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Abstract: This technical report revisits the analysis of family-wise error rates in statistical parametric map-
ping—using random field theory—reported in (Eklund et al. [2015]: arXiv 1511.01863). Contrary to the
understandable spin that these sorts of analyses attract, a review of their results suggests that they endorse
the use of parametric assumptions—and random field theory—in the analysis of functional neuroimaging
data. We briefly rehearse the advantages parametric analyses offer over nonparametric alternatives and
then unpack the implications of (Eklund et al. [2015]: arXiv 1511.01863) for parametric procedures. Hum
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INTRODUCTION

Random field theory has been at the heart of statistical para-
metric mapping in neuroimaging—and its various implemen-
tations in academic software—for over two decades. With
technical advances in data acquisition, its validity has been
revisited every few years to ensure it is fit for purpose [Bennett
et al., 2009; Hayasaka and Nichols, 2003; Hayasaka et al., 2004;
Nichols, 2012; Pantazis et al., 2005; Woo et al., 2014; Worsley
et al., 1996], particularly in relation to controlling family-wise
error. The statistical validity of procedures based on random
field theory is important because random field theory offers an
efficient and reproducible alternative to nonparametric testing.
The advantages of parametric approaches over nonparametric
approaches include the following:

e Parametric approaches are more efficient than their
nonparametric counterpart by the Neyman—Pearson
lemma. This follows because the most efficient test is
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based on the odds ratio inherent in parametric tests.
This means that any nonparametric test can only be
as efficient as a parametric test or less efficient.
Parametric approaches are reproducible. In other
words, one obtains the same result when repeating
the analysis, unlike the P-values based on samples of
the null distribution used in nonparametric tests.
Parametric approaches eschew the problem of
complying with the exchangeability criteria of non-
parametric procedures. These criteria make it diffi-
cult to apply nonparametric tests to data that have
serial correlations or when using hierarchical
models.

Parametric approaches are computationally more
efficient because they use distributional assumptions
to eschew computationally intensive sampling from a
null distribution.

These advantages rest on distributional assumptions
that, if violated, render parametric tests inexact. In these
instances, one could consider using nonparametric tests.
It is, therefore, important to ensure that parametric tests
and random field theory are robust to any violations. The
analyses reported by [Eklund et al., 2015] speak to this
issue. So what conclusions can be drawn from these
analyses?
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Figure I.
Cluster-level inference results for a two-sample t-test (two groups of 10 random subjects, repeated a
thousand times) with the Beijing dataset using a cluster forming threshold of P =0.001 (uncorrected)
and the SPMI2 software (r6685). Five levels of spatial smoothing were evaluated (4, 6, 8, 10 and
12 mm isotropic Gaussian kernels) with four different regressors (see [Eklund et al., 2015] for details).

A REVIEW OF THE EKLUND ET AL.
SIMULATION RESULTS

Eklund et al. [2015] assess the family-wise error rate
using parametric and nonparametric tests and a variety of
regressors to analyse (publicly available) resting state fMRI
data from two sites. They manipulate a number of factors
including: (i) inference based on peak height versus spatial
extent; (ii) spatial extent inference based on high versus
low cluster forming thresholds; (iii) under different levels
of spatial smoothing for (iv) block versus event-related
regressors, using (v) one- and two-sample t-tests.

In brief, they show that parametric inference based on
peak height is well-behaved and provides acceptable
family-wise error control. In contrast, parametric inference
based on spatial extent is not valid when, and only when,
a low cluster forming threshold is employed. This failure
is well known and is consistent with random field theory:
the null distribution for spatial extent is based on the
Nosko conjecture that provides a distributional form for
the spatial extent of a cluster [Friston et al., 1994]. The
parameter of this distributional form is fixed using
approximations to the expected number of maxima and
the total volume above a threshold (see [Flandin and Fris-
ton, 2015] for a brief review). Crucially, both the distribu-
tional form for the spatial extent and the expected number
of maxima (the Euler characteristic) are approximations
that are only true in the limit of high thresholds (see fig. 1
in [Friston et al.,, 1994]). This means that tests based
on spatial extent become inexact at low thresholds—as
verified numerically by [Eklund et al., 2015].

The effects of smoothing reported in [Eklund et al., 2015]
are consistent with random field theory, which assumes a
good lattice approximation to a continuous random field.
This assumption means that the data have to be smoother
than the size of voxels. In other words, increasing the

smoothness will lead to more exact inference. Again, this is
verified numerically by [Eklund et al., 2015].

The effect of one versus two-sample f-tests is slightly
more difficult to interpret. This is because the authors used
the same regressor for all subjects. Arguably, this was a
mistake because any systematic fluctuation in resting state
timeseries—that correlates with the regressor—will lead to
significant one-sample t-tests against the null hypothesis of
zero (e.g., magnetic equilibration effects). This effect is par-
ticularly marked for a regressor (called E1) that represents a
fast and inefficiently estimated event-related response every
few seconds. Crucially, the nonparametric false positive
rates are beyond the 95% confidence intervals. This means
that this effect is actually expressed in the data over sub-
jects and, therefore, fails as a model of the null behaviour.

This failure is finessed when comparing parameter esti-
mates between two groups using a two-sample f-test. In
this instance, inferences based on spatial extent fall to
acceptable family-wise error rates. We confirmed this by
reproducing the analysis (using the same data and regres-
sors) reported in [Eklund et al.,, 2015] (see Fig. 1). These
analyses use the close to original (3 mm) voxels sizes—as
opposed to the upsampled (2 mm voxel) data as analysed
in [Eklund et al., 2015].

CONCLUSION

In summary, we have taken the opportunity to comment
on the relative utility of nonparametric and parametric
procedures in classical inference: despite the simplicity and
robustness of nonparametric tests, there are principled
reasons for the predominance of parametric procedures.
Having said this, nonparametric tests are extremely useful
when validating parametric assumptions—and establishing
robustness to their violations. This use of nonparametric
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tests was exemplified in a recent paper entitled “Cluster
failure: Why fMRI inferences for spatial extent have inflated
false-positive rates” [Eklund et al., 2016]. The answer to the
question posed by Eklund et al. is that their cluster tests
failed because they violated the assumptions underlying
analytic (random field theory) approximations to null distri-
butions; in particular, the assumption that clusters are
defined by reasonably high thresholds. A useful rule of
thumb here is that if clusters have more than one peak,
then the cluster forming threshold is probably too low. A
sufficiently high threshold is usually guaranteed with the
standard cluster forming threshold of P=0.001 (uncor-
rected). More generally, the simulations reported in Eklund
et al speak to the importance of revisiting the robustness of
statistical tests as the nature of imaging data evolves and
new researchers—who are not familiar with these founda-
tional issues—enter the field.
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