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Abstract. A seller maximizes revenue from selling an object in a dynamic environment,
with buyers that differ in their patience: Each buyer has a privately known deadline for
buying and a privately known valuation. First, we derive the optimal mechanism, ne-
glecting the incentive constraint for the deadline. The deadline of the winner determines
the time of the allocation and therefore also the amount of information available to the
seller when he decides to whether to allocate to a buyer. Depending on the shape of
the markup that the seller uses, this can lead to a violation of the neglected incentive
constraint. We give sufficient conditions on the type distribution under which the ne-
glected constraint is fulfilled or violated. Second, for the case that the constraint cannot
be neglected, we consider a model with two periods and two buyers. Here, the optimal
mechanism is implemented by a fixed price in period one and an asymmetric auction
in period two. The asymmetry, which is introduced to prevent the patient type of the
first buyer from buying in period one leads to pooling of deadlines at the top of the type
space.
Keywords: Dynamic Mechanism Design, Multidimensional Signals, Revenue Maximiza-
tion, Deadlines
JEL-Codes: D44, D82

1. Introduction

In many situations, sellers face a changing population of heterogeneous buyers. Buyers

arrive at different points in time. Some are impatient and want to buy immediately, others

are patient and willing to wait. Patient buyers can act strategically and use their flexibility

with respect to the time of a purchase in order to get better prices. Typical examples are

online auctions, the sale of flight tickets, hotel reservations, or the sale of houses.

To capture heterogeneity in the degree of patience, we assume that buyers have idiosyn-

cratic deadlines. A deadline can be viewed as an extreme form of time preferences, as

in the case of a traveler who needs to buy tickets before a certain date in order to coor-

dinate with other travel arrangements. Deadlines may also be imposed by third parties.

Consider for example a company that needs to buy an input from a seller in order to
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enter a contractual relationship with a third party. This input could be a physical object,

an option contract, a license, a patent, etc. It is conceivable that the third party sets a

deadline, after which the contractual relationship is no longer available. Therefore, the

input is worthless for the company if it is purchased after the deadline.

This paper analyzes the implications of private information about patience (deadlines)

on the revenue maximizing mechanism. We consider the allocation of a single object over

a finite time horizon with randomly arriving buyers and independent private values. To

focus on the effects of private information about time preferences, we assume that arrival

times are observable for the seller.1 Consumption is assumed to take place at the end of

the time horizon (e.g., when the plane takes off and not when the ticket is sold), so that

we can ignore discounting as long as all discount rates are identical.

If we relax the incentive constraint for the deadline, revenue maximization is equivalent

to maximizing expected virtual surplus, subject to monotonicity with respect to the valu-

ation. Virtual surplus maximization is a straightforward dynamic programming problem

which yields the relaxed solution. Since it is costless to delay an allocation and waiting

for more buyers to arrive can improve revenue, the object is allocated only at the deadline

of the winner. We show that the relaxed solution can be implemented by a payment rule

that applies a markup to the critical virtual valuation of the winning buyer.2 The latter is

the lowest virtual valuation with which a buyer can win, given the types of all competing

buyers and the seller’s expectation of future arrivals. It can be interpreted as the virtual

opportunity cost of awarding to the winning buyer.

The first contribution of the paper is a regularity condition under which the relaxed

solution satisfies the neglected incentive constraint for the deadline.3 We show a martin-

gale property: Increasing the deadline leads to a mean-preserving spread of the virtual

opportunity. Intuitively, a later deadline allows the seller to gather more information be-

fore allocating to a buyer, which increases the dispersion of the virtual opportunity cost.

The martingale property is important, because for most distributions, the seller’s markup

is non-linear which induces endogenous risk-preferences in the buyers. If the markup is

convex, buyers become endogenously risk-averse with respect to the seller’s virtual oppor-

tunity cost. If it is concave, buyers become endogenously risk-loving. Moreover, buyers can

choose the dispersion of the virtual opportunity cost by choosing the reported deadline.

Therefore, the shape of the markup determines whether a buyer prefers to report an earlier

deadline (low dispersion) or a later deadline (high dispersion). A concave markup induces

a buyer to report the latest possible deadline. He will thus report his deadline truthfully,

because over-reporting would lead to an allocation after the true deadline. Formulated in

terms of the distribution function, the regularity condition requires convexity of the in-

verse hazard rate of the valuation. Conversely, the relaxed solution is not implementable

if the inverse hazard rate is concave.

1The case of unobservable arrivals is considered in Pai and Vohra (2013).
2Payoff equivalence implies that our results apply for any implementation of the relaxed solution.
3For simplicity we consider the case that the valuation and deadline of a buyer are independent. Section
3.4 discusses the correlated case.
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Unfortunately, examples for both the concave and the convex case abound and we cannot

conclude that for most commonly used distributions, the model is regular. The second

contribution of the paper is to derive an optimal mechanism in the irregular case. We

consider a special case with two buyers who arrive in two different periods. The mechanism

design problem becomes multi-dimensional, but the fact that the second dimension is a

deadline provides some structure. The deadline enters the buyers’ preferences only as a

constraint. As long as a buyer gets the object before his deadline, his utility is unaffected by

the deadline. This allows to formulate the seller’s problem as virtual surplus maximization

subject to the constraint that the utility of a buyer is non-decreasing in the deadline.

Formally, this constraint is equivalent to a type-dependent participation constraint: Pa-

tient/strategic buyers have the “outside option” to buy before their deadlines. This paper

is the first so solve an optimal auction problem with a type-dependent participation con-

straint. The optimal control techniques employed here and the solution resemble Jullien

(2000), who studies a principal-agent problem with a type-dependent (exogenous) par-

ticipation constraint, but there are several notable differences. First, an auction model

involves an additional feasibility constraint for the allocation rule. This is incorporated in

the control problem using a characterization of asymmetric reduced form auctions (Mieren-

dorff, 2011). Second, in an auction model, the optimal allocation rule may be discontinuous

(at the reserve price). Third, we explicitly show how “ironing” is used to handle bunch-

ing in the valuation dimension because the standard assumption of a monotone virtual

valuation does not imply monotonicity in the presence of type-dependent participation

constraints. Forth, in contrast to Jullien (2000), the type dependent participation con-

straint is determined endogenously by the mechanism because the “outside option” of the

patient buyer is given by the utility of an impatient buyer. We show that in the 2x2

model, under a mild regularity condition, the endogenous participation constraint only

binds for the highest type, and then solve the model using two separate mechanism design

problems. The technical reasons for the restriction to the 2x2 model, as well as possible

generalizations and applications in other settings are discussed in Section 5.

In the optimal mechanism, the seller posts a fixed price in the first period. If buyer one

does not accept, the seller waits for the second period and conducts an auction. If buyer

one is patient, both buyers will participate in the auction. The seller has two instruments

to prevent the patient/strategic type of buyer one from choosing the fixed price. He can

increase the fixed price, and he can distort the auction format in the second period in

favor of buyer one. Both instruments increase the expected payoff from the auction com-

pared to the fixed price and thereby reduce the incentive for the patient/strategic type to

deviate. We show that it is optimal for the seller to use both instruments. The optimal

allocation rule is thus biased against impatient buyers and rewards patient buyers with a

higher chance of winning. The most striking implication is that for high valuations, the

mechanism no longer separates buyers with different deadlines: Buyers with low valua-

tions have to wait until their deadline before they make a purchase. Buyers with higher

valuations, on the other hand, do not benefit from waiting and may buy earlier.
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1.1. Related Literature. The literature on dynamic revenue maximization can be broadly

divided into two strands. On the one hand, there are models where all buyers are impa-

tient and therefore non-strategic with respect to the purchase time.4 This is a standard

assumption in the classic revenue management literature.5 On the other hand, there are

models in which all buyers are assumed to be patient and strategic. Most of this literature

adopts a generalization of the standard framework with one-dimensional private informa-

tion. (See Board and Skrzypacz (2015), for a model with persistent types and Pavan et al.

(2014), for a general model with arrival of new information in each period.) In these mod-

els, a buyer can influence the timing of the allocation by mimicking buyers with different

valuations. Moving to the multi-dimensional model allows us to study the timing decision

of a buyer independently of the incentives to reveal the valuation. We show that the incen-

tives to reveal the deadline are influenced by the markup, which reflects the seller’s desire

to reduce information rents arising from the private valuation. This interaction drives

our new insights about the incentives to reveal time preferences and the consequences for

revenue-maximization, which are obscured in a one-dimensional model.

The model analyzed in this paper has also been studied by Pai and Vohra (2013), who

allow for private information about the arrival time and do not make restrictions on the

number of periods or objects.6 Pai and Vohra focus on sufficient conditions for incentive

compatibility of the relaxed solution. They observe that monotonicity of the winning

probability of a buyer, in the deadline and the arrival time, is sufficient for incentive

compatibility of the relaxed solution. For the arrival time, they show that monotonicity

is guaranteed if the conditional hazard rate of the valuation is monotone in the arrival

time. For the deadline, however, no sufficient condition for monotonicity of the allocation

rule is available. In Appendix C.5 in the Supplemental Material, we discuss this further

and show why monotonicity generally fails unless the support of the valuation distribution

shifts with the deadline. In contrast to Pai and Vohra, we do not try to derive a sufficient

condition via monotonicity of the winning probability. Instead, we show that the deadline

of a buyer affects the amount of information available to the seller when he has to decide

whether the buyer is awarded or not. The endogenous risk preferences in the buyers,

arising from the seller’s desire to reduce information rents, leads to our sufficient condition

in terms of the shape of the hazard rate of the valuation.

This paper is also related to a literature on static mechanism design with two-dimensional

private information, in which the second dimension is for example a budget constraint,

a minimal capacity, or a quality constraint.7 In these models, the second dimension of

4See for example Das Varma and Vettas (2001); Vulcano et al. (2002); Gershkov and Moldovanu (2009a);
Dizdar et al. (2011).
5See Elmaghraby and Keskinocak (2003) for a survey. McAfee and te Velde (2007) survey airline pricing.
Su (2007) studies a model with patient buyers.
6Our sufficient condition also holds with many objects and two time periods.
7See Beaudry et al. (2009) for an analysis of optimal taxation; Blackorby and Szalay (2008) and Szalay
(2009) for regulation; Iyengar and Kumar (2008) and Dizdar et al. (2011) for auction models with capac-
itated bidders; Che and Gale (2000), Malakhov and Vohra (2005) and Pai and Vohra (2014) for models
with budget constrained buyers.
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private information has a special structure similar to the deadline in our model, which

makes the analysis tractable.8 With the exception of Szalay (2009), who studies a single-

agent model, this literature typically makes assumptions on the correlation between the

two dimensions which guarantee that the relaxed solution is incentive compatible. We add

to this literature by deriving the optimal mechanism in the irregular case.

This paper differs from the literature on dynamic screening in which buyers learn about

their valuations over time (Courty and Li, 2000; Eso and Szentes, 2007; Pavan et al.,

2014). This literature studies the case where agents receive (one-dimensional) private

information in each period but types evolve over time.9 Instead, we consider a model with

persistent types where private information is two-dimensional, which allows for richer

time preferences. Several papers have considered efficient dynamic mechanism design (see

Parkes and Singh, 2003; Bergemann and Välimäki, 2010; Athey and Segal, 2013). The

incentive problems analyzed in the present paper disappear for value-maximization because

the seller does not use a markup and the relaxed solution is always incentive compatible.

Organization of the Paper. Section 2 describes the model and formulates the seller’s

problem. Section 3 presents the relaxed solution and conditions for incentive compatibility,

formal proofs are in Appendix A. Section 4 presents the general solution for the irregular

case. The formal derivation is in Appendix B. Section 5 concludes. Appendix C in the

Supplemental Material in contains some omitted proofs, discussions, and an extension of

Section 3 to multiple objects.

2. The Model

Consider a seller who wants to maximize the expected revenue from selling an indivisible

object within T < ∞ time periods. In the case of an airline ticket, T is the time when

the plane takes off. The seller’s valuation (or production cost) is normalized to zero. In

each period, a random number of buyers Nt ≥ 0 arrives. The set of buyers who arrive in

period t is denoted It. I≤t :=
⋃t
τ=1 Iτ and N≤t := |I≤t| describe the arrivals until period

t. A buyer i ∈ It is characterized by his arrival time ai = t, his valuation vi ∈ [0, v], where

v > 0, and his deadline di ∈ {t, . . . , T}. The object cannot be sold to a buyer before his

arrival time. Utility is quasi-linear. If buyer i has to make a total payment of yi, then

his total payoff is vi − yi if he gets the object in periods ai, . . . , di, and −yi otherwise.10

8The models of Rochet and Choné (1998), Jehiel et al. (1999), and others, in which all dimensions are
symmetric, rarely have explicit solutions (see Armstrong, 1996, for an exception).
9See also Battaglini (2005), Nocke and Peitz (2007), Möller and Watanabe (2010), Deb (2011) and references
therein. For surveys of the literature on dynamic mechanism design see Bergemann and Said (2011), and
Gershkov and Moldovanu (2012a). Gershkov and Moldovanu (2009b, 2012b, 2010) have studied dynamic
mechanism design problems in which the seller learns about future buyers’ type distributions from current
buyers’ types. We abstract from learning by the seller and assume that types are uncorrelated.
10Note that the deadline is part of the preferences of a buyer. An alternative interpretation would be that
the deadline is the time when the buyer will exit the market. This interpretation restricts the class of
mechanism that the seller can use, because payments would have to take place before the deadline of a
buyer. It turns out, however, that the optimal mechanism does not require payments after the deadline.
Therefore, both interpretations of the deadline lead to the same results.
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Buyers are risk-neutral and maximize expected payoff. Neither the buyers nor the seller

discount future payoffs.11

The numbers of arrivals in different periods and the types of different buyers are in-

dependently distributed. Moreover, to focus on the novel insights that arise due to the

dynamic structure of the model, we assume that conditional on the arrival time, the dead-

line and the valuation of a buyer are independent.12 νt(Nt) denotes the probability that Nt

buyers arrive in period t. To exclude uninteresting cases, we assume that in each period,

there is a positive probability of new arrivals (∀t : νt(0) < 1). For a given arrival time a,

the probability that the deadline of a buyer equals d is denoted ρa(d). The valuation has

distribution function Fa(v) and density fa(v).13

Information realizes over time. In period t, the numbers of future buyers Nt+1,

. . . , NT , and their types are not known to anybody. In particular, the decision to sell

a unit in period t cannot be based on this information. Upon arrival, each buyer privately

observes his valuation and his deadline. In order to focus on the incentive issues of private

information about deadlines, we assume that the seller observes arrivals.14 νt(·), ρa(·) and

Fa(·) are commonly known.

Finally, we assume that for all a, fa(v) is continuous in v and strictly positive for all

v ∈ [0, v], continuously differentiable in v for v ∈ (0, v), and that f ′1(.) can be extended

continuously to [0, v]. To avoid additional technicalities, the following standard regularity

condition is imposed throughout the paper.

Assumption 1. For all a ∈ {1, . . . T}, the virtual valuation Ja(v) := v− 1−Fa(v)
fa(v) is strictly

increasing in v.

For some results in Section 4, we will assume that the monopoly profit from selling to

a single buyer in the first period is concave:

Assumption 2. v(1− F1(v)) is concave.

Assumption 2 is equivalent to the assumption that J1(v)f1(v) is increasing.

2.1. Allocation and Payment Rules. In order to describe allocation and payment rules

in this dynamic setting we define a state as st = (Ht, kt). Ht = (ai, vi, di)i∈I≤t
denotes

the history of buyer types that have arrived so far, and kt indicates whether the object is

still available (kt = 1), or has already been allocated (kt = 0). The history of buyer types

excluding i is denoted H−it .

11If only payments are discounted and all agents have a common discount factor, the results do not change.
The assumption that the value of consumption is not discounted is natural in the settings discussed in the
introduction were consumption takes place at time T , independent of the time of the allocation (e.g. of a
ticket or a reservation). In other applications, discounting may be more natural.
12In Section 3.4, we will discuss the consequences of correlations between the deadline and the valuation.
13To simplify notation, we assume that buyers with the same arrival period are ex-ante identical. All
results carry over to the case of ex-ante asymmetric bidders.
14See Pai and Vohra (2013) for a discussion of private information about arrival times.
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An allocation rule defines a winning probability xi(st) ∈ [0, 1] for each state st, and for

each buyer i ∈ I≤t. An allocation rule must satisfy the feasibility constraint

∀t, st :
∑
i∈I≤t

xi(st) ≤ kt. (F)

The probability that the object is not allocated in state st is denoted by x0(st) = kt −∑
i∈I≤t

xi(st). An allocation rule allocates only at the deadline if xi(st) = 0 for all t, st

and all i ∈ I≤t with di 6= t. A payment rule defines a payment yi(st) for each buyer

i ∈ I≤t in every state st.
15 It will be without loss for the seller’s maximal profit to consider

only symmetric allocation and payment rules, i.e., rules that do not discriminate between

buyers with the same arrival times.16

2.2. Mechanisms. The seller’s goal is to design a mechanism that has a Bayes-Nash-

equilibrium which maximizes expected revenue. In general, a mechanism can be any game

form with T stages, such that only buyers from I≤t are active in stage t. We assume

that the mechanism designer has full commitment power and can choose to conceal any

information about the first t stages from the buyers that arrive in stages t+ 1, . . . , T .17

By the revelation principle, the seller can restrict attention to incentive compatible and

individually rational direct mechanisms, in which no information is revealed.18 Further-

more, we impose symmetry as discussed above.

Definition 1. A direct mechanism consists of message spaces S1 = [0, v] × {1, . . . , T},
. . . , ST = [0, v]× {T}, and symmetric allocation and payment rules (x, y).

For a given direct mechanism (x, y), consider a buyer i ∈ Ia who reports (v, d) ∈ Sa.
If all other buyers (past, current and future) report their types truthfully, the interim

winning probability—that is, the probability that this buyer wins in period t ≥ a, is given

by

qta(v, d) := E [xi(st)|(ai, vi, di) = (a, v, d)] .

The interim expected payment is given by

pa(v, d) := E

[
T∑
τ=a

yi(sτ , kτ+1)

∣∣∣∣∣(ai, vi, di) = (a, v, d)

]
.

15Here, we implicitly assume that the payment in period t only depends on st. Since we will consider
Bayesian incentive compatibility and interim participation constraints in what follows, this is without loss
of generality.
16Formally, an allocation rule (payment rule) is called symmetric if for all t, all states st, and all i, j ∈ I≤t

such that ai = aj : xi(st) = xj(σi,j(Ht), kt) (yi(st) = yj(σi,j(Ht), kt)), where σi,j denotes the permutation
that interchanges the ith and the jth element of its argument.
17This assumption yields an upper bound on the revenue that can be achieved. We will see that this bound
can also be achieved in a periodic ex-post equilibrium, i.e., if buyers observe all information from past and
current stages.
18The standard revelation principle holds because the seller observes arrival times. Note that without this
assumption, each buyer could mimic all types with an arrival time greater or equal than his own arrival
time. Therefore, the nested range condition is satisfied and the revelation principle holds (see Green and
Laffont, 1986; Bull and Watson, 2007).
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Note that we aggregate payments from different periods in this definition.19 (q, p) is called

the reduced form of (x, y). The interim expected utility from participating in a mechanism

(x, y), for a buyer with true type (v, d) who reports (v′, d′), is given by

Ua(v, d, v
′, d′) :=

[
d∑

τ=a

qτa(v′, d′)

]
v − pa(v′, d′). (2.1)

The expected utility from truth-telling is abbreviated Ua(v, d) := Ua(v, d, v, d).

Definition 2. (i) A direct mechanism (x, y) is (Bayesian) incentive compatible if for all

a ∈ {1, . . . , T}, v, v′ ∈ [0, v], and d, d′ ∈ {a, . . . , T},

Ua(v, d) ≥ Ua(v, d, v′, d′). (IC)

(ii) A direct mechanism (x, y) is individually rational if for all 1 ≤ a ≤ d ≤ T , and all

v ∈ [0, v],

Ua(v, d) ≥ 0. (IR)

2.3. Characterization of Incentive Compatibility. In this section we derive a basic

characterization of incentive compatibility.20 We restrict attention to mechanisms that

allocate only at the deadline. The following Lemma shows that in the absence discounting,

this is without loss.

Lemma 1. Let (x, y) be a direct mechanism that satisfies (IC) and (IR). Then, there

exists an alternative mechanism (x̂, ŷ) such that x̂ allocates only at the deadline, (x̂, ŷ)

satisfies (IC) and (IR), and (x, y) and (x̂, ŷ) yield the same expected revenue.

Proof. The proof can be found in Appendix C.1 in the Supplemental Material �

The idea behind the Lemma is that delaying an allocation until the reported deadline

of a buyer does not change his payoff if he reports the true or an earlier deadline. At the

same time, a buyer who reported a later deadline than his true deadline may be worse off,

if his allocation is delayed to the reported deadline. Therefore, a modification of a given

mechanism that moves all allocations to the reported deadlines of the respective buyers

relaxes incentive constraints. Hence, the seller does not loose revenue by allocating only

at the deadline. In light of Lemma 1, we will only consider mechanisms that only allocate

at the deadline and write qa(v, d) instead of qda(v, d) in what follows.

The following characterization of incentive compatibility builds on Myerson’s character-

ization for one-dimensional private information. In addition, we have to ensure that buyers

do not have an incentive to misreport the deadline. If a mechanism only allocates at the

deadline, we only have to rule out downward deviations. The characterization requires

that the expected utility from participating with a truthful report is weakly increasing in

the deadline. For the lowest type v = 0, we have to strengthen this condition and require

19Explicit expressions for qta and pa can be found in Appendix C.3 in the Supplemental Material.
20Similar characterizations have been used in the previous literature on two-dimensional incentive problems.
See for example Pai and Vohra (2013).
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that the utility is independent of the deadline. The following theorem shows that this

one-dimensional constraint, together with Myerson’s characterization is sufficient to rule

out simultaneous misreports of the deadline and the valuation.

Theorem 1. Let (x, y) be a direct mechanism that allocates only at the deadline, with

reduced form (q, p). Then (x, y) is incentive compatible if and only if for all 1 ≤ a ≤ d ≤ T ,

and all v, v′ ∈ [0, v] :

v > v′ ⇒ qa(v, d) ≥ qa(v′, d), (M)

Ua(v, d) = Ua(0, d) +

ˆ v

0
qa(s, d)ds, (PE)

Ua(v, d) ≤ Ua(v, d+ 1), if d < T, (ICDd)

and Ua(0, d) = Ua(0, d+ 1), if d < T. (ICDu)

Proof. The proof can be found in Appendix C.1 in the Supplemental Material �

Sufficiency is implied by the special structure of preferences. The deadline is a constraint

that does not affect a buyer’s payoff as long as the object is awarded before the deadline.

Therefore, a buyer who reports d′ < di enjoys the same expected payoff as a buyer whose

true deadline is d′ and who reports his deadline truthfully. For such a buyer, however,

(M) and (PE) ensure that a truthful report of the valuation is optimal. Therefore, buyer

i does not have an incentive to misreport both dimensions simultaneously.

Formally, the downward incentive constraint for the deadline resembles an endogenous,

type-dependent participation constraint. A patient/strategic buyer with arrival time a

and deadline d > a has the “outside option” to report d′ < d. He only “participates”

voluntarily with a truthful report, if his payoff with d′ = d exceeds the payoff of his best

“outside option.”

2.4. The Seller’s Problem. By the revelation principle and Lemma 1, the seller’s prob-

lem is to choose an incentive compatible and individually rational direct mechanism that

allocates only at the deadline, to maximize

T∑
a=1

{E [Na] E [pa(v, d)]} .

Using (2.1) and (PE) to substitute the payment rule, integrating by parts and setting

Ua(0, d) = 0 for all 1 ≤ a ≤ d ≤ T , the objective of the seller can be rearranged to

T∑
a=1

{
E [Na]

T∑
d=a

ρa(d)E [qa(v, d)Ja(v)]

}
.

Next, we substitute qa(v, d), and bring the seller’s maximization problem into a recursive

form. The resulting dynamic program is denoted R:

VT (sT ) := max
x(sT )

∑
i∈I≤T :di=T

xi(sT )Jai(vi), (R)
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∀t < T : Vt(st) := max
x(st)

∑
i∈I≤t:di=t

xi(st)Jai(vi) + x0(st)Est+1 [Vt+1(st+1)|st, kt+1 = 1] ,

where the reduced form of the optimal policy x must satisfy (M), (ICDd), and (PE) where

we set Ua(0, d) ≡ 0. As is common in one-dimensional auction problems, the seller chooses

a policy that maximizes the expected virtual valuation of the winning buyer.

3. The Relaxed Solution

Once the seller’s objective function has been transformed into virtual value form as

in (R), the standard approach to maximize revenue is to relax all remaining constraints

except for participation and feasibility constraints. The solution to this problem is the

relaxed solution xrlx. Assumption 1 ensures that xrlx satisfies the monotonicity constraint

(M). Therefore xrlx is an optimal allocation rule if the deadlines of all buyers are public.

In this section we first define a payment rule yrlx, that implements the allocation rule xrlx

under the assumption that deadlines are public, but valuations are private. The definition

uses critical virtual valuations. Next, we derive the martingale property, which leads to

Lemma 2. Finally we will show how this property can be used to derive sufficient conditions

for incentive compatibility of the relaxed solution with respect to the deadline, which leads

to our first main result in Theorem 3. Throughout this section will use the properties of

one particular payment rule yrlx. Note, however, that payoff equivalence implies that the

results of this exercise, in particular Theorem 3, also apply to all other payment rules that

implement xrlx, as long as Ua(0, d) = Ua(0, d+ 1) is satisfied for all a and d.

3.1. A Payment Rule that Implements the Relaxed Solution with Public Dead-

lines. We define a payment rule in which the transfer of a bidder is zero if he does not win

the object. The winning bidder has to make a payment that is equal to the lowest valua-

tion with which he can win the object for given arrivals and types of competing bidders.

To define this payment rule formally, fix a buyer i with arrival time a and suppose that

the object is still available in the arrival period (ka = 1). We define the critical virtual

valuation for all d ≥ a and all continuations H−id of H−ia as21

Ja(H
−i
d ) := Ja

(
inf
{
v ≥ 0

∣∣∣xrlx
i

((
H−id , (ai, vi, di) = (a, v, d)

)
, kd
)

= 1
})

. (3.1)

Ja(H
−i
d ) is called the critical virtual valuation because it is the lowest virtual valuation

with which buyer i with deadline d wins against the other buyers that arrive until period

d, for a given history H−id . With this notation we can rewrite xrlx as follows:22

xrlx
i (st) :=

1, if kai = 1, t = di, and Ja(vi) ≥ Jai(H
−i
di

),

0, otherwise.

21H̃−i
d is a continuation of H−i

a if Ĩa \ {i} = Ia \ {i} and for all j ∈ Ia \ {i}, (ãi, ṽi, d̃i) = (ai, vi, di).
22For simplicity, we ignore ties. The subsequent analysis is valid for any deterministic tie-breaking rule.
With random tie-breaking we would have to condition payments on the realized allocation decision in
addition to the state. This would only complicate the notation without changing the results.
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While rewriting xrlx in this way is tautological, (3.1) serves well to define a simple payment

rule yrlx:

yrlx
i (st) :=

J−1
a

(
Jai(H

−i
di

)
)
, if xrlx

i (st) = 1,

0 otherwise.
(3.2)

Theorem 2. If deadlines are public information, then (xrlx, yrlx) is incentive compatible

and maximizes the seller’s revenue. Moreover, truthfully reporting the valuation is a weakly

dominant strategy.

Proof. With the payment rule yrlx, the payment of a losing buyer is zero. The winner pays

the lowest valuation with which he could have obtained the object for a given history of

arrivals until period di. Thus, truth-telling is a weakly dominant strategy if the deadline

is public and buyers only report their valuations. (xrlx, yrlx) is optimal because any mech-

anism that implements xrlx and satisfies Ua(0, d) = Ua(0, d+ 1) for all a and d, yields the

same expected revenue, which follows from payoff equivalence. �

3.2. The Martingale Property. The next step is to identify conditions under which

the mechanism (xrlx, yrlx) satisfies the incentive constraint for the deadline (ICDd). The

critical virtual valuation can be interpreted as the virtual opportunity cost of an allocation

to a buyer. This can be easily seen in the following example. The example also illustrates

a property that is crucial for the subsequent analysis: the sequence of critical virtual

valuations for different deadlines
(
Jai(H

−i
d )
)
d=ai,...,T

is a martingale.

Example. Let T = 2, and ν1(1) = ν2(1) = 1, that is, exactly one buyer arrives in each

period. If the first buyer has deadline d1 = 1, then he is awarded the object if his virtual

valuation is greater than the option value of waiting, which equals Ev2 [max{0, J2(v2)}].
Hence, the critical virtual valuation of buyer one for d1 = 1 is

J1(H−1
1 ) = Ev2 [max{0, J2(v2)}].

If d1 = 2, the object will not be allocated in period one because there is no buyer who

has reached his deadline. In period two, the virtual opportunity cost of allocating to buyer

one is max {0, J2(v2)}. Therefore, the critical virtual valuation of buyer one for d2 = 1 is

J1(H−1
2 ) = max{0, J2(v2)}.

Clearly, (J1(H−1
1 ), J1(H−1

2 )) is a martingale because E
[
J1(H−1

2 )
∣∣H−1

1

]
= J1(H−1

1 ). �

To derive the martingale property more generally, the basic definition of the critical

virtual valuation by (3.1) is not very useful. A simpler expression can be obtained by

defining a score πi for each buyer, which depends only on the buyer’s own type. Mierendorff

(2013) shows that a score can be defined such that buyer types with different arrival times

and deadlines become directly comparable.23 In particular, in each period, the allocation

23That paper considers value-maximization in a more general allocation problem. Replacing values by
virtual values, however, does not change the result we use here.
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rule in the relaxed solution will pick the buyer with the highest (positive) score among all

buyers that have arrived so far. If the deadline of this buyer is the current period, the

object will be allocated to him. If his deadline is in the future, or if the highest score is

negative, the object is not allocated in the current period. Formally, we will have:

xrlx
i (st) =

1, if kai = 1, t = di, and πi ≥ max
{

0,maxj∈I≤di
πj

}
,

0, otherwise.
(3.3)

This structure also implies that if the object is still available in period t, then the

deadline of the buyer with the highest positive score cannot be in the past. If it was in

the past, then he would have gotten the object at his deadline because he had the highest

score in that period already.

To define the score, we introduce an artificial state ŝd(π) for a given period d. In

this state, the object is still available (k̂d = 1), and there is a single artificial buyer

(Î≤d = {1}). The buyer has arrival time â1 = 1, virtual valuation J1(v̂1) = π, and his

deadline is d̂1 = T .24 If Vdi(ŝdi(0)) ≤ Ja(vi), the score of buyer i is defined implicitly by

Ja(vi) = Vdi(ŝdi(πi)). (3.4)

If Vdi(ŝdi(0)) > Ja(vi), we set πi = −1. Mierendorff (2013) shows that the relaxed solution

coincides with the solution defined by (3.3) and (3.4).

The expected revenue in the artificial state ŝdi(0) is the same as the expected revenue in a

state where no buyer is currently available, because the artificial buyer in ŝdi(0) has virtual

valuation zero. If Vdi(ŝdi(0)) > Ja(vi) the seller would therefore never allocate to buyer

i—in terms of virtual surplus, he is better off without buyer i. We assign an arbitrarily

chosen negative score (−1) to a buyer with such a low valuation. In the opposite case the

score is non-negative. The score πi is then defined such that i’s virtual value is equal to

the continuation value of the seller’s problem in the artificial state with a single buyer who

has a virtual valuation equal to the score πi and deadline T . In other words, (3.4) implies

that in period di, the seller is indifferent, in terms of virtual surplus, between allocating

to buyer i, or switching to the artificial state ŝdi(πi). We have thus transformed buyer

i’s valuation into a score that describes the equivalent (in terms of seller-revenue) virtual

valuation of a buyer with deadline T .

(3.3) has further implications. Since the buyer with the highest score cannot loose

against any buyer who has already arrived, Vt(Ht, 1) only depends on the type of the

buyer with the highest score. Moreover, Mierendorff (2013) shows that in any state where

the object is still available, the seller’s continuation value is the same as the continuation

value in the artificial state ŝt
(
max

{
0,maxj∈I≤t

πj
})

. Formally, for all t and Ht such that

xrlx
0 (Ht′ , 1) = 1 for all t′ < t,

24We can choose â1 ≤ d arbitrarily. If â1 6= 1, then Jâ1(v̂1) = π. It is important, however, that the
deadline is T .
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Vt(Ht, 1) = Vt

(
ŝt

(
max

{
0, max
j∈I≤t

πj

}))
. (3.5)

Equipped with these properties of the relaxed solution, we can now study the relation-

ship between critical virtual valuations for different deadlines. Consider a buyer i who

arrives in a period where the object is still available. If i’s deadline is d, he wins in period

d if

πi ≥ max

{
0, max
j∈I≤d

πj

}
.

Using (3.4), this yields

Jai(vi) = Vd(ŝd(πi)) ≥ Vd
(
ŝd

(
max

{
0, max
j∈I≤d\{i}

πj

}))
,

because the continuation value in the artificial state is weakly increasing in the artificial

buyer’s virtual valuation. Therefore, we have

Jai
(
H−id

)
= Vd

(
ŝd

(
max

{
0, max
j∈I≤d\{i}

πj

}))
. (3.6)

We can (3.6) for d− 1 to get

Jai(H
−i
d−1) = Vd−1

(
ŝd−1

(
max

{
0, max
j∈I≤d−1\{i}

πj

}))
= E

[
Vd(sd)

∣∣∣∣ sd−1 = ŝd−1

(
max

{
0, max
j∈I≤d−1\{i}

πj

}) ∣∣∣∣H−id−1

]
= E

[
Vd

(
ŝd

(
max

{
0, max
j∈I≤d\{i}

πj

})) ∣∣∣∣H−id−1

]
= E

[
Jai(H

−i
d )
∣∣H−id−1

]
.

To obtain the second line, we have used to definition of Vd−1 and the fact that xrlx
0 = 1 in

the artificial state ŝd−1

(
max

{
0,maxj∈I≤d−1\{i} πj

})
, which holds because the deadline of

the artificial buyer is T . Note that in the second line, we take the expectation of Vd(sd)

where sd is the state in which the set of buyers is given by the artificial buyer from ŝd−1,

joined with the new arrivals from period d. To obtain the third line we have used (3.5)

which applies here because the deadlines of all buyers in state sd are greater or equal

than d. To obtain the last line, we have used (3.6) for d. To summarize, we have shown

that the sequence of random variables
(
Jai(H

−i
d )
)
d=a,...,T

is a martingale. The following

lemma slightly strengthens this result and shows strict second-order stochastic dominance

of critical virtual valuations for different deadlines.25

25It is well known in the literature on dynamic programming, that the stopped sequence in an optimal
stopping problem is a martingale. The martingale property of the critical virtual valuation, however, does
not follow from this result. For a more detailed discussion of the two properties, see Appendix C.4 in the
Supplemental Material.
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Lemma 2. For all states sa with ka = 1, and all i ∈ Ia,
(
Ja(H

−i
d )
)
d=a,...,T

is a martingale

(with respect to
(
H−id

)
d=a,...,T

): for all d ∈ {a+ 1, . . . , T},

EH−i
d

[
Ja(H

−i
d )
∣∣H−id−1

]
= Ja(H

−i
d−1).

Furthermore, if Ja(H
−i
a ) < v, then for all d, d′ ∈ {a, . . . , T}, d < d′[

Ja(H
−i
d )
∣∣sa] �SSD

[
Ja(H

−i
d′ )
∣∣sa] ,

where �SSD denotes strict second-order stochastic dominance.

Proof. The proof of strict second-order stochastic dominance can be found in Appendix

A. �

The martingale property implies that while the critical virtual valuation becomes more

variable if the deadline increases, its expectation is independent of the deadline, exactly

as in the example. Intuitively, competition by other buyers does not become more or less

intense if the deadline changes. The deadline only determines which cohorts of buyers

are incorporated in the option value and for which cohorts a buyer competes against the

realized virtual valuations.

3.3. Incentive Compatibility of the Relaxed Solution. The final step in this section

is to use Lemma 2 to derive sufficient conditions under which xrlx satisfies or violates

(ICDd), respectively. The main idea can be illustrated by considering (ICDd) for a buyer

with the highest possible valuation vi = v. For any deadline d, we have

Ua(v, d) =
(
v − E

[
yrlx
i (sd)

∣∣∣ka = 1
])
× Prob [ka = 1] .

A buyer vi = v̄ wins with probability one whenever the object is still available at his arrival

time. Therefore, the expected utilities for different deadlines d and d′ > d can differ only

in the expected payments. The payment is defined in (3.2) by applying a markup given by

J−1
a to the virtual opportunity cost of the seller. If the markup is linear, the buyer is be

risk-neutral with respect to the virtual opportunity cost of the seller and hence indifferent

between reporting different deadlines. If the markup is non-linear, however, the buyer

becomes endogenously risk-averse or risk-loving. For example, if Ja is weakly convex, then

J−1
a is weakly concave. By Jensen’s inequality and the law of iterated expectations, the

expected payment is higher for d than for d′ because the critical virtual valuation for the

earlier deadline is less variable. If Ja is concave, we get the opposite observation. The

following theorem generalizes the insight to all valuations v ∈ [0, v]. For the case of v < v̄,

the expected payoff also depends on the winning probability which requires a different

proof which uses second-order stochastic dominance.

Theorem 3. (i) If Ja(v) is weakly convex for all a, then (xrlx, yrlx) is incentive com-

patible and maximizes the seller’s revenue if both the valuation and the deadline are

private information.

(ii) If Ja(v) is strictly concave for some a, then (xrlx, yrlx) is not incentive compatible if

the deadline and the valuation are private information.
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Proof. The proof can be found in Appendix A. �

There are two important elements in this payment rule that drive Theorem 3. First, the

arrival of new information over time leads to in creased dispersion in the critical virtual

valuation. Second, the seller’s desire to minimize information rents for the valuation leads

to a markup that is typically non-linear. These two elements, arrival of information, and

the desire to extract information rents interact, and distort the incentives to report the

deadline truthfully. If the seller maximized value instead of revenue, the markup would

disappear and the relaxed solution would always be incentive compatible.26 Moreover,

if there was no information revelation over time, but the seller maximized revenue, the

relaxed solution would again be always incentive compatible.27

Remark 1 (Ex-Post Incentive Compatibility). Note that in Lemma 2, strict second-order

stochastic dominance is shown conditional on the state in the arrival period. This implies

that the incentive compatibility result of Theorem 3.i also holds if buyers can condition

their reports on the state at their arrival time. In other words, under the conditions of

Theorem 3.i, the relaxed solution is periodic ex-post incentive compatible.28 This shows

that the optimal solution does not rely on the seller’s ability to conceal information.

Remark 2 (Convex and Concave Virtual Valuations). In static mechanism design, the

regularity condition that guarantees incentive compatibility of the relaxed solution (As-

sumption 1) is satisfied by a large class of distributions (see Ewerhart, 2013). In the

present model, the picture is less clear. Strict concavity (weak convexity) of the virtual

valuation is equivalent to

1− F (v)

(f(v))2
(f(v)f ′′(v)− 2(f ′(v))2)

(≥)
< f ′(v).

This implies that all distributions with an increasing density that is not too convex have

strictly concave virtual valuations. Conversely, decreasing densities that are not too con-

cave imply weak convexity of the virtual valuation. For example, the virtual valuation

is concave if the density is linear and increasing (f(v) = 1 − k + 2kv, k ∈ (0, 1]), or a

power of v (f(v) = (k+ 1)vk, k > 0), but we also have concavity for hump- and U-shaped

densities (f(v) = 3
2 − 6(v − 1

2)2 and f(v) = 12(v − 1
2)2). The virtual valuation is linear

or convex if the density is linear and decreasing (f(v) = (k + 1)vk, k ≤ 0) or a power of

1− v (f(v) = (1 + k)(1− v)k). These examples show clearly that both the regular and the

irregular case are economically relevant. We will therefore study the optimal mechanism

in the irregular case in Section 4.

26This also follows from general existence results for efficient dynamic mechanisms (Parkes and Singh,
2003; Bergemann and Välimäki, 2010).
27In this (hypothetical) case, the seller has perfect foresight and we are essentially back in the static model
of Myerson (1981).
28This hybrid concept requires ex-post incentive compatibility with respect to all information that is
realized in the current period and Bayesian incentive compatibility for all information that realizes in the
future (see Bergemann and Välimäki, 2010).
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3.4. Generalizations. The martingale property of Ja(H
−i
d ) does not depend on the as-

sumption that the valuation and the deadline are conditionally independent. Appendix

C.2 in the Supplemental Material shows the martingale property for the case of two pe-

riods (T = 2), a finite number of units (K > 1) and buyers with unit demand. We can

therefore generalize Theorem 3 to allow for correlations and multiple units.29

For the case that the valuation and the deadline of a buyer are not independent, the suf-

ficient conditions in Theorem 3 have to be augmented. If the distribution of the valuation

becomes weaker for later deadlines (in the hazard-rate order), then the seller will set prices

less aggressively if a buyer has a later deadline. This makes it more likely that the relaxed

solution is incentive compatible if the deadline is private. Conversely, if the distribution of

valuations becomes stronger for later deadlines, the markups used in the relaxed solution

increase with the deadline, which makes it less likely that the relaxed solution is incentive

compatible.30 Combining the hazard-rate order with the previous convexity/concavity

conditions, we the following sufficient conditions for incentive compatibility of the relaxed

solution.

Theorem (3’). Suppose that K = 1 and T < ∞, or that T = 2 and K < ∞. Suppose

that both the valuation and the deadline are private information. Then (xrlx, yrlx)

(i) is incentive compatible and maximizes the seller’s revenue if for all a ≤ d < d′ ≤ T
(a) Ja(v|d) ≤ Ja(v|d′) for all v ∈ [0, v], and

(b) Ja(v|d) or Ja(v|d′) is weakly convex as a function of v.

(ii) violates (ICDd) if for some a ≤ d < d′ ≤ T
(a) Ja(v|d) ≥ Ja(v|d′) for all v ∈ [0, v], and

(b) Ja(v|d) or Ja(v|d′) is strictly concave as a function of v.

4. The General Solution

In this section, we analyze how a binding incentive constraint for the deadline distorts

the optimal allocation rule. The most important difference in comparison to the relaxed

solution is that the binding incentive constraint leads to bunching of deadlines.

In the irregular case, the analysis of the seller’s problem is significantly more complex.

We obtain an explicit solution for the case of two periods (T = 2) with deterministic arrival

of one buyer in each period. We will assume that the profit of a monopolist who is selling

to the first buyer is concave, which is captured by Assumption 2. This assumption ensures

that the optimal mechanism does not use lotteries in the first period. While Assumption

2 is needed for a complete solution, a main property of the optimal solution, namely that

deadlines are not separated for high valuations, is robust.

29I conjecture that Lemma 2 generalizes to the case of many objects (with unit demand) and more than
two time periods. This would imply an immediate generalization of Theorem 3’. The main obstacle for
a proof of the conjecture is that the formulation of the optimal allocation rule in terms of a score is not
easily generalizable beyond the case of one object.
30The observation is not new. It can also be found in the previous literature on static models with
two-dimensional private information. See Section 1.1 and Footnote 7.
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For the 2x2 model we simplify notation. The deadline of the first buyer is denoted by

d ∈ {1, 2}, and the probability of d = 1 by ρ. x1(v1, d = 1) denotes the winning probability

of buyer if his deadline is one, and xi(v1, d, v2) denotes the conditional winning probability

of buyer i in period two, for a given type profile, conditional on the event that the object

has not been allocated in the first period. Note that an allocation rule x is feasible if and

only if for all v1, v2 ∈ [0, v], d ∈ {1, 2}, and i ∈ {1, 2}: x1(v1, 1), xi(v1, d, v2) ∈ [0, 1] and31

x1(v1, 2, v2) + x2(v1, 2, v2) ≤ 1. (F)

We write interim winning probabilities of buyer one as

q1(v1, 1) = x1(v1, 1), and q1(v1, 2) =

ˆ v

0
x1(v1, 2, v2)f2(v2)dv2. (4.1)

The interim winning probability of buyer two, conditional on the deadline of buyer one,

and the event that the object has not been allocated in period one, is given by32

q2(v2|d = 1) :=

ˆ v

0
x2(v1, 1, v2)

(1− x1(v1, 1))f1(v1)´ v
0 (1− x1(s, 1))f1(s)ds

dv1,

and q2(v2|d = 2) :=

ˆ v

0
x2(v1, 2, v2)f1(v1)dv1. (4.2)

With this notation, the seller’s objective can be written as follows:

ρπ1 [q1(·, 1), q2(·|1)] + (1− ρ)π2 [q1(·, 2), q2(·|2)] . (4.3)

The first part of the objective, π1, is the expected profit conditional on d = 1, which does

not depend on the allocation rule for d = 2:

π1 [q1(·, 1), q2(·|1)] =

ˆ v

0

[
q1(v1, 1)J1(v1) + (1− q1(v1, 1))

ˆ v

0
q2(v2|1)J2(v2)f2(v2)dv2

]
f1(v1)dv1.

(4.4)

Similarly, π2, the expected profit conditional on d = 2, does not depend on the allocation

rule for d = 1:

π2 [q1(·, 2), q2(·|2)] =

ˆ v

0
q1(v, 2) J1(v) f1(v) + q2(v|2) J2(v) f2(v) dv. (4.5)

The seller maximizes (4.3) subject to the constraint that q is the reduced form of a

feasible allocation rule and incentive constraints: For all d ∈ {1, 2}, and all v, v′ ∈ [0, v]:

v > v′ ⇒ q1(v, d) ≥ q1(v′, d), (M1)

and U1(v, 1) =

ˆ v

0
q1(s, 1)ds ≤

ˆ v

0
q1(s, 2)ds = U1(v, 2) (ICDd

1)

Given that virtual valuations are assumed to be increasing, the monotonicity constraint

on q2 can be relaxed and is therefore omitted. As before, the seller maximizes virtual

31We do not have to impose a constraint on the sum x1(v1, 1) + x2(v1, 1, v2) because x2(v1, 1, v2) is the
winning probability of buyer two conditional on the event that the object has not been allocated in the
first period.
32With these definitions, we have q2(v2) = ρ

(´ v

0
(1− x1(v1, 1))f1(v1)dv1

)
q2(v2|d = 1)+(1−ρ) q2(v2|d = 2).
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surplus. In contrast to the previous section, however, the incentive constraint for the

deadline (ICDd
1) is imposed on the seller’s problem. Note that this is the only constraint

that involves the allocation rule for both d = 1 and d = 2. Therefore, we separate

the two sub-problems in the following. We will first derive the optimal allocation rule

for d = 1, taking U1(·, 2) as given. Second, we will derive the optimal allocation rule

for d = 2, taking U1(·, 1)—which is the type-dependent participation constraint of buyer

one, as given. These steps will reveal the distortions that the seller uses in the first and

second period, respectively, in response to the binding incentive constraint. Finally, we

will combine the two results to obtain an optimal allocation rule for the complete problem.

4.1. The Optimal Allocation conditional on d = 1. If buyer one is impatient (d = 1),

the optimal allocation rule is determined recursively. If the object has not been sold in

period one, it is clear from (4.4) that it is optimal to sell to buyer two if and only if

J2(v2) ≥ 0. Hence, we have

q∗2(v2|1) =

0, if J2(v2) < 0,

1, otherwise,

and the option value of waiting for the second period is V opt :=
´ v

0 q
∗
2(v2|1)J2(v2)f2(v2)dv2.

Inserting this into (4.4), we can write the problem of maximizing π1 for given U∗1 (·, 2) as

the problem P1:

max
q1(v1,1)

ˆ v

0

[
q1(v1, 1)J1(v1) + (1− q1(v1, 1))V opt

]
f1(v1)dv1 (P1)

s.t. q1(v, 1) ∈ [0, 1], (M1),

and ∀v1 ∈ [0, v] : U1(v1, 1) =

ˆ v1

0
q1(s, 1)ds ≤ U∗1 (v1, 2), (4.6)

where U∗1 (·, 2) is convex, and satisfies ∂U∗1 (v1, 2)/∂v1 ∈ [0, 1] and U∗1 (0, 2) = 0.

If (4.6) is ignored, the optimal solution for q1(v1, 1) is given by a cutoff rule: q1(v1, 1) = 1

if buyer one’s virtual valuation exceeds V opt and q1(v1, 1) = 0 otherwise. Therefore,

conditional on d = 1, the optimal solution can be implemented by a sequence of fixed

prices. The price r1 posted in the first period is given by r1 = J−1
1 (V opt), and the price

in the second period r2 is given by r2 = J−1
2 (0). Conditional on the types of the buyers,

the allocation decision is deterministic. This is the well-known no-haggling result of Riley

and Zeckhauser (1983).

The following lemma shows that if q1 is a cutoff rule, it suffices to check (4.6) for v1 = v.

Lemma 3. If q1 (v1, 1) ∈ {0, 1} for all v1 ∈ [0, v] and satisfies (M1), then (ICDd
1) holds

for any v, if it is fulfilled for v = 0 and v = v.

Proof. q1(v, 1) jumps from zero to one at v = v−U1(v, 1) if the allocation is monotone and

q1 (v1, 1) ∈ {0, 1}. Therefore, the expected utility for d = 1 is constant on [0, v − U1(v, 1)]

and has slope one on [v − U1(v, 1), v]. Since dU1(v, 2)/dv ∈ [0, 1], U1(v, 2) cannot get

“too convex”, and cannot cross U1(v, 1) from below if U1(0, 2) ≥ U1(0, 1). Therefore, we
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must have U1(v, 2) ≥ U1(v, 1) for all v ∈ [0, v] if this constraint is fulfilled for v = 0 and

v = v. �

This Lemma implies that the types for which the constraint is binding are independent

of the allocation rule, as long as the seller uses a cutoff rule in the first period. In particular,

since U1(0, 1) = U2(0, 2) = 0 the incentive constraint for the deadline is reduced to a single

inequality. Unfortunately, the no-haggling result of Riley and Zeckhauser (1983) need not

hold if we impose (4.6).33 The following theorem shows, however, that under Assumption

2, q∗1(v1, 1) is always a cutoff rule. To simplify notation we write Ū = U∗1 (v, 2). With

slight abuse of notation, we also use π1(Ū) to denote the value of P1 if (4.6) is imposed

only for v1 = v.

Theorem 4. Suppose f1 satisfies Assumption 2, Then

(i) the optimal solution of P1 is deterministic, it only depends on Ū , and is given by

q∗1(v1, 1) =

0, if J1(v1) < max{V opt
2 , J1(v − Ū)},

1, otherwise,

(ii) π1(Ū) is continuously differentiable and concave for Ū ∈ (0, v) and strictly concave

if Ū < v − J−1
1 (V opt).

Proof. The proof of (i) uses a simple variational argument. In (4.6), winning proba-

bilities are not weighted in the integral because incentive compatibility constraints are

independent of the buyer’s own distribution function. In the objective, however, q1(v1, 1)

is weighted by (J1(v1)−V opt
2 )f1(v1). Increasing the winning probability q1(v1, 1) for valu-

ations in [v, v+ε], and decreasing it by the same amount on [v′, v′+ε], with v′+ε ≤ v, de-

creases U1(v1, 1) for v1 ∈ [v′, v+ε] and leaves U1(v1, 1) unchanged otherwise. Hence, such a

change in q1 does not destroy incentive compatibility. On the other hand, this shift of win-

ning probability from low to high types increases the seller’s revenue if (J1(v1)−V opt
2 )f1(v1)

is increasing. Assumption 2 guarantees that (J1(v1)− V opt
2 )f1(v1) is increasing whenever

J1(v1)−V opt
2 ≥ 0. Therefore, the winning probability must jump from zero to one at some

point r1 and the allocation is deterministic. r1 is the lowest value such that J1(r1) ≥ V opt
2

and U1(v, 1) = v − r1 ≤ U(v). This yields r1 = max{J−1
1 (V opt

2 ), v − Ū}.
If we insert the optimal solution in the objective function we obtain

π1(Ū) =

ˆ v

r1

J1(v)f1(v)dv + V opt
2 F1(r1).

π′1(Ū) =

(J1(v − Ū)− V opt
2 )f1(v − Ū), if J1(v − Ū) > V opt

2 ,

0 otherwise.

33Riley and Zeckhauser’s result is a consequence of the structure of the feasible set of the maximization
problem. Manelli and Vincent (2007) show that the set of extremal points of the feasible set, which contains
the maximizers, is equal to the set of deterministic allocation rules. Due to the additional constraint (3),
the set of extremal points changes. Rather than trying to extend the results of Manelli and Vincent here,
we use Assumption 2 as a sufficient condition for a deterministic mechanism.
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For Ū → v− J−1
1 (V opt

2 ) we have π′1(Ū)→ 0 since f1 is bounded. Hence, π′1(Ū) is continu-

ous. Using Assumption 2, we conclude that π′1(Ū) is strictly decreasing if J1(v−Ū) > V opt
2

and hence π1 is strictly concave. �

If Assumption 2 does not hold, raising the winning probability for a lower valuation

may be more profitable than for a higher valuation because f1(v) is decreasing sharply

and the higher likelihood of a low type outweighs the lower virtual valuation.

Distortions if Buyer 1 is Impatient. Theorem 4 shows that the optimal allocation rule

for d = 1 allocates less often to buyer one than the relaxed solution. If J1(Ū − v) > V opt
2 ,

the optimal posted price in period one equals Ū − v. This price no longer reflects the

opportunity cost of the seller plus a mark-up. Instead, it is entirely determined by the

binding incentive constraint for the deadline. It is distorted upwards compared to the

relaxed solution, to make the fixed price less attractive for a patient buyer.

4.2. The Optimal Allocation conditional on d = 2. In the previous section, we have

shown that the optimal allocation rule q∗1(v1, 1) is a cutoff rule if Assumption 2 is satisfied.

Therefore, we impose (ICDd
1) only for v1 = v in the analysis if the optimal allocation

conditional on d = 2. Setting Ū :=
´ v

0 q
∗
1(v1, 1)dv1, we obtain problem P2 which yields the

optimal allocation rule for d = 2:

π2(Ū) := max
q

ˆ v

0
q1(v, 2)J1(v)f1(v) + q2(v|2)J2(v)f2(v) dv (P2)

s.t. (F), (M1),

and

ˆ v

0
q1(v, 2)dv ≥ Ū . (4.7)

In Appendix B, we show that (F) can be used to eliminate q2(v|2) and transform this

maximization problem into a solvable optimal control problem. Here we give an informal

argument to derive the optimal solution. If we ignore the monotonicity constraint (M1)

but maintain the constraint (F), we can use the following Lagrangian relaxation to get an

intuition for the optimal solution:

L =

ˆ v

0
q1(v, 2)J1(v)f1(v) + q2(v|2)J2(v)f2(v)dv − pU

[
Ū −

ˆ v

0
q1(v, 2)dv

]
Rearranging the Lagrangian, and inserting (4.1) and (4.2), we obtain the objective34

L =

ˆ v

0

ˆ v

0
[x1(v1, 2, v2)JpU1 (v1) + x2(v1, 2, v2)J2(v2)] f1(v)f2(v)dv1dv2,

where JpU1 (v) := J1(v) +
pU
f1(v)

.

Now that the seller’s objective is formulated in terms of the allocation rule x rather

than the reduced form, we can apply the feasibility constraint (F) directly. If we know

34If the participation constraint is imposed for all valuations, we obtain a similar formulation with a type

dependent multiplier pU (v) and generalized virtual valuation J̃1(v) = J1(v) + pU (v)
f(v)

.
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the value of the Lagrange multiplier pU , then the optimal allocation rule is obtained by

point-wise maximization

x1(v1, 2, v2) =

0, if JpU1 (v1) < max{0, J2(v2)},
1, otherwise,

x2(v1, 2, v2) =

0, if J2(v2) ≤ max{0, JpU1 (v1)},
1, otherwise.

(4.8)

In this allocation rule, the virtual valuation J1 has been replaced by JpU1 , which we call

the generalized virtual valuation. With the standard virtual valuation (i.e., if pU = 0), the

optimal allocation rule is monotonic if Assumption 1 is fulfilled. Here, however, we have

to ensure that JpU1 is non-decreasing. Since JpU1 depends on the endogenous multiplier pU ,

this is difficult to establish unless we impose strong conditions on the type distribution.35

Therefore, we show that the optimal allocation rule subject to (M1) can be obtained by

ironing the generalized virtual valuation.

Definition 3 (Ironing; Myerson, 1981). For every v1 ∈ [0, v], and every pU ≥ 0, define

the ironed generalized virtual valuation by36

J̄pU1 (v1) :=
d

dt

[
conv

(ˆ t

0
J1

(
F−1

1 (s)
)

+
pU

f1

(
F−1

1 (s)
) ds)]∣∣∣∣∣

t=F1(v1)

.

Using Definition (3), we obtain a monotonic virtual valuation that allows to describe the

optimal allocation rule by replacing JpU1 (v1) by J̄pU1 (v1) in (4.8). With this modification,

it may be the case that J̄pU1 (v1) equals zero for an interval of valuations v1. Since a tie

can therefore occur with positive probability (i.e. whenever J2(v2) < 0 and J̄pU1 (v1) = 0),

the tie-breaking rule has to be specified explicitly. To do so, we extend the definition of

the allocation rule by an additional parameter x0
1, which specifies the winning probability

of buyer one if J̄pU1 (v1) = 0 and J2(v2) < 0. For given pU and x0
1 the optimal allocation

35For example, a sufficient condition is that f1(v) is non-increasing.
36This definition uses the following steps taken from Myerson (1981): First, for all t ∈ [0, 1], we define
MpU

1 (t) := J1(F−1
1 (t)) + pU

f1(F−1
1 (t))

as the generalized virtual valuation at the t-quantile of F1. Second,

we integrate this function: MpU (t) :=
´ t

0
MpU

1 (s)ds. Then we take the convex hull (that is, the greatest

convex function G such that G(t) ≤ MpU (t) for all t): M̄pU (t) := convMpU (t). Since M̄pU is convex, it
is almost everywhere differentiable, any selection M̄pU

1 (t) from the sub-gradient is non-decreasing and the
selection is unique almost everywhere. Finally we reverse the change of variables made in the first step
to obtain the ironed generalized virtual valuation J̄pU

1 (v1) := M̄pU
1 (F1(v1)). See Reid (1968) for a similar

construction in an optimal control problem.



22 KONRAD MIERENDORFF

rule then is given by

x̄1(v1, 2, v2) =


1, if J̄pU1 (v1) > 0 and J̄pU1 (v1) ≥ J2(v2)

x0
1, if J̄pU1 (v1) = 0 and J2(v2) ≤ 0,

0, otherwise,

x̄2(v1, 2, v2) =

0, if J2(v2) ≤ max{0, J̄pU1 (v1)},
1, otherwise.

(4.9)

It remains to compute the multiplier pU and the parameter x0
1 such that U1(v, 2) =´ v

0 q̄1(v, 2)dv = Ū . The following lemma shows that there is a unique such pair. (If

U1(v, 2) > Ū for pU = 0, the constraint is not binding at the optimal solution and we must

have pU = x0
1 = 0.)

Lemma 4. Let Ū ∈ [0, v] such that
´ v

0 q̄1(v, 2)dv < Ū if we set pU = 0 and x0
1 = 0 in

(4.9). Then there exists a unique multiplier pU ≥ 0 and a unique probability x0
1 ∈ [0, 1],

such that the solution defined by (4.9) satisfies
´ v

0 q̄1(v, 2)dv = Ū . They are given by

p∗Ū := min

{
pU ≥ 0

∣∣∣∣ˆ v

0
q̄1(v, 2)dv ≥ Ū if x0

1 = 1

}
, (4.10)

x0∗
1 := min

{
x0

1 ≥ 0

∣∣∣∣ ˆ v

0
q̄1(v, 2)dv ≥ Ū if pŪ = p∗Ū

}
. (4.11)

Proof. Let U(pU ) be the set of possible values of U1(v, 2) =
´ v

0 q̄1(v, 2)dv that can be

achieved by setting x0
1 ∈ [0, 1]. For pU sufficiently high, J̄pU1 (v1) > v for all v1 ∈ [0, v],

hence there exists a value p̄U such that
´ v

0 q̄1(v, 2)dv = v so that v ∈ U(p̄U ). In Ap-

pendix B, we show that U(pU ) is an increasing, closed-valued, and upper-hemicontinuous

correspondence. Therefore we can find the desired pU and x0
1 ∈ [0, 1] for all Ū ∈ [0, v].

Uniqueness follows from the fact that U(pU ) is increasing. �

The following theorem shows that the optimal allocation rule that we have derived

informally, is indeed an optimal solution to P2.

Theorem 5. (i) The reduced form of (4.9) for p∗
Ū

and x0∗
1 is an optimal solution of P2.

(ii) Fix Ū and suppose that J
p∗
Ū

1 (v1) is strictly increasing in v1. Then the reduced form

of (4.8) for pU = p∗
Ū

is an optimal solution of P2.

(iii) For almost every Ū ≤ v, π′2(Ū) = −p∗U .

(iv) π2(Ū) is weakly concave if p∗
Ū
> 0 and strictly concave if J̄pU1 (v1) = 0 has a unique

solution.

Proof. See Appendix B. �

Distortions if Buyer 1 is Patient. We see that the optimal allocation rule conditional

on d = 2 involves a “bonus” for buyer one. Even if the valuations of both buyers are

identically distributed (f1 = f2), buyer one has a higher chance of winning than buyer two
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wins
buyer one

buyer two
wins

0
0

v

v0
2

v1

v

v2

J1(v1) = J2(v2)

v0
1αα ββ

(J1(v1) − J2(v2))f1(v1) = −pU

Figure 4.1. Relaxed solution: valuations tie at the solid line. General
solution: valuations tie at the dashed line.

(for a given valuation) because

∀v1 ∈ [0, v] : JpU1 (v1) = J1(v1) +
pU

f1(v1)
> J1(v1),

if the relaxed solution is not incentive compatible (pU > 0). See Figure 4.1 for an illus-

tration. This is leads to a lower reserve price α < v0
1 for buyer one, which increases the

efficiency of the allocation compared to the relaxed solution. Overall, the efficiency com-

parison is nevertheless ambiguous because buyer one is also given an advantage over buyer

two if the latter has a positive virtual valuation. If valuations are identically distributed,

this leads to a loss in efficiency compared to the relaxed solution, but if buyer one has a

sufficiently strong type distribution, the overall efficiency effect of the distortion can be

positive.

Remarkably, whenever the incentive constraint for the deadline is binding (pU > 0),

there is a non-empty interval (β, v], such that JpU1 (v1) > v for all valuations v1 ∈ (β, v].

Buyer two cannot win against buyer one if v1 > β, and buyer one has a winning probability

of one even if he does not have the highest possible valuation. The familiar result that

there is no distortion at the top does not hold here.

4.3. Complete Solution. The final step in the analysis of the seller’s problem is to

determine Ū . The expected profit of the seller is given by ρπ1(Ū) + (1 − ρ)π2(Ū), where

Ū is the designer’s choice which determines the magnitude of the distortions in the two

sub-problems for d = 1, 2. Depending on the chosen value of Ū , the constraints (4.6) and

(4.7) may be binding or not. Given that both π1 and π2 are concave, the optimal value of
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Ū is determined by the first-order condition

ρ π′1(Ū) = −(1− ρ) π′2(Ū).

Using that −π′2(Ū) = pU , we obtain that the optimal solution is given by

pU =
ρ

1− ρ π
′
1(Ū),

and Ū ≤
ˆ v

0
q̄pU1 (v, 2)dv1, with equality if pU > 0,

where q̄pU is the reduced form of (4.9) for given value of pU . An explicit expression for

Ū or pU is not available. For given pU , however, U1(v, 2) =
´ v

0 q̄
pU
1 (v, 2)dv1 is easy to

calculate numerically and an explicit expression for π′1 is given in the proof of Theorem 4.

Hence, it is easy to compute the optimal values of pŪ and Ū numerically.

To conclude the derivation of the optimal mechanism, we note that q2(v2|1), defined by

the fixed price r2, and q2(v2|2), defined by the reduced form of (4.9), are non-decreasing.

This follows from Assumption 1. Therefore, q2(v2) is also non-decreasing and the optimal

solutions of P1 and P2 together fulfill all constraints of (4.3).

In the remainder of this section the features of the optimal solution will be discussed.

Distortions in Both Periods. First, distortions due to the binding deadline incentive

constraint arise in both periods. By Theorem 4, π1(Ū) is continuously differentiable.

Therefore, pU > 0 implies that the allocation for d = 1 is distorted. Hence, the general

solution involves a distortion for both deadlines, whenever the relaxed solution is not

incentive compatible. As distortions are more costly at the deadline which occurs more

frequently, the relative magnitude of the distortions depends on ρ. If d = 1 is relatively

unlikely (ρ small), then the distortion of the fixed price is bigger and the auction is closer

to Myerson’s solution.

Bunching of Deadlines. For buyer one, the expected utility from participation is inde-

pendent of the deadline if v1 > β. For both deadlines, the winning probability is one, and

the expected payment in the auction is equal to the fixed price in period one. In other

words, the optimal allocation does not separate types with different deadlines if their val-

uations are high. It can be implemented in a mechanism where types with valuations

v1 > β buy immediately, and types with lower valuations wait until their deadline. This

finding also holds without Assumption 2. It can be shown that the utility in period one

has to satisfy U1(v1, 1) ∈ [max{0, U1(v̄, 2) − (v̄ − v1)}, U1(v1, 2)] if the relaxed solution is

not incentive compatible. This implies that the incentive constraint for the deadline holds

with equality for the highest type. Since the relaxed solution is not incentive compatible,

an increase of U1(v1, 1) for high valuations has a first-order effect on expected revenue.

Therefore, the allocation rule for d = 2 must also be distorted for high valuations which

implies q1(v1, 2) = 1 for v1 sufficiently high. It is likely that bunching of this type also

arises in more general models, so that some (high) types are not rewarded for delaying a

purchase until their respective deadlines.
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Dominant Strategies and Indirect Implementation. While the optimal allocation

conditional on d = 1 can be implemented by posting fixed prices, there are several ways

to implement the optimal auction in period two. For example, it can be implemented by a

generalized Vickrey auction. In this auction, which has a payment rule similar to yrlx, the

winning bidder pays the valuation for which his (generalized) virtual valuation ties with

the (generalized) virtual valuation of the losing bidder. For buyer two, this mechanism

is incentive compatible in dominant strategies.37 Hence, the optimal mechanism does not

rely on the seller’s ability to conceal information about period one.

As in the static auction model, there is also an ascending clock auction format that

corresponds to this direct mechanism. The auctioneer has a clock that runs continuously

from zero to v. For each bidder i, the auctioneer’s clock value ca is translated into a

bidder-specific clock value ci. For bidder one, this is c1 = (JpU1 )
−1

(ca). For bidder two,

this is c2 = J−1
2 (ca). The auctioneer raises ca continuously and bidders can drop out

at any time. If bidder i drops out, the clock stops immediately. Bidder j 6= i wins the

object and has to make a payment equal to his bidder-specific clock-value cj . Given the

informational assumptions made in this paper, this auction is strategically equivalent to

the generalized Vickrey auction. It has the advantage that the winning bidder does not

have to reveal his true valuation to the auctioneer.

5. Concluding Remarks

The results of Section 4 are obtained by solving an optimal auction problem with a

type-dependent participation constraints. Similar problems arise in several contexts and

(with some limitations) the methods used here may be helpful for such exercises.

First, as mentioned in Section 1.1 and Footnote 7, there are many models with two-

dimensional private information where the second dimension takes the form of a constraint

in the agents’ utility functions. So far the literature has focused on the regular case in

which incentive constraints in the second dimension can be ignored. The methods used

here will be useful for a more general characterization of optimal mechanisms. Second, type

dependent participation constraints arise naturally if there is competition. In the context

of our model, buyers may find other opportunities to purchase a similar object if they are

not awarded in the period of arrival. In this case, patient buyers would face two “outside

options”—they can misreport their patience and choose to buy from a different seller.

From the perspective of the seller, this leads to stochastic exit or random participation

as in Rochet and Stole (2002). In a static context, models of competing auctioneers

naturally involve type-dependent participation constraints. Third, heterogeneity in the

degree of patience could be incorporated in search models and the present analysis may

be useful for the analysis of such applications.

37If the auction is considered in isolation, it is also a dominant strategy for buyer one to bid his true
valuation. In the dynamic context, however, it is not a dominant strategy to report the deadline truthfully.
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The main limiting factors for a generalization of our methods (e.g., to a model with more

than two buyers) result from the combination of the type dependent participation con-

straint, the monotonicity constraint, and the possibility of discontinuities in the winning

probability (at the reserve price). In the proof of Theorem 5 we solve an optimal control

problem where the interim winning probability is a state variable with discontinuities, and

the controls are its derivative and the position and size of jumps. The type-dependent

participation constraint takes the form of a state constraint. We simplify the problem by

showing that this constraint has to be imposed only for the highest type (by Assumption

2).38 The result then follows from an application of a version of the Pontryagin maximum

principle. The Lagrangian relaxation suggest how the optimal mechanism looks like if

the participation constraint is imposed for interior types (this may be the case without

Assumption 2 or if there are two or more buyers in the first period).39 The formal proof

amounts to applying the right version of the maximum principle. In other applications,

some complication can be avoided if the model is set up such that discontinuities in the

winning probability do not arise—for example by ruling out an exclusion region.

Increasing the number of periods introduces an additional complication because buyers

from different cohorts with different participation constraints participate simultaneously.

In the two-period model, it was possible to use the participation constraint to substitute

the winning probability of the buyer who does not face a participation constraint. Applying

this technique (recursively) to multiple cohorts is in principle possible, but can become

tedious. Therefore it will be more likely to find tractable applications in models with

overlapping generations where each cohort lives for at most two periods. Again, one can

get an intuition for the optimal solution from a Lagrangian relaxation.

Appendix A. Proofs of Lemmas 2 and 4, and Theorems 3 and 4

Proof of Lemma 2. By Theorem 4.A.5 in Shaked and Shanthikumar (2007), (weak) second-

order stochastic dominance follows from the martingale property. We strengthen this

property and show that for every strictly concave function φ, all a ≤ d < d′, and all H−ia
such that Ja(H

−i
a ) 6= v we have

E
[
φ
(
Ja(H

−i
d )
) ∣∣H−ia ] > E

[
φ
(
Ja(H

−i
d′ )
) ∣∣H−ia ] .

To see that this is true, we use the law of iterated expectations on both sides:

E
[
E
[
φ
(
Ja(H

−i
d )
) ∣∣H−id ] ∣∣H−ia ] > E

[
E
[
φ
(
Ja(H

−i
d′ )
) ∣∣H−id ] ∣∣H−ia ] .

If the distribution of
[
φ
(
Ja(H

−i
d′ )
) ∣∣H−id ] is a Dirac measure, then by the martingale

property we have [
φ
(
Ja(H

−i
d )
) ∣∣H−id ] =

[
φ
(
Ja(H

−i
d′ )
) ∣∣H−id ] .

But if Ja(H
−i
a ) 6= v, there is a positive probability that a history H−id occurs for which the

distribution
[
φ
(
Ja(H

−i
d′ )
) ∣∣H−id ] is not concentrated on a single point. Since

[
φ
(
Ja(H

−i
d )
) ∣∣H−id ]

38Pai (2014) uses a similar trick in part of his analysis of competing auctioneers.
39See footnote 34.
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is deterministic, weak second-order stochastic dominance together with strict concavity

implies that

E
[
φ
(
Ja(H

−i
d )
) ∣∣H−id ] > E

[
φ
(
Ja(H

−i
d′ )
) ∣∣H−id ] .

This shows the desired result. �

Proof of Theorem 3. Consider a buyer i with type (a, v, d), where a ≤ d < T and let

d′ ∈ {d+ 1, . . . , T}. Fix the state in the arrival period sa, and let

G(J) = Prob
[
Ja(H

−i
d ) ≤ J

∣∣sa] ,
and G′(J) = Prob

[
Ja(H

−i
d′ ) ≤ J

∣∣sa] .
Lemma 2 implies that the c.d.f.s G and G′ have the same mean and G �SSD G′.

(i) Suppose that Ja(v) is convex and let Ja(v) > 0. Conditional on sa we have40

Ua(v, d
′|sa) = vG′(Ja(v))− J−1

a (0)G′(0)−
ˆ Ja(v)

0
J−1
a (J)dG′(J),

=

ˆ Ja(v)

0

dJ−1
a (J)

dJ
G′(J)dJ,

≥
ˆ Ja(v)

0

dJ−1
a (J)

dJ
G(J)dJ = Ua(v, d|sa)

The last line follows because because dJ−1
a (J) / dJ is non-negative and non-increasing,

and for all non-negative and non-increasing functions φ : [0, v]→ R, we can show that

∀x ∈ [0, v] :

ˆ x

0
φ(s)G′(s)ds ≥

ˆ x

0
φ(s)G(s)ds. (A.1)

For φ(s) = 1{s≤M}, M ∈ [0, v], (A.1) reduces to

∀x ∈ [0,M ] :

ˆ x

0
G′(s)ds ≥

ˆ x

0
G(s)ds,

which follows directly from SSD. Since any non-increasing function φ : [0, v] → R can be

uniformly approximated by non-increasing step functions (A.1) holds for all non-negative

and non-increasing functions.

(ii) Suppose that v = v and that Ja(v) is strictly concave. Conditional on sa the

expected payoffs of i for d and d′ satisfy

Ua(v, d
′|sa) = v − E

[
J−1
a (Ja(H

−i
d′ ))|sa

]
< v − E

[
J−1
a (Ja(H

−i
d ))|sa

]
= Ua(v, d|sa),

which violates (ICDd). In the second line we have used strict convexity of J−1
a (J) as a

function of J and strict second-order stochastic dominance. �

Proof of Lemma 4. It is obvious that U(pU ) is increasing. We have to show that U(pU )

is upper-hemicontinuous and closed-valued. To see this, we first show that M̄pU
1 (t) is

40Note that this derivation can also be made without defining a payment rule since Ua(v, d′|sa) =´ v

0
qd′(w, d

′|sa) dw =
´ Ja(v)

0
G′(J)(dJ−1

a (J)/dJ)dJ .
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continuous in pU for all t. MpU
1 (t) = M1(t) + pUv

′
1(t) is continuous in pU and t and

therefore MpU
1 (t) =

´ t
0 M

pU
1 (s) ds is continuous in pU and continuously differentiable in t.

Note that the convex hull of MpU
1 (t) can be written as

M̄pU
1 (t) = convMpU

1 (t) = max {α+ βt | (α, β) ∈ C(pU )} ,
where C(pU ) = {α, β ≥ L |α+ βθ ≤MpU

1 (θ) ∀θ ∈ [0, 1]} ,

for some L > −∞ sufficiently small. C(pU ) is compact-valued and continuous in pU .

Therefore, by Berge’s maximum theorem

(α∗pU , β
∗
pU

)(t) := arg max {α+ βt | (α, β) ∈ C(pU )}

is non-empty, compact-valued and upper-hemicontinuous in pU . Note that β∗pU (t) is the

subgradient of M̄pU
1 (t) at t. Since MpU

1 (t) is continuously differentiable, M̄pU
1 (t) is also

continuously differentiable and hence the subgradient is a singleton. Therefore M̄pU
1 (t) =

β∗pU (t) is continuous in pU . Continuity of M̄pU
1 (t) implies that U(pU ) is continuous if it

is single valued—that is if M̄pU
1 (t) = 0 has a unique solution. If M̄pU

1 (t) = 0 does not

have a unique solution, then a compact interval of values U(v) can be achieved by varying

x0
1 ∈ [0, 1]. Hence we have shown that U(pU ) is closed valued.

Finally, notice that maxU(pU ) and minU(pU ) are obtained by integrating q̄1 with x0
1 = 1

and x0
1 = 0, respectively. Continuity of M̄pU

1 (t) as a function of pU therefore implies

that maxU(pU ) is right continuous and minU(pU ) is left-continuous everywhere. This

establishes upper-hemicontinuity. �

Appendix B. Proof of Theorem 5

It will be convenient to make the changes of variables t1 = F1(v1) and t2 = F2(v2).

Defining v1(t1) := F−1
1 (t1) and v2(t2) := F−1

2 (t2), we have

ti ∼ U [0, 1] for i = 1, 2,

v′1(t1) =
1

f1(v1(t1))
,

and v′2(t2) =
1

f2(v2(t2))
,

Furthermore, for i = 1, 2 we introduce

qi(t) = qi(vi(t), 2), (B.1)

U(t) = U1(v1(t), 2),

Mi(t) = Ji(vi(t)) = vi(t)− (1− t)v′i(t),
and t0i = M−1

i (0).

The objective of the seller becomes

R[q1, q2] :=

ˆ 1

0
q1(t)M1(t) + q2(t)M2(t)dt. (B.2)
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The following Theorem formulates the feasibility constraint in terms of q.41

Theorem 6 (Mierendorff, 2011). For i = 1, 2, let qi : [0, 1] → [0, 1] be non-decreasing.

(q1, q2) is the reduced form of a feasible allocation rule if and only if for all t1, t2 ∈ [0, 1],
ˆ 1

t1

q1(t)dt+

ˆ 1

t2

q2(t)dt ≤ 1− t1t2.

Now we can restate P2 as P ′2:

π2(Ū) = sup
(q1,q2)

R[q1, q2] (P ′2)

subject to

∀t ∈ [0, 1] : qi(t) ∈ [0, 1], (B.3)

∀t > t′, qi(t) ≥ qi(t′), (B.4)

∀t1, t2 ∈ [0, 1] :

ˆ 1

t1

q1(θ)dθ +

ˆ 1

t2

q2(θ)dθ ≤ 1− t1t2, (B.5)

∀t ∈ [0, 1] : U(t) =

ˆ t

0
q1(θ)v′1(θ)dθ, (B.6)

and U(1) ≥ Ū . (B.7)

Using qi(Fi(vi)) = qi(vi, 2), a solution to P2 can be derived easily from a solution to P ′2.

We can use the (non-standard) constraint (B.5) to eliminate q2 from the objective

function. For q1 : [0, 1]→ [0, 1] non-decreasing, define

q−1
1 (t) :=

1 if q1(1) < t,

inf{θ ∈ [0, 1] | q1(θ) ≥ t} otherwise.

Lemma 5. Let q1 : [0, 1]→ [0, 1] be non-decreasing. Then an optimal solution to

sup
q2

ˆ 1

0
q2(t)M2(t)dt subject to (B.3)–(B.5),

is given by

q∗2(t) =

q−1
1 (t) if t ≥ t02,

0 otherwise.

Proof. (B.4) can be rewritten as

∀t2 ∈ [0, 1] :

ˆ 1

t2

q2(θ)dθ ≤ min
t1∈[0,1]

[
1− t1t2 −

ˆ 1

t1

q1(θ)dθ

]
.

On the right-hand side we minimize a convex function. Therefore, the first order condition

is sufficient for a minimum and we have t2 ∈ [q1(t−1 ), q1(t+1 )] for all t2 ∈ [q1(0), q1(1)],

t1 = 0 if t2 < q1(0) and t1 = 1 if t2 > q(1). Hence t1 = q−1
1 (t2) is a minimizer for all t2.

41The characterization is a generalization of Border’s (1991) characterization for symmetric allocation rules.
Matthews (1984) conjectured the result proved by Border (see also Chen, 1986). For an early application
of a special case of the result see Maskin and Riley (1984).
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Substituting this into (B.4) yields

∀t2 ∈ [0, 1] :

ˆ 1

t2

q2(θ)dθ ≤ 1− q−1
1 (t2)t2 −

ˆ 1

q−1
1 (t2)

q1(θ)dθ. (B.8)

q∗2 fulfills this constraint with equality for all t2 ∈ [0, 1].

Now consider an alternative solution q̃2 that differs from q∗2 on a set of positive measure.

If q̃2(t) > 0 for some t < t02, then it is not a maximizer. So suppose q̃2(t) = 0 for t < t02.

By (B.8) we must have
´ 1
t q̃2(θ)dθ ≤

´ 1
t q
∗
2(θ)dθ for all t ∈ [0, 1]. But this implies that´ 1

0 φ(θ)q̃2(θ)dθ ≤
´ 1

0 φ(θ)q∗2(θ)dθ for all non-negative and non-decreasing functions φ. (The

argument is similar to the one use in the proof of Lemma 2.) Setting φ(θ) = max {0,M2(θ)}
we obtain the desired result. �

Using Lemma 5, (B.2) becomes
ˆ 1

0
q1(t)M1(t)dt+

ˆ 1

t02

q−1
1 (t)M2(t)dt. (B.9)

Let us define M̃2(t) := max{0,M2(t)}. Then the second integral in (B.9) can be written

as ˆ 1

0
q−1

1 (t)M̃2(t)dt =

ˆ 1

0

ˆ q−1
1 (t)

0
M̃2(t) ds dt =

ˆ 1

0

ˆ 1

q1(s)
M̃2(t) dt ds

=

ˆ 1

0
M̃2(t) dt−

ˆ 1

0

ˆ q1(t)

0
M̃2(s) ds dt

Therefore, we have to maximize

ˆ 1

0

{
q1(t)M1(t)−

ˆ q1(t)

0
M̃2(s) ds

}
dt. (B.10)

subject to (B.3)–(B.4) and (B.6)–(B.7). This is a control problem with state variables

(U, q) and a control variable u(t) ≥ 0.

The evolution of the state variables is governed by

U ′(t) = q(t)v′(t) and q′(t) = u(t),

where the second equation only holds if q(t) is differentiable at t. The non-negativity

constraint for u(t) guarantees that q is non-decreasing. We have to allow for (upward)

jumps in the state variable q. Therefore, we will be looking for solutions (U, q, u) such

that U is continuous and piecewise continuously differentiable, q is piecewise continuously

differentiable with a finite number of jumps at points τ1, . . . , τk and u is left-continuous.

The remaining constraints of the problem are

q(0) = 0, U(0) = 0, q(1) ≤ 1, and U(1) ≥ Ū .

The Hamiltonian of this problem is

H(U, q, u, pU , pq, t) = qM1(t)−
ˆ q

0
M̃2(s) ds+ pUqv

′
1(t) + pqu
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where pU and pq are the adjoint variables of U and q, respectively. Since ∂H/∂U = 0, and

∂H
∂q

= −M̃2(q) +MpU
1 (t),

Assumption 1 implies that H is concave in (U, q), independently of u. Therefore, by

Theorems 7 and 8 in Seierstad and Sydsaeter (1987, pp. 196-199) the following conditions

are necessary and sufficient for optimality

(i) For all t such that q is continuous, pq(t) ≤ 0 and

u(t)

= 0, if pq(t) < 0

∈ R+, if pq(t) = 0
(B.11)

(ii) For all t such that q and u are continuous

p′U (t) = 0,

p′q(t) = −MpU
1 (t) + M̃2(q(t)). (B.12)

(iii) pq(0) and pU (0) are free and

pU (1) ≥ 0 (with equality if U(1) > Ū),

pq(1) ≤ 0 (with equality if q(1) < 1).

(iv) At all jump-points τj , j = 1, . . . k, of q, pq and pU are continuous and

pq(τj) ≥ 0. (B.13)

We want to show optimality of the solution q∗(t) that is obtained by applying the

transformation in (B.1) to the reduced form of the solution (4.9)–(4.11). q∗ has at most

two jump-points

τ1 := min
{
t ≥ 0

∣∣∣ M̄p∗U
1 (t) ≥ 0

}
,

and τ2 := inf
{
t ≥ 0

∣∣∣ M̄p∗U
1 (t) > 0

}
,

where M̄pU
1 (t) is defined in footnote 36. If M̄

p∗U
1 (t) > 0 for all t, we have τ1 = τ2 = 0, and

if M̄
p∗U
1 (t) = 0 has a unique solution t > 0 we have τ1 = τ2 > 0. Furthermore, we set

b := min
{
t ≥ 0

∣∣ M̄pU
1 (t) ≥ v

}
,

With these definitions we have that

q∗(t) =



0, if t < τ1,

x0
1t

0
2 if t ∈ [τ1, τ2),

M̃−1
2

(
M̄

p∗U
1 (t)

)
if t ∈ [τ2, b),

1 if t ≥ b.
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The adjoint variable for U is given by pU (t) = p∗
Ū

for all t and the adjoint variable for q is

defined as follows. First we set

p∗q(0) =

ˆ τ1

0
M

p∗
Ū

1 (s)ds ≤ 0

which is strictly negative if τ1 > 0. (At τ1, we have
´ τ1

0 M
p∗
Ū

1 (s)ds =
´ τ1

0 M̄
p∗
Ū

1 (s)ds ≤ 0.)

Inserting q∗(t) into (B.12), and using that M̃2(q∗(t)) = 0 if t < τ1, we have that for all

t < τ1

p∗q(t) =

ˆ τ1

t
M

p∗
Ū

1 (s)ds < 0,

and p∗q(τ1) = 0. Therefore, for t < τ1, u∗(t) = q∗′(t) = 0 is consistent with (B.11). Next,

we note that p∗′q (t) = M̃2(q∗(t))−Mp∗
Ū

1 (t) = M̄
p∗
Ū

1 (t)−Mp∗
Ū

1 (t) for t ∈ [τ1, b) and hence42

p∗q(t) =

ˆ t

0
M̄

p∗
Ū

1 (s)−Mp∗
Ū

1 (s)ds

= M̄p∗
Ū

1 (t)−Mp∗
Ū

1 (t)ds ≤ 0, for t ∈ [τ1, b).

If q∗ is increasing at t, we have M̄p∗
Ū

1 (t) = conv
´ t

0 M
p∗
Ū

1 (s)ds =
´ t

0 M
p∗
Ū

1 (s)ds =Mp∗
Ū

1 (t)ds,

so that p∗q(t) = 0. Hence, for t ∈ [τ1, b), u
∗(t) = q∗′(t) is consistent with (B.11) and (B.13).

Finally, we have p∗q(b) = 0 and therefore

p∗q(t) =
´ t
b M̃2(1)−Mp∗

Ū
1 (s)ds ≤

ˆ t

b
M̄

p∗
Ū

1 (s)−Mp∗
Ū

1 (s)ds = M̄p∗
Ū

1 (t)−Mp∗
Ū

1 (t)ds ≤ 0

for t ≥ b so that for t ≥ b u∗(t) = q∗(t) = 0 is also consistent with (B.11).

To summarize, we have shown that for (U∗, q∗, u∗), there exist adjoint variables such that

the necessary and sufficient conditions are satisfied. This proves part (i) of the Theorem.

Part (ii) is obvious. The proofs of parts (iii) and (iv) can be found in Appendix C.1 in the

Supplemental Material.
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Möller, M. and M. Watanabe (2010): “Advance Purchase Discounts versus Clearance

Sales,” The Economic Journal, 120, 1125–1148.

Myerson, R. B. (1981): “Optimal Auction Design,” Mathematics of Operations Reseach,

6, 58–63.

——— (1998): “Population Uncertainty and Poisson Games,” International Journal of

Game Theory, 27, 375–392.

Nocke, V. and M. Peitz (2007): “A Theory of Clearance Sales,” The Economic Journal,

117, 964–990.

Pai, M. and R. Vohra (2013): “Optimal Dynamic Auctions and Simple Index Rules,”

Mathematics of Operations Reseach, 38, 682–697.

——— (2014): “Optimal Auctions with Financially Constrained Bidders,” Journal of Eco-

nomic Theory, 150, 383–425.

Pai, M. M. (2014): “Competing Auctioneers,” University of Pennsylvania, unpublished

working paper.

Parkes, D. C. and S. Singh (2003): “An MDP-Based Approach to Online Mecha-

nism Design,” in Proc. 17th Annual Conf. on Neural Information Processing Systems

(NIPS’03).

Pavan, A., I. Segal, and J. Toikka (2014): “Dynamic Mechanism Design: A Myerso-

nian Approach,” Econometrica, 82, 601–653.



OPTIMAL DYNAMIC MECHANISM DESIGN WITH DEADLINES 35

Peskir, G. and A. Shiryaev (2006): Opitmal Stopping and Free-Boundary Problems,
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Appendix C. Supplemental Material (Online Appendix)

C.1. Omitted Proofs.

Proof of Lemma 1. In a first step, we define ŷ such that transaction with a buyer only take

place at the arrival time and do not depend on whether the object is available at the arrival

time. Formally, ŷi(st) = 0 if t 6= ai and ŷi(sai) = qai(vi, di). It is straightforward to see

that (x, ŷ) is incentive compatible and individually rational and yields the same revenue

as (x, y). The modification allows us to modify the allocation rule without changing the

payments that a buyer has to make.

x̂ is then derived from x as follows. Whenever a buyer is allocated a unit before his

deadline is reached, this allocation is postponed to the deadline. Whenever a buyer is

allocated unit after his deadline has elapsed, the unit is withheld under the new allocation

rule. In all other cases, the new allocation rule is the same as the old one.

This implies that buyers who report their deadline truthfully enjoy the same expected

payoff in both mechanisms:

∀a ∈ {1, . . . T}, d ∈ {a, . . . T}, ∀v ∈ [0, v] :
d∑

τ=a

q̂a(v, d) =
d∑

τ=a

qa(v, d).

On the other hand, for d′ 6= d, we have

d∑
τ=a

q̂a(v, d
′) ≤

d∑
τ=a

qa(v, d
′).

Hence,

Ûa(v, d) = Ua(v, d) ≥ Ua(v, d, v′, d′) ≥ Ûa(v, d, v′, d′).
�

Proof sketch of Theorem 1. (M) and (PE) is the standard characterization of one-dimensional

incentive compatibility for the valuation Myerson (1981). (ICDd) rules out under-reports

of the deadline. Together with (M) and (PE), this also rules out simultaneous misreports

of an earlier deadline d′ < d and a valuation v′ 6= v. Since the mechanism never allocates

after the reported deadline, the constraint takes this simple form because the utility of

under-reporting the deadline is independent of the true deadline (cf. (2.1)):

d′ ≤ d ⇒ Ua(v, d, v
′, d′) = Ua(v, d

′, v′, d′).

Incentive compatibility for the valuation implies that Ua(v, d
′, v′, d′), and therefore also

Ua(v, d, v
′, d′), is maximized by v′ = v. For v′ = v, (ICDd) rules out a downward deviation

in the deadline. Therefore, simultaneous deviations in the deadline and the valuation are

also ruled out. Necessity of (ICDd) is obvious.

For mechanisms that allocate only at the deadline, reporting d′ > d can only be prof-

itable if the mechanism pays a subsidy, i.e., if pa(v, d
′) < 0. (PE) implies that subsidies

are non-increasing in the valuation. Therefore, the highest subsidy (if any) is paid for

(0, d′). By (PE), v = 0 is also the valuation for which over-reporting the deadline is most
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tempting. Hence, to rule out upward deviations, it suffices that Ua(0, d) = −pa(0, d) ≥
−pa(0, d′) = Ua(0, d, 0, d

′) = Ua(0, d
′). Together with (ICDd) for v = 0, this is equivalent

to (ICDu).43 �

Proof of Theorem 5 (iii) and (iv). π2 can be written as

π2(Ū) =

ˆ 1

0

[
q∗pŪ (t)M1(t) +

ˆ 1

q∗pŪ
(t)
M̃2(q)dq

]
dt.

We first show that π2(Ū) is Lipschitz continuous which will be used later. Our assumption

on the type distributions guarantee that M1(t)− M̃2(q) is uniformly bounded for (t, q) ∈
[0, 1]2. Therefore, for Ū ′ > Ū we have∣∣π2(Ū ′)− π2(Ū)

∣∣ =

∣∣∣∣∣
ˆ 1

0

ˆ q∗
Ū′ (t)

q∗
Ū

(t)
M1(t)− M̃2(q) dq dt

∣∣∣∣∣ ,
≤
ˆ 1

0

ˆ q∗
Ū′ (t)

q∗
Ū

(t)

∣∣∣M1(t)− M̃2(q)
∣∣∣︸ ︷︷ ︸

|.|≤M<∞

dq dt,

≤M
ˆ 1

0
q∗Ū ′(t)− q∗Ū (t) dt,

= M(Ū ′ − Ū).

Next we show that π′2(Ū) = −pŪ . Suppose first that Ū is on the interior of U(pŪ )—that

is, for pŪ , U is not single-valued. In this case, pŪ is constant at Ū and the allocation rule

only changes on the interval [τ1, τ2] because x0
1 changes with Ū . Since

Ū = x0
1t

0
2(τ2 − τ1) +

ˆ 1

τ2

q∗pŪ (t)dt,

we have
dx0

1

dŪ
=

1

t02(τ2 − τ1)
.

Therefore we have

dπ2(Ū)

dŪ
=

ˆ τ2

τ1

dx0
1

dŪ
t02M1(t)dt

= −pŪ +
1

τ2 − τ1

ˆ τ2

τ1

M
pŪ
1 (t)dt

= −pŪ +
1

τ2 − τ1

ˆ τ2

τ1

M̄
pŪ
1 (t)dt

= −pŪ .

43If v ∈ [v, v] with v > 0, then the upward incentive compatibility constraint for the deadline would be
Ua(v, d) ≥ −pa(v, d + 1) = Ua(v, d + 1) − qa(v, d + 1)v. In this case, a subsidy could be used to separate
buyers with different deadlines. One can show, however, that this instrument would not be used in the
optimal mechanism, unless the allocation rule is sufficiently distorted. The reason is that the cost of a
subsidy is of first order whereas the cost of distorting the allocation rule is of second order.
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for all Ū that are in the interior of U(pŪ ). Moreover, if U(pŪ ) has non-empty interior and

Ū is the lower (upper) bound of U(pŪ ), then the right (left) derivative of π2 at Ū is equal

to −pU .

Next suppose that U(pŪ ) is single valued for Ū . For h > 0, we have

1

h
(π2(Ū + h)− π2(Ū)) =

1

h

ˆ 1

0

ˆ q∗pŪ+h
(t)

q∗pŪ
(t)

M1(t)− M̃2(q)dqdt,

=
1

h

ˆ b(Ū)

τ1(Ū+h)

ˆ q∗pŪ+h
(t)

q∗pŪ
(t)

M1(t)− M̃2(q)dqdt,

= −pŪ
1

h

ˆ b(Ū)

τ1(Ū+h)

ˆ q∗pŪ+h
(t)

q∗pŪ
(t)

v′1(t)dqdt︸ ︷︷ ︸
=h

+

+

ˆ b(Ū)

τ1(Ū+h)

1

h

ˆ q∗pŪ+h
(t)

q∗pŪ
(t)

MpU
1 (t)− M̃2(q)dqdt.

A similar expression can be derived for h < 0. τ1 and b are are continuous in Ū for

almost every Ū (for all Ū if MpU
1 is strictly increasing). Hence, by the Lebesgue differenti-

ation theorem and dominated convergence, for almost every Ū (every Ū if MpU
1 is strictly

increasing),

π′2(Ū) = lim
h→0

1

h
(π2(Ū + h)− π2(Ū)) = −pŪ +

ˆ b

τ1

M
pŪ
1 (t)− M̃2(q∗pŪ (t))dt,

= −pŪ +

ˆ b

τ1

M̄
pŪ
1 (t)− M̃2(q∗pŪ (t))dt,

= −pŪ .

Since π2(Ū) is Lipschitz continuous it is absolutely continuous and π2(Ū) = π2(0) −´ Ū
0 pU (s)ds. Therefore, as pU (Ū) is non-decreasing, π2 is weakly concave. If {t|M̄pU

1 (t)

= 0} is a singleton pU (Ū) is strictly increasing an hence π2 strictly concave. �

C.2. Extension of Lemma 2 to the Case of Many Objects. In order to show that

Lemma 2 holds for T = 2 and K ≥ 2, we need some additional notation. A state is now

given by st = (Ht,Kt) where Kt is the remaining number of available objects.

For a given state st, define ct(1) ≥ . . . ≥ ct(K) as the K highest virtual valuations among

the buyers i ∈ I≤t with deadlines di = t. If K2 units are available in period two, we have

V2(H2,K2) =

K2∑
k=1

max
{

0, c2
(k)

}
.

The marginal expected revenue in period two from the kth unit is given by

∆(s1, k) = Es2 [V2(s2)|s1,K2 = k]− Es2 [V2(s2)|s1,K2 = k − 1]

= Es2

[
max

{
0, c2

(k)

}∣∣∣s1

]
.
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Obviously, ∆(s1, k) is decreasing in k. Hence, the optimal number of units to be retained

for period two is determined by

c1
(K−K∗2 ) > ∆(s1,K

∗
2 + 1) if K∗2 < K,

and c1
(K−K∗2 +1) ≤ ∆(s1,K

∗
2 ) if K∗2 > 0.

If we denote the identities of the buyers with virtual valuations ct(1), . . . , c
t
(K) by it(1), . . . , i

t
(K),

the set of winning buyers in periods t = 1, 2 is given by

W ∗1 (s1) :=
{
i1(1), . . . , i

1
(K−K∗2 (s1))

}
,

W ∗2 (s2) :=
{
i2(1), . . . , i

2
(K∗2 (s1))

}
∩ {i ∈ I≤2|Jai(vi) ≥ 0} .

Now we fix some buyer i ∈ I1. His virtual valuation determines whether he is in the set

of winning buyers at his deadline di for a given number of retained objects K2, but it may

also have an influence on the number of retained objects. The critical virtual valuation is

given by

J1(H−i1 ) = inf
{
J
∣∣ i ∈W ∗1 (((H−i1 , (1, J−1

a (J), 1)),K)
}
,

= inf
{
J
∣∣∣ J ≥ c1

(K−K∗2 (H−i
1 ,(1,J−1

a (J),1)))

}
,

for di = 1, and by

J1(H−i2 ) = inf
{
J
∣∣ i ∈W ∗2 ((H−i2 , (1, J−1

a (J), 2)),K∗2 (H−i1 , (1, J−1
1 (J), 2)))

}
,

= inf
{
J
∣∣∣ ζ ≥ c2

(K∗2 ((H−i
1 ,(1,J−1

a (J),1)))

}
,

for d1 = 2.

Proof of Lemma 2 for T = 2 and K ≥ 2. Let ct,−i(k) denote the kth highest virtual valuation

among the buyers with deadline t in I≤t\{i}. Fix any state s1 = (H1,K) and a buyer

i ∈ I1. Suppose that in state (H−i1 ,K − 1), i.e., if buyer i is not present and one objects

less is available, K̄1 objects are allocated in period one and K̄2 = K − K̄1 objects are

retained for period two. We distinguish two sub-cases.

Case A—In state (H−i1 ,K), K̄1 units are allocated in the first period and K̄2 + 1 units

are retained for the second period: This implies that

Es2

[
max

{
0, c2,−i

(K̄2+1)

}∣∣∣H−i1

]
≥ c1,−i

(K̄1+1)
.

If in state ((H−i1 , (1, vi, di = 1)),K), buyer i gets a unit in the first period, then the

remaining K − 1 units are allocated as in state (H−i1 ,K − 1). This means that K̄1 units

are allocated to buyers other than i in period one and K̄2 units are retained. Hence, i’s

virtual valuation must exceed the option value of retaining the K̄2 + 1st unit in order to

get a unit in the first period. We have

J1(H−i1 ) = Es2

[
max

{
0, c2,−i

(K̄2+1)

}∣∣∣H−i1

]
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In state ((H−i1 , (1, vi, di = 2)),K), the number of units that are allocated in the first

period must also be K̄1. It is obvious that the arrival of buyer i with di = 2 cannot increase

the number of units allocated in the first period. On the other hand, suppose that in state

((H−i1 , (1, vi, 2)),K), only K̄1 − 1 units are allocated in the first period. Then

c1,−i
(K̄1)
≤ Es2

[
max

{
0, c2

(K̄2+2)

}∣∣∣(H−i1 , (1, vi, 2))
]
,

≤ Es2
[
max

{
0, c2

(K̄2+2)

}∣∣∣(H−i1 , (1, v, 2))
]
,

= Es2

[
max

{
0, c2

(K̄2+1)

}∣∣∣H−i1

]
,

< c1,−i
(K̄1)

,

where the last inequality follows from our assumption that in state (H−i1 ,K−1), K̄1 units

are allocated in the first period. This is a contradiction. But if K̄1 objects are allocated

in the first period, then

J1(H−i2 ) = max
{

0, c2,−i
(K̄2+1)

}
.

Hence, in case A, Es2 [J1(H−i2 )|H−i1 ] = J1(H−i1 ) and
[
J1(H−i1 )|H−i1

]
�SSD

[
J1(H−i2 )|H−i1

]
.

Case B—In state (H−i1 ,K), K̄1+1 objects are allocated in the first period and K̄2 objects

are retained for the second period: In this case,

Es2

[
max

{
0, c2,−i

(K̄2+1)

}∣∣∣H−i1

]
≤ c1,−i

(K̄1+1)
.

Again, if in state ((H−i1 , (1, vi, 1)),K), buyer i gets an object in the first period, then the

remaining K − 1 objects are allocated as in state (H−i1 ,K − 1). Hence, in case B we have

J1(H−i1 ) = c1,−i
(K̄1+1)

.

In state ((H−i1 , (1, vi, 2)),K), it depends on vi, how many objects are retained for the

second period. Define z by

c1,−i
(K̄1+1)

= Es2

[
max

{
0, c2

(K̄2+1)

}∣∣∣(H−i1 , (1, J−1
1 (z), 2))

]
.

z is the lowest virtual value for buyer i such that K̄2 +1 objects are retained for the second

period if di = 2 (z depends on H−i1 !). If J1(vi) ≥ z, then K̄2 + 1 objects are retained,

otherwise only K̄2 objects are retained. Hence, we have

J1(H−i2 ) =


c2,−i

(K̄2+1)
, if z < c2,−i

(K̄2+1)
,

z if c2,−i
(K̄2+1)

≤ z < c2,−i
(K̄2)

,

c2,−i
(K̄2)

if c2,−i
(K̄2)
≤ z.

Note that for H1 = (H−i1 , (1, J−1
1 (z), 2)) this equals max

{
0, c2

(K̄2+1)

}
. So we have

E
[
J1(H−i2 )

∣∣H−i1

]
= Es2

[
max

{
0, c2

(K̄2+1)

}∣∣∣(H−i1 , (1, J−1
1 (z), 2))

]
,

= c1,−i
(K̄1+1)

,

= J1(H−i1 ),
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and hence
[
J1(H−i1 )|H−i1

]
�SSD

[
J1(H−i2 )|H−i1

]
. �

C.3. Reduced Forms . The probability that a buyer who has arrived in period ai, as-

sesses for the event that the number of arrivals in period ai is Nai , is given by44

Nai νai,Nai∑∞
r=1 rνai,r

.

The interim winning probability for period t of a buyer with type (ai, vi, di) is given by:

qtai(vi, di) =
∑

(N1,...,Nt)∈Nt
0

 Naiνai,Nai∑∞
r=1 rνai,r

∏
a∈{1,...,t}\ai

νa,Na

 T∑
d1=a1

. . .

T∑
di−1=ai−1

T∑
di+1=ai+1

. . .
T∑

dN≤t
=aN≤t

 ∏
j∈I≤t\i

ρaj ,dj

 ˙

v1...vi−1

˙

vi+1...vN≤t

(
xi(s1) + x0(s1)

[

. . . xi(sT )
]) ∏

j∈I≤t\i

faj (vj |dj)dvj

 .
The interim expected payment of a buyer with type (ai, vi, di) is given by:

pai(vi, di) =
∑

(N1,...,Nt)∈Nt
0

 Naiνai,Nai∑∞
r=1 rνai,r

∏
a∈{1,...,t}\ai

νa,Na

 T∑
d1=a1

. . .
T∑

di−1=ai−1

T∑
di+1=ai+1

. . .
T∑

dN≤t
=aN≤t

 ∏
j∈I≤t\i

ρaj ,dj

 ˙

v1...vi−1

˙

vi+1...vN≤t

 ∑
j∈I1∪{0}

xj(s1)yi(s1, k2 = j)+

+ x0(s1)

[ ∑
j∈I≤2∪{0}

xj(s2)yi(s2, k3 = j) + x0(s3)

[
. . .

∑
j∈I≤T∪{0}

xj(sT )yi(sT , kT+1 = j)

]] ∏
j∈I≤t\i

faj (vj |dj)dvj

 .
C.4. The (lack of a) Relationship between the Martingale Property and Mar-

tingale Results from Optimal Stopping. It is well known that the value of the stopped

sequence in an optimal stopping problem is a martingale (see for example Theorem 1.2

in Peskir and Shiryaev, 2006). To clarify the relationship between this result and Lemma

2, we provide an example that demonstrates two observations: First, the critical virtual

valuation is equal in expectation to the expected virtual value of allocating to the remain-

ing buyers, where the expectation is taken conditional on the history at the arrival of

the buyer. Note that the allocation problem of the seller is an optimal stopping problem

where the reward process is given be the highest virtual valuation available in a given

period. The stopped sequence in this problem is a martingale. Given the first observation

one could therefore hope to obtain Lemma 2 from the martingale property of the stopped

44See Myerson (1998) for a derivation of this expression.
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sequence. The second observation in the example, however, shows that the realized criti-

cal virtual valuation of a buyer i is different from the stopped sequence derived from the

seller’s problem of allocation to buyers j 6= i. Therefore, it seems that Lemma 2 is not a

simple consequence of known results from dynamic programming.

Example 1. Consider a special case of the model with two time period (T = 2). Suppose

that two buyers arrive in period on (I1 = {1, 2}), and one buyer arrives in period two

(I3 = {3}). For simplicity, let us assume that the second buyer in period one is known to

be impatient (d2 = 1).

Let us first consider the seller’s optimal allocation problem when buyer one is not

available. This is an optimal stopping problem in finite time. The reward of stopping at

t = 1 is max{0, J1(v2)} and the reward of stopping at t = 2 is max{0, J2(v3)}. The optimal

policy is to stop at t = 1 if J1(v2) ≥ E[max{0, J2(v3)}], and to stop at t = 2 otherwise.

The value of the stopped process is thus

W := 1{J1(v2)≤ξ(0)}max{0, J2(v3)}+ 1{J1(v2)>ξ(0)}J1(v2),

where ξ(x) := E[max{x, J2(v3)}].

Clearly the process (Z1, Z2) defined by

Zt = E[W |Ht]

is a martingale (this is obvious here but also an implication of a more general result, see

e.g., Theorem 1.2 in Peskir and Shiryaev, 2006).

Next, consider the critical virtual valuation of buyer i = 1. If d1 = 1, it is given by

J1(H−1
1 ) = max {0, J1(v2), E[max{0, J2(v3)}]} = max {J1(v2), ξ(0)} = Z1.

If d1 = 2, the critical virtual valuation is obtained as follows: With deadline two, buyer

one wins if: (a) he has a non-negative virtual valuation, (b) it is not optimal to allocate in

period one—that is, J1(v2) ≤ ξ(J1(v1)), and (c) buyer three has a lower virtual valuation

than buyer one—that is, J2(v3) ≤ J1(v1). Combining these three conditions, we obtain

J1(H−1
2 ) = max

{
0, ξ−1(J1(v2)), J2(v3)

}
.

The first observation is that E[J1(H−1
2 )|H1] = Z1 = E[Z2|H1]:

E[J1(H−1
2 )|H1] =1{J1(v2)≤ξ(0)}E [max{0, J2(v3)}|H1]

+ 1{J1(v2)>ξ(0)}E
[
max

{
ξ−1(J1(v2)), J2(v3)

}
|H1

]
=1{J1(v2)≤ξ(0)}ξ(0) + 1{J1(v2)>ξ(0)}ξ(ξ

−1(J1(v2)))

= max{J1(v2), ξ(0)} = Z1.

The second observation is that

J1(v2) ≤ ξ(0) ⇒

J1(H−1
2 ) = max {0, J2(v3)}

Z2 = max {0, J2(v3)}
,
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J1(v2) > ξ(0) ⇒

J1(H−1
2 ) = max

{
ξ−1(J1(v2)), J2(v3)

}
Z2 = J1(v2)

.

Clearly, J1(H−1
2 ) 6= Z2. This shows that the martingale property of the generalized virtual

valuation cannot be deduced from the martingale property of the stopped sequence in the

stopping problem that arises when allocating optimally to buyer j 6= 1. To be sure, there

may be other ways to obtain Lemma 2 from dynamic programming results, but given

the first observation and J1(H−1
1 ) = Z1, the approach taken here, seems to be the best

candidate. The author has not found other (more fruitful) ways to employ results from

dynamic programming.

C.5. Monotonicity and Incentive Compatibility with Private Deadlines. To con-

clude the analysis of the relaxed solution, we discuss another potential approach to finding

sufficient conditions for incentive compatibility of the relaxes solution.

In the standard one-dimensional mechanism design framework, monotonicity of the

interim winning probability w.r.t. the valuation is necessary and sufficient for incentive

compatibility. It is easy to see, however, that in the dynamic model, monotonicity of the

winning probability w.r.t. the deadline is not necessary for incentive compatibility. The

following example illustrates this:

Example (continued). Suppose again that Let T = 2, and ν1(1) = ν2(1) = 1. Moreover,

assume that v1, v2 ∼ U [0, 1]. This implies that J1(v) = J2(v) = 2v − 1. If d1 = 1, the

option value of storing the object is equal to E [max{0, J2(v2)}] =
´ 1

1
2

2v − 1 dv = 1/4.

Therefore, we have qrlx
1 (v1, d1 = 1) = 1 for v1 ≥ 5/8, and qrlx

1 (v1, d1 = 1) = 0 otherwise. If

d1 = 2, however, buyer one wins if 2v1−1 ≥ max{0, 2v2−1} so that qrlx
1 (v1, d1 = 2) = 0 if

v1 < 1/2 and qrlx
1 (v1, d1 = 2) = v1 if v1 ≥ 1/2. Therefore, qrlx

1 (v1, d1) is decreasing in d1 for

v1 > 5/8 which violates monotonicity. Nevertheless, the relaxed solution is implementable

because the virtual valuations of both buyers are linear. �

Despite this example, finding conditions that guarantee monotonicity is a natural first

approach if we want to find a sufficient condition for incentive compatibility of the relaxed

solution. Pai and Vohra (2013) point out that a sufficient condition for (ICDd) is that

qa(v, d) is non-decreasing as a function of d for all a and v. Together with the envelope

formula and (ICDu), this immediately implies that (ICDd) is fulfilled. Monotonicity of

qa(v, d), however, is a very strong requirement. Sufficient conditions on the primitives of

the model that guarantee monotonicity are not available and indeed, the following example

shows that monotonicity in d is unlikely to hold for the relaxed solution.

Example (continued). Let us return to the case of general distributions for the valuations

of buyers one and two. Consider the interim winning probability of the buyer who arrives

in the first period. If his deadline is d1 = 1, he gets the object if his virtual valuation

J1(v1) is higher than the option value of storing the object for the second period. The

option value is equal to E [V2(s2) | d1 = 1, k2 = 1] = E [max {0, J2(v2)}]. Therefore, the
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interim winning probability is given by

qrlx
1 (v1, d1 = 1) =

1, if J1(v1) ≥ E [max {0, J2(v2)}] ,
0, otherwise.

If, on the other hand, the deadline of the first buyer is d1 = 2, the object is stored and he

wins in the second period if his virtual valuation is positive and greater than the virtual

valuation of the second buyer. Therefore, his interim winning probability is given by

qrlx
1 (v1, d1 = 2) = Prob [J1(v1) ≥ max {0, J2(v2)}] .

Since we assume that the valuations of both buyers are drawn from distributions with

the same support, there exists a valuation ṽ1 < v, such that J1(ṽ1) = E [max {0, J2(v2)}].
Therefore, for all valuations v1 > ṽ1, we have qrlx

1 (v1, d1 = 1) = 1. If qrlx
1 (v, d) is non-

decreasing in d, we must therefore also have

qrlx
1 (v1, d1 = 2) = Prob [J1(v1) ≥ max {0, J2(v2)}] = 1,

for all v1 > ṽ1. On the other hand, J1(v1) < v̄ implies that Prob [J1(v1) ≥ max {0, J2(v2)}] <
1, since F2 has support [0, v̄]. Therefore, qrlx cannot be non-decreasing in d for all v.45 �

The example demonstrates that monotonicity with respect to the deadline is unlikely

to be satisfied because in period one, there is uncertainty about the valuation of the buyer

who arrives in the second period. Consequently, the allocation decision in the first period

is only based on the realized value of buyer 1’s valuation and expectations about future

virtual valuations. Therefore, qrlx
1 (v1, d1 = 1) takes only extreme values zero and one.

In the second period, the allocation decision takes into account the realized value of v2.

Therefore, qrlx
1 (v1, d1 = 2) typically takes intermediate values in (0, 1). Consequently,

qrlx
1 (v1, d) is increasing in d for low values of v1, and decreasing in d for high values of

v. It is easy to see that Lemma 2 generalizes the insights from this example, because the

winning probability of a buyer is closely related to the distribution function of the critical

virtual valuation.

45Note that this argument does not depend on the assumption that v and d are conditionally independent
as long as the support of Fa(·|d) is the same for all a and d.


