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Structural Magnetic Resonance Imaging (MRI) studies have attempted to use brain measures obtained at the
first-episode of psychosis to predict subsequent outcome, with inconsistent results. Thus, there is a real need
to validate the utility of brain measures in the prediction of outcome using large datasets, from independent
samples, obtained with different protocols and from different MRI scanners.
This study had threemain aims: 1) to investigate whether structural MRI data frommultiple centers can be com-
bined to create a machine-learning model able to predict a strong biological variable like sex; 2) to replicate our
previous finding that an MRI scan obtained at first episode significantly predicts subsequent illness course in
other independent datasets; and finally, 3) to test whether these datasets can be combined to generatemulticen-
ter models with better accuracy in the prediction of illness course.
The multi-center sample included brain structural MRI scans from 256 males and 133 females patients with first
episode psychosis, acquired infive centers: UniversityMedical Center Utrecht (TheNetherlands) (n= 67); Insti-
tute of Psychiatry, Psychology and Neuroscience, London (United Kingdom) (n = 97); University of São Paulo
(Brazil) (n = 64); University of Cantabria, Santander (Spain) (n = 107); and University of Melbourne
(Australia) (n= 54). All images were acquired on 1.5-Tesla scanners and all centers provided information on ill-
ness course during a follow-up period ranging 3 to 7 years. We only included in the analyses of outcome predic-
tion patients for whom illness course was categorized as either “continuous” (n= 94) or “remitting” (n= 118).
Using structural brain scans from all centers, sex was predicted with significant accuracy (89%; p b 0.001). In the
single- or multi-center models, illness course could not be predicted with significant accuracy. However, when
reducing heterogeneity by restricting the analyses to male patients only, classification accuracy improved in
some samples.
This study provides proof of concept that combining multi-center MRI data to create a well performing classifi-
cation model is possible. However, to create complex multi-center models that perform accurately, each center
should contribute a sample either large or homogeneous enough to first allow accurate classification within
the single-center.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction
Population-based studies indicate a lifetime prevalence of psychoses
above 3% (Perälä and Suvisaari, 2007). While one third of affected indi-
viduals experience psychotic symptoms for a short period of time,
others are affected throughout their entire lives (Harrison et al., 2001).
Unfortunately, there is no way to predict, early on, which individuals
will develop this incapacitating course. Identifying these individuals at
illness onset is important as it could help provide better care to those
most at risk.

Schizophrenia, and to a lesser extent other psychotic disorders, are
associated with smaller gray matter volume, predominantly in the pre-
frontal cortex, but also in superior andmedial frontal and temporal gyri,
insula and thalamus (Fornito et al., 2009; Haijma et al., 2013; Honea
et al., 2000; Shepherd et al., 2012). Even at the first psychotic episode,
patients already show thalamic, insular and hippocampal volume re-
ductions and larger ventricular volume compared to healthy controls
(Levitt et al., 2010; Rosa et al., 2010; Schaufelberger et al., 2007; Steen
et al., 2006).

Several structural Magnetic Resonance Imaging (MRI) studies have
tried to use these brain measures at the time of the first episode to pre-
dict subsequent outcome. While many did not find significant differ-
ences between poor and good outcome patients (Molina et al., 2010;
van Haren et al., 2003), others reported contradictory findings. A 1-
year follow-up study found that first-episode schizophrenia (FE-SZ)
patients with clinical deterioration had a smaller area of internal cap-
sule compared to those with stable psychopathology, but no differ-
ences in either its volume or in any of the other 32 regions of
interest (ROI) studied (Wobrock et al., 2009). Another short-term
study found that volume of the dorsolateral prefrontal cortex was pre-
dictive of outcome at 1-year, but not at 2-years (Prasad et al., 2005).
Studies with longer follow-up periods – 5 to 6 years – more consis-
tently found that smaller initial gray matter volume was predictive of
poorer outcome at follow-up (Cahn et al., 2006; Lieberman et al.,
2001; Milev et al., 2003). This evidence suggests that evaluating out-
come over longer follow-up periods could potentially improve the pre-
dictive power of brain measures.

The studies described above used a univariate approach to identify
brain differences related to subsequent outcome. While this statistical
approach allows for inferences about regional effects, it does not enable
predictions at the level of the individual subject. More recently,
machine-learning approaches have shown potential for clinical transla-
tion (Fu and Costafreda, 2013), and multivariate pattern recognition
techniques have been applied toMRI data for the individualized predic-
tion of clinical characteristics. Pattern recognition is a field within the
area of machine learning concerned with automatic discovery of regu-
larities in the data through the use of computer algorithms, and with
using these regularities to classifying data into different categories
(Bishop, 2006). When applied to data such as structural MRI, brain
scans are treated as spatial patterns, and pattern recognition models
are used to identify statistical properties of the data, which in turn en-
able discrimination between groups of subjects, for example patients
from healthy subjects (Kambeitz et al., 2015; Klöppel et al., 2012;
Nieuwenhuis et al., 2012; Orrù et al., 2012). This application has
shown promising results. For example, even in first episode patients,
multivariable models have been used to predict diagnoses with accura-
cies ranging between 79.3% and 91.5% (Karageorgiou et al., 2011; Pohl
and Sabuncu, 2009; Sun et al., 2009; Takayanagi et al., 2011; 2010). Fur-
thermore, our ownpreviouswork has shown thatMRIs obtained at time
of the first psychotic episode (in a sample of 56 patients) could be used
to predict illness course 6 years later with an accuracy of approximately
70% (Mourao-Miranda et al., 2012). This accuracy is substantially higher
than that reported in an earlier one-year follow-up study that used pat-
tern recognition to separate remitting (n= 15) and not remitting (n=
21) patients, which only achieved an accuracy of 58% (Zanetti et al.,
2013). Although these results are modest, they support the potential
clinical utility of biological brain markers for the prediction of outcome
in schizophrenia.

One of the biggest challenges in the translation of neuroimaging
findings into clinical practice is the need to validate thesemodels across
large independent samples and across data obtained from different MRI
scanners (Schnack et al., 2010). This is essential to demonstrate robust-
ness in the variability introduced by factors such as scanner type,
acquisition protocols and clinical evaluation. In addition, combining
multiple samples increases the overall sample size, overcoming a limita-
tion common to many neuroimaging studies. In fact, recent studies on
Alzheimer's disease (Dukart et al., 2013; Dyrba et al., 2013; Li et al.,
2014) and major depression (Mwangi et al., 2012) have used multi-
center data and shown very high classification accuracies, ranging
from ~80% to ~90%.

In this study we combined five independent structural MRI datasets
from leading international centers for the study of psychosis (Institute
of Psychiatry, Psychology and Neuroscience, London; University Medi-
cal Center, Utrecht; University of São Paulo, São Paulo; University of
Cantabria, Santander; University of Melbourne, Melbourne). We in-
cluded both affective and non-affective psychoses for two reasons:
first, because several brain alterations are common to both; and second,
because the ability of theMRI obtained at first episode to predict subse-
quent outcome should be tested across all psychoses, since more spe-
cific diagnoses are still uncertain when the MRI is acquired. We had
three main aims: 1) to investigate whether structural MRI data from
multiple centers can be combined to create a machine-learning model
able to predict a strong biological variable like sex; 2) to replicate our
previous finding from the London dataset that an MRI scan obtained
at first episode can be used to predict subsequent illness course in
four independent datasets (Mourao-Miranda et al., 2012); and finally,
3) to test whether these datasets can be combined to generate multi-
center models with better accuracy in the prediction of illness course.

We hypothesized that, by combining data from different scanners
and thus creating larger samples, it would be easier for the classifier to
learn the classification task and for any scanner or site effects to be con-
sidered as noise, thus resulting in a more robust model and in higher
classification accuracy (of both sex and outcome). We therefore ex-
pected that the models would replicate our previous finding that an
MRI at first episode can be used to predict subsequent illness course,
with significant accuracy.

2. Method

2.1. Samples

The overall sample comprised five datasets of patients (total n =
389) who had an MRI scan at the time of their first episode of any
psychotic illness (including DSM-IV diagnosis of schizophrenia,
schizophreniform disorder, schizotypal disorder, schizoaffective disor-
der, depression with psychotic symptoms, bipolar affective disorder,
psychosis not otherwise specified), and who were followed up over a
period ranging between three and seven years, when clinical outcome
was evaluated. The samples included: n= 67 patients from the Univer-
sity Medical Center Utrecht (UMCU, The Netherlands) (Cahn et al.,
2002); n = 97 patients from the Institute of Psychiatry, Psychology
and Neuroscience (IoPPN, London, United Kingdom) (Mourao-
Miranda et al., 2012) from the initial study; n = 64 patients from the
University of São Paulo (São Paulo, Brazil) (Schaufelberger et al.,
2007); n = 107 patients from the University of Cantabria (Santander,
Spain) (Crespo-Facorro et al., 2009); and n= 54 patients from the Uni-
versity of Melbourne (Melbourne, Australia) (Velakoulis et al., 2006).
The samples were derived fromwell-established studies, themain find-
ings of which have been extensively published elsewhere. All subjects
were scanned in a 1.5 T scanner (protocol details provided below). All
participants gavewritten informed consent and local ethics committees
approved the studies.
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2.2. Sex groups

Although classifying sex is a complex task, the classification problem
is relatively easy, as sex can be unequivocally determined and brain sex-
ual dimorphisms is well established, particularly in the Heschl's gyrus,
the planum temporale and the hippocampal formation (Good et al.,
2001). The dataset used in this analysis included 133 females and 256
males. To create a model based on a balanced dataset, all 133 female
subjects were included, independently of their illness course, together
with a subset of 133 males randomly selected from the overall sample,
matched for site. To compare multi-center models to single-center
models, five single-center models were created with all the females
and a random selection of males. To reduce chances of selection bias,
we built one hundred models with these random selections. Cross-
validation (see details below) was used to estimate average prediction
percentages.

2.3. Outcome groups

All centers provided information on the number of episodes that pa-
tients had experienced during the follow-up period and on whether
they had achieved remission. Centers differed in the instruments used
to evaluate illness course during follow-up (Table 2). These included:
World Health Organization Life Chart (World Health organization,
1992), Schedules for Clinical Assessment in Neuropsychiatry (SCAN
(Wing et al., 1990)), Positive and Negative Syndrome Scale, (PANNS
(Kay et al., 1989)), Comprehensive Assessment of Symptoms and His-
tory, (CASH (Andreasen et al., 1992)) and Scale for the Assessment of
Negative Symptoms (SANS, (Andreasen, 1984)). Illness course was
therefore classified using a conservative approach into two groups
that captured patient with an “extreme” type of outcome: one group
with a “continuous” illness course (no remission of symptoms of N
6 months); and one group with a “remitting” illness course (one or
more periods of remission of at least 6 months, and no episode lasting
longer than 6 months). All patients who had experienced only a single
psychotic episode (lasting no longer than 6 months) were included in
the “remitting” group. Three centers (London, Utrecht, São Paulo) pro-
vided additional information on duration of the psychotic episodes. Pa-
tients who were neither in the continuous nor in the remitting group
(i.e., had a remission and an episode lasting longer than 6 months)
were excluded from further analyses on illness course (although they
were included in the sex-based analyses). Within the London, Mel-
bourne and Utrecht samples, 59%, 56% and 58% of all patients were in-
cluded respectively. In the samples from Santander and São Paulo the
percentages were 53% and 45% of the entire samples respectively. In
total, 94 continuous patients and 118 remitting patients were included
in the outcome analyses.Most patients had a diagnosis of schizophrenia
(n = 114), followed by schizophreniform disorder and schizoaffective
disorder (n = 39). Other diagnoses included bipolar affective disorder
(n = 13), brief psychotic disorder (n = 5) and depression with psy-
chotic symptoms (n = 9). The mean duration of follow-up in years
was 6.3 (SD = 2.2), 4.9 (SD = 0.8), 7.0 (SD = 1.4), 3.0 (SD = 0.0)
and 3.7 (SD=0.6) respectively for London,Utrecht,Melbourne, Santan-
der, and São Paulo.

After excluding patients who could not be classified as either contin-
uous or remitting, the sample included 141 male patients (66 remitting
and 75 continuous) and 71 females (52 remitting and only 19 continu-
ous). To model less heterogeneous samples, we only included male pa-
tients, since the number of females per illness-course group per center
was very small, and the samples size would have been too small to cre-
ate a female-only model (see Table 1 for details).

2.4. MRI protocols and processing

All images were acquired on 1.5-Tesla scanners (see Table 3). The
T1-weighted images were pre-processed according with the same
protocol. Scans were manually oriented into MNI space, after which a
non-uniformity correction was applied to remove radio frequency
(RF) field inhomogeneity (Sled et al., 1998). Spatially normalized gray
matter probabilities were obtained by running “segment” in SPM8
(Ashburner and Friston, 2005). This method segments, spatially nor-
malizes (modulated normalized) and bias-corrects (10 full width half
maximum (FWHM) 150mm) all brains into the same space and dimen-
sions (dimension: 91 × 109 × 91; voxel size: 2 × 2 × 2 mm). To reduce
noise, all scans were smoothed with a 4-mm FWHM Gaussian kernel.

To ensure that only actual gray matter was included in the analysis,
voxels with gray matter probabilities below 0.03 were excluded from
the analysis. This resulted in 170,000 voxels or features per subject
being included in the analyses.

2.5. Pattern recognition analyses

All models were created using a linear Support Vector Machine
(SVM) (Vapnik, 1999), which is a supervised machine learningmethod
commonly applied to binary classification problems in neuroimaging
(Klöppel et al., 2012; Orrù et al., 2012). In supervised learning ap-
proaches, a predictive function is “learned” from labeled training data,
which is a data set consisting of examples (e.g. gray matter patterns)
and labels (e.g. patients or healthy controls). The binary problem in
this case consists of classification of two previously defined groups, for
example, female vs. male or remitting vs. continuous. Every subject is
represented by its graymatter probabilitymap, which defines a high di-
mensional feature vector (in which each voxel in the map corresponds
to a feature in the feature-vector). In order to build the binary classifier,
the labeled data are used to create a model or decision boundary based
on training examples (such as graymatter probabilitymaps from remit-
ting and continuous course patients). In the linear case, this decision
boundary corresponds to a hyperplane in the voxel space. The SVM
finds the hyperplane that has the largest margin or separation between
the two groups, also known as optimal hyperplane (Vapnik, 1999). The
advantages of SVM compared to other classification techniques are its
scalability and computational efficiency in higher dimensional
problems.

A pre-existing implementation (Chang and Lin, 2009) of LIBSVM in
Matlab (version 2009b) was used to compute models with a linear ker-
nel. The parameter C was determined through nested cross validation.
Nested cross validation involves one more loop than normal cross vali-
dation (explained below). The inner loop is used for optimizing model
parameters and the outer loop is used to estimate model performance
based on the test subjects, which are not used during the parameter op-
timization process.

Cross validation is a technique that estimates model performance
using parts of the sample for training and testing. One part of the data
is used for model estimation or training, and the other part is used for
model testing. We elected to use a leave-two-out cross-validation
framework (L2o), which allows for one subject of each class to be left
out for testing, and for the remaining subjects from both classes to be
used for model creation. In our multi-center models, the pairs that
were left out were always from the same center. To obtain a more gen-
eralizable predictive value, we bootstrapped one hundredmodels: each
time, a balanced group (as large as possible and with an equal number
of subjects per class) was selected randomly, and then a completely in-
dependent leave-two-out cross-validation was performed. The average
of all these bootstraps is what generated our predictive values.

2.6. Performance measures

In the sex classification model, the percentage of correctly classified
females and males was estimated as the correctly classified females
divided by all the females, and the correctly classified males divided
by all the males.



Table 1
Demographic information on the samples.

Institute of Psychiatry,
Psychology and
Neuroscience King's
College London

University Medical
Center Utrecht

University of
Melbourne

University of Cantabria,
Santander

University of
São Paulo

Clinical course (Remitting/Continuous) R C R C R C R C R C
Patients (males) 27 (13) 30 (22) 15 (14) 24 (21) 16 (9) 14 (12) 41 (21) 16 (12) 19 (9) 10 (8)
Age in years (SD) 28.1 (6.3) 29.2 (9.7) 22.2 (3.9) 24.6 (5.3) 21.3 (3.6) 21.6 (3.1) 31.4 (9.0) 29.8 (9.5) 26.2 (8.8) 31.7 (9.2)
DUP in days (SD) 245 (825) 579 (1052) 144 (190) 243 (425) – – 373 (577) 229 (281) 59 (82) 122 (199)
Schizophrenia diagnosisa 9 22 12 23 0 10 22 10 1 5

Sex (Males/Females) M F M F M F M F M F
Whole original sampleb 61 36 58 9 37 17 62 45 38 26

a The number of patients diagnosed with schizophrenia at follow-up per sample per group.
b Sample including all patients with Remitting, Continuous and Intermediate course.
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The performance of the disease course models is reflected in a value
per class: the positive and negative predictive accuracies (PPA and
NPA). These are the ratios of correctly classified subjects in a specific
class (true positives (TP) or true negatives (TN)), divided by all the sub-
jects classified as belonging to that class (TP + false positives (FP) or
TN + false negatives (FN)):

Positive predictive accuracy ¼ TP= TPþ FPð Þ

Negative predictive accuracy ¼ TN= TNþ FNð Þ

Significance of the models was determined by permutation testing.
During the permutation test the labels were permuted one thousand
times before re-training the models. The occurrence of accuracies
equal to- or higher than- the accuracy of the model that is being tested
were counted and then divided by the number of permutations,
resulting in their p-value.

3. Results

3.1. Sex classification models

The five single-center model accuracies are presented in Table 4 (a).
The centers with the larger samples, London and Santander, performed
5–10% better than the other, smaller sample centers. The left part of the
table contains the results of the multi-center support-vector-machine
(SVM)-model, in which data from all centers were combined to train
the models. The average accuracy in sex classification was 89% (range
81% to 94%) (males = 88%, females = 90%, p = 0.001). This multi-
center model performed as well as the single-center model of the two
larger samples (London 89% and Santander 88% vs. multi-center 89%).
Interestingly, in the multi-center model, the accuracies of the centers
with smaller samples (Utrecht andMelbourne) improved considerably,
especially in the percentage of correctly classified females. Overall, the
accuracy improved by 2% to 9% when compared to the single-center
models. Moreover, the difference in classification accuracy of males
and females was much smaller, indicating that the model was as likely
to correctly classify a male as it was to correctly classify a female. The
large differences we had seen in the smaller single-center models
(Utrecht (20%), Melbourne (9%) and São Paulo (10%)) were reduced
to only 6%, 5% and 0.3% respectively in the combined model.
Table 2
Questionnaires used in each center.

DSM-IV/DSM-V ICD-10 PANSS WHO lif

London x x x
Utrecht x x
Melbourne x x
Santander x x
São Paulo x x
3.2. Illness course classification in individual centers

To investigate whether gray matter density at first episode could
predict illness course, each dataset was first analyzed individually
(Table 4, b). When both male and female patients were included, the
classification into continuous and remitting course was significant and
above chance only in the sample from London at 68% and 70%
(p b 0.02 and p b 0.007 respectively).

To investigate if a less heterogeneous sample would lead to better
models, we built new models including only male patients (Table 4,
c). This increased the average accuracy in the Santander and São Paulo
datasets by 11% and 15% respectively. However, it negatively affected
the average classification accuracy in London (from 69% to 66%), while
it did not significantly affect the accuracy in the datasets from Utrecht
andMelbourne. Only the accuracy in the sample fromSão Paulo reached
significance (p = 0.005), and the remitting patients from London were
classified with a significance of p = 0.08. The lack of significance in the
other samples may be due to the small sample sizes. The lack of im-
provement in accuracy after reducing data heterogeneity suggests that
heterogeneity was not the only factor leading to the poor performance
of these models. Reducing heterogeneity also led to smaller sample
sizes, which could have negatively affected the results.

3.3. Illness course classification with multi-center models

In the third and last set of analyses we combined all data into multi-
centermodels to classify illness course. Combining data from all centers
into onemodel did not improve the results obtained from single-center
models. The classification accuracy remained at chance level and did not
reach significance (Table 4, b).

The less heterogeneousmulti-center model, including only male pa-
tients, showed that illness course in subjects from London and São Paulo
was accurately classified with an average of 62% and 74% respectively
(depicted in green and light blue in Fig. 1). Unfortunately, combining
all five centers did not increase the accuracies in the others centers.

4. Discussion

To the best of our knowledge, this is the first study that has investi-
gated whether neuroimaging data obtained at the first psychotic
e chart SCAN CASH GAF SAPS SANS

x
x x

x x
x



Table 3
Scanner-protocols and scanner-type per center.

Field strength System Sequence Flip angle Repetition time ms Echo time (TE) ms Voxel dimension
(mm)b

x y z

University of Cantabria Santander 1.5 T General Electric SIGNA System SPGRa 45° 24 5 1.02 1.02 1.50
University Medical Center Utrecht 1.5 T Philips Fast field echo 30° 30 4.6 1.00 1.20 1.00
The University of Melbourne 1.5 T General Electric SIGNA System SPGRa 30° 14.3 3.3 0.94 0.94 1.50
Kings College London 1.5 T General Electric SIGNA Systems SPGRa 20° 13.8 2.8 0.94 1.50 0.94
University of São Paulo 1.5 T General Electric SIGNA System SPGRa 20° 21.7 5.2 0.86 0.86 1.50

a Spoiled gradient recalled acquisition in steady state.
b All the scans had a coronal acquisition orientation.
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episode from different scanners and with different protocols can be
combined and used to accurately predict subsequent illness course.
Our main finding is that combining multi-center neuroimaging data
can lead to a single model that performs well (up to 90% accurate)
when classifying strong, reliable biological outcomes such as sex. In con-
trast, our secondmainfinding is thatwhen classifying clinical character-
istics, such as illness course, classification accuracies are only modest,
and significant only in centerswithmost similar definitions of outcome.
In addition, the results show thatmulti-centermodels can be used to in-
crease the performance of smaller and heterogeneous samples. Taken
together, these findings suggest that with larger samples, standardized
clinical information and clear-cut outcome groups, multi-center-
Table 4
Results of the classification models. The right hand side shows accuracies of the single-
centermodels and the left hand side shows the accuracies of themulti-centermodels. Part
(a) of the table shows the percentage of correctly classified males and females in the sex
classification model; (b) shows the negative and positive predictive accuracies of the
multi-center and single-center models on illness course classification; (c) shows the less
heterogeneous illness course models, including only males.

(a) Gender classification, males vs. females

Multi-center
model

Single center
models

N males N females Male Female Male Female

London 61 36 93%⁎ 85%⁎ 90%⁎ 88%⁎

Santander 62 45 91%⁎ 89%⁎ 87%⁎ 90%⁎

Utrecht 58 9 81%⁎ 87%⁎ 89%⁎ 69%
Melbourne 37 17 94%⁎ 89%⁎ 87%⁎ 78%⁎

São Paulo 38 26 87%⁎ 86%⁎ 89%⁎ 79%⁎

Overall 256 133 90%⁎ 87%⁎ 88%⁎ 81%⁎

(b) Illness course classification, continuous vs. remitting patients

Entire sample Multi-center
model

Single center
models

N continuous N remitting PPA NPA PPA NPA

London 30 27 55% 55% 68%⁎ 70%⁎

Santander 16 41 44% 45% 44% 42%
Utrecht 24 15 49% 48% 48% 48%
Melbourne 14 16 52% 51% 54% 53%
São Paulo 10 19 56% 62% 61% 62%
Overall 94 118 52% 52% 55% 55%

(c) Illness course classification, continuous vs. remitting patients

Males only Multi-center
model

Single center
models

N continuous N remitting PPA NPA PPA NPA

London 22 13 62% 62% 64% 67%
Santander 12 21 46% 45% 53% 54%
Utrecht 21 14 45% 45% 47% 47%
Melbourne 12 9 55% 54% 53% 53%
São Paulo 8 9 68% 80%⁎ 75% 78%
Overall 75 66 54% 54% 58% 60%

⁎ Significant models with p-value b 0.001.
models have the potential to yield generalizable, clinically useful
predictions.

4.1. Sex classification models

Canwe pool data from different centers to increase classification ac-
curacy and create better predictive models? The models based on rela-
tively larger samples (London and Santander) correctly classified up to
90% of individuals from both sexes, while those based on smaller sam-
ples (Melbourne and São Paulo's) classified males with approximately
88% accuracy, and females with a lower accuracy (mean 79%). This
could be due to the smaller number of females in the models: consis-
tently with previous studies, models based on small samples show
larger fluctuations in classification accuracies (Nieuwenhuis et al.,
2012). We showed that by combining data from multiple centers (133
females and 133 males), the accuracy of the model improved (by ap-
proximately 8%), including in those centers with small samples (for ex-
ample, the Utrecht sample only included 9 females). This confirms our
hypothesis that combining datasets, even if acquired on different scan-
ners and from different centers, can theoretically improve predictive
models. The limitations of small sample sizes can therefore be overcome
by combining multi-center-data, and unbalanced datasets (with fewer
subjects of one group and more of the other group) can benefit from
the more balanced distribution that derives from merging multiple
datasets. However, it should be noted that our findings do not aim to
provide information on brain sex dimorphism in psychosis, particularly
in the absence of a non-psychosis comparison group, and only provide
proof of concept for accurate multicenter classification models in the
presence of a reliable outcome.

4.2. Illness course classification

Our second main finding was that when creating single-center
models to predict future outcome, only one center (London) achieved
a significant accuracy (Zanetti et al., 2013). Classifying illness course is
much more challenging than classifying sex. The lower accuracies ob-
served in Utrecht, Melbourne, Santander and São Paulo are probably
due to the small sample size in these centers (ranging between 10 and
16 subjects). In addition, illness course is much more heterogeneous
thanwhat can be captured by a simple continuous vs. remitting classifi-
cation, and clinical differences between these two course types could be
extremely subtle and difficult to identify. This highlights the importance
of using strong, valid and standardized instruments for the classification
of outcome (Fu and Costafreda, 2013; Mayberg, 2014).

4.3. Multi-center illness course classification

The samemodest results were seen when data from the five centers
were combined to predict illness course. Although classifying outcome
is more complex than classifying sex, we still expected that increasing
sample size would have overcome the potential variability in outcome.



Fig. 1. Depicts the results of multi-center male-only illness course-classification; the colors represent subjects from the different centers. The vertical black line represents the decision
boundary. Ideally, all continuous patients (circles) would appear right of the line and the remitting patients (triangles) left of the line.
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This modest classification accuracy could reflect the poor classifica-
tion accuracy of the single-center-illness-prediction models. It is possi-
ble that in small samples, differences between classes are not large
enough to overcome sample variability (i.e. the signal-to-noise ratio
was very low). Adding “low signal-to-noise centers” might have in-
creased noise. Also, our multi-center models might have been more ac-
curate with larger samples and if single-center models had a better
performance. This would be consistent with what reported by Schnack
et al. (2010), who examined the influence of noise and sample size in
multicenter MRI studies.
4.4. Male-only multi-center illness course classification

To investigate whether reducing patient heterogeneity improved
the classification models, we repeated the illness course classification
analyses including only male patients. Combining all males into a
multi-center-illness-prediction model led to an average accuracy of
54% overall. This was slightly better than the accuracy achieved by the
model that included both sexes. The sample from São Paulo showed a
significant improvement in accuracy of 12% of PPA and 17% of NPA com-
pared to the multi-center mixed-sexmodels (p b 0.089 and p b 0.02 re-
spectively). São Paulo's continuous group contained mainly male
subjects, and could have benefitedmost by the exclusion of female sub-
jects.While a decrease in sample size typically leads to a decrease in ac-
curacy, this may have been compensated by an increase in signal-to-
noise ratio in the more homogeneous sample (Schnack and Kahn,
2016). This increased homogeneity when considering only male
patients could be due to a combination of factors. For example, there
is evidence of sex-specific brain abnormalities associated with schizo-
phrenia, and of sex-specific differences in illness characteristics, with
males being likely to have an earlier age of onset, to experience more
severe symptoms and to relapse more frequently (Aleman et al., 2003;
Bryant et al., 1999; Goldstein, 2002; Leung and Chue, 2000). Single-
sex models could therefore more easily find a “typical” predictive
pattern in one sex group during the training process, which would be
more difficult to obtain in the presence of sexual dimorphism.

4.5. Limitations

Togetherwith the heterogeneity introduced by different neuroimag-
ing acquisition parameters, the heterogeneity introduced by clinical fac-
tors may have played a major role in the accuracies we achieved. The
instruments used to assess illness course differed across studies and
this may have resulted in heterogeneous and overlapping patient
groups. Furthermore, the length of follow up, although long for all
groups, ranged from 3 to 7 years and one cannot exclude that illness
course may become more established with time. Furthermore, some
centers had more clinical information available (for example on dura-
tion of psychosis) which could have potentially allowed for more accu-
rate decisions about illness course. This highlights the importance of
gathering precise and standardized information on the duration and
characteristics of each psychotic episode when classifying outcome,
which could eventually result in better models.

Another limitation of this study is the size of the samples included in
the analysis. Even thoughwe had data from 5 centers, we decided to re-
strict our analyses only to those subjects with the twomost extreme ill-
ness course types (remitting and continuous), which resulted in some
centers having only a small sample size, with a particularly small num-
ber of female subjects. Finally, we only used one brain scan, and it is pos-
sible that a better prediction of illness course could be achieved by
measuring change over time or studying trajectories of change
(Cropley and Pantelis, 2014).

5. Conclusion

In summary, we provide proof of concept that combining multi-
center MRI data to create a single, well performing model is possible.
Theoretically, multi-center models could lead to more robust classifica-
tion accuracy than models based on just a single center when using
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brain structure to predict illness course or diagnosis, which would be
more generalizable to new patient samples. Multi-center models
would consider scanner and acquisition protocols as noise and find ef-
fects common to all centers, reducing the risk of misclassification. How-
ever, the effect within each single center needs to be strong enough to
contribute to themulti-center model. This effectively means that a cen-
ter has to contribute a sample that is large or homogeneous enough to
individually classify with significant accuracy, in order to be of use in
generating robust multi-center models.
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