontidae are placed outside of the Salamandroidea. The historic 

view that unicapitate ribs is an exclusively Cryptobranchoidea feature has been confounded by 

the presence of that character in both Pangerpeton and Prodesmodon which have been placed 

within Salamandroidea in this study. The geographic locations of Cryptobranchoidea and 

Salamandroidea (especially those that possess unicapitate ribs) will be important in helping to 

understand not only the evolution of that character but also their pattern of dispersal across 

Laurasia since Pangerpeton is found in China and Prodesmodon is known from the USA. 

 Kababisha and Noterpeton form a monophyletic group but Kababisha sudanensis may 

be more closely related to Noterpeton bolivianum than to Kababisha humarensis. The 

Kababisha and Noterpeton clade is placed in an unresolved position within Amphibia and its 

relationship to Caudata remains unclear. This may be an artefact of stem-ward slippage as 

there is still evidence of this occurring, most notably in the placement of Jeholotriton. 

However, the placement of Kababisha and Noterpeton in the amphibian phylogeny is 

significant in determining dispersal patterns of this clade not only from Laurasia to Gondwana 

(if related to Salamanders) but also from Africa to South America during the Cretaceous. 
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5. Discussion and Conclusions 
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5.1 Discussion 

5.1.1 What is the position of Sirenidae in relation to other salamanders? 

 

 Previous studies have failed to reach agreement on the position of Sirenidae within the 

Salamander phylogeny (Larson and Dimmick 1993; Chippindale et al. 2004; Zhang and Wake 

2009; Wiens et al. 2005; Frost et al. 2006; Roelants et al. 2007; Vieites et al. 2009). The result 

of the molecular analyses supports the placement of Sirenidae as sister taxon to all other 

Salamandroidea (Fig. 3.5). However, the other analyses (using nuclear, mitochondrial, or 

morphological data) were unable to resolve the relationships of Sirenidae in relation to 

Salamandroidea and so needs further work.  

5.1.2 Do soft body characters give a more reliable and congruent signal 

relative to molecular results then the signal from the osteological data? Does 

soft body data show any difference in levels of convergence than the 

osteological data? 

 

   Early morphological phylogenies displayed convergence by placing aquatic taxa 

together in paraphyletic groupings (Duellman and Trueb 1986; Wiens et al. 2005). The 

morphological phylogeny in this thesis showed some congruence with the molecular results 

and agrees on the placement of Sirenidae within the Salamandroidea. Previous studies have 

found that there is more congruence between soft body characters and molecular results 

(Gibbs et al. 2000). The phylogeny from soft body characters in this study showed lower levels 

of congruence with the combined molecular tree results than the osteological phylogeny 

according to the agreement subtree and symmetrical differences tests (Table 2.3.2). However, 

the soft body characters displayed less apparent homoplasy than the osteological data. After 

both the tree dependant and tree independent methods of character evaluation had been 

applied to the full morphological dataset, 73% of the soft body characters were retained. The 

osteological characters fared less well with the RI dataset retaining just 42%, and the Le 

Quesne dataset containing just 29% of the original 197 osteological characters. This result 

might support the apparent loss of phylogenetic signal with the removal of soft body 

characters (Sansom et al. 2010; Sansom and Wills 2013) compared to random loss of 

characters. Many salamander clades in this study, especially Amphiuma which was supported 

by female cloacal gland and amphiumid pit gland characters (Fig. 2.3.7), relied on soft body 

synapomorphies to support monophyly. 
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5.1.3 Is it possible to correct for the signal caused by convergence in the 

morphological data? 

 

 The suspected homoplasy in salamanders has been the subject of previous 

phylogenetic studies [i.e. Wiens et al. (2005)] which have been unable to fully correct for the 

convergence signal in the data. The methods for evaluating the characters for signs of 

homoplasy in this study used tree dependant and tree independent tests. Both the RI (tree 

dependant) and the Le Quesne (tree independent) reduced datasets showed little increase in 

congruence with the molecular tree compared to the full morphological phylogeny. While the 

Le Quesne tree showed more congruence relative to the RI tree when compared to the 

molecular phylogeny, there was no significant improvement in the topology compared to 

molecular data. However, even after rigorous character evaluation and exclusion the RI and Le 

Quesne data support a monophyletic Cryptobranchoidea and Salamandroidea in both the 

Bayesian and Parsimony results. The lack of phylogenetic resolution within Crytobranchoidea 

and Salamandroidea suggests that a loss of signal, perhaps due to the removal of too many 

characters, should be addressed in future work.  

 

5.1.4 Can fossils be placed robustly at a family and/or 

salamandroidea/cryptobranchoidea level? 

  

 Although there is some consensus of internal relationships of salamanders emerging, 

there are still other families, other than Sirenidae, that are not consistently placed in the same 

location on the tree. This uncertainty of the internal relationships of salamander families 

makes it difficult to place fossils with confidence. However, the ability to place fossils even at a 

higher level is significant in salamanders because it will help gain a more complete view of 

salamander radiation through time. Testing the placement of simulated fossils showed mixed 

results. The RI dataset outperformed the Le Quesne dataset by placing the simulated fossils 

more accurately compared to previous placement using molecular data, more often. However, 

Andrias, Rhyacotriton, and Hynobiidae were not supported by any unique osteological 

synapomorphies in either dataset. This is consistent with the findings of other researchers who 

reported difficulties, especially placing Hynobiidae into a morphology based phylogeny 

(Schultze and Trueb 1991), as there are no morphological characters exclusive to the clade 

(AmphibiaWeb 2012).  
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 The Bayesian and Parsimony analyses showed almost equal success in placing 

simulated fossils to family level until the test for stem-ward slippage. Bayesian results out-

performed Parsimony with less stem-ward slippage but even so only managed to place five out 

of nine simulated fossils relative to their previous position within the phylogeny. At a 

Cryptobranchoidea/Salamandroidea level Bayesian results fared better but stem-ward slippage 

is still an issue to be considered when interpreting results. This was apparent in the placement 

of some of the fossils previously assigned to Cryptobranchoidea by other authors. In my 

analysis, Jeholotriton was placed outside of Caudata unlike the finding of Wang and Evans 

(2006), who had previously placed it as sister taxon to Pangerpeton. 

 Cryptobranchoidea is often diagnosed by the presence of unicapitate ribs and rib 

bearers. Similarly, in this study, Salamandroidea are characterised by the possession of 

bicapitate ribs and rib bearers, even though this study has identified two taxa that have been 

placed in Salamandroidea that possess unicapitate ribs (Prodesmodon and Pangerpeton). 

Milner (1983) proposed that the vicariant event that split Cryptobranchoidea and 

Salamandroidea was the formation of the Turgai Sea during the Late Jurassic. This Sea divided 

Laurasia into east and west landmasses with Cryptobranchoidea on the Asian/Russian 

landmass in the east, and Salamandroidea (sirenids, proteids, plethodontids, and 

salamandrids) on the western Euramerican landmass. However, there is no clear geographical 

divide in the fossil taxa that display this unicapitate rib character. Salamander B (Evans and 

Milner 1994) and Iridotriton (Evans et al. 2005) are Middle and Late Jurassic respectively and 

both found on the “Salamandroidea side” of the Turgai Sea. Both taxa possess unicapitate ribs 

(Evans et al. 2005, Evans pers. comm. 2012). Similarly, Prodesmodon and Pangerpeton are 

Salamandroidea taxa that possess unicapitate ribs. Either unicapitate ribs, used so often to 

support the placement of taxa within Cryptobranchoidea, is more plastic than previously 

thought or the biogeographic history of Salamandroidea and Cryptobranchoidea is less clear 

cut than the product of a single large vicariant event. If unicapitate ribs are indeed a diagnostic 

feature of Cryptobranchoidea, the presence of Salamander B in the UK during the Middle 

Jurassic could possibly be part of a wider distribution of Cryptobranchoidea during this time. 

Iridotriton, found in North America, would have had to disperse from Asia across some sort of 

land bridge to North America unless it was part of a wider distribution, or the group originated 

in Euramerica.  
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 5.1.5 Are the enigmatic Gondwanan fossils (Kababisha and Noterpeton) related to 

Sirenidae?  

 

 Rage (1993) suggested that together the Kababisha  and Noterpeton might form a 

sister group to salamanders that was caused by a vicarient event. In this thesis’ analyses, 

Kababisha sudanansis, Kababisha humarensis, and Noterpeton bolivianum form a clade with K. 

sudanansis placed as sister taxon to Noterpeton bolivianum, with K. humarensis as their sister 

taxon (Evans et al. 1996), outside of Caudata. This is in contrast to the sirenid relationship 

suggested by Evans et al. (1996) and more in agreement with the suggestion of Gardner 

(2003). If this is the correct relationship, then there is a taxonomic issue as the genus 

Kababisha would be a junior synonym of Noterpeton. However, the alternative would be to 

place K. humarensis in a separate genus depending on whether the differences between them 

are at a species or genus level. However new material is emerging from the Sudan and other 

localities which might shed new light on the relationship of this enigmatic clade either to 

Sirenidae or to salamanders as a whole. Further work on this group will be conducted by Dr 

Mueller at the Museum für Naturkunde in Berlin in conjunction with Dr Gardner of the Royal 

Tyrell Museum in Drumheller. 

 The placement of these taxa in a fossil amphibian phylogeny has interesting 

implications on the distribution potential between the Gondwanan continents (Africa + South 

America) as Noterpeton has been discovered in both Bolivia and Niger in Late Cretaceous age 

sediments (Rage et al. 1993; Rage and Dutheil 2008). Its’ possible relationship with Caudata 

also highlights interesting questions about the origins and diversification of Lissamphibia. 

5.2 Conclusions 

 

 It is clear that there are many different signals emerging from different data types i.e., 

molecular vs morphological, but also from within each data type i.e., mitochondrial DNA vs 

nuclear DNA and osteological characters vs soft body characters. The analysis using a 

combination of mitochondrial and nuclear genes supported a Batrachia (salamanders + frogs) 

clade with caecilians as their sister taxon. Within salamanders some consensus has been 

reached with the externally fertilising salamanders (i.e., Cryptobranchoidea) generally 

supported as monophyletic and as the sister clade to all other salamanders. Salamandroidea, 

including Sirenidae, is also generally found to be monophyletic. 
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 The morphological phylogenies showed little congruence with the molecular results. 

However, they agreed on a Salamandroidea placement of Sirenidae, and Cryptobranchoidea as 

the sister clade to all other salamanders. Suspected homoplasy in salamander morphology has 

proved difficult to address in many past studies (Wiens et al. 2005). The current study has 

found that soft body characters display less homoplasy than their osteological counterparts. 

There is still little understanding of the relationship between phenotype and genotype. This 

makes the identification of morphological characters that offer true phylogenetic signal, 

difficult without first understanding their developmental history. Of the vertebral characters, 

the ones relating to spinal nerve foramina seemed to be supporting nodes more often than 

others. These characters are directly related to soft body anatomy, which could be a criterion 

to consider when evaluating osteological characters to better enable the successful placement 

of the taxa, at least at a higher level within salamanders. This study has highlighted the need 

for a better understanding of the data and the signal it contributes to phylogeny. 

 Although initially it seemed that vertebral characters were able to place simulated 

fossils in the ‘correct’ place in the tree, more detailed examination showed that this was often 

based on coding reconstructions for missing data. This affected the results when extant 

relatives of the simulated fossil were removed, the signal for those character reconstructions 

was removed, resulting in stem-ward slipping on a number of occasions. The reliance on 

reconstructed characters makes placement of fossils difficult when no obvious relationship 

with extant families exists. However, the simulated fossils were placed within 

Cryptobranchoidea and Salamandroidea with a high success rate, supported mainly by the 

presence of unicapitate or bicapitate ribs and rib bearers. The use of this character to 

distinguish between the two main clades with salamanders should be reviewed. The 

developmental history of ribs is so little known in salamanders and the variation of rib-bearer 

morphology in individuals of other clades [i.e. Sphenodon and Crocodilia (Hoffstetter and Gasc 

1969)] is so large, that this should be a site of particular interest as it is relied upon so heavily 

to support important phylogenetic relationships.  

 The puzzling Gondwanan salamanders (Kababisha and Noterpeton) are confirmed as 

forming a monophyletic group, but the position of that group with respect to caudate remains 

problematic. The apparent paraphyly of Kababisha in relation to Notepeton would have 

taxonomic implications. Further descriptive work will be carried out on new material that will 

hopefully reveal further details of the morphology of taxa within this enigmatic clade. Whether 

these taxa are ultimately placed within Sirenidae, within another urodelan clade, or on the 

stem of Caudata, their Gondwanan distribution is of interest for lissamphibian biogeography. 



135 
 

5.3 Further Work: 

5.3.1 New Data 

 

 Kiyatriton leshchinskiyi is an Early Cretaceous salamander from Russia and is 

purportedly the only Early Cretaceous fossil from Asia, found outside of China (Skutschas 

2014). Recently new material attributed to this taxon has been described which might allow 

for more characters to be scored (Skutschas 2014). This should be included in the new data 

matrix (Appendix B) and its position within the salamander phylogeny tested. It has 

provisionally been referred to Cryptobranchoidea as it shares characters such as unicapitate 

ribs, flattened neural arches, neural spines reduced to a low keel, and reduced subcentral keel 

(Skutschas 2014). The current study did not include Kiyatriton as there were too few 

characters for evaluation, but the inclusion of these new data should allow for phylogenetic 

hypothesis testing. 

 Kababisha and Noterpeton are thought to be fossil salamanders however the results of 

this study placed them outside of salamanders. Further analyses could include a wider range of 

taxa including temnospondyl, lepospondyl and albanerpedontid to provide more resolution of 

its affinities. More morphological characters should also be included in future analyses and 

these could focus on the synapomorphies for stem salamanders. With the re-description of 

Kababisha by Dr Gardner and Dr Muller, new insights into this species might come to light. This 

clade is especially important due to its location and the biogeographic hypothesis suggesting 

salamanders dispersed across land bridges during the Cretaceous from Laurasia to Gondwana 

as proposed Milner in 1983. 

5.3.2 New Analyses 

 

 Chapter 3 of this study looked at simulating fossils by excluding all characters except 

the ones commonly found in the salamander fossil record. However, this method can be 

modified to simulate fossils more closely by replicating the exact characters specific to each 

fossil taxa. This way even if fossil taxa have characters not commonly found in the fossil record 

then its’ placement can still be tested.  This might be a very time consuming task but would 

simulate the robustness of the phylogenetic relationships and the potential for stem-ward 

slippage more accurately if you had a small number of fossils.  

 In fossils that consist of fragmentary or isolated remains, it is often the atlas that has 

been made the holotype. A pilot study using only atlantal characters to create a phylogeny was 
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conducted to investigate the diagnostic potential for this element. The results showed little 

congruence with previously published molecular phylogenies but did suggest subordinal 

clustering of Cryptobranchoidea. With further character evaluation and assessment, and 

inclusion in both Bayesian and Parsimony framework analyses, biological signal may be 

detected. The dataset could be enhanced by including morphometric data. Landmarks or 

outline data could be collected and analysed in PAST (Hammer et al. 2001) and tpsDig2 (Rohlf 

2004). 

5.3.3 Time calibrated phylogeny 

 

The phylogeny (once fossils have successfully been incorporated) can be time-

calibrated using multiple calibration points. Some of the points used by Zhang and Wake 

(2009) might be incorporated. External calibration points (outside the salamander lineage) 

such as: the lungfish-Tetrapod split (408-419 mya)(Müller and Reisz 2005); Amphibia-Amniota 

split (330-360 mya) (Benton and Donoghue 2007; Marjanović and Laurin 2007); bird-lizard split 

(252-300 mya) (Müller and Reisz 2005; Benton and Donoghue 2007); bird-crocodile split (235-

251 mya) (Müller and Reisz 2005; Benton and Donoghue 2007); and the alligator-caiman split 

(66-75 mya) (Müller and Reisz 2005) might be incorporated to better constrain the phylogeny. 

Internal as well as external calibration points have been advocated by Brochu (2004) and 

Marjanovic and Laurin (2007) and so there are five internal calibration points to be included 

such as: the common ancestor of salamanders and frogs (250 mya) [Triadobatrachus Rage and 

Rocek (1989), Czatkobatrachus, Evans and Borsuk-Białynicka (1998)] although this date might 

be modified with the recent publication of Geobatrachus (Anderson et al. 2007); 

cryptobranchid-hynobiid split (145 mya) [this is following Zhang and Wake (2009) more 

conservative estimate than Gao and Shubin (2003)]; Ambystoma-Dicamptodon split (55.8 mya) 

(Naylor and Fox 1993); and the Necturus-Proteus split (55.8 mya) (Estes 1981).  

Although some suggest that maximum constraint calibration points are also needed 

(Marjanović and Laurin 2007) the salamander fossil record is not complete enough to use 

maximal bounds with confidence. Instead ACCTRAN and DELTRAN character optimisation 

might be able to better give a maximum and minimum branch length for a phylogeny which 

will further give upper and lower bound restraints to the molecular phylogeny estimated 

divergence dates (Agnarsson and Miller 2008).  

ACCTRAN and DELTRAN are used in parsimony reconstructions and maximise 

ambiguous character state change as close to the root (ACCTRAN) or to the tips (DELTRAN) of 

the branches as possible. Thus ACCTRAN might lead to branch lengths between internal nodes 
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that are generally greater than those of DELTRAN analyses, which should produce phylogenies 

with greater terminal branch lengths (Agnarsson and Miller 2008). Therefore ACCTRAN should 

give older age estimates for nodes while DELTRAN should give younger ages, thus providing 

the upper and lower limits of the node age (Forest et al. 2005). 

 Salamanders and their fossil relatives have the potential to help elucidate Mesozoic 

biogeographical patterns. By studying their early evolution and diversification patterns a better 

understanding of this clade as a whole could support the efforts of conservationists. 

Salamanders are important, because they fill diverse ecological roles (Davic and Welsh 2004) 

and like frogs they can be good indicators of ecosystem stress (Welsh and Ollivier 1998). Many 

clades are already on the IUCN Red List e.g. Andrias davidianus, due to pollution, habitat loss, 

and over collection (iucnredlist.org, September 2014), and work on taxonomy is important for 

monitoring their diversity today.  
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Appendix: 
 

Appendix A – Genetic Species List (on CD attached) 

 

Appendix B - Full morphological character set (also on CD attached) 

Colour code:  Red means it’s a modified character 

  Purple means it’s an added character for salamanders 

  Orange means soft body character  

  Green means ordered multistate character 

Skull: 

1. Dentition in adult teeth (Zhang et al. 2009); (0) pedicellate, (1) sub-pedicellate, (2) 
non-pedicellate  

2. Fusion of premaxillae (modified from Zhang et al. 2009); (0) paired premaxillae, (1) 
fused at base, (2) fully fused premaxillae (ordered)  

3. Contact of premaxillae (between themselves), (modified from Wiens et al. 2005); (0) 
contacting medially throughout their entire length, (1) separated towards the frontals 
or pareiatals, (2) contacting anteriorly and posteriorly, separated medially with 
fontanelle exposed (3) no contact (ordered)  

4. Dorsal process of premaxilla (ratio data with measurements of width of premaxilla vs 
length of premaxillary extension) (Zhang et al. 2009); (0) absent or poorly defined, (1) 
short but well-defined, (2) strong posterior extension (ordered)  

5. Premaxilla in relation to frontals (modified from Wiens et al. 2005); (0) not contacting 
frontals, (1) contacting frontals, (2) extension of dorsal process intervenes deeply 
between the frontals (ordered)  

6. Premaxillary dentition presence (Hanken and Hall, 1993); (0) present, (1) absent  
7. Premaxilla dentition position (Wiens et al. 2005); (0) present lateral to pars dorsalis, (1) 

absent lateral to pars dorsalis  
8. Premaxilla dentition (shape); (0) conical, (1) bulbous 
9. Combined width of premaxilla measured at the premaxilla/maxilla suture (Wiens et al. 

2005); (0) less than interorbital width, (1) greater than interorbital width 
10. Premaxilla-palatine contact (Wiens et al. 2005); (0) absent, (1) present 
11. Premaxilla-vomer contact (Wiens et al. 2005); (0) absent, (1) present  
12. Premaxilla-nasal contact (Wiens et al. 2005); (0) absent, (1) present 
13. Maxilla (Zhang et al. 2009); (0) presence of bilaterally paired maxillae, (1) greatly 

reduced as a rudimentary element, (2) entirely absent and functionally replaced by 
modified vomer (ordered) 

14. Maxillary dentition (Wiens et al. 2005); (0) dentate, (1) reduced, edentulous 
15. Dentition shape; (0) mono-cuspid, (1) bi-cuspid, (2) tricuspid 
16. Posterior process of maxilla (Wiens et al. 2005); (0) dentate, (1) edentulous 
17. Process from pars dentalis of maxilla overlaps premaxilla (Wiens et al. 2005); (0) no, (1) 

yes 
18. Anterior margin of pars facialis of maxilla (modified from Wiens et al. 2005); (0) 

posterior to external naris, (1) Forms lateral part of external naris  
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19. Septomaxilla (Larson and Dimmick, 1993; Hanken and Hall, 1993; Duellman and Trueb, 
1994; Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); (0) presence of 
bilaterally paired septomaxillae, (1) absence of bones.  

20. Posterior end of septomaxilla (Wiens et al. 2005); (0) not contacting other cranial 
elements, (1) contacting maxilla, (2) contacting prefrontal, (3) contacting nasal 
(unordered) 

21. Nasal (modified from Wiens et al. 2005); (0) present, (1) absent 
22. Nasal ossification (Hanken and Hall, 1993; Larson and Dimmick, 1993; Gao and Shubin, 

2001; Zhang et al. 2009); (0) paired nasals with sutural midline contact or fused, (1) 
nasals separate without midline contact 

23. Nasal (Wiens et al. 2005); (0) not forked posteriorly, (1) forked posteriorly 
24. Nasal shape (Wiens et al. 2005); (0) squarish, length and width roughly equal, (1) 

slender and elongate, length greater than width 
25. Nasal-prefrontal contact (Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); 

(0) present, (1) absent 
26. Nasal and maxilla (Wiens et al. 2005); (0) contacting or abutting, (1) separated 
27. Nasal contact with frontal (Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 

2009); (0) separate from frontal, (1) partly or completely fused to frontal 
28. Nasal-lacrimal duct (Hanken and Hall, 1993; Gao and Shubin, 2001; Zhang et al. 2009); 

(0) present, (1) absent 
29. Lacrimal (Hanken and Hall, 1993; Duellman and Trueb, 1994; Gao and Shubin, 2001; 

Wiens et al. 2005; Zhang et al. 2009); (0) present, (1) absent 
30. Quadratojugal (Hanken and Hall, 1993; Duellman and Trueb, 1994; Gao and Shubin, 

2001; Zhang et al. 2009); (0) present, (1) absent 
31. Prefrontal (Hanken and Hall, 1993; Gao and Shubin, 2001; Wiens et al. 2005; Zhang et 

al. 2009); (0) present, (1) absent  
32. Prefrontal posterior process projecting into the orbit (modified from Hanken and Hall, 

1993; Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); (0) present, (1) 
absent  

33. Prefrontal orientation (modified from Wiens et al. 2005); (0) present and forms part of 
the margin of the external naris, (1) present but does not form part of the margin of 
the external naris  

34. Frontal (Duellman and Trueb, 1994); (0) paired roofing bones, (1) fused into a single 
element 

35. Frontal/maxillary contact (Gao and Shubin, 2001; Zhang et al. 2009, Wiens et al. 2005); 
(0) frontal and maxilla separated by prefrontal, (1) frontal contacts dorsal process of 
maxilla 

36. Dorsolateral shelf on frontal (Wiens et al. 2005); (0) absent, (1) present 
37. Postfrontal (Gao and Shubin, 2001, Zhang et al. 2009); (0) present, (1) absent 
38. Palatal dentition (on the palatine) (modified from Gao and Shubin, 2001, Zhang et al. 

2009); (0) present, (1) absent 
39. Vomer dentition (modified from Gao and Shubin, 2001, Zhang et al. 2009); (0) present, 

(1) absent  
40. Parasphenoid dentition (modified from Gao and Shubin, 2001, Zhang et al. 2009); (0) 

present, (1) absent  
41. Pterygoid dentition (modified from Gao and Shubin, 2001, Zhang et al. 2009); (0) 

present, (1) absent 
42. Placement of vomerine teeth (Duellman and Trueb, 1994, Hanken and Hall, 1993; 

Wiens et al. 2005, Zhang et al. 2009); (0) medial/lateral transverse row, (1) marginal 
(adjacent and parallel to max. and premaxillary teeth), (2) teeth centrally located on 
vomer, (3) teeth in large patches, (4) teeth in M-shaped pattern (unordered) 

43. Palatal tooth structure (Hanken and Hall, 1993; Duellman and Trueb, 1994); (0) conical, 
(1) compressed, (2) bulbous  
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44. Vomerine teeth (Tihen, 1958; Wiens et al. 2005); (0) present on postchoanal process, 
(1) absent on postchoanal process 

45. Vomer with postchoanal process (Wiens et al. 2005); (0) with postchoanal process, (1) 
without postchoanal process 

46. Vomer with prechoanal process (Wiens et al. 2005); (0) with prechoanal process, (1) 
without prechoanal process 

47. Vomer and pterygoid (Wiens et al. 2005); (0) not articulating with pterygoid, (1) 
articulates with pterygoid 

48. Vomers (modified from Wiens et al. 2005); (0) separated anteriorly and medially, (1) 
separated medially and posteriorly (2) separated entirely, (3) in contact 
anteromedially, no fontanelle exposed (unordered) 

49. Vomer, posterior dorsal process extending onto orbitosphenoid (Wiens et al. 2005); (0) 
absent, (1) present 

50. Pterygoid shape (modified from Zhang et al. 2009); (0) triradiate and boomerang-
shaped, (1) enlarged with distinct anteromedial process, (2) straight bar with loss of 
antermedial process, (3) absent (unordered) 

51. Anterior margin of pterygoid (Wiens et al. 2005); (0) smooth, (1) serrate, with irregular 
projections 

52. Pterygoid and coronoid process of prearticular (Wiens et al. 2005); (0) well separated, 
(1) articulating or nearly contacting 

53. Posterior margin of pterygoid extends posterior to jaw articulation (Wiens et al. 2005); 
(0) no, (1) yes 

54. Pterygoid, with dorsomedial process that articulates with orbitosphenoid and forms 
foramen posterior to optic foramen (Wiens et al. 2005); (0) absent, (1) present 

55. Internal carotid foramen (Zhang et al. 2009; Gao and Shubin, 2001); (0) present, (1) 
absent 

56. Squamosal-frontal (Wiens et al. 2005); (0) does not contact frontal, (1) contacts frontal 
57. Squamosal (Wiens et al. 2005); (0) not expanded ventrally, (1) expanded ventrally, 

occupies articular region 
58. Squamosal, main shaft in lateral view (Gao and Shubin, 2001; Wiens et al. 2005; Zhang 

at el. 2009); (0) oriented roughly vertically, (1) oriented diagonally, with dorsoposterior 
inclination 

59. Hook-like (ventrally-directed) process on dorsal head of squamosal (Wiens et al. 2005); 
(0) absent, (1) present 

60. Columellar process of squamosal, connecting stapes and squamosal (Wiens et al. 
2005); (0) absent, (1) present 

61. Squamosal contact with the parietal or other roofing elements (modified from Gao and 
Shubin, 2001; Zhang et al. 2009); (0) contact present, (1) absent or virtually absent 

62. Prootic-exoccipital-opisthotic fusion (Hanken and Hall, 1993; Duellman and Trueb, 
1994; Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); (0) three separate 
elements, (1) prootic-exoccipital fused, separate opisthotic, (2) all three elements 
fused (ordered) 

63. Exposure of prootic-exoccipital-opisthotic complex in dorsal view (Zhang et al. 2009); 
(0) the complex largely concealed by parietal or exposed posterior to skull table, (1) 
large exposure extends lateral to parietal table 

64. Exoccipitals (Wiens et al. 2005); (0) separated medially at tectum synocticum, (1) fused 
65. Operculum (Hanken and Hall, 1993; Zhang et al. 2009); (0) present and free, (1) absent 

or fused 
66. Stapes (Hanken and Hall, 1993; Zhang et al. 2009); (0) present, (1) absent 
67. Orbitosphenoid (Wiens et al. 2005); (0) present, (1) absent 
68. Orbitosphenoid (Wiens et al. 2005); (0) not extending lateral to frontals, or extending 

only slightly anteriorly, (1) extending well lateral to frontals throughout their length 
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69. *Sagittal crest formed at the midline between the parietals of the skull (modified from 
Wiens et al. 2005); (0) absent, (1) present 

70. Dermal sculpture on skull roof (Zhang et al. 2009); (0) present, coarse, (1) present, 
weak, (2) absent 

71. Posterior edge of parietals, extends between exoccipitals to edge of foramen magnum 
on tectum synoticum (Wiens et al. 2005); (0) no, (1) yes 

72. Ventrolateral extension of parietal covers orbitosphenoid region anteriorly (in lateral 
view), (Wiens et al. 2005); (0) absent, (1) present 

73. *Parietal and exoccipital (Wiens et al. 2005); (0) not forming casque around foramen 
magnum, (1) forming casque around foramen magnum 

74. Anterolateral process of parietal (modified from Gao and Shubin, 2001; Zhang et al. 
2009); (0) absent, (1) present  

75. Anterolateral process of parietal (modified from Gao and Shubin, 2001; Zhang et al. 
2009); (0) forms less than 50% of the total length of the parietal, (1) makes up more 
than 50% of total length of the parietal 

76. Medial border of orbit (Zhang et al. 2009); (0) more than 50% of orbital margin formed 
by frontal, (1) frontal contributes less than 50% of the orbit margin, (2) frontal fully 
excluded from entering orbital margin (unordered) 

77. Angular/prearticular fusion (Duellman and Trueb, 1986; Larson and Dimmick, 1993; 
Hanken and Hall, 1993; Duellman and Trueb, 1994; Gao and Shubin, 2001; Wiens et al. 
2005; Zhang et al. 2009); (0) angular distinct from the prearticular, (1) no distinct 
angular (absent or fused to prearticular in adult). 

78. Coronoid (Hanken and Hall, 1993; Gao and Shubin, 2001; Wiens et al. 2005); (0) 
present as a separate element, (1) absent in adult stage 

79. Coronoid dentition (Hanken and Hall, 1993; Wiens et al. 2005); (0) dentate, (1) 
edentulous 

80. Articular (modified from Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); 
(0) present as separate element, (1) fused with prearticular, (2) absent/unossified  
(unordered) 

81. Meckel’s cartilage (Wiens et al. 2005); (0) does not extend to mandibular symphysis, 
(1) extends to mandibular symphysis 

82. *Mandible (in anterior view) (Wiens et al. 2005); (0) thickens suddenly at symphysis, 
(1) thins/ stays the same towards the symphysis  

83. Mandibular symphysis (Duellman and Trueb, 1994); (0) simple union of the mandibular 
rami, (1) rami have an interlocking symphysis 

84. Dentary (Wiens et al. 2005); (0) dentate, (1) edentulous 
85. Dentary teeth shape; (0) conical, (1) bulbous 
86. Dentary symphysial teeth; (0) present, (1) absent 
87. Dentary lateral sensory nerve foramina; (0) absent, (1) present 
88. Retroarticular process (modified from Wiens et al. 2005); (0) very small/absent, (1) 

present 
89. Coronoid process of prearticular (Wiens et al. 2005); (0) adjacent to jaw articulation, 

(1) distinctly anterior to jaw articulation 
90. Palatine and pterygoid (Wiens et al. 2005); (0) palatine absent (1) palatine present 
91. Quadrate ossification (Wiens et al. 2005); (0) present, (1) absent 
92. Posterior process on pars quadrati of quadrate (Wiens et al. 2005); (0) absent, (1) 

present 
93. Jaw articulation (Wiens et al. 2005); (0) well ventral to level of ventral margin of 

braincase, (1) at level of ventral margin of braincase 
94. Quadrate-parasphenoid articulation (Wiens et al. 2005); (0) absent, (1) present 
95. Parasphenoid (Wiens et al. 2005); (0) not extending laterally beyond level of 

orbitosphenoid, (1) extending laterally beyond level of orbitosphenoid 
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96. Optic foramen (modified from Wiens et al. 2005); (0) enclosed in the orbitosphenoid 
bone anteriorly or not at all, (1) enclosed entirely in the orbitosphenoid bone 

97. Posteriormost margin of auditory capsules (Wiens et al. 2005); (0) anterior to occipital 
condyles, (1) posterior to occipital condyles 

98. Lateral flange on prootic extending to the squamosal (Wiens et al. 2005); (0) absent, 
(1) present 

99. Second basibranchial (ventral view); (0) bar (horizontal or vertical), (1) Y-shaped (two 
branches), (2) multiple branches (more than two) (unordered) 

 
Atlas: 
100. Position of atlas posterior cotyle relative to anterior cotyles (J. Gardner, 2000); 

(0) the posterior cotyle is approximately in line with the anterior cotyles in lateral view, 
(1) the posterior cotyle is displaced ventrally in relation to the anterior cotyles. 

101. Notochordal pit in posterior cotyle of the atlas (modified from J. Gardner, 
2000); (0) the notochrodal pit is open and has no infilling of calcified or ossified 
cartilage, (1) partly in-filled by ossified cartilage, (2) totally in-filled and bulging beyond 
the edge of the centrum with ossified cartilage (ordered) 

102. Relative depth of anterior atlas cotyles (modified from J. Gardner, 2000); (0) 
deeply concave, (1) nearly flat to shallowly concave, (2) convex (although the structure 
is called a cotyle which means cup-like, they are sometimes convex) (ordered) 

103. Outline of anterior atlas cotyles (J. Gardner, 2000); (0) compressed 
dorsoventrally, (1) subcircular, (2) compressed lateromedially (ordered) 

104. Form of odontoid process (modified from J. Gardner, 2000); (0) knob-like, (1) 
dorsoventrally flattened, (2) separate (not joined in the middle), (3) highly reduced or 
absent (unordered) 

105. Position of atlas neural canal relative to the anterior cotyles (J. Gardner, 2000); 
(0) the neural canal is situated above the anterior cotyles, (1) the neural canal 
protrudes in between the anterior cotyles, but up to half way or less than the dorso-
ventral distance of the anterior cotyles, (2) Neural canal intrudes deeply or completely 
between the anterior cotyles (ordered) 

106. Size of atlas neural canal relative to the anterior cotyles (J. Gardner, 2000); (0) 
the anterior circumference of the neural canal is approximately equal to or greater 
than the circumference of one of the anterior cotyles, (1) the neural canal is smaller 
than the anterior coyle 

107. Posterior extent of neural arch roof of the atlas (modified from J. Gardner, 
2000); (0) extends past the edge of the posterior cotyle, (1) in line with the posterior 
cotyle, (2) the posterior edge of the neural arch roof is shorter i.e. does not reach to 
the edge of the posterior cotyle (ordered) 

108. Dorsal outline of posterior margin of the atlas neural arch roof (modified from 
J. Gardner, 2000); (0) truncated, (1) forked, (2) pointed (unordered) 

109. Dorsal outline of the atlas’ neural arch crest (modified from J. Gardner, 2000); 
(0) the outline of the crest broadens posteriorly, (1) it narrows posteriorly, (2) 
relatively straight, (3) it is hourglass shaped i.e. narrows then broadens (unordered) 

110. Shape of anterior end of neural arch crest on the atlas (modified from J. 
Gardner, 2000); (0) not elaborated, (1) swollen or thickened, (2) paired anterior 
processes (unordered) 

111. Postzygapophyses prominence on the atlas (modified from J. Gardner, 2000); 
(0) prominent, (1) small. 

112. Postzygapophyses articular surface on the atlas (modified from J. Gardner, 
2000); (0) laterally divergent, (1) directed ventro-laterally. 

113. Postzygapophyses; (0) diverge from the end of the neural arch crest on the 
atlas, (1) diverge from along the neural arch crest of the atlas. 
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114. Condition of the dorsal part of the neural arch crest of the atlas (J. Gardner, 
2000); (0) finished in cartilage, (1) finished in bone 

115. Condition of the posterior end of the neural arch spine of the atlas; (0) finished 
in cartilage, (1) finished in bone 

116. Four facetted articulation of exoccipital and atlas (Wiens et al. 2005; Zhang et 
al. 2009);  (0) absent due to reduction in odontoid process, (1) absent due to 
continuous surface of odontoid and anterior cotyles, (2) present (unordered) 

117. Atlantal spinal nerve foramen (Zhang et al. 2009); (0) absent, (1) a notch, (2) 
fully enclosed (ordered) 

118. Atlas, transverse process (Wiens et al. 2005); (0) absent, (1) present 
119. Shape of atlas centrum in ventral view (Zhang et al. 2009); (0) shorter than 

postatlantals, (1) roughly equal in length to postatlantals, (2) longer than postatlantals 
(unordered) 

120. Basapophyses on the atlas; (0) absent, (1) present   
121. Neural cord supports, (0) absent, (1) present  

 

Presacral Vertebrae: 
122. Centrum of presacral vertebrae (modified from J. Gardner, 2000); (0) 

amphicoelous, (1) semi-opisthocoelous, (2) fully opisthocoelous, (3) procoelous 
(unordered) 

123. Size of the 4th trunk vertebrae (5th presacral) neural canal relative to its 
anterior size of the centrum; (0) neural canal is approximately equal in size (radius) to, 
or greater than, the size of the anterior centrum, (1) neural canal smaller than the 
anterior centrum 

124. Posterior basapophyses of the presacrals (J. Gardner, 2000); (0) absent, (1) 
present 

125. Anterior basapophyses of the presacrals (Wiens et al. 2005); (0) absent, (1) 
present 

126. Condition of neural spine (J. Gardner, 2000); (0) finished in cartilage, (1) 
finished in bone 

127. Prominent, v-shaped hypapophyses (J. Gardner, 2000); (0) absent, (1) present 
128. Bony lamina between diapophyses and paraphyses (modified from Wiens et 

al. 2005); (0) absent, (1) partial presence, (2) present – full lamina (ordered) 
129. Mid-ventral keel on mid-body vertebrae (modified from Wiens et al. 2005); (0) 

absent, (1) present (small), (2) Large – extends below the ventral edge of the centrum 
cotyles (ordered) 

130. Posterolateral flanges on mid-dorsal keel on mid-body vertebrae (Wiens et al. 
2005); (0) absent, (1) present 

131. Anterior keel/flange on transverse process (extending from, and between the 
transverse process to anterior edge of centrum) (modified from Wiens et al. 2005); (0) 
absent, (1) present 

132. Fenestra in anterior keel; (0) present, (1) absent 
133. Anterodorsal keel on transverse process (extending from transverse process to 

anterior zygapophysis) (modified from Wiens et al. 2005); (0) absent, (1) present 
134. Posterior keel of transverse process (extends from transverse process to 

posterior centrum edge); (0) absent, (1) present 
135. Dermal sculpture on dorsal surface of neural arch; (0) present, (1) absent 
136. Shape of the neural spine of mid-body vertebrae (modified from Wiens et al. 

2005); (0) absent/truncated, (1) single median process (spine-like projection), (2) 
present (paired process)  

137. Posteriorly projecting neural spine(s) (past the posterior centrum edge); (0) 
shorter than posterior centrum edge, (1) in line with posterior centrum edge, (2) 
projecting past the posterior centrum edge (ordered) 
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138. Posterior zygapophyses facet face of presacral vertebrae; (0) latero-medially 
divergent (facing slightly outwards, away from each other), (1) directed ventrally 

139. Transverse process in anterior part of trunk series, excluding first presacral 
vertebra (J. Gardner, 2000); (0) Unicapitate, (1) bicapitate, (2) absent 

140. Mid-dorsal keel (neural arch crest) on presacral vertebra (Wiens et al. 2005); 
(0) absent, (1) present 

141. Mid-dorsal keel (neural arch crest) on presacral vertebra length; (0) short 
(does not run the length of the vertebra), (1) long (runs from at least just behind the 
anterior zygapophyses to neural spine) 

 
Caudal Vertebrae: 
142. Caudal vertebrae, neural spine (Wiens et al. 2005); (0) with one process, (1) 

paired process 
143. Mid-dorsal crest on caudal vertebrae (Wiens et al. 2005); (0) absent, (1) 

present 
144. Dermal sculpturing on dorsal surface of neural arch on the caudal vertebrae; 

(0) present, (1) absent 
145. Caudal vertebrae (Wiens et al. 2005); (0) ventral keels absent, low, and/or 

rounded, (1) dorsal and ventral keels raised and distinctly rectangular 
146. Transverse process of anterior caudal vertebrae (Wiens et al. 2005); (0) 

posteriorly orientated, (1) anteriorly oriented 
147. Transverse process of anterior caudal vertebrae; (0) unicapitate, (1) bicapitate 
148. Caudal vertebrae, anterior keel on haemal arch (Wiens et al. 2005); (0) absent, 

(1) present 
149. Caudal vertebrae, haemal arch (Wiens et al. 2005); (0) complete, lateral halves 

fused to form median process, (1) incomplete, two ventral lamina do not contact or 
fuse on anterior caudal vertebrae, (2) incomplete for all caudal vertebrae (unordered) 

150. Caudal vertebrae, haemal arch spine (Wiens et al. 2005); (0) paired process, (1) 
single process 

151. Caudosacral vertebrae (number of caudal vertebrae lacking a haemal arch, 
plus the sacral vertebra) (Character from Wake, 1966; Wiens et al. 2005); (0) 2, (1) 3, 
(2) 4 (ordered) 

152. Zygapophyses connecting caudal vertebrae (Wiens et al. 2005); (0) present on 
all or most vertebrae, (1) absent from posterior caudal vertebrae  

 
Ribs: 
153. Number of ribs on anterior caudal vertebrae (Zhang et al. 2009); (0) more than 

3 pairs, (1) 2-3 pairs, (2) free ribs absent (ordered) 
154. Atlantal Ribs (Larson and Dimmick, 1993); (0) absent, (1) present 
155. Postatlantal ribs (modified from Zhang et al. 2009); (0) bicapitate, (1) 

unicapitate, (2) absent (unordered) 
156. Dorsal process of bicapitate ribs (Wiens et al. 2005); (0) articulates with 

diapophysis, (1) reduced, does not articulate with diapophysis 
157. Ribs on mid-body presacral vertebrae (Wiens et al. 2005); (0) present, (1) 

absent 
158. Ribs on last presacral vertebra (Wiens et al. 2005); (0) present, (1) absent 
159. Rib on penultimate presacral vertebra (Wiens et al. 2005); (0) present, (1) 

absent 
160. Sacral rib (Wiens et al. 2005); (0) free, (1) fused 
161. Dorsal process on mid-body of rib of 4th trunk vertebra (4th presacral excluding 

the atlas) (Wiens et al. 2005); (0) absent, (1) present 
162. Bony lamina between ventral and dorsal processes of ribs (Wiens et al. 2005); 

(0) absent, (1) present 
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Spinal nerves: 
163. Spinal nerves in posterior trunk vertebrae (data from Edwards, 1976; modified 

character from character X of Duellman and Trueb, 1986; Wiens et al. 2005); (0) exit 
intervertebrally, (1) exit intravertebrally 

164. Spinal nerve exit in caudal vertebrae (data from Edwards, 1976; modified 
character from character X of Duellman and Trueb, 1986; Wiens et al. 2005); (0) 
intervertebral in all caudal vertebrae, (1) intravertebral in some or all caudal vertebrae 

165. Dorsal and ventral roots of spinal nerves in trunk vertebrae (modified from 
Edwards, 1976; Duellman and Trueb, 1986; Wiens et al. 2005 and Thien and Chantell 
1963); (0) exit through single foramen, (1) dorsal and ventral roots of presacral 
vertebrae exit through separate foramina  

166. Presacral spinal nerve foramina (modified from Edwards, 1976; Duellman and 
Trueb, 1986; Wiens et al. 2005 and Thien and Chantell 1963); (0) spinal nerve exits 
intervertebrally, (1) spinal nerve exits intravertebrally in some vertebrae, (2) all spinal 
nerves exit intravertebrally (ordered) 

 
Pectoral girdle: 
167. Scapula-coracoid ossification (modified from Duellman and Trueb, 1986; 

Larson and Dimmick, 1993; Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 
2009); (0) ossified as separate elements, (1) two elements as a single ossification 

168. Coracoids (Wiens et al. 2005); (0) not contacting medially, (1) 
contacting/overlapping medially, (2) fused medially (ordered) 

169. Procoracoid and coracoid (Wiens et al. 2005); (0) not overlapping anteriorly, 
(1) overlapping anteriorly, enclosing foramen 

170. Supracoracoid foramen (modified from Wiens et al. 2005); (0) entirely in 
cartilage/absent, (1) partly in bone, (2) entirely in bone  

171. Suprascapula (modified from Wiens et al. 2005); (0) expanded in width 
dorsally, (1) not expanded, about same width as dorsal width of scapula 

172. Crista dorsalis of humerus (Wiens et al. 2005); (0) present, (1) absent 
173. Carpals (Wiens et al. 2005); (0) all elements cartilaginous, (1) some (but not all) 

ossified, (2) all elements at least partly ossified (ordered) 
174. Fusion of distal carpal 1+2 (Gao and Shubin, 2001; Zhang et al. 2009); (0) 

fusion absent, (1) fusion present 
175. Distal carpal 4 and 5 (Gao and Shubin, 2001; Zhang et al. 2009); (0) two 

elements remain separate, (1) fused 
176. Carpals 3 and 4 (Wiens et al. 2005); (0) separate, (1) fused 
177. Prepollex and radiale (Wiens et al. 2005); (0) separate, (1) fused 
178. Ulnare (the carpal that articulates with the ulna) and intermedium (the bone 

or cartilage between the radiale and ulnare in the carpus) (Gao and Shubin, 2001; 
Wiens et al. 2005; Zhang et al. 2009); (0) separate, (1) fused 

179. Ulnare and carpal 4 (Wiens et al. 2005); (0) separate, (1) fused 
180. Intermedium and centrale (Wiens et al. 2005); (0) separate, (1) fused 
181. Number of centralia in manus (or pes) (Gao and Shubin, 2001); (0) more than 

one Centralia element, (1) one central element  
182. Number of manual digits (fingers) on forelimb (Wiens et al. 2005); (0) four, (1) 

three, (2) two, (3) one (unordered) 
183. Number of phalanges on digit I of manus (Wiens et al. 2005); (0) two, (1) one 

 
Pelvic girdle: 
184. Hind limbs (Wiens et al. 2005); (0) present, (1) absent  
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185. Pelvic girdle (structure), (Wiens et al. 2005); (0) halves fused medially, (1) 
halves separate medially 

186. Lateral processes of pubis (Wiens et al. 2005); (0) present, (1) absent 
187. Ossification of ischium (Wiens et al. 2005); (0) not extending to anterior 

margin of pelvic girdle, (1) extending to anterior margin of pelvic girdle 
188. Ossification of ischia (Wiens et al. 2005); (0) meeting mid-ventrally (separated 

by thin strip of cartilage), (1) well-separated mid-ventrally 
189. Posterior median process on ischium (Wiens et al. 2005); (0) absent, (1) 

present 
190. Median processes of pubis (Wiens et al. 2005); (0) posterior to or level with 

lateral processes, (1) anterior to lateral processes 
191. Femur trochanter; (0) absent, (1) present 
192. Tibial spur (Wiens et al. 2005); (0) absent, (1) present, not elongate and 

pointed, (2) elongate and pointed (unordered) 
193. Fusion of tarsals 1 and 2 (Wiens et al. 2005; Zhang et al. 2009); (0) separate, 

(1) fused 
194. Distal tarsals 4 and 5 (Wiens et al. 2005); (0) separate, (1) fused 
195. Number of toes on hindlimb (Wiens et al. 2005); (0) five, (1) four, (2) three, (3) 

two, (4) one (ordered) 
196. Number of phalanges on digit IV of pes (Wiens et al. 2005); (0) three, (1) four 
197. Phalanges on digit I of pes (Wiens et al. 2005); (0) two, (1) one 

 
Soft body coding: 
 

198. Junction of the periotic canal and cistern (Duellman and Trueb 1986); (0) 
periotic canal joins the periotic cistern dorsally at its posterior aspect, (1) the junction 
of the canal and the cistern is slightly dorsal and posterior to the festra ovalis, (2) the 
junction of the cistern and canal is formed through the protrusion of the cistern into 
the fenestra ovalis 

199. Flexures of periotic canal (Duellman and Trueb 1986); (0) the periotic canal 
curves ventrally and medially from its junction with the periotic cistern, (1) the canal 
takes a relatively horizontal course, (2) canal with one or more flexures 

200. Basilaris complex of inner ear (Duellman and Trueb 1986); (0) recessus 
basilaris and papillae are present in the inner ear, (1) absence of papillae, (2) absence 
of entire complex 

201. First hypobranchial and first ceratobranchial (Duellman and Trueb 1986); (0) 
separate elements, (1) fusion of the two elements 

202. Second ceratobranchial (Duellman and Trueb 1986); (0) present, (1) absent 
203. Number of larval gill slits (Duellman and Trueb 1986); (0) four pairs, (1) three 

pairs, (2) two pairs, (3) one pair 
204. Ypsiloid cartilage (Duellman and Trueb 1986); (0) present, (1) absent 
205. Levator mandibulae muscle (Duellman and Trueb 1986); (0) originates on the 

skull roof, (1) origin on the side of the skull, (2) an origin that includes the exoccipital 
(or cervical vertebrae),  

206. Pubotibialis and puboischiotibialis muscles (Duellman and Trueb 1986); (0) 
separate muscles, (1) fusion of the two muscles 

207. Kidney (Duellman and Trueb 1986); (0) presence of well-developed glomeruli 
in anterior of kidney, (1) reduction of absence of anterior glomeruli 

208. Mode of fertilisation (Duellman and Trueb 1986); (0) external fertilisation, (1) 
internal fertilisation 

209. Recessus amphibiorum (Larson and Dimmick 1993) (0) horizontal orientation 
of the recessus amphibiorum of the inner ear, (1) vertical orientation 
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210. Otic sac (Larson and Dimmick 1993) (0) multilobate sac which is vascularised 
and filled with calcium, (1) bulbar, partially vascularised sac, (2) bulbar unvascularised 
sac 

211. Amphibian periotic canal connective tissue (Larson and Dimmick 1993) (0) 
absence of this tissue, (1) Presence of fibrous connective tissue around amphibian 
periotic canal 

212. Periotic cistern (0) large cistern, (1) small cistern 
213. Fenestral relations of the periotic cistern (Larson and Dimmick 1993) (0) 

absence of protrusion, (1) protrusion of the cistern into the fenestra 
214. Palatal dentition (unordered) (Larson and Dimmick 1993) (0) replacement of 

vomerine teeth proceeds laterally in parallel to the maxillary teeth, (1) from the 
posterior of the vomer, (2) both laterally and posteriorly, (3) medially 

215. Epidermis (Larson and Dimmick 1993) (0) absence in female salamanders of an 
epidermal lining in the anterior half of the cloacal chamber, (1) presence of the 
epidermal lining 

216. Male anterior ventral glands (Larson and Dimmick 1993)(0) absence, (1) 
presence 

217. CTL/TCL cloacal tube length divided by total cloacal length quotient in females 
(Sever 1991); (0) present, (1) absent 

218. CTL/TCL cloacal tube length divided by total cloacal length quotient in males, 
(Sever 1991); (0) present, (1) absent 

219. Ciliated epithelium in the cloacal tube and/or anterior cloacal chamber of 
females, (Sever 1991); (0) present, (1) absent 

220. Ciliated epithelium in the cloacal tube and/or anterior cloacal chamber of 
males, (Sever 1991); (0) present, (1) absent 

221. Extent of epidermis in the female cloacal chamber, (Sever 1991); (0) the 
epidermal lining does not extend into the anterior one-half of the cloacal chamber, (1) 
the epidermal lining does extend into the anterior one-half of the cloacal chamber 

222. Cloacal recess in females (Sever 1991); (0) absent, (1) present 
223. Number of pairs of rugae in the male cloaca (Sever 1991); (0) < 10, (1) > 10 
224. Primary and secondary folds in the male cloacal tube, (Sever 1991); (0) absent, 

(1) present 
225. Middorsal evagination of the male cloacal chamber (Sever 1991); (0) absent, 

(1) present 
226. Dorsalateral recesses in the male cloacal chamber (Sever 1991); (0) absent, (1) 

present 
227. Pseudopenis in the male cloaca (Sever 1991); (0) absent, (1) present 
228. Female anterior ventral glands (Sever 1991); (0) absent, (1) present 
229. Spermathecae (Sever 1991); (0) absent, (1) present 
230. Common tube to the spermathecae (Sever 1991); (0) absent, (1) present 
231. Female dorsal glands (Sever 1991); (0) absent, (1) present 
232. Other female cloacal glands (Sever 1991); (0) absent, (1) present 
233. Male anterior ventral glands (Sever 1991); (0) absent, (1) present 
234. Posterior ventral glands (Sever 1991); (0) absent, (1) present 
235. Kingsbury's glands (Sever 1991); (0) absent, (1) present 
236. Dorsal pelvic glands (Sever 1991); (0) absent, (1) present 
237. Lateral pelvic glands (Sever 1991); (0) absent, (1) present 
238. Caudal pelvic glands (Sever 1991); (0) absent, (1) present 
239. Male dorsal or vent glands (Sever 1991); (0) absent, (1) present 
240. Amphiumid pit glands (Sever 1991); (0) absent, (1) present 
241. Other male cloacal glands (Sever 1991); (0) absent, (1) present 
242. Lateral wall of nasal capsule (Zhang et al. 2009); (0) complete, (1) incomplete  
243. Lateral narial fenestra (Zhang et al. 2009); (0) absent, (1) present  
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244. Posterior wall of nasal capsule (Zhang et al. 2009); (0) complete, (1) 
incomplete  

245. Origin of m. adductor mandibulae internus superficialis (Zhang et al. 2009); (0) 
on dorsallateral surface of parietal, (1) origin extends posteriorly to exoccipital, (2) 
origin extends to cervical vertebra, (3) origin extends anteriorly towards level of frontal 

246. Microchromosome (Zhang et al. 2009); (0) present, (1) absent 
247. Ectopterygoid (Zhang et al. 2009); (0) present, (1) absent 
248. Haploid Chromosomes (Gao and Shubin 2001); (0) more than 20, (1) reduced 

to 19, (2) further reduced to 14 or less 
249. Diploid Chromosomes (Gao and Shubin 2001); (0) 56 or more, (1) 40-55, (2) 

lower than 40 

 

Appendix C – Morphological Datasheet (on CD attached) 

Appendix D – Species list (on CD attached) 

Appendix E – RI Dataset (on CD attached) 

Appendix F – LQ Dataset (on CD attached) 

 

Appendix G – Comparison between RI and Le Quesne datasets (also on CD 

attached) 

Full morphological character set colour coded  

NB: (For character numbers for the RI and Le Quesne characters, please see Appendix E and F 
respectively) 

Colour code:  Green means RI characters (only) 

  Blue means Le Quesne character (only) 

  Red means both RI and Le Quesne characters 

  Black means character removed from both RI and Le Quesne sets 

Skeletal characters:  

Skull: (RI = 42, LQ = 31, agreed = 24) 

1. Dentition in adult teeth (Zhang et al. 2009); (0) pedicellate, (1) sub-pedicellate, (2) 
non-pedicellate  

2. Fusion of premaxillae (modified from Zhang et al. 2009); (0) paired premaxillae, (1) 
fused at base, (2) fully fused premaxillae (ordered)  

3. Contact of premaxillae (between themselves), (modified from Wiens et al. 2005); (0) 
contacting medially throughout their entire length, (1) separated towards the frontals 
or pareiatals, (2) contacting anteriorly and posteriorly, separated medially with 
fontanelle exposed (3) no contact (ordered)  
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4. Dorsal process of premaxilla (ratio data with measurements of width of premaxilla vs 
length of premaxillary extension) (Zhang et al. 2009); (0) absent or poorly defined, (1) 
short but well-defined, (2) strong posterior extension (ordered)  

5. Premaxilla in relation to frontals (modified from Wiens et al. 2005); (0) not contacting 
frontals, (1) contacting frontals, (2) extension of dorsal process intervenes deeply 
between the frontals (ordered)  

6. Premaxillary dentition presence (Hanken and Hall, 1993); (0) present, (1) absent  
7. Premaxilla dentition position (Wiens et al. 2005); (0) present lateral to pars dorsalis, (1) 

absent lateral to pars dorsalis  
8. Premaxilla dentition (shape); (0) conical, (1) bulbous 
9. Combined width of premaxilla measured at the premaxilla/maxilla suture (Wiens et al. 

2005); (0) less than interorbital width, (1) greater than interorbital width 
10. Premaxilla-palatine contact (Wiens et al. 2005); (0) absent, (1) present 
11. Premaxilla-vomer contact (Wiens et al. 2005); (0) absent, (1) present  
12. Premaxilla-nasal contact (Wiens et al. 2005); (0) absent, (1) present 
13. Maxilla (Zhang et al. 2009); (0) presence of bilaterally paired maxillae, (1) greatly 

reduced as a rudimentary element, (2) entirely absent and functionally replaced by 
modified vomer  

14. Maxillary dentition (Wiens et al. 2005); (0) dentate, (1) reduced, edentulous 
15. Dentition shape; (0) mono-cuspid, (1) bi-cuspid, (2) tricuspid 
16. Posterior process of maxilla (Wiens et al. 2005); (0) dentate, (1) edentulous 
17. Process from pars dentalis of maxilla overlaps premaxilla (Wiens et al. 2005); (0) no, (1) 

yes 
18. Anterior margin of pars facialis of maxilla (modified from Wiens et al. 2005); (0) 

posterior to external naris, (1) Forms lateral part of external naris  
19. Septomaxilla (Larson and Dimmick, 1993; Hanken and Hall, 1993; Duellman and Trueb, 

1994; Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); (0) presence of 
bilaterally paired septomaxillae, (1) absence of bones 

20. Posterior end of septomaxilla (Wiens et al. 2005); (0) not contacting other cranial 
elements, (1) contacting maxilla, (2) contacting prefrontal, (3) contacting nasal 
(unordered) 

21. Nasal (modified from Wiens et al. 2005); (0) present, (1) absent 
22. Nasal ossification (Hanken and Hall, 1993; Larson and Dimmick, 1993; Gao and Shubin, 

2001; Zhang et al. 2009); (0) paired nasals with sutural midline contact or fused, (1) 
nasals separate without midline contact 

23. Nasal (Wiens et al. 2005); (0) not forked posteriorly, (1) forked posteriorly 
24. Nasal shape (Wiens et al. 2005); (0) squarish, length and width roughly equal, (1) 

slender and elongate, length greater than width 
25. Nasal-prefrontal contact (Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); 

(0) present, (1) absent 
26. Nasal and maxilla (Wiens et al. 2005); (0) contacting or abutting, (1) separated 
27. Nasal contact with frontal (Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 

2009); (0) separate from frontal, (1) partly or completely fused to frontal 
28. Nasal-lacrimal duct (Hanken and Hall, 1993; Gao and Shubin, 2001; Zhang et al. 2009); 

(0) present, (1) absent 
29. Lacrimal (Hanken and Hall, 1993; Duellman and Trueb, 1994; Gao and Shubin, 2001; 

Wiens et al. 2005; Zhang et al. 2009); (0) present, (1) absent 
30. Quadratojugal (Hanken and Hall, 1993; Duellman and Trueb, 1994; Gao and Shubin, 

2001; Zhang et al. 2009); (0) present, (1) absent 
31. Prefrontal (Hanken and Hall, 1993; Gao and Shubin, 2001; Wiens et al. 2005; Zhang et 

al. 2009); (0) present, (1) absent  
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32. Prefrontal posterior process projecting into the orbit (modified from Hanken and Hall, 
1993; Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); (0) present, (1) 
absent  

33. Prefrontal orientation (modified from Wiens et al. 2005); (0) present and forms part of 
the margin of the external naris, (1) present but does not form part of the margin of 
the external naris  

34. Frontal (Duellman and Trueb, 1994); (0) paired roofing bones, (1) fused into a single 
element 

35. Frontal/maxillary contact (Gao and Shubin, 2001; Zhang et al. 2009, Wiens et al. 2005); 
(0) frontal and maxilla separated by prefrontal, (1) frontal contacts dorsal process of 
maxilla 

36. Dorsolateral shelf on frontal (Wiens et al. 2005); (0) absent, (1) present 
37. Postfrontal (Gao and Shubin, 2001, Zhang et al. 2009); (0) present, (1) absent 
38. Palatal dentition (on the palatine) (modified from Gao and Shubin, 2001, Zhang et al. 

2009); (0) present, (1) absent 
39. Vomer dentition (modified from Gao and Shubin, 2001, Zhang et al. 2009); (0) present, 

(1) absent  
40. Parasphenoid dentition (modified from Gao and Shubin, 2001, Zhang et al. 2009); (0) 

present, (1) absent  
41. Pterygoid dentition (modified from Gao and Shubin, 2001, Zhang et al. 2009); (0) 

present, (1) absent 
42. Placement of vomerine teeth (Duellman and Trueb, 1994, Hanken and Hall, 1993; 

Wiens et al. 2005, Zhang et al. 2009); (0) medial/lateral transverse row, (1) marginal 
(adjacent and parallel to max. and premaxillary teeth), (2) teeth centrally located on 
vomer, (3) teeth in large patches, (4) teeth in M-shaped pattern  

43. Palatal tooth structure (Hanken and Hall, 1993; Duellman and Trueb, 1994); (0) conical, 
(1) compressed, (2) bulbous  

44. Vomerine teeth (Tihen, 1958; Wiens et al. 2005); (0) present on postchoanal process, 
(1) absent on postchoanal process 

45. Vomer with postchoanal process (Wiens et al. 2005); (0) with postchoanal process, (1) 
without postchoanal process 

46. Vomer with prechoanal process (Wiens et al. 2005); (0) with prechoanal process, (1) 
without prechoanal process 

47. Vomer and pterygoid (Wiens et al. 2005); (0) not articulating with pterygoid, (1) 
articulates with pterygoid 

48. Vomers (modified from Wiens et al. 2005); (0) separated anteriorly and medially, (1) 
separated medially and posteriorly (2) separated entirely, (3) in contact 
anteromedially, no fontanelle exposed (unordered) 

49. Vomer, posterior dorsal process extending onto orbitosphenoid (Wiens et al. 2005); (0) 
absent, (1) present 

50. Pterygoid shape (modified from Zhang et al. 2009); (0) triradiate and boomerang-
shaped, (1) enlarged with distinct anteromedial process, (2) straight bar with loss of 
antermedial process, (3) absent  

51. Anterior margin of pterygoid (Wiens et al. 2005); (0) smooth, (1) serrate, with irregular 
projections 

52. Pterygoid and coronoid process of prearticular (Wiens et al. 2005); (0) well separated, 
(1) articulating or nearly contacting 

53. Posterior margin of pterygoid extends posterior to jaw articulation (Wiens et al. 2005); 
(0) no, (1) yes 

54. Pterygoid, with dorsomedial process that articulates with orbitosphenoid and forms 
foramen posterior to optic foramen (Wiens et al. 2005); (0) absent, (1) present 

55. Internal carotid foramen (Zhang et al. 2009; Gao and Shubin, 2001); (0) present, (1) 
absent 
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56. Squamosal-frontal (Wiens et al. 2005); (0) does not contact frontal, (1) contacts frontal 
57. Squamosal (Wiens et al. 2005); (0) not expanded ventrally, (1) expanded ventrally, 

occupies articular region 
58. Squamosal, main shaft in lateral view (Gao and Shubin, 2001; Wiens et al. 2005; Zhang 

at el. 2009); (0) oriented roughly vertically, (1) oriented diagonally, with dorsoposterior 
inclination 

59. Hook-like (ventrally-directed) process on dorsal head of squamosal (Wiens et al. 2005); 
(0) absent, (1) present 

60. Columellar process of squamosal, connecting stapes and squamosal (Wiens et al. 
2005); (0) absent, (1) present 

61. Squamosal contact with the parietal or other roofing elements (modified from Gao and 
Shubin, 2001; Zhang et al. 2009); (0) contact present, (1) absent or virtually absent 

62. Prootic-exoccipital-opisthotic fusion (Hanken and Hall, 1993; Duellman and Trueb, 
1994; Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); (0) three separate 
elements, (1) prootic-exoccipital fused, separate opisthotic, (2) all three elements 
fused  

63. Exposure of prootic-exoccipital-opisthotic complex in dorsal view (Zhang et al. 2009); 
(0) the complex largely concealed by parietal or exposed posterior to skull table, (1) 
large exposure extends lateral to parietal table 

64. Exoccipitals (Wiens et al. 2005); (0) separated medially at tectum synocticum, (1) fused 
65. Operculum (Hanken and Hall, 1993; Zhang et al. 2009); (0) present and free, (1) absent 

or fused 
66. Stapes (Hanken and Hall, 1993; Zhang et al. 2009); (0) present, (1) absent 
67. Orbitosphenoid (Wiens et al. 2005); (0) present, (1) absent 
68. Orbitosphenoid (Wiens et al. 2005); (0) not extending lateral to frontals, or extending 

only slightly anteriorly, (1) extending well lateral to frontals throughout their length 
69. *Sagittal crest formed at the midline between the parietals of the skull (modified from 

Wiens et al. 2005); (0) absent, (1) present 
70. Dermal sculpture on skull roof (Zhang et al. 2009); (0) present, coarse, (1) present, 

weak, (2) absent 
71. Posterior edge of parietals, extends between exoccipitals to edge of foramen magnum 

on tectum synoticum (Wiens et al. 2005); (0) no, (1) yes 
72. Ventrolateral extension of parietal covers orbitosphenoid region anteriorly (in lateral 

view), (Wiens et al. 2005); (0) absent, (1) present 
73. *Parietal and exoccipital (Wiens et al. 2005); (0) not forming casque around foramen 

magnum, (1) forming casque around foramen magnum 
74. Anterolateral process of parietal (modified from Gao and Shubin, 2001; Zhang et al. 

2009); (0) absent, (1) present  
75. Anterolateral process of parietal (modified from Gao and Shubin, 2001; Zhang et al. 

2009); (0) forms less than 50% of the total length of the parietal, (1) makes up more 
than 50% of total length of the parietal 

76. Medial border of orbit (Zhang et al. 2009); (0) more than 50% of orbital margin formed 
by frontal, (1) frontal contributes less than 50% of the orbit margin, (2) frontal fully 
excluded from entering orbital margin  

77. Angular/prearticular fusion (Duellman and Trueb, 1986; Larson and Dimmick, 1993; 
Hanken and Hall, 1993; Duellman and Trueb, 1994; Gao and Shubin, 2001; Wiens et al. 
2005; Zhang et al. 2009); (0) angular distinct from the prearticular, (1) no distinct 
angular (absent or fused to prearticular in adult) 

78. Coronoid (Hanken and Hall, 1993; Gao and Shubin, 2001; Wiens et al. 2005); (0) 
present as a separate element, (1) absent in adult stage 

79. Coronoid dentition (Hanken and Hall, 1993; Wiens et al. 2005); (0) dentate, (1) 
edentulous 
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80. Articular (modified from Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); 
(0) present as separate element, (1) fused with prearticular, (2) absent/unossified   

81. Meckel’s cartilage (Wiens et al. 2005); (0) does not extend to mandibular symphysis, 
(1) extends to mandibular symphysis 

82. *Mandible (in anterior view) (Wiens et al. 2005); (0) thickens suddenly at symphysis, 
(1) thins/ stays the same towards the symphysis  

83. Mandibular symphysis (Duellman and Trueb, 1994); (0) simple union of the mandibular 
rami, (1) rami have an interlocking symphysis 

84. Dentary (Wiens et al. 2005); (0) dentate, (1) edentulous 
85. *Dentary teeth shape; (0) conical, (1) bulbous 
86. Dentary symphysial teeth; (0) present, (1) absent 
87. *Dentary lateral sensory nerve foramina; (0) absent, (1) present 
88. Retroarticular process (modified from Wiens et al. 2005); (0) very small/absent, (1) 

present 
89. Coronoid process of prearticular (Wiens et al. 2005); (0) adjacent to jaw articulation, 

(1) distinctly anterior to jaw articulation 
90. Palatine and pterygoid (Wiens et al. 2005); (0) palatine absent (1) palatine present 
91. Quadrate ossification (Wiens et al. 2005); (0) present, (1) absent 
92. Posterior process on pars quadrati of quadrate (Wiens et al. 2005); (0) absent, (1) 

present 
93. Jaw articulation (Wiens et al. 2005); (0) well ventral to level of ventral margin of 

braincase, (1) at level of ventral margin of braincase 
94. Quadrate-parasphenoid articulation (Wiens et al. 2005); (0) absent, (1) present 
95. Parasphenoid (Wiens et al. 2005); (0) not extending laterally beyond level of 

orbitosphenoid, (1) extending laterally beyond level of orbitosphenoid 
96. Optic foramen (modified from Wiens et al. 2005); (0) enclosed in the orbitosphenoid 

bone anteriorly or not at all, (1) enclosed entirely in the orbitosphenoid bone 
97. Posteriormost margin of auditory capsules (Wiens et al. 2005); (0) anterior to occipital 

condyles, (1) posterior to occipital condyles 
98. Lateral flange on prootic extending to the squamosal (Wiens et al. 2005); (0) absent, 

(1) present 
99. Second basibranchial (ventral view); (0) bar (horizontal or vertical), (1) Y-shaped (two 

branches), (2) multiple branches (more than two)  
 

Atlas: (RI = 9, LQ = 5, agreed = 5) 
100. Position of atlas posterior cotyle relative to anterior cotyles (J. Gardner, 2000); 

(0) the posterior cotyle is approximately in line with the anterior cotyles in lateral view, 
(1) the posterior cotyle is displaced ventrally in relation to the anterior cotyles. 

101. Notochordal pit in posterior cotyle of the atlas (modified from J. Gardner, 
2000); (0) the notochrodal pit is open and has no infilling of calcified or ossified 
cartilage, (1) partly in-filled by ossified cartilage, (2) totally in-filled and bulging beyond 
the edge of the centrum with ossified cartilage (ordered) 

102. Relative depth of anterior atlas cotyles (modified from J. Gardner, 2000); (0) 
deeply concave, (1) nearly flat to shallowly concave, (2) convex (although the structure 
is called a cotyle which means cup-like, they are sometimes convex)  

103. Outline of anterior atlas cotyles (J. Gardner, 2000); (0) compressed 
dorsoventrally, (1) subcircular, (2) compressed lateromedially (ordered) 

104. Form of odontoid process (modified from J. Gardner, 2000); (0) knob-like, (1) 
dorsoventrally flattened, (2) separate (not joined in the middle), (3) highly reduced or 
absent  

105. Position of atlas neural canal relative to the anterior cotyles (J. Gardner, 2000); 
(0) the neural canal is situated above the anterior cotyles, (1) the neural canal 
protrudes in between the anterior cotyles, but up to half way or less than the dorso-
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ventral distance of the anterior cotyles, (2) Neural canal intrudes deeply or completely 
between the anterior cotyles (ordered) 

106. Size of atlas neural canal relative to the anterior cotyles (J. Gardner, 2000); (0) 
the anterior circumference of the neural canal is approximately equal to or greater 
than the circumference of one of the anterior cotyles, (1) the neural canal is smaller 
than the anterior coyle 

107. Posterior extent of neural arch roof of the atlas (modified from J. Gardner, 
2000); (0) extends past the edge of the posterior cotyle, (1) in line with the posterior 
cotyle, (2) the posterior edge of the neural arch roof is shorter i.e. does not reach to 
the edge of the posterior cotyle (ordered) 

108. Dorsal outline of posterior margin of the atlas neural arch roof (modified from 
J. Gardner, 2000); (0) truncated, (1) forked, (2) pointed  

109. Dorsal outline of the atlas’ neural arch crest (modified from J. Gardner, 2000); 
(0) the outline of the crest broadens posteriorly, (1) it narrows posteriorly, (2) 
relatively straight, (3) it is hourglass shaped i.e. narrows then broadens (unordered) 

110. Shape of anterior end of neural arch crest on the atlas (modified from J. 
Gardner, 2000); (0) not elaborated, (1) swollen or thickened, (2) paired anterior 
processes (unordered) 

111. Postzygapophyses prominence on the atlas (modified from J. Gardner, 2000); 
(0) prominent, (1) small. 

112. Postzygapophyses articular surface on the atlas (modified from J. Gardner, 
2000); (0) laterally divergent, (1) directed ventro-laterally 

113. Postzygapophyses; (0) diverge from the end of the neural arch crest on the 
atlas, (1) diverge from along the neural arch crest of the atlas. 

114. Condition of the dorsal part of the neural arch crest of the atlas (J. Gardner, 
2000); (0) finished in cartilage, (1) finished in bone 

115. Condition of the posterior end of the neural arch spine of the atlas; (0) finished 
in cartilage, (1) finished in bone 

116. Four facetted articulation of exoccipital and atlas (Wiens et al. 2005; Zhang et 
al. 2009); (0) absent due to reduction in odontoid process, (1) absent due to continuous 
surface of odontoid and anterior cotyles, (2) present (unordered) 

117. Atlantal spinal nerve foramen (Zhang et al. 2009); (0) absent, (1) a notch, (2) 
fully enclosed (ordered) 

118. Atlas, transverse process (Wiens et al. 2005); (0) absent, (1) present 
119. Shape of atlas centrum in ventral view (Zhang et al. 2009); (0) shorter than 

postatlantals, (1) roughly equal in length to postatlantals, (2) longer than postatlantals 
(unordered) 

120. Basapophyses on the atlas; (0) absent, (1) present   
121. Neural cord supports, (0) absent, (1) present  

 

Presacral Vertebrae: (RI = 12, LQ = 6, agreed = 5) 
122. Centrum of presacral vertebrae (modified from J. Gardner, 2000); (0) 

amphicoelous, (1) semi-opisthocoelous, (2) fully opisthocoelous, (3) procoelous  
123. Size of the 4th trunk vertebrae (5th presacral) neural canal relative to its 

anterior size of the centrum; (0) neural canal is approximately equal in size (radius) to, 
or greater than, the size of the anterior centrum, (1) neural canal smaller than the 
anterior centrum 

124. Posterior basapophyses of the presacrals (J. Gardner, 2000); (0) absent, (1) 
present 

125. Anterior basapophyses of the presacrals (Wiens et al. 2005); (0) absent, (1) 
present 

126. Condition of neural spine (J. Gardner, 2000); (0) finished in cartilage, (1) 
finished in bone 
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127. Prominent, v-shaped hypapophyses (J. Gardner, 2000); (0) absent, (1) present 
128. Bony lamina between diapophyses and paraphyses (modified from Wiens et 

al. 2005); (0) absent, (1) partial presence, (2) present – full lamina  
129. Mid-ventral keel on mid-body vertebrae (modified from Wiens et al. 2005); (0) 

absent, (1) present (small), (2) Large – extends below the ventral edge of the centrum 
cotyles (ordered) 

130. Posterolateral flanges on mid-dorsal keel on mid-body vertebrae (Wiens et al. 
2005); (0) absent, (1) present 

131. Anterior keel/flange on transverse process (extending from, and between the 
transverse process to anterior edge of centrum) (modified from Wiens et al. 2005); (0) 
absent, (1) present 

132. Fenestra in anterior keel; (0) present, (1) absent 
133. Anterodorsal keel on transverse process (extending from transverse process to 

anterior zygapophysis) (modified from Wiens et al. 2005); (0) absent, (1) present 
134. Posterior keel of transverse process (extends from transverse process to 

posterior centrum edge); (0) absent, (1) present 
135. Dermal sculpture on dorsal surface of neural arch; (0) present, (1) absent 
136. Shape of the neural spine of mid-body vertebrae (modified from Wiens et al. 

2005); (0) absent/truncated, (1) single median process (spine-like projection), (2) 
present (paired process)  

137. Posteriorly projecting neural spine(s) (past the posterior centrum edge); (0) 
shorter than posterior centrum edge, (1) in line with posterior centrum edge, (2) 
projecting past the posterior centrum edge (ordered) 

138. Posterior zygapophyses facet face of presacral vertebrae; (0) latero-medially 
divergent (facing slightly outwards, away from each other), (1) directed ventrally 

139. Transverse process in anterior part of trunk series, excluding first presacral 
vertebra (J. Gardner, 2000); (0) Unicapitate, (1) bicapitate, (2) absent 

140. Mid-dorsal keel (neural arch crest) on presacral vertebra (Wiens et al. 2005); 
(0) absent, (1) present 

141. Mid-dorsal keel (neural arch crest) on presacral vertebra length; (0) short 
(does not run the length of the vertebra), (1) long (runs from at least just behind the 
anterior zygapophyses to neural spine) 

 
Caudal Vertebrae: (RI = 5, LQ = 2, agreed = 2) 
142. Caudal vertebrae, neural spine (Wiens et al. 2005); (0) with one process, (1) 

paired process 
143. Mid-dorsal crest on caudal vertebrae (Wiens et al. 2005); (0) absent, (1) 

present 
144. Dermal sculpturing on dorsal surface of neural arch on the caudal vertebrae; 

(0) present, (1) absent 
145. Caudal vertebrae (Wiens et al. 2005); (0) ventral keels absent, low, and/or 

rounded, (1) dorsal and ventral keels raised and distinctly rectangular 
146. Transverse process of anterior caudal vertebrae (Wiens et al. 2005); (0) 

posteriorly orientated, (1) anteriorly oriented 
147. Transverse process of anterior caudal vertebrae; (0) unicapitate, (1) bicapitate 
148. Caudal vertebrae, anterior keel on haemal arch (Wiens et al. 2005); (0) absent, 

(1) present 
149. Caudal vertebrae, haemal arch (Wiens et al. 2005); (0) complete, lateral halves 

fused to form median process, (1) incomplete, two ventral lamina do not contact or 
fuse on anterior caudal vertebrae, (2) incomplete for all caudal vertebrae  

150. Caudal vertebrae, haemal arch spine (Wiens et al. 2005); (0) paired process, (1) 
single process 
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151. Caudosacral vertebrae (number of caudal vertebrae lacking a haemal arch, 
plus the sacral vertebra) (Character from Wake, 1966; Wiens et al. 2005); (0) 2, (1) 3, 
(2) 4  

152. Zygapophyses connecting caudal vertebrae (Wiens et al. 2005); (0) present on 
all or most vertebrae, (1) absent from posterior caudal vertebrae  

 
Ribs: (RI = 3, LQ = 3, agreed = 3) 
153. Number of ribs on anterior caudal vertebrae (Zhang et al. 2009); (0) more than 

3 pairs, (1) 2-3 pairs, (2) free ribs absent  
154. Atlantal Ribs (Larson and Dimmick, 1993); (0) absent, (1) present 
155. Postatlantal ribs (modified from Zhang et al. 2009); (0) bicapitate, (1) 

unicapitate, (2) absent 
156. Dorsal process of bicapitate ribs (Wiens et al. 2005); (0) articulates with 

diapophysis, (1) reduced, does not articulate with diapophysis 
157. Ribs on mid-body presacral vertebrae (Wiens et al. 2005); (0) present, (1) 

absent 
158. Ribs on last presacral vertebra (Wiens et al. 2005); (0) present, (1) absent 
159. Rib on penultimate presacral vertebra (Wiens et al. 2005); (0) present, (1) 

absent 
160. Sacral rib (Wiens et al. 2005); (0) free, (1) fused 
161. Dorsal process on mid-body of rib of 4th trunk vertebra (4th presacral excluding 

the atlas) (Wiens et al. 2005); (0) absent, (1) present 
162. Bony lamina between ventral and dorsal processes of ribs (Wiens et al. 2005); 

(0) absent, (1) present 

 
Spinal nerves: (RI = 4, LQ = 4, agreed = 4) 
163. Spinal nerves in posterior trunk vertebrae (data from Edwards, 1976; modified 

character from character X of Duellman and Trueb, 1986; Wiens et al. 2005); (0) exit 
intervertebrally, (1) exit intravertebrally 

164. Spinal nerve exit in caudal vertebrae (data from Edwards, 1976; modified 
character from character X of Duellman and Trueb, 1986; Wiens et al. 2005); (0) 
intervertebral in all caudal vertebrae, (1) intravertebral in some or all caudal vertebrae 

165. Dorsal and ventral roots of spinal nerves in trunk vertebrae (modified from 
Edwards, 1976; Duellman and Trueb, 1986; Wiens et al. 2005 and Thien and Chantell 
1963); (0) exit through single foramen, (1) dorsal and ventral roots of presacral 
vertebrae exit through separate foramina  

166. Presacral spinal nerve foramina (modified from Edwards, 1976; Duellman and 
Trueb, 1986; Wiens et al. 2005 and Thien and Chantell 1963); (0) spinal nerve exits 
intervertebrally, (1) spinal nerve exits intravertebrally in some vertebrae, (2) all spinal 
nerves exit intravertebrally  

Pectoral girdle: (RI = 8, LQ = 6, agreed = 6) 
167. Scapula-coracoid ossification (modified from Duellman and Trueb, 1986; 

Larson and Dimmick, 1993; Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 
2009); (0) ossified as separate elements, (1) two elements as a single ossification 

168. Coracoids (Wiens et al. 2005); (0) not contacting medially, (1) 
contacting/overlapping medially, (2) fused medially (ordered) 

169. Procoracoid and coracoid (Wiens et al. 2005); (0) not overlapping anteriorly, 
(1) overlapping anteriorly, enclosing foramen 

170. Supracoracoid foramen (modified from Wiens et al. 2005); (0) entirely in 
cartilage/absent, (1) partly in bone, (2) entirely in bone  

171. Suprascapula (modified from Wiens et al. 2005); (0) expanded in width 
dorsally, (1) not expanded, about same width as dorsal width of scapula 

172. Crista dorsalis of humerus (Wiens et al. 2005); (0) present, (1) absent 
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173. Carpals (Wiens et al. 2005); (0) all elements cartilaginous, (1) some (but not all) 
ossified, (2) all elements at least partly ossified  

174. Fusion of distal carpal 1+2 (Gao and Shubin, 2001; Zhang et al. 2009); (0) 
fusion absent, (1) fusion present 

175. Distal carpal 4 and 5 (Gao and Shubin, 2001; Zhang et al. 2009); (0) two 
elements remain separate, (1) fused 

176. Carpals 3 and 4 (Wiens et al. 2005); (0) separate, (1) fused 
177. Prepollex and radiale (Wiens et al. 2005); (0) separate, (1) fused 
178. Ulnare (the carpal that articulates with the ulna) and intermedium (the bone 

or cartilage between the radiale and ulnare in the carpus) (Gao and Shubin, 2001; 
Wiens et al. 2005; Zhang et al. 2009); (0) separate, (1) fused 

179. Ulnare and carpal 4 (Wiens et al. 2005); (0) separate, (1) fused 
180. Intermedium and centrale (Wiens et al. 2005); (0) separate, (1) fused 
181. Number of centralia in manus (or pes) (Gao and Shubin, 2001); (0) more than 

one Centralia element, (1) one central element  
182. Number of manual digits (fingers) on forelimb (Wiens et al. 2005); (0) four, (1) 

three, (2) two, (3) one (unordered) 
183. Number of phalanges on digit I of manus (Wiens et al. 2005); (0) two, (1) one 

 

Pelvic girdle: (RI = 1, LQ = 1, agreed = 1) 
184. Hind limbs (Wiens et al. 2005); (0) present, (1) absent  
185. Pelvic girdle (structure), (Wiens et al. 2005); (0) halves fused medially, (1) 

halves separate medially 
186. Lateral processes of pubis (Wiens et al. 2005); (0) present, (1) absent 
187. Ossification of ischium (Wiens et al. 2005); (0) not extending to anterior 

margin of pelvic girdle, (1) extending to anterior margin of pelvic girdle 
188. Ossification of ischia (Wiens et al. 2005); (0) meeting mid-ventrally (separated 

by thin strip of cartilage), (1) well-separated mid-ventrally 
189. Posterior median process on ischium (Wiens et al. 2005); (0) absent, (1) 

present 
190. Median processes of pubis (Wiens et al. 2005); (0) posterior to or level with 

lateral processes, (1) anterior to lateral processes 
191. Femur trochanter (0) absent, (1) present 
192. Tibial spur (Wiens et al. 2005); (0) absent, (1) present, not elongate and 

pointed, (2) elongate and pointed (unordered) 
193. Fusion of tarsals 1 and 2 (Wiens et al. 2005; Zhang et al. 2009); (0) separate, 

(1) fused 
194. Distal tarsals 4 and 5 (Wiens et al. 2005); (0) separate, (1) fused 
195. Number of toes on hindlimb (Wiens et al. 2005); (0) five, (1) four, (2) three, (3) 

two, (4) one (ordered) 
196. Number of phalanges on digit IV of pes (Wiens et al. 2005); (0) three, (1) four 
197. Phalanges on digit I of pes (Wiens et al. 2005); (0) two, (1) one 

 

Soft body coding: (RI = 38, LQ = 38, agreed = 38) 
 

198. Junction of the periotic canal and cistern (Duellman and Trueb 1986); (0) 
periotic canal joins the periotic cistern dorsally at its posterior aspect, (1) the junction 
of the canal and the cistern is slightly dorsal and posterior to the festra ovalis, (2) the 
junction of the cistern and canal is formed through the protrusion of the cistern into 
the fenestra ovalis 

199. Flexures of periotic canal (Duellman and Trueb 1986); (0) the periotic canal 
curves ventrally and medially from its junction with the periotic cistern, (1) the canal 
takes a relatively horizontal course, (2) canal with one or more flexures 
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200. Basilaris complex of inner ear (Duellman and Trueb 1986); (0) recessus 
basilaris and papillae are present in the inner ear, (1) absence of papillae, (2) absence 
of entire complex 

201. First hypobranchial and first ceratobranchial (Duellman and Trueb 1986); (0) 
separate elements, (1) fusion of the two elements 

202. Second ceratobranchial (Duellman and Trueb 1986); (0) present, (1) absent 
203. Number of larval gill slits (Duellman and Trueb 1986); (0) four pairs, (1) three 

pairs, (2) two pairs, (3) one pair 
204. Ypsiloid cartilage (Duellman and Trueb 1986); (0) present, (1) absent 
205. Levator mandibulae muscle (Duellman and Trueb 1986); (0) originates on the 

skull roof, (1) origin on the side of the skull, (2) an origin that includes the exoccipital 
(or cervical vertebrae),  

206. Pubotibialis and puboischiotibialis muscles (Duellman and Trueb 1986); (0) 
separate muscles, (1) fusion of the two muscles 

207. Kidney (Duellman and Trueb 1986); (0) presence of well-developed glomeruli 
in anterior of kidney, (1) reduction of absence of anterior glomeruli 

208. Mode of fertilisation (Duellman and Trueb 1986); (0) external fertilisation, (1) 
internal fertilisation 

209. Recessus amphibiorum (Larson and Dimmick 1993) (0) horizontal orientation 
of the recessus amphibiorum of the inner ear, (1) vertical orientation 

210. Otic sac (Larson and Dimmick 1993) (0) multilobate sac which is vascularised 
and filled with calcium, (1) bulbar, partially vascularised sac, (2) bulbar unvascularised 
sac 

211. Amphibian periotic canal connective tissue (Larson and Dimmick 1993) (0) 
absence of this tissue, (1) Presence of fibrous connective tissue around amphibian 
periotic canal 

212. Periotic cistern (0) large cistern, (1) small cistern 
213. Fenestral relations of the periotic cistern (Larson and Dimmick 1993) (0) 

absence of protrusion, (1) protrusion of the cistern into the fenestra 
214. Palatal dentition (unordered) (Larson and Dimmick 1993) (0) replacement of 

vomerine teeth proceeds laterally in parallel to the maxillary teeth, (1) from the 
posterior of the vomer, (2) both laterally and posteriorly, (3) medially 

215. Epidermis (Larson and Dimmick 1993) (0) absence in female salamanders of an 
epidermal lining in the anterior half of the cloacal chamber, (1) presence of the 
epidermal lining 

216. Male anterior ventral glands (Larson and Dimmick 1993)(0) absence, (1) 
presence 

217. CTL/TCL cloacal tube length divided by total cloacal length quotient in females 
(Sever 1991); (0) present, (1) absent 

218. CTL/TCL cloacal tube length divided by total cloacal length quotient in males, 
(Sever 1991); (0) present, (1) absent 

219. Ciliated epithelium in the cloacal tube and/or anterior cloacal chamber of 
females, (Sever 1991); (0) present, (1) absent 

220. Ciliated epithelium in the cloacal tube and/or anterior cloacal chamber of 
males, (Sever 1991); (0) present, (1) absent 

221. Extent of epidermis in the female cloacal chamber, (Sever 1991); (0) the 
epidermal lining does not extend into the anterior one-half of the cloacal chamber, (1) 
the epidermal lining does extend into the anterior one-half of the cloacal chamber 

222. Cloacal recess in females (Sever 1991); (0) absent, (1) present 
223. Number of pairs of rugae in the male cloaca (Sever 1991); (0) < 10, (1) > 10 
224. Primary and secondary folds in the male cloacal tube, (Sever 1991); (0) absent, 

(1) present 
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225. Middorsal evagination of the male cloacal chamber (Sever 1991); (0) absent, 
(1) present 

226. Dorsalateral recesses in the male cloacal chamber (Sever 1991); (0) absent, (1) 
present 

227. Pseudopenis in the male cloaca (Sever 1991); (0) absent, (1) present 
228. Female anterior ventral glands (Sever 1991); (0) absent, (1) present 
229. Spermathecae (Sever 1991); (0) absent, (1) present 
230. Common tube to the spermathecae (Sever 1991); (0) absent, (1) present 
231. Female dorsal glands (Sever 1991); (0) absent, (1) present 
232. Other female cloacal glands (Sever 1991); (0) absent, (1) present 
233. Male anterior ventral glands (Sever 1991); (0) absent, (1) present 
234. Posterior ventral glands (Sever 1991); (0) absent, (1) present 
235. Kingsbury's glands (Sever 1991); (0) absent, (1) present 
236. Dorsal pelvic glands (Sever 1991); (0) absent, (1) present 
237. Lateral pelvic glands (Sever 1991); (0) absent, (1) present 
238. Caudal pelvic glands (Sever 1991); (0) absent, (1) present 
239. Male dorsal or vent glands (Sever 1991); (0) absent, (1) present 
240. Amphiumid pit glands (Sever 1991); (0) absent, (1) present 
241. Other male cloacal glands (Sever 1991); (0) absent, (1) present 
242. Lateral wall of nasal capsule (Zhang et al. 2009); (0) complete, (1) incomplete  
243. Lateral narial fenestra (Zhang et al. 2009); (0) absent, (1) present  
244. Posterior wall of nasal capsule (Zhang et al. 2009); (0) complete, (1) 

incomplete  
245. Origin of m. adductor mandibulae internus superficialis (Zhang et al. 2009); (0) 

on dorsallateral surface of parietal, (1) origin extends posteriorly to exoccipital, (2) 
origin extends to cervical vertebra, (3) origin extends anteriorly towards level of frontal 

246. Microchromosome (Zhang et al. 2009); (0) present, (1) absent 
247. Ectopterygoid (Zhang et al. 2009); (0) present, (1) absent 
248. Haploid Chromosomes (Gao and Shubin 2001); (0) more than 20, (1) reduced 

to 19, (2) further reduced to 14 or less 
249. Diploid Chromosomes (Gao and Shubin 2001); (0) 56 or more, (1) 40-55, (2) 

lower than 40 

 

 

 



Appendix A - GenBank accession numbers for sampled amphibian and outgroup taxa. 

Species 12S 16S cytb CXCR4 H3A NCX1 POMC RAG1 RHOD SIA SLC8A3 

Alligator mississippiensis NC_001922.1 NC_001922.1 NC_001922.1 JN702314.1 --- --- NM_001287606.2 JN654850.1 --- --- --- 

Ambystoma mexicanum DQ283213 Y10947 AY341745 EF107455 DQ284244 EF107230 --- AY323752 DQ283893 --- EF107367 

Ambystoma opacum --- --- EF036638 --- --- --- --- AY650130 --- --- --- 

Ambystoma tigrinum DQ283407 DQ283407  EF036667 --- DQ284388 --- --- --- DQ284016 DQ282864 --- 

Amphiuma means GQ368656 FJ951270 FJ951335 EF107472 --- EF107248 FJ951366 AY650127 --- --- EF107406 

Amphiuma tridactylum DQ283119 DQ283119  FJ951356 --- DQ284165 FJ951361 FJ951368 FJ951369 --- --- FJ951419 

Andrias davidianus AY915966 AY915966 AF255430 --- --- AY948847 EU275843 AY650142 --- --- AY948911 

Andrias japonicus DQ283274 DQ283274  AB445775 --- DQ284293 --- --- AY583346 --- --- --- 

Ascaphus montanus --- AY523779 DQ087512 --- --- --- --- AY650146 --- --- EF107399 

Ascaphus truei X86225 DQ283116 AF277330 --- DQ284162 --- EU275850 AY323754 DQ347404 --- AY948893 

Bombina bombina AY333663 DQ283250  EF212589 --- DQ284275 --- --- --- DQ283920 --- --- 

Bombina variegata AY333688 AY333725 EU531284 --- DQ284274 --- --- AY523750 --- --- EF107347 

Caiman crocodilus NC_002744.2 NG_002744.2 NC_002744.2 --- --- --- --- --- --- --- --- 

Cryptobranchus alleganiensis DQ283263 DQ283263  AY691719 --- DQ284286 --- --- AY650141 --- --- --- 

Desmognathus fuscus AF437402 U71222 EF028653 --- --- --- EU275812 EU275781 --- --- --- 

Dicamptodon ensatus DQ283118 DQ283118  AY734622 EF107496 DQ284164 EF107276 --- EF107335 --- --- --- 

Gallus gallus JN695761.1 NG_001323.1 NC_001323.1 NM_204617.2 --- DQ267621.1 NM_001287606.2 NM_001031188.1 --- --- NM_001293097.1 

Homo sapiens FJ775667 FJ775667 FJ775667 AF025375 NM_003529 AF108389 J00292 NG_007528 K02281 U63295 X93017 

Hydromantes italicus FJ602131 FJ602187 FJ602300 EF107476 --- EF107253 EU275826 EU275792 --- --- EF107415 

Ichthyophis bannanicus Y10949 Y10949 GQ249909 EF107451 --- EF107225 --- EF107288 --- --- EF107358 

Ichthyophis tricolor AF461138 AF461139 --- --- --- --- --- --- --- --- --- 

Ichthyosaura alpestris AY147256 AY147257 EF089334 --- --- --- --- --- --- --- --- 

Latimeria chalumnae NC_001804.1 NC_001804.1 NC_001804.1 --- DQ284319.1 --- --- --- --- --- --- 

Leiopelma hamiltoni X86241 X86275 FJ950426 --- --- --- --- --- --- --- --- 

Lissotriton vulgaris U04704 U04705 U55948 --- --- --- --- --- --- --- --- 

Necturus maculosus DQ283412 DQ283412 AY691724 --- --- --- AY141897 AY650137 --- --- --- 

Onychodactylus japonicus AY915970 AY915971 AB452892 --- --- --- --- AY583350 --- --- --- 



Pelobates cultripes AY364341 AY333689 DQ333373 AY364171 --- --- --- AY323758 AY364386 --- AY948857 

Pelobates fuscus DQ283113 AJ440812 EF133852 --- DQ284159 --- --- --- DQ283826 --- --- 

Pleurodeles waltl AY522564 DQ283445  AY222514 --- DQ284420 --- --- AY523736 --- --- AY948856 

Proteus anguinus DQ494769 EF107180 GQ368659 EF107467 --- EF107243 --- AY650138 --- --- EF107402 

Protopterus dolloi NC_001708.1 NC_001708.1 NC_001708.1 --- --- --- --- --- --- --- --- 

Pseudotriton ruber AF290190 --- AY528404 --- --- --- EU275854 AY650123 --- --- --- 

Rhinatrema bivittatum AY101207 DQ283385 AY101247 EF107478 DQ284370 EF107255 --- AY456257 DQ284002 --- EF107417 

Rhyacotriton olympicus X86251 X86285 EF036689 --- --- --- --- --- --- --- --- 

Rhyacotriton variegatus --- EF107179 AY691726 EF107466 --- EF107242 EU275823 AY691693 --- --- EF107401 

Salamandra salamandra DQ283440 DQ283440  EU852738  EF017999 DQ284416 EF018024 --- AY583352 DQ347354 --- EF107368 

Salamandrella keyserlingii AY916003 AY916002 AB363595 --- --- --- --- AY650145 --- --- --- 

Sphenodon punctatus --- DQ267621.1 --- JN702443.1 --- --- --- --- --- --- JF804271.1 

Takydromus tachydromoides NC_008773.1 NC_008773.1 NC_008773.1 --- --- --- --- --- --- --- --- 

Siren lacertina DQ283181 DQ283181  AY713291 EF107471 DQ284216 EF107247 --- EF107307 --- DQ282729 EF107405 

Taricha torosa --- EF107218 L22701 --- --- EF107281 --- EF107340 --- --- EF107444 

Triturus marmoratus AY147252 EF107162 DQ092231 EF107448 --- EF107222 --- AY583354 --- --- EF107350 

Tylototriton verrucosus --- AY336631 EF627476 --- --- --- --- --- --- --- --- 

Typhlonectes natans DQ283085 EU753984 EU753999 --- DQ284136 --- AF369043 EF551566 --- --- --- 

 



Appendix B 

Skeletal characters:  

Colour code:  Red means it’s a modified character 

  Purple means it’s a new character for salamanders 

  Orange means soft body character  

  Green means ordered multistate character 

 

Skull: 

1. Dentition in adult teeth (Zhang et al. 2009); (0) pedicellate, (1) sub-pedicellate, (2) non-

pedicellate  

2. Fusion of premaxillae (modified from Zhang et al. 2009); (0) paired premaxillae, (1) fused at 

base, (2) fully fused premaxillae (ordered)  

3. Contact of premaxillae (between themselves), (modified from Wiens et al. 2005); (0) 

contacting medially throughout their entire length, (1) separated towards the frontals or 

pareiatals, (2) contacting anteriorly and posteriorly, separated medially with fontanelle 

exposed (3) no contact (ordered)  

4. Dorsal process of premaxilla (ratio data with measurements of width of premaxilla vs length 

of premaxillary extension) (Zhang et al. 2009); (0) absent or poorly defined, (1) short but 

well-defined, (2) strong posterior extension (ordered)  

5. Premaxilla in relation to frontals (modified from Wiens et al. 2005); (0) not contacting 

frontals, (1) contacting frontals, (2) extension of dorsal process intervenes deeply between 

the frontals (ordered)  



6. Premaxillary dentition presence (Hanken and Hall, 1993); (0) present, (1) absent  

7. Premaxilla dentition position (Wiens et al. 2005); (0) present lateral to pars dorsalis, (1) 

absent lateral to pars dorsalis  

8. Premaxilla dentition (shape); (0) conical, (1) bulbous 

9. Combined width of premaxilla measured at the premaxilla/maxilla suture (Wiens et al. 

2005); (0) less than interorbital width, (1) greater than interorbital width 

10. Premaxilla-palatine contact (Wiens et al. 2005); (0) absent, (1) present 

11. Premaxilla-vomer contact (Wiens et al. 2005); (0) absent, (1) present  

12. Premaxilla-nasal contact (Wiens et al. 2005); (0) absent, (1) present 

13. Maxilla (Zhang et al. 2009); (0) presence of bilaterally paired maxillae, (1) greatly reduced as 

a rudimentary element, (2) entirely absent and functionally replaced by modified vomer 

(ordered) 

14. Maxillary dentition (Wiens et al. 2005); (0) dentate, (1) reduced, edentulous 

15. Dentition shape; (0) mono-cuspid, (1) bi-cuspid, (2) tricuspid 

16. Posterior process of maxilla (Wiens et al. 2005); (0) dentate, (1) edentulous 

17. Process from pars dentalis of maxilla overlaps premaxilla (Wiens et al. 2005); (0) no, (1) yes 

18. Anterior margin of pars facialis of maxilla (modified from Wiens et al. 2005); (0) posterior to 

external naris, (1) Forms lateral part of external naris  

19. Septomaxilla (Larson and Dimmick, 1993; Hanken and Hall, 1993; Duellman and Trueb, 1994; 

Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); (0) presence of bilaterally 

paired septomaxillae, (1) absence of bones.  

20. Posterior end of septomaxilla (Wiens et al. 2005); (0) not contacting other cranial elements, 

(1) contacting maxilla, (2) contacting prefrontal, (3) contacting nasal (unordered) 

21. Nasal (modified from Wiens et al. 2005); (0) present, (1) absent 



22. Nasal ossification (Hanken and Hall, 1993; Larson and Dimmick, 1993; Gao and Shubin, 2001; 

Zhang et al. 2009); (0) paired nasals with sutural midline contact or fused, (1) nasals separate 

without midline contact 

23. Nasal (Wiens et al. 2005); (0) not forked posteriorly, (1) forked posteriorly 

24. Nasal shape (Wiens et al. 2005); (0) squarish, length and width roughly equal, (1) slender and 

elongate, length greater than width 

25. Nasal-prefrontal contact (Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); (0) 

present, (1) absent 

26. Nasal and maxilla (Wiens et al. 2005); (0) contacting or abutting, (1) separated 

27. Nasal contact with frontal (Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); (0) 

separate from frontal, (1) partly or completely fused to frontal 

28. Nasal-lacrimal duct (Hanken and Hall, 1993; Gao and Shubin, 2001; Zhang et al. 2009); (0) 

present, (1) absent 

29. Lacrimal (Hanken and Hall, 1993; Duellman and Trueb, 1994; Gao and Shubin, 2001; Wiens 

et al. 2005; Zhang et al. 2009); (0) present, (1) absent 

30. Quadratojugal (Hanken and Hall, 1993; Duellman and Trueb, 1994; Gao and Shubin, 2001; 

Zhang et al. 2009); (0) present, (1) absent 

31. Prefrontal (Hanken and Hall, 1993; Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 

2009); (0) present, (1) absent  

32. Prefrontal posterior process projecting into the orbit (modified from Hanken and Hall, 1993; 

Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); (0) present, (1) absent  

33. Prefrontal orientation (modified from Wiens et al. 2005); (0) present and forms part of the 

margin of the external naris, (1) present but does not form part of the margin of the external 

naris  

34. Frontal (Duellman and Trueb, 1994); (0) paired roofing bones, (1) fused into a single element 



35. Frontal/maxillary contact (Gao and Shubin, 2001; Zhang et al. 2009, Wiens et al. 2005); (0) 

frontal and maxilla separated by prefrontal, (1) frontal contacts dorsal process of maxilla 

36. Dorsolateral shelf on frontal (Wiens et al. 2005); (0) absent, (1) present 

37. Postfrontal (Gao and Shubin, 2001, Zhang et al. 2009); (0) present, (1) absent 

38. Palatal dentition (on the palatine) (modified from Gao and Shubin, 2001, Zhang et al. 2009); 

(0) present, (1) absent 

39. Vomer dentition (modified from Gao and Shubin, 2001, Zhang et al. 2009); (0) present, (1) 

absent  

40. Parasphenoid dentition (modified from Gao and Shubin, 2001, Zhang et al. 2009); (0) 

present, (1) absent  

41. Pterygoid dentition (modified from Gao and Shubin, 2001, Zhang et al. 2009); (0) present, (1) 

absent 

42. Placement of vomerine teeth (Duellman and Trueb, 1994, Hanken and Hall, 1993; Wiens et 

al. 2005, Zhang et al. 2009); (0) medial/lateral transverse row, (1) marginal (adjacent and 

parallel to max. and premaxillary teeth), (2) teeth centrally located on vomer, (3) teeth in 

large patches, (4) teeth in M-shaped pattern (unordered) 

43. Palatal tooth structure (Hanken and Hall, 1993; Duellman and Trueb, 1994); (0) conical, (1) 

compressed, (2) bulbous  

44. Vomerine teeth (Tihen, 1958; Wiens et al. 2005); (0) present on postchoanal process, (1) 

absent on postchoanal process 

45. Vomer with postchoanal process (Wiens et al. 2005); (0) with postchoanal process, (1) 

without postchoanal process 

46. Vomer with prechoanal process (Wiens et al. 2005); (0) with prechoanal process, (1) without 

prechoanal process 

47. Vomer and pterygoid (Wiens et al. 2005); (0) not articulating with pterygoid, (1) articulates 

with pterygoid 



48. Vomers (modified from Wiens et al. 2005); (0) separated anteriorly and medially, (1) 

separated medially and posteriorly (2) separated entirely, (3) in contact anteromedially, no 

fontanelle exposed (unordered) 

49. Vomer, posterior dorsal process extending onto orbitosphenoid (Wiens et al. 2005); (0) 

absent, (1) present 

50. Pterygoid shape (modified from Zhang et al. 2009); (0) triradiate and boomerang-shaped, (1) 

enlarged with distinct anteromedial process, (2) straight bar with loss of antermedial 

process, (3) absent (unordered) 

51. Anterior margin of pterygoid (Wiens et al. 2005); (0) smooth, (1) serrate, with irregular 

projections 

52. Pterygoid and coronoid process of prearticular (Wiens et al. 2005); (0) well separated, (1) 

articulating or nearly contacting 

53. Posterior margin of pterygoid extends posterior to jaw articulation (Wiens et al. 2005); (0) 

no, (1) yes 

54. Pterygoid, with dorsomedial process that articulates with orbitosphenoid and forms 

foramen posterior to optic foramen (Wiens et al. 2005); (0) absent, (1) present 

55. Internal carotid foramen (Zhang et al. 2009; Gao and Shubin, 2001); (0) present, (1) absent 

56. Squamosal-frontal (Wiens et al. 2005); (0) does not contact frontal, (1) contacts frontal 

57. Squamosal (Wiens et al. 2005); (0) not expanded ventrally, (1) expanded ventrally, occupies 

articular region 

58. Squamosal, main shaft in lateral view (Gao and Shubin, 2001; Wiens et al. 2005; Zhang at el. 

2009); (0) oriented roughly vertically, (1) oriented diagonally, with dorsoposterior inclination 

59. Hook-like (ventrally-directed) process on dorsal head of squamosal (Wiens et al. 2005); (0) 

absent, (1) present 

60. Columellar process of squamosal, connecting stapes and squamosal (Wiens et al. 2005); (0) 

absent, (1) present 



61. Squamosal contact with the parietal or other roofing elements (modified from Gao and 

Shubin, 2001; Zhang et al. 2009); (0) contact present, (1) absent or virtually absent 

62. Prootic-exoccipital-opisthotic fusion (Hanken and Hall, 1993; Duellman and Trueb, 1994; Gao 

and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); (0) three separate elements, (1) 

prootic-exoccipital fused, separate opisthotic, (2) all three elements fused (ordered) 

63. Exposure of prootic-exoccipital-opisthotic complex in dorsal view (Zhang et al. 2009); (0) the 

complex largely concealed by parietal or exposed posterior to skull table, (1) large exposure 

extends lateral to parietal table 

64. Exoccipitals (Wiens et al. 2005); (0) separated medially at tectum synocticum, (1) fused 

65. Operculum (Hanken and Hall, 1993; Zhang et al. 2009); (0) present and free, (1) absent or 

fused 

66. Stapes (Hanken and Hall, 1993; Zhang et al. 2009); (0) present, (1) absent 

67. Orbitosphenoid (Wiens et al. 2005); (0) present, (1) absent 

68. Orbitosphenoid (Wiens et al. 2005); (0) not extending lateral to frontals, or extending only 

slightly anteriorly, (1) extending well lateral to frontals throughout their length 

69. *Sagittal crest formed at the midline between the parietals of the skull (modified from 

Wiens et al. 2005); (0) absent, (1) present 

70. Dermal sculpture on skull roof (Zhang et al. 2009); (0) present, coarse, (1) present, weak, (2) 

absent 

71. Posterior edge of parietals, extends between exoccipitals to edge of foramen magnum on 

tectum synoticum (Wiens et al. 2005); (0) no, (1) yes 

72. Ventrolateral extension of parietal covers orbitosphenoid region anteriorly (in lateral view), 

(Wiens et al. 2005); (0) absent, (1) present 

73. *Parietal and exoccipital (Wiens et al. 2005); (0) not forming casque around foramen 

magnum, (1) forming casque around foramen magnum 



74. Anterolateral process of parietal (modified from Gao and Shubin, 2001; Zhang et al. 2009); 

(0) absent, (1) present  

75. Anterolateral process of parietal (modified from Gao and Shubin, 2001; Zhang et al. 2009); 

(0) forms less than 50% of the total length of the parietal, (1) makes up more than 50% of 

total length of the parietal 

76. Medial border of orbit (Zhang et al. 2009); (0) more than 50% of orbital margin formed by 

frontal, (1) frontal contributes less than 50% of the orbit margin, (2) frontal fully excluded 

from entering orbital margin (unordered) 

77. Angular/prearticular fusion (Duellman and Trueb, 1986; Larson and Dimmick, 1993; Hanken 

and Hall, 1993; Duellman and Trueb, 1994; Gao and Shubin, 2001; Wiens et al. 2005; Zhang 

et al. 2009); (0) angular distinct from the prearticular, (1) no distinct angular (absent or fused 

to prearticular in adult). 

78. Coronoid (Hanken and Hall, 1993; Gao and Shubin, 2001; Wiens et al. 2005); (0) present as a 

separate element, (1) absent in adult stage 

79. Coronoid dentition (Hanken and Hall, 1993; Wiens et al. 2005); (0) dentate, (1) edentulous 

80. Articular (modified from Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); (0) 

present as separate element, (1) fused with prearticular, (2) absent/unossified  (unordered) 

81. Meckel’s cartilage (Wiens et al. 2005); (0) does not extend to mandibular symphysis, (1) 

extends to mandibular symphysis 

82. *Mandible (in anterior view) (Wiens et al. 2005); (0) thickens suddenly at symphysis, (1) 

thins/ stays the same towards the symphysis  

83. Mandibular symphysis (Duellman and Trueb, 1994); (0) simple union of the mandibular rami, 

(1) rami have an interlocking symphysis 

84. Dentary (Wiens et al. 2005); (0) dentate, (1) edentulous 

85. *Dentary teeth shape; (0) conical, (1) bulbous 

86. Dentary symphysial teeth; (0) present, (1) absent 



87. *Dentary lateral sensory nerve foramina; (0) absent, (1) present 

88. Retroarticular process (modified from Wiens et al. 2005); (0) very small/absent, (1) present 

89. Coronoid process of prearticular (Wiens et al. 2005); (0) adjacent to jaw articulation, (1) 

distinctly anterior to jaw articulation 

90. Palatine and pterygoid (Wiens et al. 2005); (0) palatine absent (1) palatine present 

91. Quadrate ossification (Wiens et al. 2005); (0) present, (1) absent 

92. Posterior process on pars quadrati of quadrate (Wiens et al. 2005); (0) absent, (1) present 

93. Jaw articulation (Wiens et al. 2005); (0) well ventral to level of ventral margin of braincase, 

(1) at level of ventral margin of braincase 

94. Quadrate-parasphenoid articulation (Wiens et al. 2005); (0) absent, (1) present 

95. Parasphenoid (Wiens et al. 2005); (0) not extending laterally beyond level of orbitosphenoid, 

(1) extending laterally beyond level of orbitosphenoid 

96. Optic foramen (modified from Wiens et al. 2005); (0) enclosed in the orbitosphenoid bone 

anteriorly or not at all, (1) enclosed entirely in the orbitosphenoid bone 

97. Posteriormost margin of auditory capsules (Wiens et al. 2005); (0) anterior to occipital 

condyles, (1) posterior to occipital condyles 

98. Lateral flange on prootic extending to the squamosal (Wiens et al. 2005); (0) absent, (1) 

present 

99. Second basibranchial (ventral view); (0) bar (horizontal or vertical), (1) Y-shaped (two 

branches), (2) multiple branches (more than two) (unordered) 

 

Atlas: 

100. Position of atlas posterior cotyle relative to anterior cotyles (J. Gardner, 2000); (0) 

the posterior cotyle is approximately in line with the anterior cotyles in lateral view, (1) the 

posterior cotyle is displaced ventrally in relation to the anterior cotyles. 



101. Notochordal pit in posterior cotyle of the atlas (modified from J. Gardner, 2000); (0) 

the notochrodal pit is open and has no infilling of calcified or ossified cartilage, (1) partly in-

filled by ossified cartilage, (2) totally in-filled and bulging beyond the edge of the centrum 

with ossified cartilage (ordered) 

102. Relative depth of anterior atlas cotyles (modified from J. Gardner, 2000); (0) deeply 

concave, (1) nearly flat to shallowly concave, (2) convex (although the structure is called a 

cotyle which means cup-like, they are sometimes convex) (ordered) 

103. Outline of anterior atlas cotyles (J. Gardner, 2000); (0) compressed dorsoventrally, 

(1) subcircular, (2) compressed lateromedially (ordered) 

104. Form of odontoid process (modified from J. Gardner, 2000); (0) knob-like, (1) 

dorsoventrally flattened, (2) separate (not joined in the middle), (3) highly reduced or absent 

(unordered) 

105. Position of atlas neural canal relative to the anterior cotyles (J. Gardner, 2000); (0) 

the neural canal is situated above the anterior cotyles, (1) the neural canal protrudes in 

between the anterior cotyles, but up to half way or less than the dorso-ventral distance of 

the anterior cotyles, (2) Neural canal intrudes deeply or completely between the anterior 

cotyles (ordered) 

106. Size of atlas neural canal relative to the anterior cotyles (J. Gardner, 2000); (0) the 

anterior circumference of the neural canal is approximately equal to or greater than the 

circumference of one of the anterior cotyles, (1) the neural canal is smaller than the anterior 

coyle 

107. Posterior extent of neural arch roof of the atlas (modified from J. Gardner, 2000); (0) 

extends past the edge of the posterior cotyle, (1) in line with the posterior cotyle, (2) the 

posterior edge of the neural arch roof is shorter i.e. does not reach to the edge of the 

posterior cotyle (ordered) 



108. Dorsal outline of posterior margin of the atlas neural arch roof (modified from J. 

Gardner, 2000); (0) truncated, (1) forked, (2) pointed (unordered) 

109. Dorsal outline of the atlas’ neural arch crest (modified from J. Gardner, 2000); (0) 

the outline of the crest broadens posteriorly, (1) it narrows posteriorly, (2) relatively straight, 

(3) it is hourglass shaped i.e. narrows then broadens (unordered) 

110. Shape of anterior end of neural arch crest on the atlas (modified from J. Gardner, 

2000); (0) not elaborated, (1) swollen or thickened, (2) paired anterior processes 

(unordered) 

111. Postzygapophyses prominence on the atlas (modified from J. Gardner, 2000); (0) 

prominent, (1) small. 

112. Postzygapophyses articular surface on the atlas (modified from J. Gardner, 2000); (0) 

laterally divergent, (1) directed ventro-laterally. 

113. Postzygapophyses; (0) diverge from the end of the neural arch crest on the atlas, (1) 

diverge from along the neural arch crest of the atlas. 

114. Condition of the dorsal part of the neural arch crest of the atlas (J. Gardner, 2000); 

(0) finished in cartilage, (1) finished in bone 

115. Condition of the posterior end of the neural arch spine of the atlas; (0) finished in 

cartilage, (1) finished in bone 

116. Four facetted articulation of exoccipital and atlas (Wiens et al. 2005; Zhang et al. 

2009);  (0) absent due to reduction in odontoid process, (1) absent due to continuous surface 

of odontoid and anterior cotyles, (2) present (unordered) 

117. Atlantal spinal nerve foramen (Zhang et al. 2009); (0) absent, (1) a notch, (2) fully 

enclosed (ordered) 

118. Atlas, transverse process (Wiens et al. 2005); (0) absent, (1) present 



119. Shape of atlas centrum in ventral view (Zhang et al. 2009); (0) shorter than 

postatlantals, (1) roughly equal in length to postatlantals, (2) longer than postatlantals 

(unordered) 

120. Basapophyses on the atlas; (0) absent, (1) present   

121. Neural cord supports, (0) absent, (1) present  

 

Presacral Vertebrae: 

122. Centrum of presacral vertebrae (modified from J. Gardner, 2000); (0) amphicoelous, 

(1) semi-opisthocoelous, (2) fully opisthocoelous, (3) procoelous (unordered) 

123. Size of the 4th trunk vertebrae (5th presacral) neural canal relative to its anterior size 

of the centrum; (0) neural canal is approximately equal in size (radius) to, or greater than, 

the size of the anterior centrum, (1) neural canal smaller than the anterior centrum 

124. Posterior basapophyses of the presacrals (J. Gardner, 2000); (0) absent, (1) present 

125. Anterior basapophyses of the presacrals (Wiens et al. 2005); (0) absent, (1) present 

126. Condition of neural spine (J. Gardner, 2000); (0) finished in cartilage, (1) finished in 

bone 

127. Prominent, v-shaped hypapophyses (J. Gardner, 2000); (0) absent, (1) present 

128. Bony lamina between diapophyses and paraphyses (modified from Wiens et al. 

2005); (0) absent, (1) partial presence, (2) present – full lamina (ordered) 

129. Mid-ventral keel on mid-body vertebrae (modified from Wiens et al. 2005); (0) 

absent, (1) present (small), (2) Large – extends below the ventral edge of the centrum 

cotyles (ordered) 

130. Posterolateral flanges on mid-dorsal keel on mid-body vertebrae (Wiens et al. 2005); 

(0) absent, (1) present 



131. Anterior keel/flange on transverse process (extending from, and between the 

transverse process to anterior edge of centrum) (modified from Wiens et al. 2005); (0) 

absent, (1) present 

132. Fenestra in anterior keel; (0) present, (1) absent 

133. Anterodorsal keel on transverse process (extending from transverse process to 

anterior zygapophysis) (modified from Wiens et al. 2005); (0) absent, (1) present 

134. Posterior keel of transverse process (extends from transverse process to posterior 

centrum edge); (0) absent, (1) present 

135. Dermal sculpture on dorsal surface of neural arch; (0) present, (1) absent 

136. Shape of the neural spine of mid-body vertebrae (modified from Wiens et al. 2005); 

(0) absent/truncated, (1) single median process (spine-like projection), (2) present (paired 

process)  

137. Posteriorly projecting neural spine(s) (past the posterior centrum edge); (0) shorter 

than posterior centrum edge, (1) in line with posterior centrum edge, (2) projecting past the 

posterior centrum edge (ordered) 

138. Posterior zygapophyses facet face of presacral vertebrae; (0) latero-medially 

divergent (facing slightly outwards, away from each other), (1) directed ventrally 

139. Transverse process in anterior part of trunk series, excluding first presacral vertebra 

(J. Gardner, 2000); (0) Unicapitate, (1) bicapitate, (2) absent 

140. Mid-dorsal keel (neural arch crest) on presacral vertebra (Wiens et al. 2005); (0) 

absent, (1) present 

141. Mid-dorsal keel (neural arch crest) on presacral vertebra length; (0) short (does not 

run the length of the vertebra), (1) long (runs from at least just behind the anterior 

zygapophyses to neural spine) 

 



Caudal Vertebrae: 

142. Caudal vertebrae, neural spine (Wiens et al. 2005); (0) with one process, (1) paired 

process 

143. Mid-dorsal crest on caudal vertebrae (Wiens et al. 2005); (0) absent, (1) present 

144. Dermal sculpturing on dorsal surface of neural arch on the caudal vertebrae; (0) 

present, (1) absent 

145. Caudal vertebrae (Wiens et al. 2005); (0) ventral keels absent, low, and/or rounded, 

(1) dorsal and ventral keels raised and distinctly rectangular 

146. Transverse process of anterior caudal vertebrae (Wiens et al. 2005); (0) posteriorly 

orientated, (1) anteriorly oriented 

147. Transverse process of anterior caudal vertebrae; (0) unicapitate, (1) bicapitate 

148. Caudal vertebrae, anterior keel on haemal arch (Wiens et al. 2005); (0) absent, (1) 

present 

149. Caudal vertebrae, haemal arch (Wiens et al. 2005); (0) complete, lateral halves fused 

to form median process, (1) incomplete, two ventral lamina do not contact or fuse on 

anterior caudal vertebrae, (2) incomplete for all caudal vertebrae (unordered) 

150. Caudal vertebrae, haemal arch spine (Wiens et al. 2005); (0) paired process, (1) 

single process 

151. Caudosacral vertebrae (number of caudal vertebrae lacking a haemal arch, plus the 

sacral vertebra) (Character from Wake, 1966; Wiens et al. 2005); (0) 2, (1) 3, (2) 4 (ordered) 

152. Zygapophyses connecting caudal vertebrae (Wiens et al. 2005); (0) present on all or 

most vertebrae, (1) absent from posterior caudal vertebrae  

 

 



Ribs: 

153. Number of ribs on anterior caudal vertebrae (Zhang et al. 2009); (0) more than 3 

pairs, (1) 2-3 pairs, (2) free ribs absent (ordered) 

154. Atlantal Ribs (Larson and Dimmick, 1993); (0) absent, (1) present 

155. Postatlantal ribs (modified from Zhang et al. 2009); (0) bicapitate, (1) unicapitate, (2) 

absent (unordered) 

156. Dorsal process of bicapitate ribs (Wiens et al. 2005); (0) articulates with diapophysis, 

(1) reduced, does not articulate with diapophysis 

157. Ribs on mid-body presacral vertebrae (Wiens et al. 2005); (0) present, (1) absent 

158. Ribs on last presacral vertebra (Wiens et al. 2005); (0) present, (1) absent 

159. Rib on penultimate presacral vertebra (Wiens et al. 2005); (0) present, (1) absent 

160. Sacral rib (Wiens et al. 2005); (0) free, (1) fused 

161. Dorsal process on mid-body of rib of 4th trunk vertebra (4th presacral excluding the 

atlas) (Wiens et al. 2005); (0) absent, (1) present 

162. Bony lamina between ventral and dorsal processes of ribs (Wiens et al. 2005); (0) 

absent, (1) present 

 

Spinal nerves: 

163. Spinal nerves in posterior trunk vertebrae (data from Edwards, 1976; modified 

character from character X of Duellman and Trueb, 1986; Wiens et al. 2005); (0) exit 

intervertebrally, (1) exit intravertebrally 

164. Spinal nerve exit in caudal vertebrae (data from Edwards, 1976; modified character 

from character X of Duellman and Trueb, 1986; Wiens et al. 2005); (0) intervertebral in all 

caudal vertebrae, (1) intravertebral in some or all caudal vertebrae 



165. Dorsal and ventral roots of spinal nerves in trunk vertebrae (modified from Edwards, 

1976; Duellman and Trueb, 1986; Wiens et al. 2005 and Thien and Chantell 1963); (0) exit 

through single foramen, (1) dorsal and ventral roots of presacral vertebrae exit through 

separate foramina  

166. Presacral spinal nerve foramina (modified from Edwards, 1976; Duellman and Trueb, 

1986; Wiens et al. 2005 and Thien and Chantell 1963); (0) spinal nerve exits intervertebrally, 

(1) spinal nerve exits intravertebrally in some vertebrae, (2) all spinal nerves exit 

intravertebrally (ordered) 

 

Pectoral girdle: 

167. Scapula-coracoid ossification (modified from Duellman and Trueb, 1986; Larson and 

Dimmick, 1993; Gao and Shubin, 2001; Wiens et al. 2005; Zhang et al. 2009); (0) ossified as 

separate elements, (1) two elements as a single ossification 

168. Coracoids (Wiens et al. 2005); (0) not contacting medially, (1) 

contacting/overlapping medially, (2) fused medially (ordered) 

169. Procoracoid and coracoid (Wiens et al. 2005); (0) not overlapping anteriorly, (1) 

overlapping anteriorly, enclosing foramen 

170. Supracoracoid foramen (modified from Wiens et al. 2005); (0) entirely in 

cartilage/absent, (1) partly in bone, (2) entirely in bone  

171. Suprascapula (modified from Wiens et al. 2005); (0) expanded in width dorsally, (1) 

not expanded, about same width as dorsal width of scapula 

172. Crista dorsalis of humerus (Wiens et al. 2005); (0) present, (1) absent 

173. Carpals (Wiens et al. 2005); (0) all elements cartilaginous, (1) some (but not all) 

ossified, (2) all elements at least partly ossified (ordered) 

174. Fusion of distal carpal 1+2 (Gao and Shubin, 2001; Zhang et al. 2009); (0) fusion 

absent, (1) fusion present 



175. Distal carpal 4 and 5 (Gao and Shubin, 2001; Zhang et al. 2009); (0) two elements 

remain separate, (1) fused 

176. Carpals 3 and 4 (Wiens et al. 2005); (0) separate, (1) fused 

177. Prepollex and radiale (Wiens et al. 2005); (0) separate, (1) fused 

178. Ulnare (the carpal that articulates with the ulna) and intermedium (the bone or 

cartilage between the radiale and ulnare in the carpus) (Gao and Shubin, 2001; Wiens et al. 

2005; Zhang et al. 2009); (0) separate, (1) fused 

179. Ulnare and carpal 4 (Wiens et al. 2005); (0) separate, (1) fused 

180. Intermedium and centrale (Wiens et al. 2005); (0) separate, (1) fused 

181. Number of centralia in manus (or pes) (Gao and Shubin, 2001); (0) more than one 

Centralia element, (1) one central element  

182. Number of manual digits (fingers) on forelimb (Wiens et al. 2005); (0) four, (1) three, 

(2) two, (3) one (unordered) 

183. Number of phalanges on digit I of manus (Wiens et al. 2005); (0) two, (1) one 

 

Pelvic girdle: 

184. Hind limbs (Wiens et al. 2005); (0) present, (1) absent  

185. Pelvic girdle (structure), (Wiens et al. 2005); (0) halves fused medially, (1) halves 

separate medially 

186. Lateral processes of pubis (Wiens et al. 2005); (0) present, (1) absent 

187. Ossification of ischium (Wiens et al. 2005); (0) not extending to anterior margin of 

pelvic girdle, (1) extending to anterior margin of pelvic girdle 

188. Ossification of ischia (Wiens et al. 2005); (0) meeting mid-ventrally (separated by 

thin strip of cartilage), (1) well-separated mid-ventrally 

189. Posterior median process on ischium (Wiens et al. 2005); (0) absent, (1) present 



190. Median processes of pubis (Wiens et al. 2005); (0) posterior to or level with lateral 

processes, (1) anterior to lateral processes 

191. Femur “crista dorsalis”; (0) absent, (1) present 

192. Tibial spur (Wiens et al. 2005); (0) absent, (1) present, not elongate and pointed, (2) 

elongate and pointed (unordered) 

193. Fusion of tarsals 1 and 2 (Wiens et al. 2005; Zhang et al. 2009); (0) separate, (1) 

fused 

194. Distal tarsals 4 and 5 (Wiens et al. 2005); (0) separate, (1) fused 

195. Number of toes on hindlimb (Wiens et al. 2005); (0) five, (1) four, (2) three, (3) two, 

(4) one (ordered) 

196. Number of phalanges on digit IV of pes (Wiens et al. 2005); (0) three, (1) four 

197. Phalanges on digit I of pes (Wiens et al. 2005); (0) two, (1) one 

 

Soft body coding: 

 

198. Junction of the periotic canal and cistern (Duellman and Trueb 1986); (0) periotic 

canal joins the periotic cistern dorsally at its posterior aspect, (1) the junction of the canal 

and the cistern is slightly dorsal and posterior to the festra ovalis, (2) the junction of the 

cistern and canal is formed through the protrusion of the cistern into the fenestra ovalis 

199. Flexures of periotic canal (Duellman and Trueb 1986); (0) the periotic canal curves 

ventrally and medially from its junction with the periotic cistern, (1) the canal takes a 

relatively horizontal course, (2) canal with one or more flexures 

200. Basilaris complex of inner ear (Duellman and Trueb 1986); (0) recessus basilaris and 

papillae are present in the inner ear, (1) absence of papillae, (2) absence of entire complex 

201. First hypobranchial and first ceratobranchial (Duellman and Trueb 1986); (0) 

separate elements, (1) fusion of the two elements 

202. Second ceratobranchial (Duellman and Trueb 1986); (0) present, (1) absent 



203. Number of larval gill slits (Duellman and Trueb 1986); (0) four pairs, (1) three pairs, 

(2) two pairs, (3) one pair 

204. Ypsiloid cartilage (Duellman and Trueb 1986); (0) present, (1) absent 

205. Levator mandibulae muscle (Duellman and Trueb 1986); (0) originates on the skull 

roof, (1) origin on the side of the skull, (2) an origin that includes the exoccipital (or cervical 

vertebrae),  

206. Pubotibialis and puboischiotibialis muscles (Duellman and Trueb 1986); (0) separate 

muscles, (1) fusion of the two muscles 

207. Kidney (Duellman and Trueb 1986); (0) presence of well-developed glomeruli in 

anterior of kidney, (1) reduction of absence of anterior glomeruli 

208. Mode of fertilisation (Duellman and Trueb 1986); (0) external fertilisation, (1) 

internal fertilisation 

209. Recessus amphibiorum (Larson and Dimmick 1993) (0) horizontal orientation of the 

recessus amphibiorum of the inner ear, (1) vertical orientation 

210. Otic sac (Larson and Dimmick 1993) (0) multilobate sac which is vascularised and 

filled with calcium, (1) bulbar, partially vascularised sac, (2) bulbar unvascularised sac 

211. Amphibian periotic canal connective tissue (Larson and Dimmick 1993) (0) absence 

of this tissue, (1) Presence of fibrous connective tissue around amphibian periotic canal 

212. Periotic cistern (0) large cistern, (1) small cistern 

213. Fenestral relations of the periotic cistern (Larson and Dimmick 1993) (0) absence of 

protrusion, (1) protrusion of the cistern into the fenestra 

214. Palatal dentition (unordered) (Larson and Dimmick 1993) (0) replacement of 

vomerine teeth proceeds laterally in parallel to the maxillary teeth, (1) from the posterior of 

the vomer, (2) both laterally and posteriorly, (3) medially 



215. Epidermis (Larson and Dimmick 1993) (0) absence in female salamanders of an 

epidermal lining in the anterior half of the cloacal chamber, (1) presence of the epidermal 

lining 

216. Male anterior ventral glands (Larson and Dimmick 1993)(0) absence, (1) presence 

217. CTL/TCL cloacal tube length divided by total cloacal length quotient in females 

(Sever 1991); (0) present, (1) absent 

218. CTL/TCL cloacal tube length divided by total cloacal length quotient in males, (Sever 

1991); (0) present, (1) absent 

219. Ciliated epithelium in the cloacal tube and/or anterior cloacal chamber of females, 

(Sever 1991); (0) present, (1) absent 

220. Ciliated epithelium in the cloacal tube and/or anterior cloacal chamber of males, 

(Sever 1991); (0) present, (1) absent 

221. Extent of epidermis in the female cloacal chamber, (Sever 1991); (0) the epidermal 

lining does not extend into the anterior one-half of the cloacal chamber, (1) the epidermal 

lining does extend into the anterior one-half of the cloacal chamber 

222. Cloacal recess in females (Sever 1991); (0) absent, (1) present 

223. Number of pairs of rugae in the male cloaca (Sever 1991); (0) < 10, (1) > 10 

224. Primary and secondary folds in the male cloacal tube, (Sever 1991); (0) absent, (1) 

present 

225. Middorsal evagination of the male cloacal chamber (Sever 1991); (0) absent, (1) 

present 

226. Dorsalateral recesses in the male cloacal chamber (Sever 1991); (0) absent, (1) 

present 

227. Pseudopenis in the male cloaca (Sever 1991); (0) absent, (1) present 

228. Female anterior ventral glands (Sever 1991); (0) absent, (1) present 

229. Spermathecae (Sever 1991); (0) absent, (1) present 



230. Common tube to the spermathecae (Sever 1991); (0) absent, (1) present 

231. Female dorsal glands (Sever 1991); (0) absent, (1) present 

232. Other female cloacal glands (Sever 1991); (0) absent, (1) present 

233. Male anterior ventral glands (Sever 1991); (0) absent, (1) present 

234. Posterior ventral glands (Sever 1991); (0) absent, (1) present 

235. Kingsbury's glands (Sever 1991); (0) absent, (1) present 

236. Dorsal pelvic glands (Sever 1991); (0) absent, (1) present 

237. Lateral pelvic glands (Sever 1991); (0) absent, (1) present 

238. Caudal pelvic glands (Sever 1991); (0) absent, (1) present 

239. Male dorsal or vent glands (Sever 1991); (0) absent, (1) present 

240. Amphiumid pit glands (Sever 1991); (0) absent, (1) present 

241. Other male cloacal glands (Sever 1991); (0) absent, (1) present 

242. Lateral wall of nasal capsule (Zhang et al. 2009); (0) complete, (1) incomplete  

243. Lateral narial fenestra (Zhang et al. 2009); (0) absent, (1) present  

244. Posterior wall of nasal capsule (Zhang et al. 2009); (0) complete, (1) incomplete  

245. Origin of m. adductor mandibulae internus superficialis (Zhang et al. 2009); (0) on 

dorsallateral surface of parietal, (1) origin extends posteriorly to exoccipital, (2) origin 

extends to cervical vertebra, (3) origin extends anteriorly towards level of frontal 

246. Microchromosome (Zhang et al. 2009); (0) present, (1) absent 

247. Ectopterygoid (Zhang et al. 2009); (0) present, (1) absent 

248. Haploid Chromosomes (Gao and Shubin 2001); (0) more than 20, (1) reduced to 19, 

(2) further reduced to 14 or less 

249. Diploid Chromosomes (Gao and Shubin 2001); (0) 56 or more, (1) 40-55, (2) lower 

than 40 
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