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Abstract 

Adequately accounting for interactions between Low Carbon Technologies (LCTs) at the building level 

and the overarching energy system means capturing the granularity associated with decentralised 

heat and power supply in residential buildings. The approach presented here adds novelty in terms of 

a realistic socioeconomic differentiation by employing dwelling/household archetypes (DHAs) and 

neighbourhood clusters at the Output Area (OA) level. These archetypes are combined with a mixed 

integer linear program (MILP), which is used to generate optimum (minimum cost) technology 

configurations and operation schedules. Even in the baseline case, i.e. without any LCT penetration, a 

substantial deviation from the standard load profile (SLP) is encountered, suggesting that for some 

neighbourhoods this profile is not appropriate. With the application of LCTs this effect is much 

stronger, including more negative residual load, more variability, and higher ramps with increased 

LCT penetration, and crucially different between neighbourhood clusters. The main policy implication 

of the study is the importance of understanding electrical load profiles at the neighbourhood level, 

because of the consequences they have for investment in the overarching energy system (e.g. 

transmission and distribution infrastructure, centralised generation plant etc.). Further work should 

focus on attaining a superior socioeconomic differentiation between households.  
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1. Introduction 

In many countries, residential buildings account for a major component of final energy demand and 

CO2 emissions. Particularly in regions with a temperate or continental climate (across America, 

Europe and Asia) the heat supply of buildings, for space heating and hot water, are key energy 

service demands (Lucon et al. 2014). In this paper’s representative case study of the United Kingdom 

(UK), the energy supply of households accounts for around 29 % and 25% of the UK’s final energy 

demand and CO2 emissions respectively (Palmer & Cooper 2013).  

Hence low carbon technologies (LCTs) at the interface between electricity and heat systems, such as 

micro-Combined Heat and Power (mCHP) and heat pumps, are especially promising in this context 

(OECD/IEA 2011). Furthermore, several other renewable technologies, such as photovoltaics (PV) and 

solar thermal, tend to be exploited decentrally, on the individual building scale. So individual 

residential buildings and neighbourhoods are therefore a prime target for renewable energy and 

energy efficiency measures (collectively referred to here as low carbon technologies, LCTs).  

Whilst these measures have significant technical potential in residential buildings, the diversity 

within the building stock as well as between individual households means that a differentiated 

approach is necessary in order to assess their potential uptake (as discussed in section 2). Indeed, the 

UK research community has called for more detailed modelling of the residential sector in a whole 

systems framework. For example, Kannan & Strachan (2009) stress the necessary compromise 

between depicting the residential sector in detail and the whole energy system on an aggregated 

level in the context of the government’s target of 60% CO2 reduction by 2050 (since superseded by 

an 80% target). This has been taken up by the UK government in the development of the National 
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Household Model (NHM, CSE 2015) as a key component in their long-term energy modelling suite, in 

addition to the UK TIMES energy systems model, the National Transport Model and the electricity 

dynamic dispatch model (DDM). 

In the context of modelling LCTs in residential buildings, the discussion in section 2 illustrates the 

necessity to differentiate between dwelling and household types, and demonstrates the lack of 

attention given to differentiation between household types. Only if the effects that this diversity has 

on both the patterns in, and the overall total household energy consumption, are considered, can 

meaningful insights into the potential applications and impacts of these technologies be gained. 

Hence this paper presents a novel approach to analyse the possible effects on the electrical load 

profiles of a diffusion of LCTs in residential buildings. This includes an examination of these effects at 

the individual household and neighbourhood levels. The method explicitly considers the diversity 

inherent in heating patterns and set temperatures, as well as paying attention to appliance-related 

factors. The objective is thereby to analyse scale effects on residential load profiles at the 

neighbourhood level, by considering decentralised LCTs for heat and electricity supply as well as 

some important socioeconomic aspects. The approach includes the generation of 

dwelling/household and neighbourhood archetypes, which serve as the basis for an optimisation of 

supply-side LCTs in individual buildings. These dwelling/household archetypes (DHAs) are then scaled 

up to the neighbourhood level and through the derived archetypes are mapped to the Output Areas 

(OA) in England and Wales. In a final step the potential effects on the aggregated (residual) load 

profiles of these neighbourhoods are analysed through recourse to different technology penetration 

scenarios.  

The paper is structured as follows. The following section gives a literature review relating to 

socioeconomic influencing factors surrounding residential energy use, thus providing the motivation 

for and demonstrating the added value of this work. Section 3 then presents the methodology used, 

with particular focus on the derivation of dwelling/household archetypes (DHAs) and neighbourhood 

clusters, as well as the developed LCT penetration scenarios. Section 4 presents the results and 



4 
 

section 5 discusses them as well as the methodology more generally. Finally, section 6 closes with 

conclusions and policy implications. 

2. Literature review 

In general there is evidence that the overall energy demand of a household is closely correlated with 

its income, although other factors also play a significant role (e.g. Jones et al. 2015a; for a spatial 

analysis for the UK see Druckman & Jackson 2008). Haldi & Robinson (2011) suggest that behavioural 

factors alone can account for a doubling of building energy demand and the diversity between 

occupants may have an even stronger effect. In the context of low-energy dwellings Gill et al. (2010) 

find that occupants behaviour account for the 51%, 37%, and 11% respectively of the variance in 

heat, electricity and water consumption. Despite these findings, some studies that have attempted to 

explain the variance in internal temperatures (Kelly et al. 2013) and energy demand (Hübner et al. 

2015) have been unable to fully do so. Whilst Kelly et al. (2013) are able to explain 45% of the 

variation in internal temperatures using panel methods, Hübner et al. (2015) are only able to account 

for 44% of variability in residential energy consumption. Whilst both of these studies clearly suggest 

that further work is required to fully understand the dwelling and household factors that determine 

internal temperature and overall energy demands, they do highlight at least some of the key factors 

that should be considered if variability between households is at least partly to be accounted for. 

Jones et al. (2015a) review the socioeconomic, dwelling- and appliance related factors affecting 

electricity consumption in residential buildings, concluding that several household factors, including 

household and disposable income, number of occupants, age of the household representative person 

(HRP), have a positive effect on the electricity consumption. Other factors also have an effect but the 

nature of this effect is less conclusive in the literature. Amongst the dwelling factors, there is a more 

conclusive picture, showing for example that dwelling type, size and age, and electric space and 

water heating have been examined most in the literature and shown to have a positive effect. For 
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individual appliances, the study highlights the lack of attention paid in the literature to appliance-

related factors, including ownership, use and power demand.  

In addition, Jones et al. (2015b) analyse the determinants of particularly high electrical demands in 

UK homes, finding that the presence of teenagers, electric space heating as primary heating, portable 

electric heating and electric water heating are all key drivers for high electricity demand. 

Interestingly, this study (Jones et al. 2015b) confirms the above findings (Jones et al. 2015a), except 

for the following factors, which are shown to have no statistically significant effect on above-average 

electricity consumption in UK dwellings: the employment status and education of the HRP, the 

number of floors in the dwelling, the presence of fixed electric (space) heating and the proportion of 

low-energy lighting. 

There is also strong evidence that socioeconomic differences between households affect the 

temporal profiles of electricity demand, i.e. the load profiles. There is an extensive literature on 

residential electrical load profile modelling; for a review of these models the reader is referred to 

Grandjean et al. (2012), and for a review of the time-use data that often underpins them to Torriti 

(2014). Whilst the latter points out that data relating to income, number of occupants, homeowner 

age and education are variously employed in residential electricity demand models, it does not 

analyse their use in combination. In addition, whilst arguing for a differentiated treatment of 

residential electricity load profiles in Europe, Hayn et al. (2014) identify four distinct but interrelated 

influencing characteristics: lifestyles, socio-demographic characteristics, electric appliances and new 

residential heat and electricity generation technologies. Hayn et al. confirm the above findings that 

household size, income, and employment status are the key socio-demographic factors. They also 

recommend that future work also considers the effects of LCTs such as PV, mCHP, heat pumps and 

batteries, due to their effect on the peak load, as well as linking socio-demographic factors with the 

ownership of appliances and technologies. However, only a few of the residential electricity demand 

models based on time-use data enable a detailed socioeconomic differentiation between 

households. One of these is presented by Fischer et al. (2015), who develop a stochastic bottom-up 
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model and apply it to German households, where the main novelty seems to be the level of 

socioeconomic differentiation achieved. Households are characterized by the number of people, the 

structure, the age, the dwelling type and the working pattern. Results are validated with empirically-

measured load curves and show a high level of accuracy.  

In the context of analyzing residential heat demand, Hübner et al. (2013a, 2013b) compare internal 

temperature settings in English dwellings with common model assumptions as employed in widely 

used assessment methodologies and building stock models. They conclude (Hübner et al. 2013a) that 

the commonly-used assumptions in these models, especially those relating to the internal 

temperature and heating patterns do not accurately reflect behaviour in these dwellings. Instead, the 

internal temperature is consistently found to be below the assumed value of 21°C, the heating 

durations were shorter than assumed, and a large degree of variability between dwellings was 

encountered. In addition, they find (Hübner et al. 2013b) that weekdays and weekends are far more 

similar than commonly supposed and homes are frequently heated outside assumed heating hours. 

The authors suggest that further work should focus on explicitly addressing heating load patterns and 

set temperatures, as well as linking socioeconomic and building variables to the heating patterns and 

internal temperatures, with a view to identifying sub-segments of the population with similar 

behaviour. 

In addition to the demand side, several contributions have analysed the potentials for and likely 

impacts of different supply-side LCTs at the individual building and neighbourhood level. Most of 

these studies employ optimisation and/or simulation approaches that depict the building’s physical 

and thermal characteristics in detail yet do not differentiate between (types of) households. For a 

detailed discussion the reader is referred to McKenna et al. (2016). 

In summary, the upper and lower bounds for the annual energy consumption of a residential building 

are largely determined by the building’s thermal characteristics (including geometry and insulation 

standard), the type of heating system, the climate, the number of persons and the number/type of 
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appliances. But the foregoing discussion illustrates that the precise energy consumption of a 

particular building between these two extremes depends heavily on the occupants and their 

behaviour. The temporal patterns of energy consumption are also strongly affected by certain 

socioeconomic characteristics. Hence why several important socioeconomic factors that determine 

residential energy consumption are employed in the subsequent section. 

3. Methodology 

This section gives an overview of the developed and applied methodology as shown in Figure 1. The 

areas enclosed within a dashed rectangle in the figure are not presented here in detail due to space 

restrictions; instead the reader is referred to the given source. The first subsection (3.a) presents the 

employed CREST electrical load profile tool and the further developments made to consider space 

heating and hot water. The second subsection (3.b) presents the dwelling and household archetypes 

(DHAs) employed in this study. The third subsection (3.c) describes the derivation of representative 

neighbourhoods at the Output Area level with a cluster analysis. The household/dwelling archetypes 

are then allocated to these neighbourhoods in order to scale up the results to selected 

neighbourhoods in the UK. The final subsection (3.d) briefly presents the methodology for employing 

a preexisting optimisation model in order to derive optimal technology combinations, capacities and 

dispatch profiles. 

a. CREST model 

The CREST (henceforth “CREST 1.0”) tool by Richardson et al. (2010) and Richardson & Thomson 

(2012) simulates residential electricity load profiles in 1-minute resolution. A first-order Markov-

chain approach is used to stochastically generate a 24-hour occupancy pattern, which defines the 

occupancy state during every minute of the day. Based on this occupancy pattern, the model 

generates electricity load curves for every electric appliance present in the simulated household. 

Electric appliances that do not depend on active occupancy follow a static consumption pattern. 
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Appliances that require active occupancy are mapped to activity profiles, which incorporate varying 

appliance use over the day. Activity profiles and transition probability matrices for generation of 

occupancy patterns are obtained by evaluation of time-of-use survey data. The tool is further 

extended by Richardson & Thomson (2012) through the integration of stochastic generation of 

irradiation profiles and simulation of on-site photovoltaic power generation. 

In the scope of this work, the following five extensions to the CREST tool have been implemented 

(referred to in the following and in Figure 1 as “CREST Heat And Power (CHAP)”):  

1. The two-state occupancy model has been replaced by a four-state occupancy model 

developed by McKenna et al. (2015). This allows for a more detailed simulation of internal 

heat gains and losses.  

2. A domestic hot water (DHW) module has been integrated. It incorporates six DHW service 

demands and relies on the same approach already used by Richardson et al. (2010) to 

simulate electricity demand. DHW service demands do not feature stand-by power 

consumption and restart delay but mean delivery temperature. Flow and temperature meter 

data surveyed by EST (2008) has been used to obtain DHW appliance parameters and to 

validate the model.  

3. A space heating (SH) model has been implemented, which is based on the lumped-parameter 

model by Nielsen (2005). The two-node thermal RC-model allows for estimation of thermal 

indoor temperature and residential SH demand under consideration of building structure, 

irradiation and heating load. Construction parameters are taken from the Cambridge Housing 

Model (CAR, 2013) and data on realistic heating regimes and internal set temperatures are 

extracted from the Energy Follow Up Survey (EFUS: DECC 2011).  

4. Consumption parameters of electric appliances have been updated based on the studies of 

Armstrong et al. (2009) and Stamminger (2008). Further electric appliances monitored in the 

scope of the Household Electricity Usage Study (Element Energy 2013) have been added to 

the electricity model.  
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5. The CREST CHAP model allows for calibration of appliance use frequencies so that the 

simulated dwelling energy demand matches an ex-ante defined yearly target value. A similar 

calibration mechanism has been developed for DHW by deriving mean active occupancy and 

mean activity values depending on the number of residents occupying the simulated 

dwelling. 

There are two types of climate data processed by the CHAP simulation. Firstly, irradiation data is 

required by the SH model and by the electricity model (in case of PV power production). A data series 

with location set to Loughborough (UK) is generated by the irradiation model developed in 

Richardson & Thomson (2012). Secondly, outdoor temperature data is required by the SH model. A 

UK temperature data series representing an average of UK’s prevalent climatic zones is obtained by 

averaging 2006 temperature data for London, Birmingham, Newcastle Upon Tyne and Glasgow (Met 

Office, 2012). Both irradiation and temperature data series are seasonal. 

The CHAP model will be presented and validated in detail in a forthcoming contribution. The main 

limitations of the model are discussed in section 5.b. For further details of the CHAP model, the 

reader is referred to Hofmann et al. (2016). 

b. Definition of dwelling/household archetypes (DHAs) 

A quite recent study to analyse trends of energy use in a residential building context was carried out 

by Element Energy (2013). This study, based on somewhat older data from the Household Energy 

Usage Survey (HEUS) of 250 mainly owner-occupied dwellings between 2010 and 2011 (Zimmermann 

et al. 2012), analysed how socioeconomic occupant characteristics influence their electricity 

consumption. A hierarchical (with Ward’s method) and subsequent k-means cluster analysis in SPSS 

resulted in the identification of seven household archetypes based on the “elbow criterion” on the 

Scree plot. These 7 HEUS Archetypes are employed as the basis for the dwelling/household 

archetypes (DHAs) used in this analysis; for more details, the reader is referred to the original report 

(Element Energy 2013).  
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The assumption is thereby made that the clusters with lower social grades have a very low or null 

propensity to invest in low carbon technologies, hence why only five of the archetypes are optimised. 

The number of occupants is taken from the source, except in the case of the Practical Considerations 

cluster where it is increased to 5 (from 4) in order to give a wider range of occupancies from 1 to 5. 

The dominant dwelling type for the household is taken from the source and in cases where no one 

building type is dominant an attempt is made to ensure that a balanced selection of buildings is 

present. It is further assumed that all of the DHAs have a gas boiler (the most dominant type of 

heating in the UK) as their existing heat and electricity supply technologies in combination with 

electricity from the network. This assumption is justified due to the fact that only 0.06% of dwellings 

have heat pumps (CAR 2013), an average of 120 residential PV installations are installed per 10,000 

households, and the existing installed mCHP capacity is also very low at a maximum of 19 kWel 

amongst 70,000 households (DECC 2015).  

The last stage in specifying the DHAs is to define the building characteristics, which are taken from 

the Cambridge Housing Model 2012 (CHM: CAR 2013). For each dwelling type given in Table 1 a 

typical building configuration is taken from the model, including metabolic rates, heat emission rates, 

ventilation rates, heating system limitations, maximum shading factor, temperature data series etc. 

Certain attributes are defined by both HEUS and CHM archetypes (1. number of occupants, 2. 

dominant building type, 3. floor area, 4. building age). A link between HEUS and CHM archetypes was 

established by filtering the list of CHM archetypes for the four above attributes. Building parameters 

required by CHAP model were then obtained by calculating the mean or mode value of the remaining 

CHM archetypes. Heating regime data (daily heating periods, set point temperature and heating 

months) was generated by the help of EFUS data (DECC 2011). Further parameters required by the 

SH model not provided by the CHM (e.g. differentiated metabolic rates, heat emission rates, 

ventilation rates, heating system limitations, maximum shading factors, temperature data series etc.) 

were obtained by consulting different sources. The complete process of data retrieval is explained in 

greater detail in Hofmann et al. (2016). 
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c. Derivation of neigbourhood archetypes 

In this section the method for clustering neighbourhoods at the Output Area (OA) level is presented. 

Census 2011 data relating to dwelling type, tenure and household structure at the Output Area level 

have been used as assembled and published by the Centre for Sustainable Energy (CSE, 2015). The 

first step in using these data involves pre-filtering all of the OAs in England and Wales that either 

contain mostly flats (including private rented and social housing) and/or are characterized as having a 

high proportion of the population in lower socioeconomic groups2. This process relies on the 2011 

Output Area Classification, which categorizes OAs into 8 supergroups, 26 groups and 76 subgroups 

based on various socioeconomic criteria (as documented in the “pen portraits”, ONS 2015). Only 

those subgroups were retained that contained at least 60% of owner-occupied, non-flat type 

buildings, resulting in reducing the total number of OAs from 181,409 to 79,962 (cf. footnote 2).  

Based on the remaining 79,962 OAs a two-stage cluster analysis was performed using SPSS, using the 

log-likelihood distance measure and the Bayesian Information Criteria (BIC) quality measure 

(Zelterman 2015). The cases were randomly sorted prior to clustering in order to avoid order effects 

and the number of clusters determined automatically based on the above criteria. This analysis was 

carried out with many combinations of variables contained in the OA data and the best results were 

obtained with the following variables: households per unit of area, percentage of detached, semi-

detached and terraced dwellings respectively, and weighted average floor area per dwelling. The 

latter variable was determined as the weighted average of the product of the percentage of a given 

dwelling type and the national average floor area for this type in the English Housing Survey 2012 

(DCLG 2014). With these configurations the cluster analysis identified three OA clusters as defined in 

Table 2 below with a cluster quality of 0.55, with 0 being poor and 1 excellent3. An additional, fourth 

cluster C0, is defined as the average (mean) over all 79,962 OAs. 

                                                           
2
 It should be noted here that also social housing organisations and energy cooperatives could decide to invest in 

and install LCTs in their buildings. Such initiatives are not considered in this analysis.  
3
 For the sake of these clusters, it is assumed that one household inhabits one dwelling.  
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Finally, the DHAs are allocated to the three clusters based on the required number of dwellings of a 

given type and the weighted average floor area per dwelling, as defined in Table 3 below.  

d. Optimisation of dwelling energy supply systems 

The final stage in the employed methodology is the optimisation of the energy supply systems for the 

individual DHAs (cf. Figure 1 above). The employed model is a mixed integer linear program which 

minimizes the total system costs for energy supply and thus optimises the capacity and dispatch of 

the following decentralised LCTs: mCHP (gas internal combustion engine), heat pumps, PV panels, 

thermal storage tank, battery storage, gas boiler and grid electricity. The model methodology is 

documented in detail and applied to case studies of UK buildings in Merkel et al. (2015) and is 

therefore not described in any detail here. The main extension beyond the model version presented 

in this source relates to the inclusion of PV and battery storage systems as documented in McKenna 

et al. (2016). The basic techno-economic assumptions employed in the model for the present case 

are the same as in this source. Hereby the load and irradiation profiles from the CHAP model are 

provided as a crucial input to this optimisation model (Figure 1), as the model functions on the basis 

of demand fulfillment.  

Finally, it should be noted that, whilst the model optimises the energy supply system for a given 

object/building, it does this for pre-defined technology configurations. That is, the selection of 

individual LCTs is only optimised insofar as these technologies are available in the first place. Hence 

while the system setup in terms of capacity and dispatch is optimal for any given configuration, it is 

not necessarily the most economic configuration. For the purposes of the current study, where the 

focus lies on thermal and electrical LCTs with a strong interaction with the local electricity network, 

the following technology configurations (“systems”) are defined based on sensible combinations of 

technologies4: 

1. REF: Boiler + thermal storage + grid electricity 

                                                           
4
 E.g. a combination of heat pumps and CHP units is not considered practical. 



13 
 

2. CHP: CHP + boiler + thermal storage + grid electricity + PV + battery storage 

3. HP: Heat pump + boiler + thermal storage + grid electricity + PV + battery storage 

Also note that, for reasons of limited space in residential buildings, the thermal storage size is capped 

at 500 l. As already noted, only the five of the seven DHAs are optimised, as shown in Table 1 above. 

Hence by employing the CHAP model described above, a set of electrical and heat profiles for each 

DHA is generated as input to the optimisation model. The total number of profiles is chosen so that 

any one profile, i.e. with the same load profiles and heating pattern/temperature, appears in a 

cluster a maximum number of four times. This results in the number of profiles per DHA and LCT 

system shown in Table 3. 

Figure 2 below shows the optimised capacity dimensions and total annual costs for DHAs 3-7, 

averaged over the number of profiles given in Table 3. System 3 with heat pumps is consistently 

around 50% more expensive than system 2 with mCHP. The thermal storage is typically dimensioned 

as large as possible and does not differ significantly in size between these two cases. In addition, the 

respective size of the main heat supply unit (CHP or heat pump), peak load boiler and thermal 

storage depends on the overall thermal heat demand (Table 1). 

The final stage in the methodology relates to the definition of scenarios for technology penetration. 

These scenarios are defined in Table 4, whereby for scenarios 2-5 those households to be optimised 

are randomly selected from the set of similar households (i.e. DHAs). 

4. Results 

Figure 3 shows the electrical load profiles in the baseline scenario for the three clusters C1-C3 as well 

as C0 and the Domestic Unrestricted standard load profile (SLP) (Elexon 1997), for three days in 

summer (top) and winter (bottom) respectively. In general there is a good agreement between the 

simulated load profiles for the clusters and the SLP. On average, the profile of C3 is up to about 0.2 

kW higher than the SLP, whereas that for C2 is up to about 0.2 kW lower. The timing of the morning 
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and evening peaks is correct, but their magnitude differs between clusters as discussed in the 

following section.  

Figure 4 below shows the electric load profiles for the 25% scenario in the three neighbourhood 

clusters, for three weekdays in summer (top) and winter (bottom) respectively. The standard load 

profile is also shown for reference. Only this one scenario is shown for clarity as well as because, of 

all the scenarios, this seems to be the most realistic one (also returned to in section 4). The three 

profiles are significantly different from those in the baseline case. In summer, the lower residual load 

profiles due to PV generation during the middle of the day are clearly visible, whereby this is highest 

for cluster C3. The differences between clusters is more pronounced in winter, when especially for 

C2 and C3 the morning and evening peaks lie above the SLP, in the latter case by about 50%. For 

example, the peak load of C3 is around 1.4 kW compared to 1.2 kW and 0.9 kW for C1 and C2 

respectively, and the mean load also exhibits the same trend (cf. Figure 6). Again, during the midday 

hours, all three clusters lie below the SLP, but do not exhibit the diversity seen in summer. 

The residual load profile for individual households is defined here as positive in the case of a load on 

the network and negative for feed-in. The aggregated residual load profile is determined by summing 

up the individual residual load profiles and normalizing the result based on the number of 

households in the respective cluster. Figure 5 shows the sorted load duration curves thus determined 

for all C1 and 25% scenarios for one year. 

The increasing LCT penetration results in a steepening of the residual load curve and a higher number 

of hours in the year with peak and negative values. The curves shown in Figure 5 show a reasonable 

agreement with the SLP for low LCT penetrations (scenarios C1_B and C1_25) but above 50% there 

are significant deviations. In general, these higher LCT penetrations tend to shift the residual load 

curve downwards for most hours of the year (except the several hours of peak load). The lower three 

curves in the right hand bottom corner of Figure 5 represent the penetrations of 50%, 100% HP and 

100% CHP respectively. The number of hours with negative residual load is roughly the same for 
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these three scenarios, at about 1,500. Significant differences between the three scenarios are also 

clear from the figure, namely that C3 exhibits the most extremes in peak and minimum hours, 

whereas C1 and C2 are very similar in low load hours, only diverging somewhat in the peak hours.  

Finally, the 100% HP scenario results in the greatest increase in peak loads (top left of the figure, with 

the intercept being at about 2 kW compared to 1 kW for the SLP), whereas the 100% CHP scenario 

results in the largest negative residual loads (down to about -1.1 kW, bottom right).    

Figure 6 depicts some key statistical parameters, namely mean, minimum, maximum and standard 

deviation, for all scenarios and SLP. Whilst there is a general trend towards lower minimum (i.e. 

higher feed-in) and higher maximum loads with increasing LCT penetration, this is not wholly the 

case. For example, for C1 and C2 the minimum load is significantly lower with 100% CHP compared to 

100% HP, which is not the case for C3. Instead, the latter has closer minimum and maximum values 

across the three scenarios 50%, 100% CHP and 100% HP. Generally speaking the LCT penetration 

results in a lower mean load as well as a higher standard deviation.  

An important criterion for dimensioning electrical distribution networks is the peak load per 

household. In this context it is helpful to distinguish between the maximum concurrent and non-

concurrent loads, whereby the ratio of the two is known as the Diversity Factor (DF). Hence Figure 7 

shows the maximum non-concurrent and concurrent loads per household as well as the 

corresponding diversity factor for all the scenarios listed in Table 4, both normalized with the number 

of households in the neighbourhood. Whilst the former is determined by summing up the maximum 

individual household loads within the cluster, regardless of their temporal correlation, the latter 

relates to the simultaneous maximum load occurring within the cluster/neighbourhood.  

The Diversity Factors are in the range from 2.7 to 4.2, with the average (mean) of 3.5. The trends 

across the three clusters are somewhat similar, i.e. the lowest diversity factors are encountered with 

the highest (100%) penetration of HP or CHP devices.  With LCT penetrations up to and including the 

50% scenario, the DF is substantially lowered in clusters C1 and C3, whereas the effect in C2 is 
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actually to slightly increase the DF. Whereas the lowest DF is encountered with 100% CHP in clusters 

C1 and C2 (at 2.7 and 2.9 respectively), for C3 the lowest value of 2.7 corresponds to the 100% HP 

scenario. 

In addition, Figure 8 below shows the maximum concurrent total load per household for all of the 

scenarios relating to selected clusters and LCT penetrations. This is determined by picking the 

number of households shown at random from the cluster for 100 iterations, and building the 

minimum, mean and maximum values, which are shown with error bars in the chart. The maximum 

concurrent load, known as the After Diversity Maximum Demand (ADMD), reduces rapidly with the 

number of households, and in general there is also a marked reduction in the range of peaks 

encountered. In addition, the technology penetration scenario has a strong effect on the 

encountered peak load. Especially those scenarios with a high penetration of HP seem to influence 

the maximum concurrent load, such that with 50% HP and above, the asymptote seems to be higher 

than 2 kW. In comparison the asymptote is somewhat below this, at around 1.4 kW, in the reference 

scenario (C1_B). In addition, the difference between the clusters in terms of the diversified peak load 

in the 25% scenario can be seen at 20 households, where clusters 1-3 have ADMD values of 1.7, 1.3, 

and 1.8 kW respectively. 

5. Discussion  

a. Discussion of results 

Whilst the cluster load profiles exhibit some agreement with the SLP, there are some key differences. 

Firstly, the cluster profiles have a lot more “noise” (i.e. are less smooth) than the SLP, which is due to 

the averaging of only about 130 households to determine them. This phenomenon has also been 

encountered in other studies with a similar number (230) of households (e.g. Jenkins et al. 2014). 

Wherever individual, (partly) stochastic profiles are aggregated, this characteristic is expected, 

whereby the larger the population, the smoother the resulting profiles.  
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The differences between the load profiles of the individual clusters can be explained as follows. C3 is 

dominated by larger, detached dwellings containing DHAs 3 (Lavish Lifestyles), 6 (Off-Peak Users) and 

7 (Peak-time Users) (cf. Table 1 and Table 2). These households have a medium or high occupancy, 

building floor area, and social grade, as well as number of electrical appliances, resulting in a higher 

than average annual electricity consumption. It is therefore not surprising that the load profile for 

this cluster tends to be above both the standard and C0 profiles. On the other hand, C2 is dominated 

by terraced dwellings containing smaller than average households in terms of occupancy, floor area, 

number of appliances and total annual electricity consumption (i.e. mainly DHAs 2, Thrifty Values, 

and 4, Modern Living). Generalizing across this cluster is difficult, though, due to the substantial 

presence of DHAs 4 (Modern Living) and 7 (Peak-time Users), whereby especially the latter has a 

relatively higher number of appliances and annual consumption. Finally both C1 and C0 are very 

close to the standard load profile and therefore each other, both in terms of the statistics and the 

profile shape (although C1 has a higher peak). This is due to the fact that the latter is an average over 

all employed OAs and the former also represents an average amongst the clusters in terms of 

dwelling type, size, and household combinations (cf. Table 2). This would seem to support the 

selection of these three clusters, as the extreme cases C3 and C2 tend to cancel each other out, so 

that on average a good agreement between C1 and C0 is given. In addition, all of the generated 

clusters seem to exhibit a higher peak in the evening hours compared to the standard profile, 

especially in summer. This is likely to be due to the lack of seasonal differentiation in the UK time-use 

data, and therefore also in the occupancy profiles employed in the CREST 1.0 model (Richardson et 

al. 2010), returned to in section 5.b.  

It is also noteworthy that the same technology penetrations have quite different effects on the three 

clusters. If one considers the 25% scenario as the most realistic for the near term future, due to the 

proportion of dwellings affected and the fact that all dwellings will most likely not install LCTs, it can 

provide some useful insights. The greatest effect on the neighbourhood load curve and the Diversity 

Factors is encountered for clusters C1 and C3 in this scenario. This is thought to be due to the nature 
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of this cluster, containing generally larger, higher-consumption houses, which means the LCTs 

installed can be dimensioned larger. Cluster C3 is also the only cluster which exhibits significant 

negative loads on a neigbourhood level in this 25% scenario, as well as substantially higher peaks 

compared to the SLP. Whilst the former is strongest in summer, the latter is more pronounced in the 

winter months, when heating is relevant. 

In general the largest impact on the load profile characteristics is encountered with 100% 

respectively of HP or CHP. Cluster C3 is marginally more sensitive to CHP, whilst having similar 

statistical characteristics in the three scenarios 50%, 100% CHP and 100% HP, whereas the load 

profiles of C1 and C2 react more strongly to CHP units (cf. Figure 6). This is particularly the case for 

cluster C2, in which the 50% scenario has a much smaller relative impact on the overall load profile 

compared to the same scenario for the other two clusters (especially in terms of negative loads). This 

is thought to be due to the fact that C2 contains predominantly smaller, terraced dwellings, and a 

smaller proportion of optimised heat supply systems – around 50% of dwellings compared to about 

80% in the clusters C1 and C3 (cf. Table 3). The high negative loads in the case of HP scenarios result 

solely from PV systems feeding into the grid, whereas in the case of CHP scenarios they can result 

from both PV and CHP feed-in. However, the two are unlikely to be superposed due to their diurnal 

profiles, such that the large negative loads as seen in scenarios C1_100_CHP and C3_100HP are 

thought to be due to the larger-dimensioned PV systems due to larger roofs (cf. Figure 2). 

Given that two of the three clusters (i.e. C1 and C3) already differ from the SLP in the baseline 

scenario, it also makes sense to compare the technology penetration profiles with these baseline 

cases. The shift to the 25% scenario can be interpreted in this context as moderate in both of these 

clusters, especially in terms of the increase in mean and peak loads. The associated increase in 

negative feed-in is moderate compared to stronger LCT penetrations. In addition, given that a higher 

Diversity Factor is attractive from a network planning perspective, these results seem to suggest that 

a maximum level of penetration of 25% each of HP and CHP (i.e. 50% in total) is feasible to maintain 

the DFs at the level of the baseline clusters. But it would be impossible to assess the capability of the 
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network to absorb these power flows without a detailed power flow analysis (considered beyond the 

scope of this paper). Also, whilst the actual asymptote in the 100% HP scenario does not seem much 

higher than in the baseline scenario (cf. Figure 8), the variation in the maximum concurrent peak load 

is noticeable: in all scenarios other than C0 and C1_B this variation is very high.5 Hence from a 

network perspective this would therefore suggest a degree of diversity in supply would be 

advantageous in terms of enabling these technologies to be integrated.  

b. Discussion of methodology and further work 

The guiding principle behind the developed methodology is to achieve a superior socioeconomic 

differentiation between dwellings and neighbourhoods in terms of their demand for heat and 

electricity. This section highlights some of the weaknesses associated with the employed 

methodology and suggests possible improvements. Other than to mention that the economic 

optimization does not necessarily determine the most environmentally optimum configuration, other 

related weaknesses are not included here. Instead the reader is referred to Merkel et al. (2015) and 

McKenna et al. (2016), in which they are discussed at length. 

As well as differentiating between the number of occupants (and day type and season) as in the 

original CREST 1.0 model, the CHAP model developed here considers several additional aspects. 

Firstly, based on the DHAs, the number and type of appliances, as well as the building type and floor 

area are considered. Secondly, the CHAP model differentiates between heating patterns and internal 

set temperatures based on the EFUS study (BRE 2013). Whilst there is a strong link between these 

first variables and the HEUS study, the second variables relating to heating behaviour had to be 

inferred. This means that the actual heating behaviour of individual households was not captured. 

Whilst for individual households the assumed heating behaviour will most likely be incorrect, on an 

aggregated neighbourhood level the diversity in heating behaviour should be well represented. An 

                                                           
5 Incidentally, the reason for the asymptote in Error! Reference source not found. being somewhat below the 2 

kW typically employed for UK context is thought to be due to the updating of appliance ownership and 
characteristics for the DHAs, as documented in Hofmann et al. (2016). 
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alternative approach, which would also ensure accuracy for individual buildings, would be to employ 

the raw data from the EFUS (DECC 2011) in order to develop DHAs, but this data was not available at 

the time of carrying out this work. 

It should also be noted here that the building type employed for the DHAs represents an average 

and/or dominant building type within the individual HEUS Archetypes (cf. section 3).  In practice, 

households clearly inhabit different building types, such that an average across a cluster of 

households is not very meaningful. The use of a single set of average building characteristics 

(dimensions, u-values, etc.) for multiple simulated dwellings leads to a lower variety in generated SH 

demand profiles. But the link between households and dwellings is not trivial. The English Housing 

Survey (DCLG, 2014) gives some general insights into the types of households that inhabit different 

types of buildings, but it is difficult to generalize across variables such as employment status and 

income level etc. Hence further research is required to better understand the link between 

households and dwellings in the context of residential and neighbourhood heat and electricity 

modelling. 

The CHAP simulation does not consider several important aspects of residential electricity and heat 

use. Firstly, seasonal variations in occupancy effects are not considered due to a lack of granularity6 

in the original time-use data employed to derive transition probability matrices between occupancy 

levels and appliance activity profiles (Richardson et al. 2010). This results in the seasonal effects of 

energy use, whereby households tend to spend more time indoors in the colder, darker winter 

months than in the summer, being underestimated in the winter and overestimated in the summer. 

The effect relates solely to electricity and DHW use, however, as the SH demand only occurs during 

the defined household-specific heating season. An amelioration of this effect would require more 

detailed time of use data and/or a higher granularity in other areas, such as the number of people 

                                                           
6
 Granularity is used here to refer to the spatial and temporal resolution as well as the level of detail employed to 

capture households/dwellings and LCTs. 
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per household or the type of day, both of which are currently not readily available and are thus 

considered beyond the scope of this work. 

Secondly, the appliance use frequency is defined in the model according to the total number and 

types of appliances, as well as their cycle characteristics. The frequency of use of appliances, in terms 

of the number of cycles for which they operate over the year, is then calibrated to match the overall 

target annual electricity demand. Hence explicit use frequencies of appliances, which are 

differentiated by households are not considered. In addition, the correlation of appliance use is not 

considered by the model. For example, adding a second TV to a dwelling does not only reduce the 

use frequency of the first TV but of all other electric appliances. This is obviously mainly due to the 

lack of data at this level of detail; even with smart meter data at the level of the household, it is very 

challenging to determine the load profiles of individual appliances. But initial research in this area has 

obtained some valuable insights and may have opened up a new avenue for further research 

(Boßmann et al. 2015). 

Thirdly, the link between the heat and electricity models does not extend to electrical heating 

technologies and showers. This means that, for example, whilst a boiler circulation pump is typically 

present in the appliance configuration of the analysed dwellings, the use of this appliance is not 

correlated with the use of the heating system. In addition, where an electric shower is present its use 

is not correlated with the DHW runoff profiles for the shower. In both cases, the total electricity use 

of the appliance over the course of the year, as well as the cycle specifications (length and average 

power) are thought to be accurate, and their time and duration of operation is determined by 

appropriate activity profiles. Hence the effect of this discrepancy is thought to be insignificant. 

Fourthly, the model focusses on the supply side and thus does not consider the potential to modify 

the thermal characteristics of the building through renovation/insulation measures. Such measures 

might in practice be more economical than supply-side measures, but might not be realized because 

of barriers such as split incentives or lack of/imperfect information. The effect would be to reduce 
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the overall annual heat demand of the building and thus decrease the optimal size of a heat supply 

technology for the building. Whilst excluded from the scope here, such measures could be included 

in future work by including standardized insulation measures in the optimisation model, which vary 

according to the cost per saved unit of heating energy. 

The socioeconomic grade of the households is captured through the use of the HEUS Archetypes, 

which differentiates between National Readership Survey (NRS) classes. This is reflected in the 

specification of the DHAs in terms of appliances ownership and use, as well as their propensity to 

invest in LCTs. The latter represents a binary variable in the present case, with five of seven 

archetypes being likely to invest in these technologies. In practice, actual households would be 

expected to have a willingness to invest which is continuous and varies between 0 and 1, and an 

investment in the context of social housing organizations and/or energy cooperatives would be 

feasible. This might be reflected by their expected (discounted) payback period and/or discount rate 

employed with respect to LCT investments, both of which would differ between households. Some 

progress in this area has been made by Cayla et al. (2011) Cayla & Maizi (2015), who have analysed 

these distinctions based on survey in the French context and partly implemented them in the French 

TIMES model. Interestingly, they found that, whilst the willingness to invest in new space heating 

equipment actually increases with household income, the required rate of return also increases, in 

contrast to the results for vehicles and refrigerators. Such a differentiation in the present case would 

be feasible in terms of the discount rate, but was not employed due to the requirement of limiting 

the number of combinations (between DHA, technology system, and load profiles) to a manageable 

level. It thus remains an area for further work, to be explored in the context of coupling the approach 

presented here with larger energy system models. 

In addition, the representativeness of the DHAs of the UK/English residential sector should also be 

questioned. The 250 households included in the survey were mainly owner-occupiers, which would 

explain the tendency to somewhat larger detached, semi-detached and bungalow type dwellings. 

The compromise of this bias in the input data was accepted in the present case because of the 
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richness it provides for individual households. Because of the focus on OAs with owner-occupiers in 

this study, the effect of employing this input data is not thought to be significant. 

One final aspect, which could not be addressed in the present case, is the interaction between 

individual dwellings through the local electrical distribution network. In determining residual profiles 

for individual dwellings and summing these to an aggregated neighbourhood profile, the implicit 

assumption is made that the distribution grid is able to manage these power flows. Without a 

detailed depiction of this electricity network and a dynamic modelling of these power flows it is 

impossible to critically assess the validity of this assumption. Hence such a detailed network 

simulation remains an area for further work. 

6. Conclusions and policy implications 

Whilst Low Carbon Technologies (LCT) at the heat/electricity interface have significant potential to 

reduce CO2 emissions in residential buildings, their adoption is strongly dependent on non-technical 

factors (especially socioeconomic grade, as considered here) and they have significant interactions 

with the overarching energy system. Two types of these interactions are addressed in this paper. The 

first is at the level of the distribution network, where the combination of households, dwellings and 

neighbourhoods affect the exploitation of LCTs and thus the aggregated load profiles in these 

networks. This has implications for the design and operation of distribution networks. The second is 

the interaction between the distribution grid and the overarching energy system, for example 

through the dimensioning and operation of transformers to/from higher voltage levels as well as in 

terms of the respective environmental attractiveness of different LCT measures (e.g. the electricity 

mix from a centralised system strongly affects the attractiveness of heat pumps). Hence decisions 

made at the household and dwelling level, as well as the characteristics of the neighbourhood itself, 

can impact the ability of the distribution and transmission networks to accommodate increased 

capacities of LCTs in the future. These interactions between household/dwelling, neighbourhood and 

whole energy system levels require a detailed understanding of both electricity and heat loads in 
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modelling of technology deployment, if investments in distribution and transmission network 

infrastructure are to be appropriately made. 

 

In order to adequately account for these interactions it is necessary to capture the granularity 

associated with decentralised heat and power supply in residential buildings. On the one hand, this 

relates to purely technical factors, such as the number, type, age etc. of buildings and the associated 

technology characteristics. On the other hand, it means considering the socioeconomic diversity 

between dwellings and within neighbourhoods. At the local level this technical and socioeconomic 

diversity has strong implications for aggregated/residual electrical load profiles in distribution 

networks. The approach presented here adds novelty in terms of this socioeconomic differentiation 

by employing dwelling/household archetypes (DHAs) and neighbourhood clusters at the Output Area 

(OA) level. It thus allows a realistic level socioeconomic diversity at the dwelling/household level to 

be captured at the neighbourhood and national levels. Hence the modelling approach captures both 

types of interactions reasonably well: the effects of this diversity, both within the distribution 

network on the After Diversity Maximum Demand (ADMD) and from the perspective of the 

transmission network (overarching energy system) on the aggregated neighbourhood load profiles 

(as compared to the Standard Load Profile), are quantified. Whilst the four parts of the developed 

approach have each been validated to different degrees (cf. Figure 1 for sources), the detailed 

presentation and validation of the CHAP model will be the subject of a forthcoming contribution. 

Even in the baseline case, i.e. without any LCT penetration, a substantial deviation from the SLP is 

encountered, suggesting that for some neighbourhoods this profile is not appropriate. Whilst there is 

a good agreement between the phase of the simulated load profiles for the clusters and the SLP, on 

average, the profile of C3 is up to about 0.2 kW higher than the SLP, whereas that for C2 is up to 

about 0.2 kW lower. These differences are due to the predominance of one type of DHAs within 

these clusters, i.e. larger, detached dwellings in C3 and smaller, terraced dwellings in C2, whereas C1 

is most similar to the average C0. This deviation also supports the distinction between 
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neighbourhood clusters rather than adopting an average neighbourhood across all OAs (as, apart 

from having a lower minimum load, the average is closely aligned with the SLP). With the application 

of LCTs, as quantified here, this effect is much stronger, including more negative residual load, higher 

maxima, more variability, and higher ramps with increasing LCT penetration. Such effects are already 

encountered with only moderate levels of LCT penetration and, significantly, differ between 

neighbourhood clusters. Whilst a 25% penetration of HP and CHP respectively would be expected to 

modify the neighbourhood load profile substantially, the effect on the Diversity Factor is 

demonstrably moderate. This implies that a mix of different LCTs, especially heat pumps, mCHP units 

and PV systems, is better than just one and suggests that the electrical distribution network in these 

neighbourhoods might be able to manage the additional and modified power flows. But the analysis 

of the exact implications for the distribution network of an increased LCT penetration requires a 

detailed power flow simulation. 

 

The primary policy implication of the study is the importance of understanding electrical load profiles 

at the neighbourhood level, because of the consequences they have for investment in the 

distribution infrastructure. Secondary policy implications relate to the consequences of 

socioeconomically diverse neighbourhood loud profiles for the overarching energy system, especially  

transmission infrastructure and centralised generation plant. This understanding relates especially to 

the temporal variability and higher or lower peak loads at the neighbourhood level, both of which are 

strongly influenced by socioeconomic characteristics. Households’ socioeconomic grade has a large 

impact on the dwellings and neighbourhoods they live in as well as their predisposition to invest in 

LCTs. Even without LCTs, this leads to different neigbourhood peak loads, mostly due to differently-

sized dwellings, numbers and types of electrical appliances. With the addition of LCTs such as heat 

pumps and mCHP units, not only the individual and neighbourhood peak loads are further affected, 

but also their temporal occurrence, which is strongly dependent on the LCT employed. Temporal 

variability and peak loads influence both the best deployment of technologies and the need for 
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interlinkage and grid back-up of distributed LCT solutions. It could be that a more differentiated 

support system for LCTs is more economically efficient than the current one. Instead of remunerating 

solely based on technology and capacity, such a scheme would also consider the location and/or type 

of neighbourhood in which the technology is deployed. But it would be speculative to draw this 

conclusion from this work, which only represents a first step in this direction. As such, there are 

several areas where future work should focus. These include a better socio-economic differentiation 

between households, beyond the socioeconomic grade, size of household and dwelling employed in 

this paper, to also consider, for example, household structure, age and employment status. Hence 

future work should especially focus on the following aspects: 

 

a. Their willingness or intention to invest in technologies, as manifested for example in the 

households specific discount rate or expected rate of return (Cayla et al. 2011, Cayla & Maizi 

2015), 

b. The link between dwellings and households: this is not important for individual buildings, 

what is required is an adequate representation of (socioeconomic/household and 

technical/building) diversity at the neighbourhood level, and 

c. Understanding individual appliance use and correlation effects. In particular this relates to 

the heat and electrical appliance characteristics included in the CHAP model. Their cycle 

characteristics, including average power and mean cycle duration, are not distinguished 

between households, instead being calibrated to an annual heat and electricity demand. In 

addition, interaction effects between multiple similar appliances (e.g. television) as well as 

heat and electricity systems (e.g. boiler circulation pump) are not well depicted. 

 

 

In order to test the hypothesis that a regionally- and/or socioeconomically-differentiated support 

scheme might be economically more efficient than the current one, an interlinked analytical 
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framework is required. This probably means a coupling of the approach presented here, including a 

linked electrical/heat load profile model, DHAs and neighbourhood clusters, with a national energy 

system model to understand how to meet very low levels of buildings emissions on a national level. 

In order to account for more vulnerable households and neighbourhoods, the presented approach 

could also be extended to cover neighbourhoods in lower socioeconomic groups. In such a model 

coupling the DHAs and neighbourhood clusters developed here would serve as demand classes in the 

national model, and iterations could involve the exchange of mutually dependent variables such as 

the electricity mix, fuel prices and the penetration of decentralised LCTs. The main contributions of 

this work towards this end are to augment existing studies on heat/electricity LCTs in residential 

buildings by socioeconomic factors, as well as providing a spatial differentiation enabling a scale-up 

and coupling with national models.  
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