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Continuous  flow  laboratory  reactors  are  typically  used  for the  development  of  kinetic  models  for  catalytic
reactions.  Sequential  model-based  design  of experiments  (MBDoE)  procedures  have  been  proposed  in
literature where  experiments  are optimally  designed  for discriminating  amongst  candidate  models  or
for improving  the  estimation  of  kinetic  parameters.  However,  the  effectiveness  of  these  procedures  is
strongly affected  by  the initial  model  uncertainty,  leading  to suboptimal  design  solutions  and  higher
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number  of  experiments  to  be executed.  A  joint  model-based  design  of  experiments  (j-MBDoE)  technique,
based  on  multi-objective  optimization,  is  proposed  in  this  paper  for the  simultaneous  solution  of  the  dual
problem  of discriminating  among  competitive  kinetic  models  and  improving  the  estimation  of the  model
parameters.  The  effectiveness  of  the proposed  design  methodology  is  tested  and  discussed  through  a
simulated  case  study  for  the identification  of  kinetic  models  of  methanol  oxidation  over  silver  catalyst.
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. Introduction

Model-based design of experiments (MBDoE) techniques repre-
ent a consolidated tool for the rapid assessment and identification
f fundamental kinetic models by optimally designing a set of
xperiments yielding the most informative data to be used for
odel identification (Franceschini and Macchietto, 2008). As per

onventional model building procedures (Asprey and Macchietto,
002; Blau et al., 2008), experiments are optimally designed with
he following purposes: i) discriminating between structurally
dentifiable candidate models, in order to identify the most suitable

odel structure representing a system (Hunter and Reiner, 1965;
uzzi-Ferraris and Forzatti, 1983, 1984; Schwaab et al., 2006);

i) improving the precision of parameter estimates, once a suit-
ble model structure is determined (Galvanin et al., 2007; Bandara
t al., 2009). Whilst the first objective is achieved based on the
aximisation of the discriminating power (i.e. a function for quan-

itatively evaluating the deviation between model predictions), the
econd is based on the maximisation of the expected informa-
ion, given as a measurement function of the Fisher Information

atrix (FIM), allowing to increase the confidence on parameter

stimation. The sequential iteration of steps i) (MBDoE for model
iscrimination) and ii) (MBDoE for improving parameter precision)

eads to the detection of the best model structure and to a sta-

∗ Corresponding author.
E-mail address: v.dua@ucl.ac.uk (V. Dua).

ttp://dx.doi.org/10.1016/j.compchemeng.2016.05.009
098-1354/© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article
shed  by  Elsevier  Ltd.  This  is  an  open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

tistically reliable estimation of the model parameters, minimising
the experimental trials required by the model identification task.
This optimal design approach has been recently applied also to the
design of steady-state (Reizman and Jensen, 2012) as well as tran-
sient experiments (Schaber et al., 2014) for the development of
kinetic models in microfluidic devices, underlining the potential of
MBDoE techniques in the identification of reaction kinetics. Nev-
ertheless, the conventional sequential MBDoE approach used for
model building is affected by several limitations due to the intrin-
sic nature of the optimal design problem. In fact, at the beginning
of the MBDoE procedure, when both the model structure and the
set of model parameters are unknown, the design for model dis-
crimination could be highly ineffective for discriminating amongst
candidate kinetic models when the optimally designed experimen-
tal conditions are applied to the actual system. Furthermore, due to
model uncertainty, the planned discriminating experiments could
provide a very low level of information for the estimation of the
kinetic parameters, and this fact could severely affect the reliabil-
ity of model predictions. Finally, the need of sequentially performing
the design for model discrimination and the design for improving
parameter precision procedures leads to the execution of a large
number of experiments for obtaining reliable kinetics, prolonging
time and effort required by the entire modelling activity.

In order to overcome these issues, Hill et al., 1968 introduced
the concept of joint experimental design, i.e. a design for both

establishing the form of an adequate model representing a system
(i.e. the model structure) and to obtain a precise estimation of its set
of parameters. A multi-objective design criterion was proposed and
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Nomenclature

General symbols
AIC Akaike information criterion
ci Species concentration [mol/m3]
D Design space
F Flow rate [mL/min]
N Number of experimental points
Nexp Number of experiments
NM Number of candidate models
Nreaz Number of reactions
nsp Number of sampling points
Nx Number of state variables
Ny Number of measured responses
N� Number of parameters
nϕ Number of design variables
P Pressure [bar]
P0
i

Preliminary probability of the i-th model to be the
“true” model

Pi Probability of the i-th model to be the “true” model
RFIij Relative Fisher information of the i-th experiment

for the j-th model
rj Rate of the j-th reaction
sij ij-th element of the Ny × Ny matrix of measurement

error
t Time [s]
tsw
i

i-th switching time
T Temperature [K]
ti t-value for the i-th model paramater
vz Speed of fluid flow [m/s]
v�
i

Variance of the i-th model parameter
yi i-th measured response
ŷi i-th predicted response
wMDM,N MN-th element of the selection matrix WMD for

model discrimination
wPE
j

j-th element of vector WPE for improving parameter
estimation

z Axial coordinate [m]

Vectors and Matrices [dimension]
H� Dynamic information matrix [N� × N�]
H0
� Preliminary information matrix [N� × N�]

tsp Vector of sampling points [nsp]
y Measurements vector [Ny]
ŷ Vector of estimated responses [Ny]
y0 Vector of initial conditions on measured variables

[Ny]
u Vector of manipulated inputs [Nu]
V� Variance-covariance matrix of model parameters

[N� × N�]
u Vector of manipulated inputs [Nu]
V� Variance-covariance matrix of model parameters

[N� × N�]
x Vector of state variables [Nx]
x0 Vector of initial states [Nx]
ẋ Vector of derivatives on state variables [Nx]
� Design vector [nϕ]
�opt Optimal design vector [nϕ]
�MD Optimal design vector for model discrimination [nϕ]
�PE Optimal design vector for improving parameter esti-

�̂ Vector of estimated values of model parameters [N�]
�̂0 Vector of preliminary estimated values of model

parameters [N�]
WMD Selection matrix for model discrimination

[NM × NM]
WPE Selection vector for improving parameter estima-

tion [NM]

Greek letters
�i i-th transient time between consecutive experi-

ments
�yi Standard deviation of the i-th measured response
�ij Stoichiometric coefficient of thei-th species in the

j-th reaction
�i i-th model parameter
� Experiment duration
� V� measurement function (design criterion)
�2
i

Chi-square statistics
�2
Ref

Reference chi-square

�MD Design objective function for model discrimination
(discriminating power)

�PE Design objective function for improving parameter
estimation

� Epsilon variable for multi-objective j-MBDoE for-
mulation

�MIN Minimum epsilon value
�MAX Maximum epsilon value

Acronyms
AIC Akaike information criterion
DAEs Differential and algebraic equations system
FIM Fisher information matrix
j-MBDoE Joint model-Based design of experiments
MBDoE Model-based design of experiments
MD Model discrimination
NLP Nonlinear programming problem
PE Parameter estimation
PFR Plug flow reactor
mation [n�]
JD
� Optimal design vector for joint design [nϕ]

� Vector of values of true model parameters for the
subject/system [N�]
SQP Sequential quadratic programming

applied to several case studies over a predefined grid of experi-
mental design points. More recently Petrov et al. (1991) and Akiti
et al. (1997) applied a joint design approach for the investigation
of reaction kinetics. However, in both studies the design objective
functions were evaluated on a grid of experimental conditions and
no direct multi-objective optimisation algorithm was applied for
the design of the optimal experimental conditions.

In this paper, a joint model-based design of experiments (j-
MBDoE) procedure is proposed for the development of kinetic
models for simultaneously discriminating amongst candidate
kinetic models and improving the estimation of kinetic parameters.
Preliminary data from the reactors is used for model discrimi-
nation and to screen the most informative regions of the design
space. According to j-MBDoE, trade-off solutions between met-
rics of Fisher information and discriminating power are computed
using a multi-objective optimisation algorithm and are used to
design a sequence of steady-state experiments. The effectiveness
of the proposed design strategy is tested and critically discussed
through a case study for the identification of kinetic models of

methanol oxidation over silver catalyst, where the effectiveness
of different optimal design configurations is compared and quan-
titatively assessed. The rest of the paper is organised as follows.
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n Section 2, mathematical formulations suitable for the optimal
esign of experiments are introduced. MBDoE techniques are intro-
uced for improving parameter estimation (Section 2.1), for model
iscrimination (Section 2.2) and a new formulation (j-MBDoE) (Sec-
ion 2.4) is presented for the joint improvement of parameter
stimation and model discrimination. In Section 2.3 techniques
or information analysis and ranking of experiments from avail-
ble preliminary data are introduced. In Section 3 the optimal
esign procedure for MBDoE and j-MBDoE is described. In Section 4
he oxidative dehydrogenation of methanol to formaldehyde over
ilver catalyst case study is presented and results from the applica-
ion of the proposed design techniques are discussed. Concluding
emarks are presented in Section 5.

. Optimal design of experiments in flow reactors:
athematical formulation

As a first approximation, an isothermal plug flow reactor can be
odelled as a dynamic plug flow reactor (PFR) in the form:

∂ci
∂t

= -vz
∂ci
∂z

+
Nreaz∑
j=1

�ijrj (1)

here ci is the species concentration, rj and ij are the reaction rate
nd the stoichiometric coefficient of the i-th species in the j-th reac-
ion respectively, z is the axial coordinate, vz is the speed of fluid
ow in the z-direction and t is the integration time. Eq. (1), together
ith the reaction rate expressions (of which mathematical struc-

ure needs to be identified), represent a system of differential and
lgebraic equations (DAEs) which can be written in a general form
s:(
ẋ (z, t) , x (z, t) , u (z, t) , �, t

)
= 0 (2)

ˆ (z, t) = g (x (z, t)) (3)

with the set of initial conditions x(0,0) = x0, where x(z,t) is the
x-dimensional vector of state variables (i.e. the concentrations ci

n (1)), u(z,t) is the Nu-dimensional vector of manipulated input
ariables (i.e. flow rate, temperature, pressure of the system) and

 is the N�-dimensional set of unknown kinetic model parameters
o be estimated. The symbol îs  used to indicate the estimate of a
ariable (or of a set of variables): thus, y(z,t) is the Ny-dimensional
ector of measured values of the outputs, while ŷ(z,t) is the Ny-
imensional vector of the corresponding values estimated by the
odel. Note that, in a general case, state variables and input vari-

bles can be characterised in both time and space.
The optimisation of experimental conditions is carried out by

omputing the nϕ-dimensional experiment design vector � = [y0,
, tsp, �]T, which includes the Ny-dimensional set of initial condi-

ions y0 of the measured variables (which is a subset of x0, since
0 contains all the state variables defining the system, not only the
easured ones), the set of manipulated inputs u, the set of time

nstants at which the output variables are sampled (tsp) and (possi-
ly) the experiment duration �. These conditions can be optimised
or improving parameter precision or for discriminating among
andidate kinetic models depending on the MBDoE objective func-
ion used in the optimisation.

.1. Optimal design of experiments for improving kinetic
arameter estimation

Conventional MBDoE techniques for improving parameter

stimation aim at decreasing the parameter uncertainty region pre-
icted by model through the solution of the optimisation problem:

PE = argmin
ϕ ∈ D

{
 

[
V� �, ϕ

]}
= argmin

ϕ ∈ D

{
 

[
H−1
� �, ϕ

]}
(4)
al Engineering 95 (2016) 202–215

Eq. (4) is subject to Eqs. (2) and (3) (the model equations) and to a
n	-dimensional set of constraints on design variables, defining the
design space D (i.e. the operating range of experimental decision
variables). According to Eq. (4), the experiment is designed so as to
minimise a measurement function � of V�, representing the design
criterion. The most common design criteria are the A-, D-, E-optimal
criteria, minimising the trace, the determinant and the maximum
eigenvalue of V� respectively (Pukelsheim, 1993), or its singular
values (Galvanin et al., 2007). In (4) V� and H� are the variance-
covariance matrix of model parameters and the Fisher Information
Matrix (FIM), respectively. H� is defined by

H� �, ϕ = H0
� +

nsp∑
k=1

Ny∑
i=1

Ny∑
j=1

sij

[
∂ŷi zk, tk
∂�l

∂ŷj zk, tk

∂�m

T]
l,m=1...N�

(5)

where nsp is the number of sampling points of measured variables,
sij is the ij-th element of the Ny× Ny inverse matrix of measure-
ments error and H0

� is the prior dynamic information matrix, taking
into account preliminary statistical information about the paramet-
ric system before each trial is carried out.

2.2. Optimal design of experiments for kinetic model
discrimination

MBDoE techniques for model discrimination are based on the
maximisation of the model discrimination function, i.e. a function
�MD evaluating the deviations between predictions of candidate
models (discriminating power). Multi-response MBDoE criteria for
model discrimination are usually expressed in the following form
(Hunter and Reiner, 1967):

ϕMD = argmax
ϕ ∈ D

{
�MD

}

= argmax
ϕ ∈ D

⎧⎨
⎩

nsp∑
i=1

NM∑
j=1

NM∑
k=1

‖ ŷi ϕ, �, tk -ŷj ϕ, �, tk ‖2

⎫⎬
⎭ (6)

Several modifications of Eq. (6) have been proposed in literature,
in order to take into account the measurements uncertainty (Buzzi-
Ferraris and Forzatti, 1983, 1984) and/or the a-priori statistical
reliability of each model (Box and Hill, 1966; Schwaab et al., 2002).
In particular, the following expression was proposed by Schwaab
et al. (2002):

�MD = argmax
	 ∈ D

{

MD

}

= argmax
	 ∈ D

⎧⎨
⎩

NM∑
M,N=1

PMPN

[
Ny∑
i=1

(
ŷM,i − ŷN,i

)2

�2
y,i

]
M,N

⎫⎬
⎭ (7)

In Eq. (7) the discriminating power �MD is a function of ŷM ,i
and ŷN ,i (the i-th predicted responses of model M and N),  of �2

y,i

(the variance of measurement errors for the i-th response) and Pi,
which is the relative probability of the i-th model to be the “true”
(best) model computed from a-posteriori statistics obtained after
parameter estimation. In particular, Pi [%] can be computed for the
i-th model from the expression

Pi =
1/�2

i
NM∑

2

.100 (8)
i=1

1/�
i

where �2
i

is the chi-square value of the i-th model evaluated after
parameter estimation (Bard et al., 1977). According to Eq. (8),



hemical Engineering 95 (2016) 202–215 205

w
S
(
r
p
i

2

i
a

a

d
m
e
s

p
e
s

o
e
(

t

1

2

c
f
m

R

c
m
o
m
a
a
m
i
r
d
b
o
t
R
2

Fig. 1. Ranking of experiments. (a) Screening of design space (concentration of
reactants) according to a conventional D-optimal DoE; the most informative exper-
iments are indicated in grey and black for Model 1 (M1) and Model 2 (M2)
respectively; poorly informative experiments are indicated in blue. (b) Ranking of
F. Galvanin et al. / Computers and C

hich follows the formulation for relative probability suggested by
chwaab et al. (2006), the model with the lowest chi-square value
i.e. the model providing the best fitting performance) is the most
eliable model for describing the system. A series of experiments
rovide a good discrimination between candidate models when Pi

s significantly higher (ideally close to 100%) for at least one model.

.3. Ranking of experiments and information analysis

In some cases, prior to the optimal design of experiments,
nformation from preliminary (historical) experiments might be
vailable. Examples of preliminary experiments include:

a) Unplanned experiments: experiments where the conditions
re fixed by the experimenter without following a precise rationale;

b) Screening experiments: experiments based on a black-box
esign of experiments (DoE) approach where response surface
ethodologies (Montgomery, 2013) are used, once the relevant

xperimental factors are identified together with the system (mea-
ured) responses;

c) Exploratory experiments: experiments focused on specific
oints of the design space aiming at confirming an observed or
xpected behaviour (dictated by experience or knowledge on the
ystem).

The b) approach should be preferred, because of the high level
f randomisation realised by adopting DoE techniques, and their
ffectiveness on reducing the expected variance of observations
Pukelsheim, 1993).

The availability of preliminary data is extremely valuable for
wo main reasons:

. it allows obtaining a preliminary parameter estimates for each
candidate model, characterised by an estimated value �0, and
a-posteriori statistics expressed in terms of variance-covariance
matrix V�;

. given �0, it allows for the analysis of the information acquired
from each experiment for the identification of each model
parameter according to the FIM (5).

In order to evaluate the relative amount of information which
an be obtained for the estimation of the j-th model parameters
rom i-th experiment a new index, called the Relative Fisher Infor-

ation (RFI) index, is introduced here:

FIij =
‖Hij‖

Nexp∑
i=1

‖Hij‖

=
‖Hij‖
‖Hj‖

(9)

In Eq. (9) ‖Hij‖ is the FIM for the i-th experiment for the j-th
andidate model evaluated from Eq. (5) and ‖Hj‖ is the global infor-
ation obtained from the Nexp experiments for the identification

f the j-th model according to a norm || . || (trace, determinant or
aximum eigenvalue). In this study, the trace of FIM has been used

s a suitable matrix norm. The utility of Eq. (9) is that RFI allows for
 ranking of the available experiments, underlining the most infor-
ative regions of the design space D to be exploited for parameter

dentification for each candidate model. An illustrative example of a

anking of experiments procedure is given in Fig. 1a screening of the
esign space according to a conventional D-optimal design (Fig. 1a)
ased on response surface models (Montgomery, 2013) is carried
ut for evaluating the most informative regions of the experimen-
al design space (molar fraction of reactants in this case) by using
FI for two candidate kinetic models, Model 1 (M1) and Model

 (M2) (Fig. 1b). Note that further details regarding the experi-
experiments based on RFI evaluation.

mental design space and the candidate kinetic models are given in
Section 4.

In the figure, experiment 20 (EXP20, indicated in blue) is char-
acterised by the highest value of RFI for both models. Hence, the
experimental region with high concentration of reactants allows for
a significant improvement in the estimation of M1  and M2  model
parameters. Conversely, experiments 1 and 16 (EXP1, EXP16) rep-
resent poorly informative experiments for the estimation of Model
2 (red bars in the plot) and Model 1 (white bars in the plot) param-
eters (respectively). Even if repeated, these experiments will not
improve the estimation of the parameters in an appreciable way,
because they are carried out under experimental conditions for
which a very low sensitivity to the model parameters is realised,
according to Eq. (5). The value of the design vector providing the
highest RFI for each model is used in the initialisation of optimal
design algorithms in order to avoid non-informative regions of the
design space and regions where the FIM is nearly singular, poten-

tially hindering the parametric identifiability of each candidate
model (Galvanin et al., 2013).
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Fig. 2. Example of j-MBDoE application. (a) Multi-objective Pareto points as results of optimisation (10) subject to (2,3.11); (b) Optimal design of a sequence of Nexp = 4 steady
state  experiments (�i indicates the i-the transient time between consecutive experiments). Points indicated by “MD” and “PE” represent, respectively, the optimal solution
f tion.
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.4. Joint model-based design of experiments (j-MBDoE)

A new joint Model-Based Design of Experiment (j-MBDoE) for-
ulation is proposed here with the purpose of simultaneously

iscriminating between NM candidate models and ensuring at the
ame time the best possible estimation of kinetic parameters.

The multi-objective j-MBDoE can be formulated as:

	JD = argmax
	 ∈ D

{

MD

}

= argmax
	 ∈ D

⎧⎨
⎩

NM∑
M,N=1

wMDM,NPMPN

[
Ny∑
i=1

(
ŷM,i − ŷN,i

)2

�2
y,i

]
M,N

⎫⎬
⎭ (10)

s.t.

PE =
NM∑
j=1

wPEj ‖Hj‖/NM ≤ � �MIN ≤ � ≤ �MAX (11)

In (10) �JD is the optimal design vector for the joint design prob-
em, wMDM,N is the MN-th element of a NM × NM-dimensional selection

atrix WMD, a matrix constituted by binary values [0,1] specified by
he user to tailor the discrimination to a specific subset of candidate

odels. In Eq. (11) 
PEis the design optimality function andwPE
j

s the j-th element of the NM-dimensional selection vector WPE a
atrix constituted by binary values [0,1] specified by the user in

rder to minimise the parameter uncertainty of selected models.
or example, if wMDM,N = 1 this implies that the user is interested in

istriminating between the M-th and N-th model, while wMDM,N = 0
mplies that the user is not interested in discriminating between
he M-th and N-th model. Similarly, wPEN = 1 implies that the user
s interested in improving the parameter estimation for the N-th

odel. If wPEN = 0 the same model won’t be considered in the opti-
al  design. The optimisation (10–11) is carried out for a number
f values of �, ranging from the minimum value (� = �MIN, where
MIN is the design optimality �PE computed from MBDoE for model
iscrimination) to the maximum value (� = �MAX, where �MAX is
he design optimality �PE computed from the A-optimal MBDoE
for improving parameter estimation) using an epsilon constraint
methodology for multi-objective optimisation (Mavrotas, 2009).

An illustrative example on the application of j-MBDoE for the
design of a sequence of steady-state experiments where a tem-
perature profile is optimised is shown in Fig. 2. The optimisation
Eq. (10) subject to Eqs (11) and Eqs. (2) and (3) provides a set of
Pareto solutions as illustrated in Fig. 2a. Each solution of the Pareto
front is represented by a different temperature and a different
capability of discriminating among rival models (evaluated from
�MD) or improving the estimation of parameters (evaluated from

PE). Starting from point 1 (PE experiment for improving param-
eter estimation, characterised by the maximum value of 
PE and
the minimum value of �MD) to point 4 (MD  solution, experiment
for discriminating among candidate models characterised by the
maximum value of �MD and the minimum value of �PE) interme-
diate Pareto solutions (trade-off between the two main objectives)
are used to design a sequence of Nexp = 4 steady state experiments
(Fig. 2b). Note that, after the first experiment (EXP1), if the system
needs to be stabilised before proceeding with the second experi-
ment (EXP2) a transient time (�1) has to be taken into account. If
the transient time between consecutive experiments is sufficiently
quick (i.e. �i→ 0), the sequence of experiments EXP1-4 can be
designed according to a single dynamic experiment (Asprey and
Macchietto, 2000) where the switching times tsw

i
of design variables

are optimised.
The analysis of the shape of the Pareto front and the distribution

of optimal solutions can provide useful insights on the poten-
tial efficiency of j-MBDoE. Possible shapes and distributions of
Pareto points are illustrated in Fig. 3. If intermediate solution points
between PE and MD solutions follow a “C” type scenario, a good
trade-off between the two  objectives can be realised. Solutions are
evenly distributed and there is nearly the equivalent probability
of reducing the uncertainty of model parameters as well as of dis-
criminating among competing models. If solutions follow the “A”
type scenario, the situation is even more beneficial, because both
discriminating power (
MD) and design A-optimality (
PE) can sig-

nificantly be improved as compared to Scenario C by exploiting
intermediate design solutions. Conversely, the “B” type scenario
is associated with systems where a poor trade-off between objec-
tives can be realised. If a high discrimination needs to be realised,
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tion of reactants, temperature, pressure and volumetric flow rate
onds represent, respectively, the optimal solution for model discrimination and
he optimal solution for improving parameter estimation.

xperiments tend to provide a low amount of information for the
stimation of kinetic parameters (i.e. under these conditions mod-
ls become resistant to an improvement in parameter precision).

. Optimal experimental design procedure for the
dentification of kinetic models

A sequential procedure for the optimal design of experiments
i.e. application of MBDoE or of the newly proposed j-MBDoE) is
llustrated in Fig. 4. The procedure starts once a number of candi-
ate kinetic models is proposed, given preliminary information in
erms of historical data (i.e. previous data from the reacting systems
rom unplanned experiments) and design space D (i.e. the space of
ariability of the elements of design vector �).

Five main consecutive steps are carried out:
i) a preliminary model discrimination based on a-posteriori

tatistics obtained after parameter estimation is carried out; this
tep allows the preliminary evaluation of kinetic parameters �̂0 and
robabilities P0

i
from 
2 values according to Eq. (8);

ii) a ranking of preliminary experiments is realised in order to
etect the experimental regions yielding the maximum amount
f Fisher information (through RFI, Eq. (9)); the most informative
xperimental conditions are used for the initialisation of optimal
esign algorithms through the “initial guess” vector �0;

iii) a MBDoE or j-MBDoE optimisation is carried out to obtain a
et of solutions �opt of the problem Eq. (4) or Eq. (7) subject to Eqs.
2) and (3) (MBDoE) or Eq. (10) subject to Eq. (11) and Eqs. (2) and
3) (j-MBDoE);

iv) the optimally determined experimental conditions �opt are
mplemented in the experimental system, providing a new set of
xperimental data y to be used for the identification of kinetic mod-
ls;

v) a new parameter estimation is carried out where new
stimated values �̂  are determined for each model; a-posteriori
tatistics allow the model discrimination in terms of Pi.

The iterative procedure involving steps iii)  to v) leads to the
etection of the best model structure representing the system, elu-
idating the most plausible kinetic mechanism for a given catalyst,
nsuring at the same time a precise estimation of kinetic parame-

ers. The procedure stops when both a single model is found to be
dequate for representing the system and a statistically satisfactory
stimation of its kinetic parameters is achieved.
al Engineering 95 (2016) 202–215 207

The model adequacy has been assessed for each candidate
kinetic model by using a chi-square (
2) test (Stewart et al., 1998).
For each model the chi-square

�2 =
Ny∑
i=1

Nsp∑
j=1

(
yij − ŷij

)2

�2
yi

(12)

has been computed and compared with �2
Ref

, a reference value

from a 
2 distribution with (N − N�) degrees of freedom (N is the
total number of experimental points, N� is the number of model
parameters). In (12) yij is the j-th observation of the i-th mea-
sured response, ŷij is the relative model prediction, while �2

yi
is the

expected variance for the i-th measured response. The best model
in terms of fitting performance is the model with the lowest value
of �2 and, if �2 < �2

Ref
, the chi-square test is passed and the model

provides an adequate representation of experimental data.
The precision in the estimation of kinetic parameters after the

execution of the designed experiments has been evaluated in terms
of t-test. For a statistically precise estimation the t-value of the i-th
kinetic parameter can be evaluated from

ti =
�̂i

t
(

1
2 + 1−˛

2 , N − N�
)

·
√

v�
i

, i = 1, ..., N� (13)

In Eq. (13) ti is the t-value related to the i-th model parameter,

�̂i and v�
i

are, respectively, the estimated value and the estimated
variance of the i-th kinetic parameter obtained from maximum
likelihood parameter estimation (Bard et al., 1977), t(·) is the t-value
distribution with a [1/2 + (1 − �)/2]% confidence level and (N − N�)
degrees of freedom, where � is the statistical level of significance
and N the total number of experimental points (in the system under
investigation for 95% significance, � = 0.05 and t(·) is approximately
2). For a statistically precise parameter estimation of the i-th model
parameter,  ti should be higher than tref , a reference t-value given
by a Student t-distribution with (N − N�) degrees of freedom.

gPROMS ModelBuilder (Process Systems Enterprise, 2012) was
used as simulation software for the estimation of kinetic param-
eters and for the statistical assessment of model adequacy. The
SQP optimiser of gPROMS has been used for the solution of the
NLP optimisation problem for both MBDoE and j-MBDoE design
configurations. SQP initialisation was  carried out by using differ-
ent starting points randomly distributed around the initial guess
design vector �00, determined in step 2 of the proposed procedure,
in order to avoid the possibility of incurring into local minima. How-
ever, given the reduced number of design variables involved in each
single steady-state experiment, no numerical issues were observed.

4. Case study: identification of kinetic models of methanol
oxidation over silver catalyst

The effectiveness of the procedure proposed in Section 3 is
tested on a simulated case study concerning the identification of
kinetic models for the oxidative dehydrogenation of methanol to
formaldehyde on silver catalyst (Galvanin et al., 2015). Data from
preliminary experiments, carried out on a specifically designed
silicon-glass microreactor where the silver catalyst is deposited on
the channel wall by sputtering (Cao and Gavriilidis, 2005), were
used for a preliminary estimation of model parameters, as well as
for the initialisation of optimal design algorithms. The concentra-
can be controlled and monitored in the system; concentrations are
analysed online at the inlet and outlet of the microreactor using gas
chromatography.
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In this case study the elements of the design vector� which can
e optimised by experimental design are:

. Composition of reactants in terms of molar fractions: methanol
(0.07–0.14), oxygen (0.03–0.10) and water (0.02–0.22) modelled
as initial conditions y0;

. Temperature T (720K < T < 830K) modelled as input u;

. Pressure P (1–2atm) modelled as input u;

. Flow rate F (10–100 mL/min) modelled as input u.

The ranges of operability shown in parenthesis in the above
epresent the design space D. Concentration measurements are
vailable as molar fractions of CH3OH, O2, CH2O, H2, H2O and CO2
t the inlet (z = 0) and outlet (z = l, where l is the reaction channel
ength [mm])  of the reactor and they are assumed to be corrupted

y Gaussian noise with zero mean and a standard deviation of 3% on
he readings. The microreactor was modelled as a plug flow reactor
n the Eq. (1) form, where the reaction channel length containing
he catalyst was 12.5 mm long, 0.12 mm high and 0.6 mm wide.
ents: proposed procedure.

4.1. Formulation of candidate kinetic models

In the identification study the simplified model proposed by
Andreasen et al. (2005) was  used as a reference model (Model 1).
According to Model 1, the following reactions constitute the base
(global) mechanism:

CH3OH + 1/4O2� CH2O + 1/2O2 + 1/2H2O (14)

CH2O + 1/2O2 � H2 + CO2. (15)

Two additional simplified kinetic models of increasing level of
complexity were considered:

1. Model 2: including the following total oxidation reactions for
both CH3OH and CH2O:

CH3OH + 3/2O2 → 2H2O + CO2 (16)

CH2O + O2 → H2O + CO2; (17)

2. Model 3: including total oxidation reactions Eqs. (16) and (17)

for CH3OH and CH2O; the global methanol oxidation reaction Eq.
(14) was  split into a dehydrogenation reaction

CH3OH � CH2O + H2 (18)
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Table  1
Preliminary model discrimination results: chi-square statistics (
2), number of
parameters (N�) Akaike information criterion (AIC) and probability to be the best
model (P0

i
).

Model

Model 1 Model 2 Model 3


2 9762 7721 6874
N 6 10 12
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t
b
e
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b
D
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e
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y
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(
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i

�

AIC  −6.4 2.1 6.3
P0
i

27% 34% 39%

and a selective oxidation reaction

H3OH + 1/2O2 � CH2O + H2O. (19)

The hydrogen oxidation reaction H2 + 1/2O2 → H2O (20), known
o occur at higher temperatures (Schubert et al., 1998), has also
een included in each reaction mechanism. The reaction rate
xpressions for Eqs. (14) amd  (15) are the ones proposed by
ndreasen et al. (2005), while power law kinetic expressions have
een used for the other reactions in the proposed mechanisms.
etails on reaction rate expressions are given in Appendix A.

.2. Preliminary model discrimination and ranking of
xperiments

Preliminary data from Nexp = 21 one factor at a time (OFAT)
xperiments from the microreactor were available in order to dis-
riminate among the rival models (Model 1–3) where the effect of
emperature (T) and feed composition (CH3OH, O2 and H2O molar
raction, y0 = [yCH3OH yO2 yH2O]T) on final products (CH3OH, O2, H2O,
H2O, H2, CO2) was investigated:

1. Experiments E1–5: T varied from 720 to 830 K (yCH3OH = 0.10,
O2 = 0.04, yH2O = 0.07);

2. Experiments E6–9: T varied from 720 to 830 K (yCH3OH = 0.14,
O2 = 0.06, yH2O = 0.11);

3. Experiments E10–21: T kept at 783 K, variable yCH3OH (range
.07–0.14, E10-E14), yO2 (range 0.03–0.10, E15–E17) and yH2O
range 0.02–0.22, E18–E21).

In all these preliminary experiments He was used as an inert, the
olumetric flow rate was kept at F = 26.5 mL/min and the pressure
t P = 1.6 atm. A model discrimination was carried out from experi-
ental data by assessing for each proposed model: i) the lack-of-fit

n terms of 
2 obtained after parameter estimation is carried out;
i) the Akaike information criterion (AIC) investigating the trade-
ff between fitting capability and model complexity in terms of
umber of model parameters (N�); iii)  the preliminary probability
i evaluated from Eq. (8). Results after model discrimination are
hown in Table 1. Model 3 provides the most satisfactory results in
erms of lack-of-fit, underlined by the lower 
2, and turns out to be
he most probable “true” model (P3 = 39%), even if with a significant
ncertainty as the Pi are quite similar and far from 100% (P1 = 27%,
2 = 34%). OFAT experiments E1–E21 do not ensure a clear discrim-
nation among the different models and additional experiments
eed to be designed and carried out. Furthermore, note how Model

 represents the most complex model in terms of number of model
arameters, as clearly indicated by the relatively high AIC value,
hich would tend to promote the use of Model 1 (the simplest
odel).
From fitting results (Fig. 5b), it is clear that methanol profiles are

lways represented in a satisfactory way by all the proposed mod-
ls, but Model 1 (solid line) is ineffective in representing oxygen,

ormaldehyde and CO2 molar fractions. Interestingly, the represen-
ation of oxygen and methanol concentration as a function of the
nvestigated temperature was significantly improved by includ-
ng total oxidation reactions in the model formulation (Model 2
al Engineering 95 (2016) 202–215 209

and 3) as compared to the original model formulation (Model 1).
Furthermore, a better representation of both CO2 and CH2O is
realised if competitive dehydrogenation and selective oxidation
pathways are included (Model 3). The model availability allows
definition of the best experimental conditions in order to estimate
the model parameters with the greatest precision. Fig. 5a shows
the RFI evaluated from Eq. (6) for a ranking of experiments E1-E21.
Each proposed model shows a different RFI response to a change in
experimental conditions. In particular: i) an increment in temper-
ature T would be beneficial for Model 2, but would be unhelpful
for the estimation of Model 1 and Model 3 kinetic parameters;
ii) an increment on oxygen concentration in the feed is benefi-
cial for the identification of all the proposed models; iii)  higher
methanol concentration in the feed is beneficial for the identifica-
tion of Model 2 and 3, while a maximum in the information level
is realised for Model 1; iv)  water concentration increases the infor-
mation for Model 1 and 2, while does not particularly affect Model
3 identification. The experimental conditions giving the highest
RFIs for the three candidate models were found to be: T = 808 K;
F = 26.5 mL/min, P = 1.6 atm; maximum concentration of reactants
y0 = [yCH3OH yO2 yH2O]T = [0.14 0.10 0.22]T. These values for the
experimental conditions define �0 (initial guess design vector) and
have been used in the initialization of optimal design of experi-
ments algorithms. The optimal design solution �opt provided by
MBDoE or j-MBDoE is usually very sensitive to the initial guess on
design variables. The availability of �0, evaluated from preliminary
experiments, allows for the robust initialisation of the optimisa-
tion algorithm, providing a sufficiently informative experiment in
terms of design optimality �PE.

4.3. Optimal design of experiments: proposed configurations

Two  optimal design configurations are proposed for the iden-
tification of kinetic models from the execution of a maximum of
Nexp = 16 designed steady state experiments:

1. MBDoE: 8 experiments are used for model discrimination
according to Eqs. (10) and (8) experiments are used for the
improvement on parameter estimation according to a conventional
A-optimal MBDoE following Eq. (4) subject to Eqs. (2) and (3);

1. j-MBDoE: 16 experiments are designed from the solution of
(10) subject to (11) and to the model Eqs. (2) and (3).

Synthetic “experimental” data are obtained by simulation
of Model 3 with � = [Ai Ea,i]T = [3.20E + 07 2.58E + 05 4.00E + 04
1.36E + 05 3.25E + 05 2.50E + 03 1.44E + 05 1.62E + 05 8.67E + 04
1.44E + 05 1.51E + 05 8.50E + 04]T as the “true” parametric set defin-
ing the reaction system and by adding normally distributed noise
with a mean of zero and a standard deviation of 3% on the read-
ings. In the optimal experimental design phase, the preliminary
estimation �̂0reported in Appendix A has been used for each model.

4.3.1. Model-based design of experiments (MBDoE)
Results from the application of a sequence of steady state exper-

iments designed by MBDoE are reported in Table 2 and shown in
Fig. 6 as elements of the design vector � for each experiment: flow
rate (F), pressure (P), temperature (T) (Fig. 6a) and concentration
of reactants (y0) (Fig. 6b). The simulated experimental response is
given in Fig. 6c. The first eight experiments are used for discrimi-
nating among candidate models (MD  series) while the remaining
eight experiments are used for improving the estimation of kinetic
parameters (PE series). The discrimination takes place between
couples of models (M12, M23, M13) or between the full set of
models (M123), while the improvement of parameter precision

is realised for single models (M1, M2,  M3), for couples of mod-
els (M12, M13, M23) and for the full set of candidate models
(M123). In order to achieve the maximum discrimination between
Model 1 and Model 2, the MBDoE optimisation pulls the system
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Fig. 5. (a) Ranking of experiments based on Relative Fisher Information (RFI). (b) Performance of candidate kinetic models after model identification in terms of CH2O, CO2,
CH3OH and O2 molar fractions as a function of temperature.

Table 2
MBDoE results: optimal values of design variables for each experiment; design objective function as discriminating power (�MD) and design A-optimality (�PE).

Experiment
ID

Target
mod-
els

Experimental Design variables Design objective function

F [mL/min] P [kPa] T [K] yCH3OH [Ad.] yO2 [Ad.] yH2O [Ad.] �MD �PE

MD1  M12  12.63 165.1 830 0.074 0.100 0.220 2.43 31.82
MD2  M13  100.0 164.9 720 0.140 0.100 0.020 4.21 0.21
MD3  M23  12.08 200.0 720 0.140 0.052 0.220 1.55 2.25
MD4  M123 10.00 200.0 779 0.078 0.100 0.220 4.03 21.09
MD5  M12  12.63 165.1 830 0.074 0.100 0.220 2.43 31.82
MD6  M13  100.00 164.9 720 0.140 0.100 0.020 4.21 0.21
MD7  M23  12.08 200.0 720 0.140 0.052 0.220 1.55 2.25
MD8  M123 10.00 200.0 779 0.078 0.100 0.220 4.03 21.09
PE9  M1  18.61 165.0 720 0.140 0.100 0.220 – 1.03
PE10  M2  100.00 164.9 720 0.140 0.100 0.020 – 7.15
PE11  M3  100.00 165.0 820 0.140 0.072 0.220 – 0.02
PE12  M123 10.18 199.6 808 0.088 0.100 0.220 1.16 27.97
PE13  M12  10.00 189.9 830 0.080 0.100 0.220 1.51 45.71
PE14  M13  18.05 165.0 720 0.140 0.100 0.220 0.35 0.51
PE15  M23  10.00 200.0 808 0.090 

PE16  M123 10.18 199.6 808 0.088 

Sum  of design optimality functions 

Table 3
MBDoE: model discrimination results in terms of chi-square statistics (
2), reference
chi-square (�2

Ref
) and probability of each model to be the best model (Pi). Models

failing the 
2 test are indicated in bold.

Model

Model 1 Model 2 Model 3


2 42784 1667 38
P 0.10% 2.22% 97.68%

t
M
d
A
h
b
o
a
h
i
t
t

According to j-MBDoE, the first four experiments are designed
i
�2
Ref

131.03

owards high temperatures but low pressures and flowrates (see
12 solution in Fig. 6a). Conversely, low temperatures are used for

iscriminating between Model 1–2 and Model 3. Together with the
-optimal design criterion, also the D- and E-optimal design criteria
ave been tested. Results are not shown for the sake of conciseness,
ut only a relative difference on temperature profiles of 2% has been
bserved, and no difference in terms of all the other design vari-
bles. Results from model discrimination are given in Table 3. Note
ow MBDoE design configuration is very efficient on discriminat-
ng among candidate kinetic models. In fact, after the execution of
he sequence of designed experiments and the subsequent estima-
ion of kinetic parameters, Model 3 is uniquely recognised as the
0.100 0.220 0.01 42.11
0.100 0.220 1.16 27.97

27.5 259.12

best model representing the reaction system (P3 close to 98%). The
model is also adequate on representing the system, as underlined
by the chi-square test which is passed for Model 3 (i.e. �2 < �2

Ref
).

Results obtained after parameter estimation are given in Table 4.
The analysis of t-values and 95% confidence intervals shows a clear
limitation of the conventional A-optimal MBDoE. After the exe-
cution of the optimally designed experiments, a particularly poor
estimation of parameters A4, A5, A6, Ea4 and Ea5 is obtained. These
parameters are estimated with a large uncertainty (particularly
parameters A5 and Ea5, describing the rate of reaction for the total
oxidation of formaldehyde, a critical reaction limiting the selectiv-
ity to the desired product). Interestingly, a significant improvement
in the precision of all the other parameters is achieved. In this case
the experimental design is efficiently discriminates among can-
didate kinetic models, but does not provide enough information
for a statistically satisfactory estimation of the full set of kinetic
parameters.

4.3.2. Joint model-Based design of experiments (j-MBDoE)
for the simultaneous discrimination and improvement of param-
eter precision of the three candidate models (M123) while the
remaining experiments are applied to couples of models (M12,
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Fig. 6. Results from Model-based Design of Experiments (MBDoE). Optimal profiles in terms of (a) Volumetric flow rate (F, [mL/min]), Pressure (P, [kPa]) and temperature (T,
[K]);  (b) Initial concentration of reactants (y0 = [yCH3OH yO2, yH2O]T[ad.]); (c) Simulated experimental response in terms of CH2O, CO2, CH3OH, H2 and O2 molar fraction [ad.].

Table 4
MBDoE: parameter estimation results including estimated value, 95% confidence interval, standard deviation and 95% t-value. Parameters failing the t-test are highlighted
in  boldface. Pre-exponential factors Ai are expressed in [s−1 (mol/m3)a+b−1−c−d] for the generic reaction rate ri = kic

a
A
cb
B
/cc
C
cd
D

; activation energies Eai are expressed in [J/mol].

Model Parameter Final Value Confidence Interval 95% Standard Deviation 95% t-value

A1 3.150E + 07 7.180E + 05 3.591E + 05 43.88
A2 5.192E + 05 2.421E + 04 1.210E + 4 21.45
A3 4.877E + 04 1.226E + 03 6.127E + 02 39.80
A4 1.221E + 05 1.018E + 06 2.036E + 06 0.12*
A5 3.200E + 05 1.601E + 07 3.202E + 07 0.02*
A6 5.140E + 03 4.908E + 03 2.453E + 03 1.05*
Ea1 1.440E + 05 1.450E + 02 7.293E + 01 993.41
Ea2 1.664E + 05 2.854E + 02 1.427E + 02 582.92
Ea3 8.800E + 04 1.598E + 02 7.958E + 01 550.64
Ea4 2.677E + 05 7.541E + 05 1.508E + 06 0.35*
Ea5 5.040E + 05 1.680E + 7 3.360E + 7 0.03*
Ea6 9.191E + 04 6.228E + 03 3.114E + 03 14.76
Reference t-value (tref) 1.66
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Fig. 7. Results from joint Model-based Design of Experiments (j-MBDoE): (a) Pareto solutions of the multi-objective design problem for the set of experiments jMB1-jMB16;
(b)  Particular of the Pareto solutions for the set of experiments jMB1-jMB8; (c) Optimal profiles in terms of volumetric flow rate (F, [mL/min]), pressure (P, [kPa]) and
temperature (T, [K]); (d) Optimal design results in terms of initial concentration of reactants (y0 = [yCH3OH yO2, yH2O]T[ad.]); (e) Simulated experimental response (CH2O,  CO2,
CH3OH, H2O, H2 and O2 molar fractions [ad.]).
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Table 6
j-MBDoE: model discrimination results. Results are given in terms of chi-square
statistics (
2), reference chi-square (�2

Ref
) and probability of each model to be the

best  model (Pi). Models failing the 
2 test are indicated in bold.

Model

Model 1 Model 2 Model 3


2 43568 1182 30
P
i

0.07% 2.44% 97.49%
�2
Ref

131.03
M13, M23). Fig. 7a and Fig. 7b show the results in terms of Pareto
solutions of the j-MBDoE multi-objective design problem. Results
are quite interesting. When j-MBDoE is applied to Model 1 and
Model 2 only (M12), experiments providing high discriminating
power can be executed ensuring at the same time a good level
of information for the estimation of kinetic parameters (filled cir-
cles in the plot, experiments jMB5-jMB8). However, when Model
3 is involved in the design, experiments providing high discrimi-
nating power tend to provide a low amount of information. This
is particularly noticeable when experiments are designed for dis-
criminating between Model 1 and Model 3 (filled squares in the
plot, experiments jMB9-jMB12) and Model 2 and Model 3, where
a great variability on A-optimality is realised (filled triangles in
the plot, experiments jMB13-jMB16). The optimal values of experi-
mental design variables are given in Table 5 and illustrated in Fig. 7c
and Fig. 7d. Fig. 7e shows the values of simulated experimental
responses for the optimally designed experiments. Interestingly,
flow rate and water concentration in the feed are manipulated in
order to exploit the trade-off solutions when j-MBDoE is applied to
Model 1 and Model 3, while methanol concentration and tempera-
ture are primarily manipulated when j-MBDoE is applied to Model
2 and Model 3. These excitation patterns generate a strong vari-
ability on water, formaldehyde and oxygen readings (experiments
jMB9-jMB16, Fig. 7e).

4.4. Discussion

Analysing the results in terms of model discrimination (Table 6)
it is apparent that the j-MBDoE design efficiency is comparable to
the one realised by a conventional A-optimal MBDoE (Table 3).
Results are similar both in terms of model discrimination (Pi is
still around 97% for Model 3, which is correctly detected as the
“true” model) and model adequacy (i.e. 
2 test is amply satisfied
for Model 3) on representing the experimental points. However,
results become more interesting by analyzing the parameter esti-
mation results (Table 7) where the superiority of j-MBDoE becomes
apparent. In this case, thanks to the exploitation of the trade-off
design solutions, j-MBDoE allows the full set of kinetic parame-
ters to be estimated in a statistically sound way. Note how the
amount of Fisher information generated by a sequence of exper-
iments designed by j-MBDoE is higher than the one realised by a
conventional A-optimal MBDoE, and this was predicted also in the
experimental design phase. This is clear from the design results
shown in the last row of Table 2 (MBDoE) and 5 (j-MBDoE). In fact,
the sum of design optimality functions �PE predicted by MBDoE
was 259.12 against 348.02 for j-MBDoE. At the same time, the
sum of discriminating power �MD obtained from the two  config-
urations is very similar: 27.5 for MBDoE, 34.03 for j-MBDoE. As a
result, both the configurations are very effective for discriminat-

ing among competitive kinetic models, as underlined by the very
similar probabilities Pi obtained in Table 3 and Table 6.
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Table 7
j-MBDoE: parameter estimation results including estimated value, 95% confidence interval, standard deviation and 95%t-value. Pre-exponential factors Ai are expressed in
[s−1 (mol/m3)a+b−1−c−d] for the generic reaction rate ri = kic

a
A
cb
B
/cc
C
cd
D

; activation energies Eai are expressed in [J/mol].

Model Parameter Final Value Confidence Interval 95% Standard Deviation 95% t-value

A1 2.741E + 07 6.049E + 05 3.024E + 05 45.33
A2 2.342E + 05 1.388E + 04 6.939E + 03 16.88
A3 3.249E + 04 8.543E + 02 4.272E + 02 38.03
A4 1.618E + 05 8.260E + 04 4.130E + 04 1.96
A5 3.192E + 05 1.035E + 05 5.177E + 04 3.08
A6 1.463E + 03 6.311E + 02 3.156E + 02 2.32
Ea1 1.430E + 05 1.577E + 02 7.886E + 01 906.52
Ea2 1.617E + 05 3.699E + 02 1.849E + 02 437.18
Ea3 8.545E + 04 1.775E + 02 8.875E + 01 481.43
Ea4 1.392E + 05 1.703E + 04 8.516E + 03 8.18
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Ea5 1.289E + 05 3.256E + 04
Ea6 7.741E + 04 1.276E + 04
Reference t-value (tref) 

. Conclusion

In this paper, a new joint model-based design of experiments
j-MBDoE) procedure has been proposed for the identification
f kinetic models in continuous flow laboratory reactors. The
rocedure allows for a multi-objective optimisation of the informa-
ion obtained from experiments for the purpose of discriminating
mong candidate kinetic models, improving at the same time the
tatistical reliability on the estimation of kinetic parameters. In the
rst stage of the proposed procedure, preliminary historical data
re exploited for ranking the available experiments and for detect-
ng the most informative experimental conditions to be used for the
nitialisation of optimal design algorithms. In a second stage, exper-
ments are optimally designed by j-MBDoE ensuring the maximum
iscriminating power (i.e. the maximum difference between model
esponses) and the maximisation of the expected Fisher informa-
ion, required for the reduction of the parametric uncertainty.

A case study for the discrimination of simplified kinetic models
f methanol oxidation over silver catalyst clearly shows how the
ewly proposed j-MBDoE procedure outperforms the conventional
-optimal MBDoE. Whilst the two approaches show a very simi-

ar capability on discriminating among candidate kinetic models,
nly j-MBDoE allows for a statistically sound estimation of the full
et of kinetic parameters. In fact, highly informative discriminating
xperiments are designed by j-MBDoE thanks to the exploitation of
rade-off Pareto solutions, following a compromise between design
ptimality and discriminating power. The analysis of Pareto solu-
ions gives precious insights on the identifiability of the parametric
ystem, underlining the relative resistance of candidate models

o an improvement on parameter estimation. The evaluation of
elative Fisher Information (RFI) obtained from experiments with
ifferent discriminating power, shows how the most informative
egions can be exploited during the experimentation, opening new

able A1
et of reactions involved in the proposed kinetic models and related kinetic expressions.

Reactions Reaction ID Model 

CH3OH + 1/4O2 � CH2O + 1/2H2 + 1/2H2O 1
√ 

CH2O + 1/2O2 � H2 + CO2 2
√ 

CH3OH + 3/2O2 → 2H2O+ CO2 3 –

CH2O + O2 → H2O + CO2 4 –

CH3OH � CH2O + H2 5 – 

CH3OH + 1/2O2 � CH2O + H2O 6 – 

H2 + 1/2O2 → H2O 7
√

Number of kinetic parameters 6 
1.628E + 04 3.96
6.380E + 03 6.07

1.66

important perspectives for designing experiments for the identifi-
cation of kinetics.
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Appendix A. Preliminary parameter estimation

A maximum likelihood parameter estimation was carried out
from one factor at a time (OFAT) experiments data (E1-E21, see
the main text for details). Kinetic parameters, including pre-
exponential factors Ai (expressed in [s−1 (mol/m3)a+b−1−c−d] for the
generic reaction rate ri = kic

a
Ac
b
B/c

c
Cc
d
D) and activation energies Eai

(expressed in [J/mol]) were computed according to the Arrhenius
equation

ki = Aie
− Eai
RT (A1)

evaluated for each reaction rate and each candidate model (see
Table A1 for details). In the parameter estimation procedure Eq.
(A1) was reformulated as

ki = e(log Ai−
Ea.i
RT ) = e(�1,i−

�2,i
T ) (A2)

for the purpose of minimising the existing structural correla-
tion between pre-exponential factors and activation energies
(Himmelblau, 1968; Buzzi-Ferraris and Manenti, 2010). Param-
eters �1,i and �2,i have been estimated accordingly, following

a log-likelihood parameter estimation technique (Bard et al.,
1977). Preliminary parameter estimation results �̂0 are given in
Table A2–A4 in terms of estimated values and a-posteriori statistics
including 95% confidence intervals and t-values. As can be seen

1 Model 2 Model 3 Kinetic expression

√
– r1 = k1

cCH3OH
c

1/4
O2

c
1/2
H2O

√ √
r2 = k2

cCH2O
c

1/2
O2

c
1/2
H2√ √

r3 = k3cCH3OHc
3/2
O2√ √

r4 = k4cCH2OcO2

–
√

r5 = k5
cCH3OH
c
CH2O

c
H2

–
√

r6 = k6

cCH3OH
c

1/2
O2

c
CH2O

c
H2O√ √

r7 = k7cH2 c
1/2
O2

10 12
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Table  A2
Model 1: estimated kinetic parameters from OFAT experiments. Pre-exponential
factors Ai are expressed in [s−1 (mol/m3)a+b−1−c−d] for the generic reaction rate ri =
kic

a
A
cb
B
/cc
C
cd
D

; activation energies Eaiare expressed in [J/mol].

Parameters Reaction
ID

Model 1

Estimate 95% c.i. t-values

A1 1 8.180E + 04 8.521E + 04 0.961
A2 2 1.612E + 03 5.969E + 03 0.272
A3 7 5.577E + 01 1.690E + 02 0.330
Ea1 1 9.025E + 04 6.755E + 03 13.360
Ea2 2 8.301E + 04 2.413E + 04 3.440
Ea3 7 1.722E + 04 1.813E + 04 0.952

Table A3
Model 2: estimated kinetic parameters from OFAT experiments. Pre-exponential
factors Ai are expressed in [s−1 (mol/m3)a+b−1−c−d] for the generic reaction rate ri =
kic

a
A
cb
B
/cc
C
cd
D

; activation energies Eaiare expressed in [J/mol].

Parameters Reaction
ID

Model 2

Estimate 95% c.i. t-values

A1 1 6.257E + 04 2.510E + 04 2.493
A2 2 7.542E + 04 2.218E + 05 0.340
A3 3 2.320E + 02 9.280E + 03 0.025
A4 4 7.680E + 04 1.920E + 06 0.040
A5 7 2.960E + 00 6.016E + 00 0.492
Ea1 1 8.894E + 04 2.619E + 03 33.960
Ea2 2 9.465E + 04 1.925E + 04 4.916
Ea3 3 8.322E + 04 2.625E + 05 0.317
Ea4 4 4.840E + 05 2.420E + 07 0.021
Ea5 7 1.132E + 02 1.317E + 04 0.009

Table A4
Model 3: estimated kinetic parameters from OFAT experiments. Pre-exponential
factors Ai are expressed in [s−1 (mol/m3)a+b−1−c−d] for the generic reaction rate ri =
kic

a
A
cb
B
/cc
C
cd
D

; activation energies Eai are expressed in [J/mol].

Parameters Reaction
ID

Model 3

Estimate 95% c.i. t-values

A1 6 3.085E + 07 3.282E + 07 0.94
A2 5 2.379E + 05 1.034E + 06 0.23
A3 2 3.180E + 04 3.975E + 04 0.80
A4 3 1.302E + 05 3.255E + 06 0.04
A5 4 1.648E + 05 2.035E + 05 0.81
A6 7 2.015E + 03 2.239E + 03 0.90
Ea1 6 1.288E + 05 6.917E + 03 18.62
Ea2 5 1.464E + 05 2.928E + 06 0.05
Ea3 2 8.672E + 04 1.734E + 05 0.50

f
e
(
E
u
(

Schwaab, M.,  Silva, F.M., Queipo, C.A., Barreto Jr., A.G., Pinto, J.C., 2006. A new
approach for sequential experimental design for model discrimination. Chem.
Ea4 3 1.242E + 05 1.461E + 05 0.85
Ea5 4 4.160E + 05 8.221E + 04 5.06
Ea6 7 4.837E + 04 3.268E + 04 1.48

rom the estimation results given in Table A2–A4, only a few param-
ters are estimated in a statistically sound way  from OFAT design

Ea1 and Ea2 for Model 1; A1, Ea1 and Ea2 for Model 2; Ea1 and
a6 for Model 3), whilst some parameters are affected by a large
ncertainty, particularly in Model 2 (A3,A4, Ea4, Ea5) and Model 3
A4,Ea2).
al Engineering 95 (2016) 202–215 215
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