
Capital– and resource–constrained project scheduling with net present value
optimization

Pieter Leymana, Mario Vanhouckea,b,c,∗

aFaculty of Economics and Business Administration, Ghent University, Tweekerkenstraat 2, 9000 Ghent (Belgium)
bTechnology and Operations Management Area, Vlerick Business School, Reep 1, 9000 Ghent (Belgium)

cUCL School of Management, University College London, One Canada Square, Canary Wharf, London (United
Kingdom)

Abstract

In this paper, we study the capital–constrained project scheduling problem with discounted cash

flows (CCPSPDC) and the capital– and resource–constrained project scheduling problem with

discounted cash flows (CRCPSPDC). The objective of both problems is to maximize the project net

present value (NPV), based on three cash flow models. Both problems include capital constraints,

which force the project to always have a positive cash balance. Hence, it is crucial to schedule

activities in such an order that sufficient capital is available.

The contribution of this paper is threefold. First, we propose three distinct cash flow models,

which affect the capital availability during the project. Second, we introduce two new schedulers to

improve capital feasibility, one for the CCPSPDC and one for the CRCPSPDC. The schedulers focus

on delaying sets of activities, which cause cash outflows to be received at later time instances, in

order to reduce capital shortages. Both schedulers are implemented as part of three metaheuristics

from literature, in order to compare the metaheuristics’ performance. Two penalty functions have

been included, one to improve capital feasibility and another to improve deadline feasibility. Third,

the proposed procedure has been tested on a large dataset and the added value of the schedulers

has been validated. Managerial insights are provided with respect to the impact of key parameters.
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1. Introduction

Project scheduling, and in particular the resource–constrained project scheduling problem with

duration minimization (RCPSP), has been the topic of a large amount of research over the past few

decades. A great deal of focus has been on regular measures of performance, which are non decreas-

ing functions of the activity finish times, as is the case for the RCPSP. Non–regular objectives, i.e.

an objective for which the definition given for regular objectives does not hold, have become increas-

ingly popular and varied. We focus on the maximization of the project net present value (NPV),

which implies that a negative or positive cash flow is assigned to each activity and the project

objective is to schedule all activities in such a way that the NPV is maximized. The distinction

can furthermore be made between the max–NPV problem (no renewable resources are included)

and the RCPSP with discounted cash flows (RCPSPDC, renewable resources are included).

In this paper, we extend the resource–unconstrained max–NPV problem with capital constraints

and three cash flow models, and refer to this problem as the capital–constrained project scheduling

problem with discounted cash flows (CCPSPDC). Furthermore, the problem is also extended with

the presence of renewable resource constraints, and we refer to this problem as the capital– and

resource–constrained project scheduling problem with discounted cash flows (CRCPSPDC). In the

max–NPV problem and in the RCPSPDC no limit is set on the cash balance (the sum of the cash

inflows received and the cash outflows paid) at any particular time, which implies that the cash

balance may very well be negative at certain times during the project duration. The CCPSPDC

and CRCPSPDC impose the additional constraints that at no point in time the cash balance, or

available capital, can be negative. This way, cash outflows can only be paid if sufficient capital is

available, whereas cash inflows add to this capital. We present metaheuristic solution procedures

with new scheduling techniques tailored to the needs of the problems, in particular to the capital

constraints. The solution procedures in this paper focus on solving capital shortages by delaying

negative cash flows in order to move these cash flows later than the capital shortage.

The remainder of this paper is organized as follows. A literature overview is given in section

2. The mathematical problem definitions of the CCPSPDC and the CRCPSPDC are discussed

in section 3, whereas two schedulers are the focus of section 4. In section 5 an overview of the

metaheuristics employed is given, whereas the computational experiments and their results are

analyzed in section 6. We finish with a conclusion and recommendations for future research in

section 7.

2. Literature overview

Figure 1 provides an overview of the history of the max–NPV problem, since NPV optimization

in project scheduling was first introduced by Russell (1970). The years in the figure indicate when

the first research on the problem (extension) was conducted. The distinction is made between
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three large areas of research with respect to the cash inflows of activities, which depend on the

negotiations between the contractor and the client:

• Timing: the size of the cash inflows can be determined in advance, but the occurrence of

payments depends on the actual project schedule. This is typically the case if cash inflows

occur at each activity’s completion time. As a result, the contractor can only control the

timing of cash inflows, but the size is determined by the client.

• Size: the payment times are selected in advance (e.g. progress payments every 10 time units),

but the size of the payments can only be determined based on the schedule. The contractor

can influence the size of the cash inflows, but not their occurrence times.

• Both: the timing and size both depend on the project schedule. In this case, the contractor

can determine both, but can only employ a limited number of payments (e.g. Dayanand and

Padman (1997)), or the payment times depend on the progress of the project (e.g. based on

total costs incurred by the contractor (He et al., 2009a)).

Additionally, two of these research classes, namely the research on timing of cash inflows and

on the combination of timing and size, have been extended to include capital and multiple activity

modes. In the latter case, each activity can be executed with different time–resource combinations.

Russell 
(1970)

Size
(1994)

Timing
(1970)

Timing
+size

(1997)

Cash in Extensions

Multi-mode 
(1994)

Capital 
(1977) 

Multi-mode
(2012)

Capital 
(2012)

Figure 1: History of the max–NPV problem and its extensions.

For an overview of the project scheduling literature with NPV optimization up to 1997, we

refer to Herroelen et al. (1997). A summary of more recent work from 1997 on the max–NPV

problem and its extensions is displayed in table 1. In the “Cash in” columns of the table, we

highlight whether the objective includes the determination of the timing and/or size of the cash

inflows. The “Extensions” columns distinguish the papers in the table based on the inclusion of
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more specific problem characteristics. A trade–off between multiple modes of an activity (MM) is

specified as well. At the bottom of the table, all papers that include capital constraints (C), even

those published before 1997, are included since these papers solve a problem closely related to the

one of this manuscript.

Cash in Extensions
Authors Timing Size MM C
Dayanand and Padman (1997) X X
Shtub and Etgar (1997) X
Etgar and Shtub (1999) X
Dayanand and Padman (2001a) X X
Dayanand and Padman (2001b) X X
Schwindt and Zimmermann (2001) X
Vanhoucke et al. (2001a) X
Vanhoucke et al. (2001b) X
Vanhoucke et al. (2003) X
Vanhoucke and Debels (2007) X X
He and Xu (2008) X X X
He et al. (2009a) X X X
He et al. (2009b) X X X
He et al. (2014) X X X
Doersch and Patterson (1977) X X
Smith-Daniels and Smith-Daniels (1987) X X
Sung and Lim (1994) X X X
Smith-Daniels et al. (1996) X X

Özdamar and Dündar (1997) X X X

Özdamar (1998) X X X
He et al. (2012) X X X X
This work X X

Table 1: Literature overview max–NPV problem.

From the table and figure 1 we conclude that the majority of the research on the max–NPV

problem has been on the timing of cash inflows and several extensions. Recent papers on the single–

and multi–mode RCPSPDC (Leyman and Vanhoucke, 2015, 2016), however, show that no research

has been done on capital restrictions in combination with renewable resource limitations.

In this paper, we contribute to the literature on NPV maximization in project scheduling in

three ways. First, we propose a new scheduling technique as part of a metaheuristic approach for

the max–NPV problem with capital constraints, and compare with existing work. Second, we focus

on the problem with renewable resource and capital constraints, which has not yet been discussed in

literature. We introduce a scheduler which handles both restrictions, while optimizing the project

NPV. Third, whereas the focus in literature has been on the timing and/or size of cash inflows,

we model the timing and size of cash outflows as part of a general model. These cash outflows are

particularly relevant with capital constraints, since their timing and size have a profound impact

on the capital level available during the project (section 3).
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3. Problem definition

In this section, we discuss the problem definitions of the capital–constrained project schedul-

ing problem with discounted cash flows (CCPSPDC), and of its renewable resource–constrained

extension the CRCPSPDC.

3.1. The capital–constrained project scheduling problem with discounted cash flows

A project can typically be represented by a directed graph or network G(N,A) with N used

for the project activities or nodes and A the precedence relations or arcs between the nodes N .

We employ the activity–on–the–node (AoN) representation and assume a time–lag of zero for the

precedence relations. Each activity i (i ∈ N = {1, . . . n}) has a duration di, a cash inflow ci,in (> 0)

and a cash outflow ci,out (< 0). Additionally, a start dummy 0 and end dummy n+ 1 are included.

The project has a deadline of δn+1. The finish times fi of the activities are the decision variables.

Mathematically, the max–NPV problem can be conceptually formulated as follows:

Maximize

n∑
i=1

(ci,in + ci,out) · e−αfi (1)

Subject to:

fi ≤ fj − dj , ∀(i, j) ∈ A, (2)

fn+1 ≤ δn+1, (3)

fi ∈ int+, ∀i ∈ N (4)

The objective function (1) optimizes the project NPV based on a discount rate α, and discounts

both the cash in– and outflow to the activity finish time. Constraints (2) enforce precedence

feasibility. Constraint (3) makes sure the project deadline is met. If no deadline were imposed,

cash outflows could be delayed indefinitely. Finally, constraints (4) state that the decision variables

should be integer values.

In objective function (1), it is assumed that cash in– and outflows both occur at activity

completion time. However, for the extension with capital constraints (CCPSPDC) we consider

alternative occurring times for the cash outflows, since the cash outflows have an impact on the

capital balance. We propose the following general model for the CCPSPDC, as an extension to the

max–NPV model:
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Maximize

n∑
i=1

ci,in · e−αfi +

n∑
i=1

di∑
t=0

ci,out · vit · e−α(fi−di+t) (5)

Subject to:

C0 +
∑

i∈Qf (t)

ci,in +
∑

i∈Qs(t)

min(t−(fi−di),di)∑
w=0

ci,out · viw ≥ 0, t = 0, . . . , δn+1, (6)

fi ≤ fj − dj , ∀(i, j) ∈ A, (7)

fn+1 ≤ δn+1, (8)

fi ∈ int+, ∀i ∈ N (9)

The objective function (5) optimizes the project NPV, with the first term containing the NPV of

the cash inflows. It is assumed that cash inflows always occur upon activity completion. The second

term models the cash outflows based on a parameter vit (vit ∈ [0; 1]), which holds the fraction of

an activity i’s cash outflow to be paid at time fi − di + t. In order to ensure that the entire cash

outflow ci,out of each activity i is assigned to a time period during the activity’s duration, we set∑di
t=0 vit = 1. This way, ci,out is distributed over the activity duration in a predefined manner.

Constraints (6) model the capital feasibility and ensure that the capital does not become negative

at any time unit t. Qs(t) is the set of activities which have been started on and before time t, and

Qf (t) is the set of activities finished on and before time t. min(t − (fi − di), di) in the third sum

ensures that for the capital evaluation at time t, only cash outflows of activity i up until time t are

considered. Constraints (7)–(9) are the same as constraints (2)–(4) in the max–NPV model.

Figure 2 provides an overview of five different applications of the general CCPSPDC model.

Each separate graph shows the capital profile of a single activity i, with on the horizontal axis the

time t and on the vertical axis the capital Ct at time t. The values for Ct are calculated based

on constraints (6). The bold line in each of the graphs is the capital profile of activity i during

its required duration. Each column in the figure displays a different application based on different

values for the vit parameters to model the way the cash outflows are spread over the duration,

whereas the rows distinguish between the three possibilities regarding the comparative values of

ci,in and ci,out. In the remainder of this paper, we focus on the three highlighted applications.

Models 1 and 3 constitute two extreme cases, since it is assumed that the cash outflows occur at

the start and end of an activity respectively. Without loss of generality, it can be stated that model

2 serves as a representation of all model variations in between both extremes, in which the cash

outflows are distributed over the time instances between the activity start and finish times.

• Model 1: cash outflows are paid at activity start times (vi,0 = 1), and hence reductions

in available capital occur at the start of an activity. The resulting objective and capital

constraints can be simplified and correspond with functions (10) and (11) respectively.
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Figure 2: Example applications of model CCPSPDC.

Maximize

n∑
i=1

ci,in · e−αfi +

n∑
i=1

ci,out · e−α(fi−di) (10)

C0 +
∑

i∈Qf (t)

ci,in +
∑

i∈Qs(t)

ci,out ≥ 0, t = 0, . . . , δn+1 (11)

• Model 2: cash outflows are paid on a per time unit basis during the activity duration

(vi,0...di−1 = 1/di). The objective function and capital limitations are adjusted to functions

(12) and (13) respectively.

Maximize

n∑
i=1

ci,in · e−αfi +

n∑
i=1

di−1∑
t=0

ci,out/di · e−α(fi−di+t) (12)

C0 +
∑

i∈Qf (t)

ci,in +
∑

i∈Qs(t)

min(t− (fi − di) + 1, di) · ci,out/di ≥ 0, t = 0, . . . , δn+1 (13)

• Model 3: cash outflows are paid at activity finish times (vi,di = 1), along with the receipt

of the cash inflows. The simplified objective function (14) and capital constraints (15) are

shown below.
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Maximize

n∑
i=1

ci,net · e−αfi (14)

C0 +
∑

i∈Qf (t)

ci,net ≥ 0, t = 0, . . . , δn+1 (15)

3.2. The capital– and resource–constrained project scheduling problem with discounted cash flows

As an extension to the problem discussed in section 3.1, we propose to also include renewable

resource (RR) constraints. The mathematical models of section 3.1 have to be extended with

renewable resource constraints. Each activity i has a resource demand rig of type g, whereas each

RR type g (g ∈ R = {1, . . . , |R|}) has a limited availability of ag. Functions (16) have to be added

as additional constraints to the models of section 3.1. S(t) are the set of activities in progress at

time t.

∑
i∈S(t)

rig ≤ ag, ∀g ∈ R, t = 0, . . . , δn+1 (16)

The CRCPSPDC contains both renewable resource and capital constraints, both of which are

fundamentally different as discussed along the following lines:

• Renewable resources have a fixed availability, are decreased at the start time of an activity,

and are renewed at activity finish time. Examples include machines and workers, which are

owned by the company executing the project and do not need to be purchased (Pritsker et al.,

1969; Blazewicz et al., 1983).

• Cumulative resources (CR) have a variable availability, which is not necessarily the same after

the completion of an activity (Neumann and Schwindt, 2002). Examples of a cumulative

resource are inventory and capital.

As an example, consider the network in figure 3 with a single RR (a1 = 3), an initial capital

C0 of 30 and a deadline of 10. The discount rate is assumed to be 1%. The graph displays the

example’s network structure with a duration, RR demand, and cash out– and inflow for each

activity. We assume model 1 from section 3.1 is applied, with cash outflows at the activity start

times and inflows at the activity finish times. We consider the optimal solution to the example and

its corresponding schedule in three distinct cases.

1. CCPSPDC: the optimal schedule is displayed in the top left of figure 4. The width of each

of the blocks corresponds with the activities’ durations. The bold line displays the capital

level available throughout the project (e.g. C3 = 30 − 10 − 20 + 20 = 20). In the schedule,

activity 3 is scheduled at its earliest finish time because of its positive NPV, whereas activity
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i
ri1, ci,out, ci,in
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0, 0, 0
di

6

2

3

4

3 0

3
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2, -10, 20 0, 0, 0

1, -20, 10

2, -20, 20

5

2

1, -25, 30

Figure 3: Data example.

2 is scheduled at its latest finish time due to its negative NPV. The cumulative NPV of

activities 4 and 5 is positive so both are scheduled at their earliest finish time, even though

the NPV of activity 4 is negative. No capital shortages occur. The project NPV equals 3.26

(= −18.65 + 9.05− 10 + 19.41− 20 + 19.22− 24.02 + 28.25). The only trade–off to be made

in this case is between the capital availability and the project NPV.

2. RCPSPDC: the optimal schedule is shown in the top right schedule of figure 4, with the height

of each of the blocks corresponding with its RR demand. The additionally introduced right

vertical axis displays the RR availability a1. Compared to the top right schedule, activities

4 and 5 have been delayed because activities 3 and 4 can no longer be scheduled in parallel.

Since the cumulative NPV of activities 4 and 5 is smaller than the NPV of activity 3, it is

best to delay the former activities. It can, however, be observed that the resulting schedule

is capital infeasible since the capital drops to -5 between times 7 and 9. The only trade–off

in this case is between the RR availability and the project NPV.

3. CRCPSPDC: the optimal schedule can be found at the bottom of figure 4. Due to the limited

capital availability, activity 2 has to be scheduled at time 7 since otherwise insufficient capital

is available to start activity 5. Alternatively, delaying activity 4 and 5 does not ensure a non–

negative capital during the project duration. Hence, this case involves trade–offs between

capital availability and project NPV, between RR availability and NPV, but also between

capital and RR availability.

Based on the three different example schedules, it can be concluded that more trade–offs are

included in the CRCPSPDC, when compared to both the CCPSPDC and the RCPSPDC.

4. Scheduling techniques with capital constraints

In this section, we first discuss our proposed scheduler for the CCPSPDC. Second, we propose

a more complex version of the scheduler, which also takes the renewable resource constraints into

account. Both schedulers consists of three main parts: an initial schedule, a capital feasibility

evaluation or improvement step, and a NPV improvement part.
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Figure 4: Schedules example.

4.1. A scheduler for the CCPSPDC

We start with the construction of an initial schedule and evaluate the capital feasibility. If the

schedule is capital feasible (C–Feas), a NPV improvement is applied, otherwise a penalty function

is employed, used to denote that the resulting schedule is capital infeasible (C–Infeas).

The proposed scheduler is applied on a single priority list (PL) generated by a metaheuristic

(section 5), and is used for each list generated by the metaheuristic. An overview of the overall

flow of the scheduler is shown in figure 5.

Start C-Feas?Initial 
schedule

NPV 
improve

Repeat until 
no change

Use 
penalty 

function 1

EndY

N

Figure 5: Schedule generation flow CCPSPDC.

4.1.1. Initial schedule

The initial schedule aims to schedule all activities subject to the precedence relations and to

the capital constraints. The activities are scheduled in the order in which they appear in the PL,

starting with the first activity in the list. The method aims to find a C–Feas finish time and starts

from the activity’s earliest finish time.
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• The partial schedule is C–Feas: the finish time of activity i is retained, the capital availability

is updated for the entire project duration, and the scheduler continues with the next activity

in the PL.

• The partial schedule is C–Infeas: the proposed finish time is incremented and the C–Feas

evaluation is repeated. If the finish time, however, cannot be incremented, i.e. it would

become larger than the latest finish time, no C–Feas finish time could be found. Activity i is

then scheduled at its earliest finish time and the scheduler continues with the next activity

in the PL.

4.1.2. Capital feasibility evaluation

Once the initial schedule of section 4.1.1 has been completed, we evaluate the capital feasibility

of the schedule by calculating the Excess of Capital Request (ECR), which is defined as: ECR =∑δn+1

t=0 max(0;−Ct), with Ct the capital level at time t. The ECR adds the shortages of capital

of all time units t during the planned project duration for which the capital Ct is negative. The

resulting ECR value gives an indication of the capital feasibility of the schedule. A large ECR

value on the one hand means that many shortages in capital exist or that the existing shortages are

large, or both. A small ECR value on the other hand implies that the shortages are limited both

in number of periods and in size. Finally, an ECR value of zero means no capital shortages exist.

If the initial schedule of section 4.1.1 has an ECR value equal to 0, the scheduler continues with

the NPV improvement of section 4.1.3. Otherwise, penalty function (17) is applied, after which the

schedule is returned to the metaheuristic (section 5).NPV = NPVC−Infeas · Y ECR
1 if NPVC−Infeas ≥ 0

NPV =
NPVC−Infeas

Y ECR
1

otherwise
(17)

NPVC−Infeas is the NPV of the C–Infeas schedule, whereas Y1 (Y1 ∈[0;1]) is a parameter which

is tested in section 6.2. Function (17) ensures that the NPV of a C–Infeas schedule is considerably

worse than that of any C–Feas schedule by reducing NPVC−Infeas, based on the size of the ECR.

A larger ECR value leads to a larger reduction in project NPV.

4.1.3. NPV improvement

The NPV improvement is an adjustment of the network–based moves of Leyman and Vanhoucke

(2015) to improve the project NPV for the RCPSPDC. For a C–Feas schedule, the goal is to

improve the project NPV while maintaining capital feasibility, by delaying sets of activities with a

negative cumulative NPV. These sets are constructed by taking the precedence relations between

activities into account. The method of Leyman and Vanhoucke (2015) is adjusted by omitting the

renewable resources and by including a capital feasibility check of each proposed delay. Once the

NPV improvement method is completed, the schedule is returned to the metaheuristic.
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4.2. A scheduler for the CRCPSPDC

The scheduler for the CCPSPDC is extended to cope with the effects of both the capital and

renewable resource limitations. Due to the addition of renewable resource constraints, a more

complex scheduler is required. We start with the construction of an initial schedule and continue

with the capital feasibility improvement method if the initial schedule is C–Infeas. Finally, we go

into detail about the changes in activity finish times to improve the project NPV.

The proposed scheduler is applied on a single PL generated by a metaheuristic (section 5), and

is used for each solution generated by the metaheuristic. An overview of the overall flow of the

proposed scheduler is shown in figure 6. In general, the scheduler consists of three parts, namely

an initial schedule (section 4.2.1) and two types of delays:

• The first type of delays (Capital feasibility improvement) are discussed in section 4.2.2, which

aim to improve capital feasibility and delay sets of activities.

• The second type of delays (NPV improvement) improve the project NPV by delaying sets of

activities with a negative cumulative NPV and are discussed in section 4.2.3.

Serial 
SGS

D-Feas? 
(1)

Use 
penalty 

function 2

Start
Y

N

Schedule 
improve

D-Feas? 
(2)

N

Y

Activity 
move 
rules 1

Repeat until 
no change

EndC-Feas? 
(1)

Y

N

Capital 
improve

C-Feas? 
(2)

Y

N Use 
penalty 

function 1

Activity 
move 
rules 2

Repeat until 
no change

Delay 
negatives

Initial schedule

Capital feasibility 
improvement

NPV 
improvement

Figure 6: Schedule generation flow CRCPSPDC.

4.2.1. Initial schedule

For the initial schedule we aim to obtain a deadline feasible (D–Feas) earliest start schedule

and use the first three steps outlined below. The fourth step improves the earliest start schedule

for use in the Capital feasibility improvement (section 4.2.2) and NPV improvement (section 4.2.3)

methods.

1. The serial schedule generation scheme (SSGS) of Kelley (1963) (Serial SGS in figure 6) is

applied.
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2. If the resulting schedule of the first step is deadline–infeasible (D–Infeas), the forward–

backward improvement method of Li and Willis (1992) is used to reduce the project duration

(D–Feas?(1) and Schedule improve in figure 6). This method terminates if no further re-

ductions in project duration can be made. If the schedule of the first step is D–Feas the

procedure continues with step 4.

3. If the schedule is still infeasible after step 2 the penalty function of Leyman and Vanhoucke

(2015) is applied (D–Feas?(2) check and Apply penalty function 2 in figure 6):NPV = −Y2 +NPVD−Infeas · Y fn+1−δn+1

3 if NPVD−Infeas ≥ 0

NPV = −Y2 +
NPVD−Infeas

Y
fn+1−δn+1
3

otherwise
(18)

NPVD−Infeas is the NPV of the D–Infeas schedule, whereas Y2 and Y3 are parameters (Y2 > 0,

Y3 ∈ [0; 1]) which are tested in section 6.2. Function (18) ensures that the NPV of a D–Infeas

schedule is considerably worse than that of any D–Feas schedule by reducing NPVD−Infeas in

two ways. First, the parameter Y3 reduces the project NPV based on the difference between

the project duration fn+1 and the project deadline δn+1. Second, Y2 subtracts a large positive

value from NPVD−Infeas.

4. All activities i with a negative NPV are delayed as late as possible (Delay negatives in figure

6). These delays are done in the order in which the activities occur in the solution’s PL

(section 5), starting from the back of the list. If any delays have occurred, the fourth step is

repeated until no more changes are applied. The repetition is used to ensure that all activities

with a negative NPV are scheduled as late as possible, given the schedule after the previous

steps and any delays of other activities.

Once the initial schedule has been generated and the method terminates with step 4, the capital

feasibility improvement method of section 4.2.2 is applied. If however no D–Feas schedule could

be found, the method terminates in step 3 and returns the schedule to the metaheuristic, since a

D–Infeas schedule is not considered for further improvement.

4.2.2. Capital feasibility improvement

The goal of the improvement method is to evaluate the capital feasibility of a D–Feas schedule

generated by the initial scheduler (section 4.2.1), and to improve the capital feasibility if the schedule

is C–Infeas. If the schedule under consideration has an ECR equal to zero the algorithm continues

with the NPV improvement of section 4.2.3. If the ECR is positive, however, a capital feasibility

improvement method is applied to reduce the ECR value. Figure 7 gives an overview of the capital

feasibility improvement method discussed in this section, which corresponds with Capital improve,

C–Feas?(2) check, and Use penalty function 1 in figure 6. C–Feas?(1) states the condition under

which the capital feasibility improvement method is applied.
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The goal of the method is to improve a solution’s capital feasibility by delaying cash outflows.

Delays for activities may require sets of succeeding activities to be delayed as well. These sets can

be constructed in two ways, namely based on the network successors and based on the schedule

neighbors. In the former case only precedence related activities are included in the set, whereas in

the latter case neighboring activities in the project schedule, which may or may not be precedence

related, are used. This way, both alternatives consider different sets of activities, which can lead

to different changes in the ECR. We propose to first apply the schedule–based capital feasibility

improvement and second the network–based variant. These delays not only delay sets of activities

with a negative cumulative NPV but may also delay sets with a positive cumulative NPV, since

the goal is to delay cash outflows to obtain a C–Feas solution. We discuss each of the method’s

large parts (Check time t, Seti calculations, Delay until next positive, Delay until next successor

and Schedule seti) and the links between the parts in more detail. Table 2 provides an overview of

the notations used in the remainder of this section.
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t=0

Y

N

End: 
feas

Ct<0? ∃i∈
earlySet?

End: 
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Figure 7: Capital feasibility improvement flow.

Check time t: the first large part of the capital feasibility improvement method checks the

capital feasibility of all time instances t, starting from time 0 to the project deadline δn+1. If the

capital Ct at time t is negative then the set earlySet is constructed by including all activities i with

a start time smaller than or equal to t in earlySet. The capital feasibility improvement method
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aims to improve the capital feasibility at time t, by delaying the cash outflows corresponding with

some or all of these activities i in earlySet to time units later than time t. The activities added to

earlySet are sorted in decreasing order of their appearance in the PL, which implies that the later

the position in the PL of an activity i in earlySet, the earlier that activity i is considered by the

part Seti calculations.

The two possible end nodes in figure 7 for the capital feasibility improvement method are linked

with the Check time t part in the following way. If the project deadline can be reached without any

remaining capital shortages, the procedure terminates in the node End: feas, and a C–Feas schedule

has been found. The scheduler continues with the NPV improvement part of the algorithm (section

4.2.3). If, however, a capital shortage still exists at time t but no more unconsidered activities i

remain in earlySet, the method finishes in the node End: infeas, and no C–Feas schedule could be

found based on the corresponding PL. In this case penalty function (17) is applied, after which the

solution is returned to the metaheuristic (section 5).

Notation Definition
t Time at which capital feasibility is evaluated
Ct Capital available at time t
earlySet Set of activities which may be delayed to improve Ct
i Index of activity from earlySet currently under consideration
seti Set of activities to be delayed together with i based on algorithm 1
k Index for activities in seti
Sk Set of immediate successors of activity k based on the set of arcs A in G(N,A)
j Index of successor of activity k
Bk Set of neighbors of activity k scheduled after k
h Index of neighbor of activity k
∆i,max Maximum allowable delay for seti based on any immediate successors not in seti
l Index of earliest activity after time t which can reduce the project ECR
∆i,next Minimum required delay for seti based on activity l
Sched Boolean used by algorithm 1 to distinguish between network– and schedule–based variant

Table 2: Overview of notations capital feasibility improvement.

Seti calculations: the second part starts with an activity i from earlySet provided by Check

time t and aims to find the set of activities seti which has to be delayed together with i, to ensure

precedence feasibility. To find seti, algorithm 1 is applied for the network– or schedule–based

delays:

• Network–based moves (sched = false): the algorithm finds the set of all immediate successors

of activity i, for which the start time equals the finish time of activity i. The algorithm then

recursively determines whether any successors of these successors should also be added.

• Schedule–based moves (sched = true): the algorithm finds the set of all neighbors of activity

i, for which the start time equals the finish time of activity i. These neighbors are those
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activities which are scheduled immediately after activity i and which may or may not be

precedence related to activity i. The algorithm then recursively determines whether any later

scheduled neighbors of these neighbors should also be added.

The capital feasibility improvement method aims to delay seti to reduce the capital shortage

at time t, and calculates two types of delays. The maximum allowable delay for seti, ∆i,max, based

on immediate successors not in seti is calculated as follows: ∆i,max = min(fj−dj−fk|k ∈ seti, j ∈
Sk, j /∈ seti). ∆i,max holds the maximum delay possible for all activities k from seti, based on their

successors j not in seti.

Algorithm 1 Get all successors

GetAllSuc (current activity k,seti[],boolean sched)

If sched = false (network–based)
For j = 1 to |Sk|

If fj − dj = fk ∧ j /∈ set
set = set ∪ {j}
GetAllSuc (j,seti,sched)

End if
End for

End if
If sched = true (schedule–based)

For h = 1 to |Bk|
If h /∈ set

set = set ∪ {h}
GetAllSuc (h,seti,sched)

End if
End for

End if
Return set

In order to reduce the capital shortage at time t, a second minimum delay has to be calculated.

Activity i from earlySet has to be delayed at least until the earliest next activity l (l /∈ seti), to

reduce the impact of activity i on the capital shortage. Such an activity l furthermore has to be

scheduled after time t. The goal is to determine a minimum delay for activity i such that its cash

outflows are (partially) compensated by the cash inflow of activity l. Additionally, we do not wish

to delay activity i any further than required to reduce the capital shortage at time t, to avoid an

unnecessary reduction of the project NPV. The minimum required delay based on such an activity

l is called ∆i,next, and depends on the cash flow model used:

• Model 1 (cash outflows occur at activity start time): activity i should be scheduled later than

activity l, i.e. fi − di ≥ fl, to allow for a proper compensation of ci,out.

• Model 3 (cash outflows occur at activity finish time): activity i should have a finish time

equal to at least the finish time of activity l, i.e. fi ≥ fl.

• Model 2 (cash outflows occur in a stepwise manner during the duration of activity i): the

required delay should be in–between the delays for model 1 and 3: fi − X ≥ fl, with X ∈
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{1; di}. The value for X determines the part of activity i that has to be delayed after time t,

in order to reduce the capital shortage at time t by the largest amount possible.

If no such activity l exists, the capital conflict at time t cannot be solved. In that case,

∆i,next = +∞, the procedure terminates, penalty function (17) is applied and the solution is

returned to the metaheuristic. If such an activity l does exist, the procedure compares ∆i,next and

∆i,max and either continues with Delay until next positive (∆i,next ≤ ∆i,max) or with Delay until

next successor (∆i,next > ∆i,max).

Delay until next positive: this part is applied if ∆i,next ≤ ∆i,max, which implies that a

sufficient delay to reach activity l found by the Seti calculations part exists. The goal of Delay until

next positive is to ensure that a delay of at least ∆i,next is achieved. This way, the capital feasibility

at time t can be improved since the negative cash flow of activity i is (partially) compensated by

the positive cash flow of activity l. The set seti is delayed by at least ∆i,next time units, and

subsequently scheduled at the earliest possible time for which the capital increases.

The method starts with a delay of ∆i,next and checks the RR availability for all activities in seti.

In case a feasible delay is found, the procedure continues with the Schedule seti part. Otherwise,

∆i,next is incremented. The RR availability check continues until a feasible delay is found (continue

with Schedule seti) or until ∆i,next becomes larger than ∆i,max. The latter case implies that no

RR feasible delay of at least ∆i,next could be found, in which case the procedure returns to the set

earlySet of the Check time t part. The algorithm then continues with the next activity i in earlySet

and repeats the Seti calculations until a feasible delay is found or until earlySet is empty. If no

next activity i in earlySet exists, the capital feasibility improvement procedure terminates, penalty

function (17) is applied and the solution is returned to the metaheuristic.

Delay until next successor: this part is applied if ∆i,next > ∆i,max, which means that

activity i cannot reach activity l obtained by the Seti calculations part. The goal of Delay until

next successor is to delay seti as late as possible to reduce the capital shortage at time t. The set

seti is delayed by at most ∆i,max time units, and scheduled at its latest possible time given this

maximum delay.

The method starts with a delay of ∆i,max and evaluates the RR availability for all activities

in seti. If a feasible delay is found, Schedule seti is applied. If the delay is infeasible, ∆i,max is

decreased by 1 and the RR check is repeated. Delay until next successor terminates if a feasible

delay is found (continue with Schedule seti), or if ∆i,max equals zero (return to the set earlySet of

the Check time t part as done for the Delay until next positive part).

Schedule seti: the fifth part is used if either Delay until next positive or Delay until next

successor has found a feasible delay for seti. The schedule is updated based on the delay, and

single activities with a negative NPV are scheduled as late as possible. Once the Schedule seti part

has been completed, the procedure returns to the Check time t part, and searches again for periods
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t with a negative capital in order to construct a new seti to shift.

4.2.3. NPV improvement

In this section, we briefly discuss the NPV improvement method. The activity move rules of

this section correspond with the steps Activity move rules 1 (network–based moves) and Activity

move rules 2 (schedule–based moves) in figure 7, and are adapted versions of the activity move

rules of Leyman and Vanhoucke (2015) for the RCPSPDC.

Once a schedule is both D–Feas and C–Feas our algorithm aims to improve the project NPV

while maintaining both deadline and capital feasibility. The goal of the NPV improvement move

rules is to delay sets of activities with a negative cumulative NPV. Similar to the rules for capi-

tal feasibility improvement (section 4.2.2) we distinguish between a network– and schedule–based

variant. The network–based delays consider an activity’s predecessors and successors based on

the project network, whereas the schedule–based delays consider the neighboring activities in the

project schedule. We propose to first employ the network–based delays and then the schedule–based

delays, in line with the results reported by Leyman and Vanhoucke (2015) for the RCPSPDC. The

only adaptation required for the CRCPSPDC, is a capital feasibility evaluation of every RR feasible

delay. When the NPV improvement method is completed, the resulting schedule is returned to the

metaheuristic.

5. Metaheuristics

In this section, we focus on the details of the metaheuristics used. We choose to compare the

performance of three metaheuristics, namely a tabu search, a genetic algorithm and a scatter search.

These three metaheuristics are selected since they allow for a comparison between single solution,

single population and multi population approaches respectively. The specific implementation of

each of the metaheuristics is based on three applications from literature, which report the best

result to date for the problems studied in the respective papers. All three algorithms can be applied

to both the CCPSPDC and the CRCPSPDC. The algorithm parameters are tested in section 6.2.

We provide an overview of the application of each metaheuristic in the following paragraphs, but

first discuss the solution representation used by all three algorithms.

Solution representation: since delays in sections 4.1 and 4.2 are done according to the order

in which activities appear in the PL, we employ the topological order (TO) representation first

proposed by Valls et al. (2003, 2004), and used for the RCPSP by Debels et al. (2006). The TO

representation ensures a precedence feasible ordering of activities and is updated based on actual

finish times after the improvement methods discussed in sections 4.2.2 and 4.2.3 have been applied.

This way, a population element’s initial PL is transformed into a finish time ordered activity list.

Ties are broken randomly. For an example of the PL and TO representations, we refer to Appendix

A.1.
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Tabu search (TS): we employ the TS of He et al. (2012) for the multi–mode capital–

constrained project payment scheduling problem. The authors showed that the proposed TS

performs best out of several alternatives. The initial solution’s PL is generated randomly and

is set as both the best and current solution. The appropriate scheduler of either section 4.1 or 4.2

is applied to evaluate the initial solution. Afterwards, a neighbor is generated from the current

solution by applying a two–activity swap. If the neighbor’s NPV (based on the scheduler used) is

better than the best solution found, the latter is updated along with the current solution, and the

reverse of the swap is added to the tabu list with length L. For the tabu list, the first–in–first–out

principle is used, which means that once the list is full, the swap which has been in the list the

longest is removed. If the neighbor’s NPV is worse than the best solution found, the algorithm

checks whether the swap employed is in the tabu list. If this is not the case, the current solution

is updated and the reverse of the swap is added to the tabu list. Otherwise, the current solution is

retained. Once the neighbor has been evaluated, and the current solution may have been updated,

the TS again generates another neighbor of the current solution. If no change in the current so-

lution has occurred after C neighbors have been generated, a new random PL is generated. New

neighboring solutions are generated until a stopping criterion is met.

Genetic algorithm (GA): we apply the GA proposed by Leyman and Vanhoucke (2015) for

the RCPSPDC. The GA obtained the best results to date and has subsequently been employed

for the multi–mode RCPSPDC with different payment models (Leyman and Vanhoucke, 2016),

based on extensive computational experiments. For the initial population |P | PLs are randomly

generated, with |P | the GA’s population size. The scheduler of either section 4.1 or 4.2 is employed

for all elements. These |P | elements are then all introduced in the GA’s population P on which

the selection, crossover and mutation operators are applied. A selection operator is used to select

parents used for crossover. The elite selection operator is implemented, which randomly selects

one parent from the subset R of the best solutions in the population, and uses four–tournament

selection for the second parent. A one–point crossover is subsequently applied on the two selected

parents to create two children. Afterwards, a two–activity swap mutation is imposed on each child

with a probability of M , and the appropriate scheduler is employed. These steps for generating and

updating children are repeated until |P | children have been created. Once |P | children have been

generated, the best |R| parents are retained and the rest of the parents are replaced by the best

|P |−|R| children. The set R is subsequently updated to contain the best elements in the population.

Consider that this subset R is also the set from which the first parent is always selected in the elite

selection operator. The selection, crossover and mutation operators are then again applied, and

this is repeated until a stopping criterion has been met.

Scatter search (SS): the SS procedure used in this paper is the algorithm of Van Peteghem

and Vanhoucke (2011), which has the best results to date for the multi–mode RCPSP. First, an

initial population with size B · (|B1| + |B2|) is randomly generated (Diversification generation).
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B1 is the subset of best elements, whereas B2 holds the most diverse elements found. B is a

multiplication factor applied for the initial population. The scheduler of either section 4.1 or 4.2 is

used to determine the NPV of each element from the initial population. Once the initial population

has been generated, the subsets are constructed (Subset generation). Solutions are added to B1

if their NPV is better than the best solution currently in B1. Alternatively, if the solution NPV

is better than the worst schedule in B1, and if the minimum distance of the new solution to any

solution in B1 is greater than v1 ·n (v1 ∈ [0; 1]), the new solution is also added to B1. The minimum

distance condition is imposed to ensure some degree of diversity in the set B1. Solutions are added

to B2 if they are more diverse from any solution in B1 than any other solution in B2, or if the

minimum distance of the new solution to any solution in B1 is greater than v2 · n (v2 ∈ [0; 1],

v2 > v1). The distance between two solutions is calculated based on the following formula, similar

to Van Peteghem and Vanhoucke (2011):

dfp1,p2 =

n∑
i=1

|fp2i − f
p1
i | (19)

p1 and p2 are the two solutions which are compared, and fp1i and fp2i their corresponding finish

times for activity i. Additionally, if there are less elements in B2 than |B2|, the subset is seeded with

random solutions. Solutions are subsequently combined by grouping all pairs from B1 that contain

at least one new solution, and all pairs with one solution from B1 and one solution from B2 (Solution

combination). Two children are generated for every pair based on a one–point crossover. Each of

the newly generated elements are scheduled (Improvement method), and afterwards both reference

sets B1 and B2 are updated based on the same criteria discussed earlier (Reference set update).

The generation of new elements and subsequent steps are repeated until a stopping criterion has

been met.

6. Computational results

In this section, we discuss our computational results for both the CCPSPDC and the CR-

CPSPDC. We first give details of the proposed test data and subsequently configure the proposed

schedulers and the three metaheuristics. We clearly show the added value of the steps of the capital

feasibility improvement method. We analyze the influence of the data parameters and compare the

results for the CCPSPDC with literature. Finally, we provide some managerial insights based on

the trade–offs discussed in section 3.2. The stopping criterion based on 5,000 generated schedules

as defined by Lova et al. (2009) is employed for all tests, and we assume a discount rate of 1%. All

tests were run in Xcode version 5.0.2 on a computer with a 2.5 GHz Dual Core processor.
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6.1. Test data

Project network: we use the same dataset as employed for the RCPSPDC by Vanhoucke

(2010), which consists of 2,880 instances, but omit the renewable resources for the CCPSPDC.

The parameter settings of the data are shown in table 3 and constitute the first five parameters,

with deadline increase the percentage increase of the minimum project duration for the RCPSP.

The project deadline is set by increasing the minimum project duration for the RCPSP with this

percentage D–Incr.

Parameter Values Source

Number of activities (Act) 25, 50, 75 or 100 Vanhoucke (2010)
Order strength (OS) 0.25, 0.50 or 0.75 Vanhoucke (2010)
Resourse usage (RU ) 2 or 4 Vanhoucke (2010)

Resource constrainedness (RC ) 0.25, 0.50 or 0.75 Vanhoucke (2010)
Deadline increase (D–Incr) 5, 10, 15 or 20 Vanhoucke (2010)

Profit margin percentage (PMP) 0.33, 0.50 or 0.67 This paper
Cash flow distribution (CFD) 0.33, 0.50 or 0.67 This paper
Capital constrainedness (CC ) 0.25, 0.50 or 0.75 This paper

Table 3: Parameter settings of test instances.

Cash flows: we generate cash flow data for each of the 2,880 instances based on two parameters.

Smith-Daniels and Smith-Daniels (1987) and Smith-Daniels et al. (1996) state that a project which

does not generate capital will not be executed from a capital management point of view, which

implies that the total cash inflows of a project have to exceed its total cash outflows. A profit

margin percentage (PMP) parameter is used to determine the difference between the total cash

in– and outflows. The values for the PMP parameter are 0.33, 0.50 and 0.67, which correspond

with a low, medium and high profit margin respectively. We start from the cash flow data of

Vanhoucke (2010) for the RCPSPDC with 100% negative cash flows and apply the PMP on this

data to generate a total cash inflow.

The distribution of the cash inflows over the activities in the project network also has an impact

on the capital feasibility. As such, we introduce a cash flow distribution (CFD) parameter, which

determines the distribution of the cash inflows over the activities in the project. The value of

the CFD is set to 0.33, 0.50 or 0.67 which implies that respectively 33% (67%), 50% (50%) or

67% (33%) of the total cash inflow is evenly distributed over the first (second) n/2 activities. The

division of activities in the first or second half of the project is based on the activity numbers. A

low value for the CFD means that the cash inflows received by the first (second) n/2 activities

are relatively small (large), whereas those received by the second n/2 activities are relatively large

(small). The cash inflow for each of the first n/2 activities is equal to −CFD ·
∑n

i=1 ci,out ·
1
n/2 ,

whereas the second n/2 activities’ cash inflow equals −(1−CFD) ·
∑n

i=1 ci,out ·
1
n/2 . Based on the

settings for both the PMP and CFD parameters, 9 combinations can be generated for each of the

2,880 instances.
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Initial capital: we define a new parameter capital constrainedness (CC ), inspired by the

definition of resource constrainedness (RC) (Patterson, 1976), as follows:

CC = −
∑n
i=1 ci,out/n

C0
(20)

The enumerator of the right hand side holds the average of the cash outflows of all the activities

in the project, whereas the denominator is the initial capital C0. Based on a value set for the CC

on the left hand side, the value for C0 can be calculated. As an example, assume a project with

10 activities and a total cash outflow of -1,000. We wish to set the CC to 0.50. In this case, the

initial capital C0 is set to -(-1,000/10)/0.50 = 200. Similar to the values chosen for the RC in the

data of Vanhoucke (2010), we choose to employ values of 0.25, 0.50 or 0.75 for the CC. Finally,

consider that the CC is independent of both the PMP and the CFD, since different values of both

cash flow parameters change the cash inflows of the activities but not the cash outflows.

An overview of the values of the three additional data parameters PMP , CFD and CC can

be found at the bottom of table 3. As a result, the total number of test instances is 2,880 x 9

cash flow variants x 3 CC levels = 77,760 instances per cash flow model. The 9 cash flow files for

each project instance of Vanhoucke (2010) can be found online at www.projectmanagement.ugent.be

(Research → Project scheduling → Net present value), along with the network data and the best

known solutions for the CCPSPDC and the CRCPSPDC.

6.2. Algorithm configuration

In this section, we discuss the results of the configuration of our algorithm. We first briefly

discuss the settings of the algorithm parameters, and subsequently go into detail about the added

value of the proposed scheduler for both the CCPSPDC and the CRCPSPDC. The performance of

the three metaheuristics is also analyzed for both problems. All tests are run on 20% of the data

presented in section 6.1, by employing each first out of five instances.

PMP
0.33 0.50 0.67

Y1 Y3 Y1 Y3 Y1 Y3

0.33 0.99 0.85 0.95 0.90 0.70 0.90
Model 1 CFD 0.50 0.95 0.90 0.75 0.95 0.70 0.95

0.67 0.85 0.95 0.70 0.95 0.70 0.95

0.33 0.99 0.85 0.95 0.80 0.70 0.80
Model 2 CFD 0.50 0.85 0.90 0.75 0.85 0.65 0.85

0.67 0.80 0.95 0.65 0.90 0.60 0.90

0.33 0.99 0.85 0.90 0.90 0.80 0.90
Model 3 CFD 0.50 0.90 0.90 0.80 0.95 0.75 0.95

0.67 0.80 0.95 0.75 0.95 0.70 0.95

Table 4: Penalty function parameters.
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6.2.1. Algorithm parameters

Y2 of penalty function (18) is set to 20,000, a value much larger than the NPV of any feasible

solution, whereas the values for Y3 can be found in table 4, along with the best found values for

the Y1 parameter of penalty function (17) for the capital feasibility. Based on our tests, we found

that both values for Y1 and Y3 depend on PMP and on CFD, although the impact is larger for

Y1. Furthermore, minor differences can be observed in the values of both Y1 and Y3 between the

three cash flow models. The values for the penalty function parameters are applicable to all three

metaheuristics.

The best found values for the parameters of each of the metaheuristics are displayed in table

5. These values are, in general, in line with the values reported by the three applications of the

algorithms in literature (He et al. (2012), Leyman and Vanhoucke (2015), and Van Peteghem and

Vanhoucke (2011) respectively).

Parameter Value

TS L 20
C 10

GA |P | 50
|R| 5
M 0.95

SS B 9
|B1| 10
|B2| 8
v1 0.30
v2 0.50

Table 5: Metaheuristic parameters.

6.2.2. CCPSPDC

NPV improvement: we evaluate the added value of the NPV improvement, which is ap-

plied if the initial schedule is C–Feas. We compare the scheduler without the NPV improvement

(NPV−) and the scheduler with the NPV improvement of Leyman and Vanhoucke (2015) (NPVL)

in table 6. In both cases the GA is used as metaheuristic. The comparison between both alter-

natives is done based on the percentage average deviation from an upper bound (%AvDev). The

lower the percentage deviation, the better the performance of the algorithm. The upper bound is

calculated by the optimal procedure of Vanhoucke et al. (2001b) for the max–NPV problem. Only

the instances for which both alternatives found a feasible solution are included. The percentage

of C–Feas solutions found is displayed in the %C columns. We also compare the results based on

the percentage average difference between the NPV in both cases (%AvDiff ), and calculate the

p–values (p) of the difference between the two options. Based on the results in the table it can be

stated that the NPV improvement method has a clear added value for all three models, with the

highest added value achieved for model 1.
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NPV− NPVL ∆NPV

%AvDev %C %AvDev %C %AvDiff p

Model 1 11.37 94.10 5.35 94.13 7.38 <0.001
Model 2 7.65 96.14 2.25 96.12 6.35 <0.001
Model 3 4.37 98.57 0.07 98.59 4.85 <0.001

Table 6: Added value NPV improvement CCPSPDC.

Metaheuristics: in table 7 we compare the three metaheuristics. Only instances for which

all alternatives found a feasible solution are taken into account. The GA is shown to perform best

(p < 0.001) for all three models, although it can be observed that the difference between the three

alternatives is very small for model 3.

TS GA SS

%AvDev %C %AvDev %C %AvDev %C

Model 1 5.31 92.91 5.00 94.13 5.30 93.08
Model 2 2.19 94.73 1.98 96.12 2.20 95.27
Model 3 0.07 98.09 0.06 98.75 0.07 98.25

Table 7: Comparison of metaheuristics CCPSPDC.

Computation times: table 8 provides an overview of the average computation times in seconds

(s) for the three models, given the 5,000 schedules stopping criterion. We distinguish between the

average computation time used by the scheduler (AvCTS), the time used by the metaheuristic

(AvCTM ), and the total computation time (AvCTT ). The numbers between brackets display the

percentage of the total computation used for the scheduler, metaheuristic and the total procedure

respectively. The results in the table indicate that the majority of the computation time is spent

applying the scheduler to solutions generated by the GA. The average computation times are the

highest for model 2 due to the more complex cash flow profiles (section 3.1).

CCPSPDC CRCPSPDC

AvCTS AvCTM AvCTT AvCTS AvCTM AvCTT

Model 1 1.04 0.16 1.21 4.78 0.16 4.94
(86.37) (13.63) (100.00) (96.82) (3.18) (100.00)

Model 2 1.41 0.16 1.58 7.87 0.17 8.04
(89.57) (10.43) (100.00) (97.87) (2.13) (100.00)

Model 3 0.66 0.16 0.82 4.45 0.19 4.64
(80.37) (19.63) (100.00) (95.83) (4.17) (100.00)

Table 8: Computation times (s).

6.2.3. CRCPSPDC

Capital feasibility improvement: we test the added value of each part of the capital feasibil-

ity improvement, by comparing several options based on the percentage of C–Feas solutions found
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(%C–Feas) in table 9, with the best option marked in bold. The alternatives which we consider are

the following: C−−: no capital feasibility improvement; CSD: only the schedule–based moves (S)

and the delay of activities with a negative NPV (D); CND: only the network–based moves (N) on

top of D; CFD: the full proposed method (F ) with first the schedule– and then the network–based

moves, including the delay of activities with a negative NPV; CRD: first the network– and then

the schedule–based moves (reverse: R); CF−: the proposed method without the delay of activities

with a negative NPV.

C−− CSD CND CFD CRD CF−

Model 1 43.94 78.86 77.00 80.19 79.31 76.36
Model 2 57.58 86.94 85.80 87.77 87.10 86.16
Model 3 95.22 97.39 97.36 97.42 97.36 97.30

Table 9: Added value capital feasibility improvement CRCPSPDC (%C–Feas).

Based on the results in table 9, we conclude that the proposed capital feasibility improvement

method, with first the schedule– and then the network–based moves, performs best for all three

models. As illustrated in Appendix A.1, the schedule–based variant of the improvement method

offers a more efficient way to reduce capital shortages, which leads to a higher capital feasibility.

Hence, the schedule–based delays should be applied first for all three models. The added value of

delaying single activities with a negative NPV is made clear as well by comparing the %C–Feas

values for the CFD and CF− options. Based on the higher feasibility for CFD, we conclude that

the single activity delays have an added value by allowing more capital shortages to be solved

(Appendix A.2). It can, however, be observed that for model 3 only small differences can be found

between the different options for the capital feasibility improvement method, but that the method

allows for an improvement nonetheless when compared to C−−.

NPV improvement: the proposed scheduler without any NPV improvement (NPV−) is com-

pared with the scheduler with the NPV improvement of Leyman and Vanhoucke (2015) (NPVL)

in table 10, based on the GA. Only instances for which a feasible solution could be found by both

NPV− and NPVL, are included in the %AvDev and %AvDiff calculations in the table. %D is the

percentage of deadline feasible solutions found. Based on the results in the table, we conclude that

the NPV improvement method has a significant, albeit small, added value for all three models.

The added value is relatively small due to the rules for capital feasibility improvement delaying sets

of activities, independent of the set’s cumulative NPV. As such, sets of activities with a negative

cumulative NPV may already have been delayed, in particular by the Delay until next successor

part of the capital feasibility improvement method of section 4.2.2 and by the Delay negatives step.

Metaheuristics: in table 11 we compare the performance of the three metaheuristics. We also

compare with 10,000 random schedules. Only instances for which all alternatives found a feasible

solution are taken into account. We conclude that the GA performs best for all three models (lowest
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NPV− NPVL ∆NPV

%AvDev %C %D %AvDev %C %D %AvDiff p

Model 1 33.59 80.19 98.86 33.56 80.39 99.01 0.08 <0.001
Model 2 31.88 87.77 99.02 31.81 87.13 99.11 0.18 <0.001
Model 3 30.34 97.45 99.02 30.30 97.58 99.09 0.05 <0.001

Table 10: Added value NPV improvement CRCPSPDC.

%AvDev and highest %C ), with the SS second best. Additionally, all p–values, based on a pairwise

comparison between each of the four alternatives, are smaller than 0.001, indicating a significant

difference. Only the difference between TS and 10,000 randoms had a slightly bigger p–value of

0.004 for model 1.

TS GA SS 10,000 randoms

%AvDev %C %AvDev %C %AvDev %C %AvDev %C

Model 1 38.02 72.99 33.62 80.39 35.98 74.49 38.02 72.49
Model 2 35.36 79.69 31.49 87.13 33.60 83.11 35.39 80.74
Model 3 33.20 92.26 29.91 97.58 31.69 95.36 33.29 91.79

Table 11: Comparison of metaheuristics CRCPSPDC.

The differences in performance between the three metaheuristics (tables 7 & 11) can be explained

along the following lines:

• The TS is a single solution–based metaheuristic, whereas the GA and SS are population–

based metaheuristics. As a result, there is no interaction between different solutions in the

TS, whereas the GA and SS on the contrary allow for interaction by making use of a crossover

operator, resulting in a better performance for the latter.

• A TS algorithm may be too local and can have issues with respect to diversity as a result

(Gendreau and Potvin, 2010).

• Based on section 5, it can be stated that the GA employs an elite set and as a result requires

a higher mutation rate (Reeves, 2010). This way, the GA implicitly distinguishes between a

high quality set and between a diverse set, similarly to the SS algorithm. The main difference

with the SS is the lack of distance functions to permit entrance into both sets.

• The use of the elite set in the GA bears resemblances to evolutionary path relinking, namely

the combination of high quality solutions (Resende et al., 2010).

• Based on these final two observations, we can state that the GA contains elements of both

a SS and of a path relinking algorithm, but that the inclusion of these elements in the GA

framework leads to better results than in the SS framework.
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To mitigate these issues, and to show the validity of our explanation, we have adjusted the three

metaheuristics in the following way:

• In the TS we implement some form of interaction by applying a one–point crossover. The

generated child is used as new starting solution, whereas the father is the best results obtained

after the previous run of 500 generations, and the mother is a randomly generated element.

Furthermore, for generating a neighboring solution, the TS now applies a two–activity swap

operator repeatedly, in order to increase diversity. Our tests indicate that a factor 4 is

appropriate. The resulting algorithm is referred to as TS’ in the remainder of this section.

• The GA’ algorithm is more similar to the ”standard” GA framework (Reeves, 2010), and uses

a four–tournament selection for both parents instead of the elite selection. A lower mutation

rate of 5% is also used, along with a population size of 90 and only the best element is

retained after each generation. These parameter settings have been tested and displayed the

best results.

• The SS’ algorithm omits the distance function on the diverse set B2 and applies a two–activity

swap with a mutation rate of 10% on all new elements generated with one parent from the

high quality set B1 and one parent from B2. This way, the diversity is amplified in the SS’

algorithm in comparison to the SS algorithm. In doing so, we introduce several elements more

typical for a GA in the SS framework.

All additional tests with respect to the TS’, GA’ and SS’ algorithms have been run for the

CRCPSPDC with model 2, since this model can be seen as a middle ground in the general model

of section 3. A summary of the results is displayed in table 12, which shows the differences between

the six metaheuristics based on %AvDev, the average project NPV of the feasible instances found

by all alternatives (AvNPV ), and %C. We can conclude that:

• The TS’ and SS’ have a better performance than the TS and SS respectively, which validates

our claims with respect to the shortcomings in the TS and SS frameworks for the problem

under consideration.

• The results of the GA’ are worse than those of the GA, which highlights the added value of

including some SS and path relinking concepts in the GA.

• GA’ still obtains better results than the improved SS’, which shows that the GA framework

allows for a higher performance than the SS framework on the CRCPSPDC. Leyman and Van-

houcke (2015) obtained similar results when they compared the GA and a more ”standard”

GA implementation with the SS of Vanhoucke (2010) for the RCPSPDC. It can furthermore

be stated that a GA typically employs randomization, whereas a SS uses memory–based

strategies (Mart́ı et al., 2006), which shows that randomization is more important given the

NPV objective and the proposed schedulers.
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TS TS’ GA GA’ SS SS’

%AvDev 35.40 35.24 31.53 32.00 33.64 32.99
AvNPV 3,831.74 3,853.80 4,109.67 4,074.26 3,954.48 3,996.73
%C 79.69 80.59 87.13 87.31 83.11 84.37

Table 12: Additional comparison of metaheuristics CRCPSPDC (model 2).

Computation times: an overview of the average computation times for the CRPCPSDC is

included in the right part of table 8. The conclusions are similar as for the CCPSPDC (left part of

the table), and show that the majority of the computation time is used for the scheduler, and that

the procedure is the slowest for model 2. The computation times for the scheduler are considerably

higher for the CRCPSPDC compared to those for the CCPSPDC, which was to be expected given

the more complex scheduler due to the additional resource limitations.

Convergence: we analyze the convergence of the GA based on the number of generations until

the 5,000 schedules stopping criterion is reached. Figure 8 displays the average project NPV for the

three models as the number of generations of the GA increases for the CRCPSPDC. The average

number of generations is 54, and an average of 1.85 schedules are used for a single application of

the scheduler.
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Figure 8: Convergence GA.

6.3. Discussion & comparison

In this section, we discuss the best results for the CCPSPDC (table 13) and for the CRCPSPDC

(table 14). We compare the results for the CCPSPDC with a composite heuristic, which is based on

two algorithms from literature. The composite algorithm splits the problem into two parts, namely

optimize the project NPV and reduce capital shortages, similar to Smith-Daniels et al. (1996).
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The proposed heuristic employs the best method of Smith-Daniels et al. (1996) to make decisions

with respect to capital, but uses the exact recursive method of Vanhoucke et al. (2001b) for the

max–NPV problem. In the remainder of this section, the composite procedure is abbreviated as

SD–V, or Smith–Daniels–Vanhoucke.

From the results in tables 13 and 14 the following general conclusions can be drawn:

• The GA outperforms the SD–V algorithm for all three models (table 13). The p–values of

the comparison between both algorithms are smaller than 0.001 for the three models.

• Capital feasibility is the hardest to obtain with a small or a large number of activities. For a

low number of activities, i.e. 25, only a small number of possible sequences exist in which the

activities can be scheduled. This implies that capital shortages are harder to solve, because

fewer activities can be moved to reduce shortages. For a high number of activities, i.e. 100,

a great many ways exist in which activities can be delayed. Hence, it is more difficult to find

the best delays to solve capital shortages.

• The impact of the distribution of the cash inflows over activities (CFD) has a larger impact

on the project NPV and on capital feasibility, compared to the profit of the project (PMP).

• The inclusion of renewable resources makes the problem harder to solve (higher %AvDev and

lower %C when comparing tables 13 and 14). In the CRCPSPDC (table 14), imposing a

stronger RR restriction (a higher RU and RC value) makes it easier to construct a C–Feas

schedule, but at the cost of a lower project NPV.

• The computation times in table 14 give an indication of the drivers of algorithm complexity

in terms of the data parameters. The number of activities and the resource usage have the

largest impact.

The detailed results from both tables can also be found online at www.projectmanagement.ugent.be.
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Model 1 Model 2 Model 3
GA SD–V GA SD–V GA SD–V

%AvDev %C %AvDev %C %AvDev %C %AvDev %C %AvDev %C %AvDev %C

Act 25 3.50 87.84 5.51 79.62 1.41 92.25 2.39 88.19 0.06 98.33 0.10 97.67
50 3.84 97.13 6.33 93.13 1.43 98.80 2.49 96.98 0.03 99.99 0.01 99.94
75 4.86 97.85 7.86 94.28 1.85 99.09 3.15 96.93 0.05 99.96 0.06 99.67
100 6.01 95.07 9.65 89.76 2.58 96.08 4.33 92.16 0.08 96.27 0.14 95.45

OS 0.25 4.49 98.61 6.75 95.94 1.91 99.78 2.88 98.96 0.04 100.00 0.01 99.98
0.50 4.95 95.70 8.13 88.92 1.92 98.06 3.38 93.74 0.06 99.54 0.09 99.26
0.75 4.29 89.10 7.32 82.75 1.60 91.82 3.01 87.99 0.07 96.37 0.15 95.30

D–Incr 5 4.54 92.87 7.33 86.41 1.79 95.95 3.04 92.15 0.05 98.55 0.08 98.14
10 4.56 94.24 7.35 88.80 1.81 96.51 3.08 93.46 0.05 98.65 0.08 98.19
15 4.59 95.12 7.41 90.25 1.83 96.79 3.11 94.19 0.06 98.68 0.08 98.19
20 4.62 95.66 7.46 91.35 1.84 96.97 3.13 94.47 0.06 98.66 0.08 98.21

PMP 0.33 4.98 90.22 8.42 82.48 2.20 93.12 3.91 87.58 0.12 96.12 0.18 95.14
0.50 4.80 95.57 7.64 90.61 1.88 97.52 3.15 95.05 0.04 99.79 0.06 99.43
0.67 4.02 97.64 6.24 94.51 1.42 99.02 2.30 98.06 0.01 100.00 0.00 99.98

CFD 0.33 8.89 85.44 14.98 74.42 3.73 90.05 6.74 82.33 0.10 95.91 0.24 94.55
0.50 3.32 98.48 5.24 95.75 1.14 99.72 1.90 98.95 0.02 100.00 0.00 100.00
0.67 2.53 99.50 3.71 97.43 0.91 99.90 1.25 99.41 0.05 100.00 0.00 100.00

CC 0.25 2.51 98.78 4.60 96.34 0.64 99.41 1.33 98.47 0.04 99.49 0.02 99.21
0.50 5.06 94.18 8.04 88.14 1.96 96.50 3.41 93.01 0.05 98.58 0.09 98.27
0.75 6.47 90.46 9.92 83.11 2.97 93.75 4.70 89.22 0.07 97.84 0.13 97.06

Overall 4.58 94.47 7.39 89.20 1.82 96.55 3.09 93.56 0.06 98.64 0.08 98.18

Table 13: Comparison with literature CCPSPDC.
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Model 1 Model 2 Model 3

%AvDev %C AvCT (s) %AvDev %C AvCT (s) %AvDev %C AvCT (s)

Act 25 16.89 73.21 0.55 15.37 83.07 0.71 14.45 97.67 0.49
50 28.85 83.80 2.67 27.13 91.52 4.00 25.93 99.52 2.20
75 38.58 83.20 6.04 36.59 91.18 9.11 35.71 98.72 5.02
100 47.45 78.81 12.34 45.59 85.96 18.92 44.61 94.35 10.15

OS 0.25 32.71 85.64 6.78 31.17 93.60 10.88 30.53 98.84 5.52
0.50 35.06 79.00 5.25 32.89 87.84 7.87 31.32 98.16 4.34
0.75 31.92 74.62 4.17 29.80 82.36 5.80 28.23 95.70 3.53

RU 2 26.79 72.90 2.02 24.47 84.80 2.97 23.19 97.53 1.87
4 38.66 86.61 8.78 37.69 91.06 13.40 36.90 97.60 7.05

RC 0.25 32.16 76.37 4.79 29.84 85.95 7.17 28.22 97.24 4.02
0.50 33.61 80.64 5.52 31.84 88.47 8.37 30.71 97.67 4.50
0.75 33.87 82.26 5.90 32.22 89.37 9.01 31.19 97.79 4.88

D–Incr 5 36.25 65.41 3.97 33.03 77.54 5.98 30.79 94.24 3.44
10 33.51 80.24 5.06 31.44 89.38 7.59 30.09 98.55 4.30
15 32.32 85.31 5.93 30.71 91.78 8.79 29.75 98.71 4.72
20 31.64 88.05 6.65 30.37 93.02 10.37 29.60 98.76 5.39

PMP 0.33 32.47 74.59 6.63 30.57 82.50 10.54 29.64 94.86 5.58
0.50 33.59 80.95 5.41 31.65 89.15 8.30 30.19 98.72 4.35
0.67 33.58 83.73 4.16 31.67 92.15 5.71 30.29 99.12 3.46

CFD 0.33 49.21 64.10 4.82 45.59 73.26 7.63 40.33 94.42 4.01
0.50 31.19 85.86 4.71 29.34 94.34 6.44 28.47 99.12 3.84
0.67 23.74 89.29 6.67 22.39 96.19 10.48 21.83 99.16 5.54

CC 0.25 30.88 93.54 5.54 30.15 96.87 8.26 30.13 98.54 4.58
0.50 33.82 77.82 5.50 31.35 87.51 8.46 29.98 97.54 4.54
0.75 35.82 67.90 5.16 32.70 79.41 7.83 30.03 96.62 4.27

Overall 33.24 79.75 5.40 31.32 87.93 8.18 30.05 97.57 4.46

Table 14: Best results CRCPSPDC.

6.4. Managerial insights

In order to evaluate the different trade–offs for the CRCPSPDC (section 3.2), we generate

additional project data with the network generator RanGen (Demeulemeester et al., 2003). The

focus lies on testing the impact of the OS, RC and CC values on the project NPV and capital

feasibility in more detail. An overview of the data parameters is given in table 15, with a total

of 32,805 instances (= 5 instances x 9 OS levels x 9 RC levels x 9 CC levels x 3 PMP levels x

3 CFD levels), applicable to each of the three models. The cash flow data, with three levels for

the PMP and CFD factors, is generated similarly as done in section 6.2. The additional instances

generated are available online at www.projectmanagement.ugent.be, along with the cash flow data

and reported results for each instance.

We have applied an ANOVA to determine the effect of OS, RC and CC on the average project

NPV (AvNPV ) for the three models. All single–factor and two–factor cross effects have a p–value

lower than 0.001, except for the combination of RC and CC for all models (p–values of nearly 1) and

the cross effect of OS and CC for model 3 (p–value of 0.264). The three–factor term (OS*RC *CC )

obtained a p–value of 1 for the three models and is not considered. Based on significant p–values
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Parameter Values

Number of activities (Act) 30
Resourse usage (RU ) 4

Deadline increase (D–Incr) 10
Profit margin percentage (PMP) 0.33, 0.50 or 0.67

Cash flow distribution (CFD) 0.33, 0.50 or 0.67

Order strength (OS) 0.10 to 0.90 in steps of 0.10
Resource constrainedness (RC ) 0.10 to 0.90 in steps of 0.10
Capital constrainedness (CC ) 0.10 to 0.90 in steps of 0.10

Table 15: Parameter settings insights.

for the single– and most of the two–factor effects, it is worthwhile to investigate the impact of

the factors OS, RC and CC further. We continue the remainder of the analysis with model 2,

since this model is a middle ground in the general model of section 3. Furthermore, aside from

the aforementioned difference for model 3, the same conclusions apply to all three models, and by

extension to the general model. We analyze the impact of the network structure (OS ), the resource

availability (RC ), and the capital availability (CC ) on the project NPV (AvNPV ) and on the

capital feasibility (%C ). The latter can be seen as a measure for the required capital management

by the contractor, since a higher (lower) feasibility implies that it is easier (harder) to schedule

the project given the available capital. Typically, a higher NPV and higher capital feasibility are

preferable for the contractor, because the project then has a greater contribution to the company

profits and requires a smaller focus on the optimization of the available capital.

Figure 9 displays the single–factor effects of OS, RC and CC on %C and AvNPV, whereas figure

10 shows the two–factor cross effects. The following guidelines can be stated for the contractor:

• Network

– The contractor can on average increase the project NPV and reduce the need for capital

management by making a project more parallel (lower OS value). This way, cash inflows

can be received earlier, resulting in a higher NPV and a lower initial capital requirement

(figure 9).

– In more parallel projects the effect of the renewable resource availability plays a greater

role. More capital management is on average required in case the project has a high

resource availability (lower RC value), whereas the contractor should pay more attention

to the project NPV if fewer resource units can be used (top two graphs of figure 10).

– In more serial projects with a relatively high initial capital (low CC value) the contractor

should focus on properly optimizing the project NPV, whereas decreases in capital avail-

ability warrant on average a greater focus on capital management (middle two graphs

of figure 10).

• Resource availability
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– A high resource availability reflects favorably on the project NPV but requires more

capital management, whereas the opposite holds true for a low resource availability

(figure 9).

– Capital management is particularly crucial in case of a low initial capital and a large

availability of renewable resources (bottom two graphs of figure 10).

• Capital availability

– Lowering the initial capital mainly results in a higher degree of capital management, but

has on average little effect on the project NPV (figure 9).

– Increasing the initial capital decreases the project NPV on average, since less profitable

projects can then be executed. The major question for the contractor then becomes

whether the resulting project NPV is worth the required capital investment (figure 9).
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Figure 9: Impact of single–factor effects OS, RC and CC on %C and AvNPV (model 2).

7. Conclusions & future research

In this paper, we have presented new scheduling techniques for the capital–constrained project

scheduling problem with discounted cash flows (CCPSPDC) and for the capital– and resource–

constrained project scheduling problem with discounted cash flows (CRCPSPDC). The objective

is to schedule the project activities to maximize the project net present value (NPV). Capital

constraints impose that the sum of the cash inflows received and cash outflows paid, given an

initial capital, cannot be negative at any point in time during the project duration. We apply three

cash flow models, as part of a general model for the distribution of cash outflows, to both problems.

In order to solve capital shortages, activities can be delayed together with the set of succeeding

activities. The distinction is made between two types of delays to reduce the capital shortage.

The first type delays sets of activities such that cash outflows leading to a capital shortage are
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Figure 10: Impact of two–factor cross effects OS, RC and CC on %C and AvNPV (model 2).
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compensated by cash inflows of other activities. The second type delays activities until a succeeding

activity is reached, in which case later iterations of the procedure allow for additional delays. Once

the capital shortages have been solved, activity move rules are applied, which improve the project

NPV by delaying sets of activities with a negative cumulative NPV. The proposed scheduling

techniques have been implemented as part of three metaheuristics from literature, along with two

penalty functions, one to improve deadline feasibility and another to improve capital feasibility.

Extensive computational experiments have shown the added value of the delay rules for both the

capital feasibility improvement and for the NPV improvement. The best results for the CCPSPDC

have been favorably compared with a composite method based on literature.

As a first future research avenue, the proposed models and scheduling techniques can be applied

in a multi–mode context. In doing so, the contractor can decide between different modes for each

activity, and this allows for the inclusion of different applications per activity of the general model

for cash outflows.

Second, whereas the focus of this manuscript has been on the cash outflows and capital restric-

tions, it may be interesting to extend these models to include different scenarios for the cash inflows

as well (table 1).

Finally, including a client–contractor negotiation process would allow for the determination of

the timing and size of the cash inflows based on interactions between both parties. Furthermore,

the timing and size of cash outflows can be linked to the negotiation with subcontractors. This way,

the entire interaction process between the three parties (i.e. client, contractor and subcontractor)

can be integrated and optimized.

Appendix A. Examples of capital feasibility improvement with renewable resources

In this appendix, we illustrate the capital feasibility improvement method of section 4.2.2 with

two examples. Appendix A.1 shows the network– and schedule–based variants of the improvement

method, whereas Appendix A.2 details the added value of delaying activities with a negative NPV

for the capital feasibility.

Appendix A.1.

Example data: the example of figure A.1 is used to illustrate the concepts of the capital

feasibility improvement method for model 3. We make use of a single RR with availability of 5,

assume a deadline of 19, and an initial capital C0 of 20. The discount rate is set to 1%. The initial

schedule of the example is constructed based on the PL (1, 3, 5, 2, 4, 6, 7, 10, 9, 8, 11, 12, 13).

Activity 4 is delayed by 1 time unit due to its negative net cash flow. The resulting initial schedule

can be found on the right in figure A.1, with the time on the horizontal axis, the RR level a1 on

the left vertical axis and the capital Ct at time t on the right vertical axis. The bold line indicates

the available capital during the project duration, with decreases and increases corresponding with
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cash out– and inflows respectively. The capital at time 0 equals the initial capital of 20, whereas

the capital at each time t is equal to the sum of C0 and the net cash flows of all activities completed

no later than time t. E.g. C5 = 20 (C0) - 15 (c2,net) - 25 (c4,net) + 5 (c5,net) = -15. The capital at

time 19 is the sum of C0 and the cash flows of all activities and equals 60. Based on this schedule

it is clear that a capital shortage exists of 15 at times 5 and 6, which leads to an ECR value equal

to 30.

Network–based moves: the network–based capital feasibility improvement is first applied.

The Check time t part leads to an earlySet consisting of activities 4 and 2 at time 5. Activity 4

occurs last in the PL, so this activity is used first for the Seti calculations part. The corresponding

set set4 consists of activities 4 and 7. The earliest cash inflow to occur after f4 = 5 is that of

activity 6 at time 8. As such, ∆4,next equals 3 (= 8 - 5). ∆4,max is determined by the successors

not in set4 of both activities 4 and 7. Only activity 10 meets these criteria and with its finish

time of 11 this leads to ∆4,max being equal to 2. Since ∆4,max is smaller than ∆4,next, the Delay

until next successor part of the capital feasibility improvement method is used next. The RR

availability is evaluated for a delay of ∆4,max by set4, which is feasible. Hence, both activities 4

and 7 are delayed by the Schedule seti part with ∆4,max time units, and the capital and RR levels

are updated. Finally, the Schedule seti part checks whether any activities with a negative NPV

can be delayed, but this is not the case.
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Figure A.1: Data and initial schedule example 1.

The procedure returns to the Check time t part and once again evaluates the capital feasibility

at time 5, based on the left schedule of figure A.2. Since the capital level at time 5 is positive t

is incremented to 6, at which the available capital is also non–negative. The procedure continues

to time 7, which has a negative capital so earlySet is constructed and consists of activities 4 and

2. Seti calculations is applied for activity 4 and set4 consists of activities 4, 7 and 10. ∆4,next is

calculated based on activity 6 and equals 1. ∆4,max equals 8 since the only successor not in set4 of

any of the three activities is the end dummy. Delay until next positive is applied but the method

cannot find any RR feasible delay for set4. As such the capital feasibility improvement method
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backtracks to earlySet in the Check time t part. Seti calculations is done for activity 2 which

results in set2 consisting of activities 2, 6, 9 and 12. ∆2,next is determined based on activity 6 and

equals 6, whereas ∆2,max is 2 due to the project deadline. The Delay until next successor part is

applied, but no feasible delays can be found. The procedure returns to earlySet, but all activities

in the set have been considered, so the capital feasibility improvement method terminates since

the capital shortage at time 7 could not be solved. The resulting schedule after the network–based

moves of the capital feasibility improvement method have been applied is shown in the left schedule

of figure A.2. The capital shortage has both been reduced (ECR equal to 15 instead of 30) and

moved later in time, but the project NPV has decreased due to the delay of a set of activities with

a positive cumulative NPV (activities 4 and 7).
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Figure A.2: Schedules example 1 after network– & schedule–based capital feasibility improvement.

Schedule–based moves: the schedule–based variant of the capital feasibility improvement

method is started based on the left schedule of figure A.2. For the capital shortage at time 7,

earlySet consists of activities 4 and 2. Seti calculations is first applied for activity 4 since this

activity appears after activity 2 in the PL. The set set4 holds activities 4, 7, 10, 8 and 11, the last

two of which would never have been included in the network–based version of the improvement

method. ∆4,next equals 1 based on the positive cash flow of activity 6 and ∆4,max is 5 because of

the end dummy activity 13 as successor of activity 11. Since ∆4,next is smaller than ∆4,max, the

procedure continues with the Delay until next positive part. A delay of 1 time unit is RR feasible

for set4, so the Schedule seti part is used next. The activity finish times for all activities in set4 are

updated, as are the capital and RR levels. No activities with a negative NPV can be delayed as

part of Schedule seti. The procedure returns to part Check time t, but no capital shortages remain

so a C–Feas schedule has been found and the method terminates. The schedule after both variants

of the capital feasibility improvement method have been applied can be found in the right schedule

of figure A.2.

Solution representation: recall that the PL of the schedule in figure A.1 was (1, 3, 5, 2, 4, 6,

7, 10, 9, 8, 11, 12, 13). Based on the right schedule of figure A.2, the updated list, or TO, becomes

(1, 2, 5, 6, 4, 3, 7, 10, 8, 11, 9, 12, 13), with the tie between activities 4 and 6 broken randomly in
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favor of activity 6.

Alternative: assume that the schedule–based variant of the capital feasibility improvement is

first applied for the same example. We again start from the schedule in figure A.1. Activities 4 and

7 are first delayed by 2 time units in the same manner as done before. The available capital at time

7 is, however, negative and earlySet consists of activities 4 and 2. Unlike for the network–based

improvement, a delay of activity 4, along with activities 7, 8, 10 and 11 is now possible. This delay

of 1 time unit would not have been considered in the network–based step. The resulting schedule

is C–Feas and is displayed in figure A.3. It is important to consider that the schedule–based moves

are more efficient for the example, since fewer moves are required to obtain a C–Feas schedule. Our

results of section 6.2 confirm that it is indeed best to first apply the schedule–based variant of the

capital feasibility improvement method.
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Figure A.3: Alternative schedule example 1.

Appendix A.2.

In step 4 of section 4.2.1 and the Schedule seti part of section 4.2.2, we stressed the need

for delaying single activities with a negative NPV as much as possible given both the precedence

relations and the RR constraints. Let us illustrate the reasoning behind these delays with the

simple example for model 3 shown in figure A.4. The project has a RR availability of 4, a deadline

of 14 and an initial capital C0 of 10. The PL used is (1, 3, 2, 4, 5, 6), and the discount rate is 1%.

The top right schedule in figure A.4 shows the initial schedule of the example with the omission of

step 4 (i.e. the delaying of activities with a negative NPV). We observe a capital shortage of 5 at

times 5 and 6.

We apply the capital feasibility improvement method and start with the schedule–based variant.

We aim to solve the capital conflict at time 5 and can use both activities 2 and 3. set2 only contains

activity 2 but cannot be scheduled later than time 5, so a delay of set2 cannot solve the capital

shortage. set3 on the contrary contains activities 3, 4, 5 and 6 and can be delayed to time 6 beyond

the conflict at time 5. Additional delays until time 8 are, however, required for the set, due to
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capital shortages. Delaying activity 2 cannot solve any of these conflicts, so no change with respect

to activity 2 occurs. No further delays are possible because of the project deadline of 14. Applying

the network–based variant of the capital feasibility improvement method can also not solve the

capital conflicts. The resulting final infeasible schedule is shown on the bottom left of figure A.4.

If activity 2 is on the contrary delayed to time 5, set2 contains both activities 2 and 4 at time

5. Both activities are delayed by 2 time units (∆2,next = 4, ∆2,max = 2) and the capital shortage

at time 5 is solved. Now a shortage at time 7 occurs but this can be solved by delaying set2 (=

{2, 4, 6}) by 2 time units. The resulting and optimal schedule is C–Feas and can be found on the

bottom right of figure A.4.

Based on this example, we can conclude that the delays of single activities with a negative NPV

are indeed necessary since otherwise we may not be able to solve some capital shortages, as is the

case in the bottom left schedule of figure A.4. These conclusions are furthermore verified in our

computational experiments in section 6.2.
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Figure A.4: Data and schedules example 2.
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