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Abstract

This research combines several large, continuously collected data sets to understand

recent travel demand trends in San Francisco, and it develops a tool for measuring

transport project impacts.

Because they are continuously collected, these data provide an opportunity to

measure change in a way that is not available in traditional, cross-sectional travel

surveys. The data used are from San Francisco and cover performance of the transit

system and associated factors expected to drive transit demand.

This study employs a two stage methodology to derive insight from these data.

First, a performance monitoring tool is developed to process the raw data and re-

port meaningful performance indicators. This tool encapsulates the necessary data

cleaning functionality, and manages a multi-stage data expansion process to ensure

that data are representative of the system as a whole. Second, time series models

of transit ridership are estimated from the outputs of the performance monitoring

tool. These time series models provide a means of quantifying the portion of the

ridership changes due to service changes versus background factors, such as em-

ployment growth.

The estimated models are applied to understand the drivers of recent rider-

ship trends in the San Francisco, where ridership on the San Francisco Municipal

Railway (MUNI) bus system remains flat in spite of population and employment

growth, while ridership on the Bay Area Rapid Transit (BART) system grows faster

than employment. In addition, the models are applied to several planning case stud-

ies, including both ex-post ridership evaluations and short-term forecasting applica-

tions.
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The outcome of this research is to establish and test a tool to facilitate the use

of passively collected data for retrospective travel demand analyses. It provides

insight into the effects of transport projects, and lays the groundwork for a future

studies that further our ability to observe and understand travel behaviour.
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Chapter 1

Introduction

This research involves developing a prototype tool for the fusion of several large,

continuously collected data sources that monitor both travel demand trends and the

expected drivers of those trends. It explores potential biases and limitations of such

data, and applies the outputs of the tool to gain insight into the reasons for recent

changes in transit demand on two systems in the San Francisco Bay Area.

1.1 Background
This section describes the current state of the travel forecasting field, and the oppor-

tunities that exist for advancement through the use of Big Data.

1.1.1 Problems with Transport Demand Forecasting Accuracy

Spending on transport infrastructure in the United Kingdom (UK) exceeds £10 bil-

lion annually, while spending in the United States (US) exceeds $70 billion annu-

ally [1]. Travel demand forecasts play a central role in selecting which projects get

built, and justifying the investment in those projects.

Unfortunately, forecasts for major transport infrastructure projects are not al-

ways accurate, and have a tendency for optimism bias. This was infamously doc-

umented 25 years ago when Pickrell [2] showed that actual ridership on US urban

rail projects was 68% lower than forecast ridership. The problem has continued, as

can be observed in Figure 1.1, which shows the ratio of actual to forecast ridership

from the 1990 Pickrell report (Figure 1.1a), from a 2003 update to the study (Fig-

ure 1.1b), and from a 2007 update (Figure 1.1c). On these charts, perfectly accurate
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forecasts would plot on the x-axis at 100%. An unbiased set of forecasts would

have a roughly equal number of forecasts too high and too low, by roughly equal

amounts. The black line on each chart indicates what would be expected if the ra-

tio followed a normal distribution with a mean of 100% and the observed standard

deviation. While the more recently completed projects show improvement, the bias

remains, with actual ridership in the 2003 study projects 31% lower than forecast,

and actual ridership in the 2007 study projects 25% lower than forecast [3].

Forecasting errors are not limited to rail projects. Figure 1.2 shows the ratio of

actual to forecast traffic for a global sample of toll roads, with the actual traffic 23%

lower than forecast on average [4]. This has recently been problematic in Australia,

where several privately financed toll roads have failed to achieve the forecast traf-

fic and revenue. In response, investors have filed a series of high-profile lawsuits

against the engineering firms responsible for the forecasts, seeking damages of up

to A$1.6 billion [5, 6, 7].

Interestingly, untolled road projects do not show the same bias, with actual

traffic typically exceeding forecast traffic by 3-11% [8]. Several other studies have

documented accuracy issues for all types of studies, and found that even when there

is no bias, actual travel demand shows substantial variance when compared to fore-

cast demand [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Of these studies, several focus on US urban rail projects [9, 11, 12, 16]. These

are large projects within urban areas, often costing hundreds of millions of dollars.

As a matter of policy, they receive the majority of their capital funding as a federal

grant, awarded on a competitive basis with a key factor being the forecast ridership

(thus providing an incentive for high forecasts). Figure 1.1 shows the actual versus

forecast ridership comparisons for these projects.

A second body of work, focuses on toll road projects [4, 18], with the key

results shown in Figure 1.2. These projects often involve private financing, either

through an equity stake or through the issuance of bonds. Again, these are typically

large scale projects, often, but not always within urban areas.

A third set of work is targeted at the analysis of “mega-projects” [10, 13, 14,
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(a) 1990 Study Projects

(b) 2003 Study Projects (AA=Alternatives Analysis)

(c) 2007 Study Projects (AA=Alternatives Analysis)

Figure 1.1: Ratio of actual to forecast ridership for US urban rail transit projects from three
study cohorts [3]
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Figure 1.2: Ratio of actual to forecast traffic for toll roads [4]

15]. Often these are large-scale tunnel or bridge projects (either for road or rail)

that cost billions of dollars, pounds or euros. The main conclusion here is that “the

quality of demand forecasts is often poor, especially for rail projects” [15].

Understandably given the difference in the stakes involved, there has been

somewhat less attention given to more routine projects. Hartgen [19] notes that

there are a number of studies of traveller response to smaller projects, but a general

lack of studies specifically of demand forecast accuracy for such projects. The Post-

Opening Project Evaluations of Major Schemes (POPE) [20] does fill this role for

highway projects in the UK, finding that 65% of schemes evaluated were within

15% of the forecast traffic volume, although with substantial variation between

schemes. Parthasarathi and Levinson [17] evaluated 108 untolled roadway projects

in Minnesota. They found that on average, actual traffic was higher than forecast

traffic, although this varied by facility type. The forecasts tended to underestimate

freeway traffic but overestimate lower class facilities.

A number of hypotheses have been put forward to explain the differences

between actual and forecast travel demand. These explanations can be broadly

grouped into three categories: technical problems, optimism bias, and selection
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bias.

Technical problems cover a wide variety of issues related to the models, the

inputs, and the operation of those models. Specific examples cited include errors

in forecasting exogenous variables such as fuel price or economic growth rates,

inaccurate land-use projections, changes to the design or operation of the project

after the forecasts are completed, assumptions about the competing facilities, and

changes to underlying travel behaviour [21, 14, 15, 3, 16, 17, 19].

Another potential source of forecasting error identified by some is optimism

bias, whereby those involved in developing planning forecasts make overly opti-

mistic assumptions either due to unintentional psychological factors or due to polit-

ical and institutional structures that incentivise such assumptions [9, 15, 16, 17, 18,

19]. Flyvbjerg [14] goes further to argue that such errors are the result of deliberate

manipulation on the part of actors promoting the projects to overstate the project

benefits.

Eliasson and Fosgerau [22] introduce an alternative explanation, that of selec-

tion bias. Selection bias occurs because those projects with higher forecast demand

are more likely to be selected for construction. They show that in any planning sys-

tem where ex ante forecasts affect which projects are selected, the projects that are

ultimately built will be more likely to have higher than actual forecasts, even when

the underlying forecasts for all potential projects are unbiased.

In their recent review of demand forecast accuracy, Nicolaisen and Driscoll [8]

note that despite the multitude of possible explanations, there is little convincing

evidence for the actual causes of forecast inaccuracy. To meet this need, they rec-

ommend mandatory ex-post evaluation schemes to provide evidence for such anal-

ysis.

The lack of evidence about the causes of travel forecasting error has not

stopped authors from proposing solutions.

Flyvbjerg [14] recommends two possible solutions. The first is to shift to a

method called reference-class forecasting, which involves developing project fore-

casts through a comparison to other, similar, projects. Flyvbjerg’s second rec-
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ommendation is to change the institutional incentives structure used to fund ma-

jor projects towards more transparency and accountability. It is noteworthy that

these recommendations rely on the availability of ex-post project evaluations, which

would serve both to build a body of reference cases, and to make the performance

of both the project and the forecasters transparent.

Hartgen [19] proposes either a “hubris” approach involving a large-scale in-

vestment in better methods, or a “humility” approach which de-emphasises the sig-

nificance of travel forecasts by performing additional risk analysis, incorporating

scenario planning, or shortening planning horizons. Again, a body of ex-post eval-

uations would enhance Hartgen’s recommendations, providing information on the

performance of different methods and on the demand risks commonly observed in

projects.

1.1.2 Ex-post Evaluation of Transport Projects

Some ex-post evaluation schemes have become institutionalised in recent years, no-

tably the evaluation of rail projects in the US and highway projects in the UK. In

the US, since 2006, the Federal Transit Administration (FTA) is required to sub-

mit a report to congress evaluating the forecasting and cost accuracy of federally

funded rail projects after their opening [23, 24, 12, 3, 25, 26, 27, 28, 29]. In the

UK, since 2002, the Department for Transport (DfT) has evaluated 75 major high-

way schemes after their opening through their Post-Opening Project Evaluations of

Major Schemes (POPE) [20]. Beyond these important examples, ex-post evalua-

tion of transport projects does not appear to be either systematic or widespread [30,

31]. There is, however, an increased interest in the empirical evaluation of trans-

port projects, motivated in part by recent US federal transportation legislation that

requires states to establish performance-based planning programs [32].

Those authors that have conducted ex-post evaluations of transport projects for

specific cases often note that assembling the necessary data is the component of

the study requiring the largest effort, and an obstacle to further work [33, 17, 34].

Nicolaisen and Driscoll [8] echo this sentiment, stating that:

“In general, lack of data availability has been an important obstacle in
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all reviewed studies and should be a key focus area of future research

and practice on the use of demand forecasts as decision support. The

lack of data access makes it difficult to perform more elaborate statisti-

cal analyses on exogenous variables, cover larger network effects, eval-

uate demand over time, and track changes in land use, project design or

service levels.”

Ex-post evaluations of transport investments are also faced with a number of

methodological challenges, derived largely from the difficulty of separating treat-

ment effects from other confounding factors.

Randomised control trials are often held up as the “gold standard” for treatment

effects, particularly in the health sciences [35]. While such experiments are possi-

ble in transport, as with the Metropolitan Transit Authority (MTA) experiments in

Boston conducted in the early 1960s [36], they remain rare [37]. There is a good

reason that such studies are rare: transport infrastructure is expensive, and it would

be difficult to justify hundreds of millions of pounds building a randomly selected

road in the name of conducting an experiment. That is the purpose of building mod-

els in the first place: to estimate the effects of a project without having to pay for

its construction. Axelrod [38] discusses the role of models as a “third way of doing

science”, in contrast to experiments and observational studies, and in practice, mod-

els do provide a means for conducting a simulated experiment where everything in

the model is held constant except for the project itself. However, in this case, our

goal is partially to understand whether the response of our models is correct, and

we are left to conduct some form of empirical analysis to do so.

The Transit Cooperative Research Program (TCRP) Report 95 [39] is perhaps

the most comprehensive effort to empirically measure the response to transport sys-

tem changes, updating earlier work on the same topic [40, 41]. Between 2003 and

2013, TCRP 95 was published as sixteen stand-alone chapters [39, 42, 43, 44, 45,

46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56] focusing on different types of transport

system changes, with three additional chapters yet to be completed. In compiling

the available evidence on each topic from a range of existing studies, it confronts
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the issues in obtaining that evidence, and groups those issues into three primary

areas: measurement and statistical significance, effects of confounding events and

environments, and additional analytical concerns.

In the area of measurement and statistical significance, TCRP 95 finds that the

most common approach to evaluating change is the before-and-after comparison of

traffic counts, transit passengers, or travel surveys. Before-and-after results are sen-

sitive to the conditions at the two specific time points chosen, and often neglect to

collect information on or consider the fluctuations around the average conditions.

Olsson et al. [57] confirm these limitations, finding that the selection of reference

time points can change not only the magnitude, but also the direction of the mea-

sured effects.

The second issue highlighted by TCRP 95 is confounding effects and envi-

ronments. These include changes such as competing or complementary transport

projects, employment and economic changes, and underlying socio-demographic

trends. The report’s recommendation that such factors be documented makes it

clear that in many cases, those factors are not even acknowledged, much less anal-

ysed in a statistically rigorous manner.

Within the topic of “additional analytical concerns”, TCRP 95 highlights the

reliance on cross-sectional data, both in modelling and in comparative analysis.

Cross-sectional data is limiting because it implicitly assumes that the behaviour

of travellers remains consistent through time, and because self-selection and self-

sorting issues (such as travellers who prefer to use transit choosing to live closer to

rail stations) make it difficult to distinguish between correlation and causality.

1.1.3 Current State of the Field

In summary, the profession of transport planning is currently in a position where

we recognise that travel demand forecasting accuracy is often a problem, but with

the exception of a few limited case studies, we do not understand the causes of that

problem. Furthermore, we lack the data to understand the problem. The systematic

ex-post evaluation of transport projects has been identified as a means both to un-

derstand the problem and build a body of reference cases for comparison. There is
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increasing interest in conducting such studies, but those studies are hampered both

by the burden of data collection and by methodological challenges in the analysis

of longitudinal data in a system where there are always confounding effects.

1.1.4 The Emerging Opportunities of Big Data

In parallel to this increased interest in the ex-post evaluation of transport projects, a

generation of data sources is coming on-line that provide another view of the trans-

port system. These data include sources such as Global Positioning System (GPS)

traces, mobile phone location data, transit smart card transactions, Automated Traf-

fic Recorder (ATR) data, Automated Vehicle Location (AVL) data, Automated Pas-

senger Counter (APC) data, new administrative sources of land-use characteristics,

and a range of others. These “Big Data” provide new opportunities to observe the

transport system.

Shuldiner and Shuldiner [58] examine the relationship between data and mod-

els, and the evolution of both over the history of travel demand modelling. They

conclude:

“From its very outset, travel demand modelling has been a data-driven

activity; it has also been a data-restricted activity. But in recent years

the nature of this relationship has undergone a profound change. Con-

trast, for example, the introduction of the home interview travel survey

in the 1940s with the current use of real time location data. In the

first instance, a data collection technique was developed and applied to

meet a specific need—forecasting future travel demands. These data,

collected by public agencies to meet a public purpose, then formed the

basis for most institutional transportation planning and academic re-

search for the next 50 years. Today individual trip-making data, in con-

trast, are collected primarily by private firms for their own corporate

purposes, be it to provide a service to travellers or to sell advertising

to third parties. Public agencies are engaged in similar, albeit less in-

trusive, activities through automated tolling and travel time monitoring

programs. Technology—not theory or public purpose—is the driving
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force and has placed the individual squarely and firmly at the nexus

of travel information, traffic management, and transportation planning.

Technology per se is indifferent to the public interest; what really mat-

ters is the use to which technology is put.

Transportation agencies and academic researchers now have available

an unprecedented wealth of both activity and travel choice data with

which to evaluate investment decisions and to devise models of travel

behaviour. The challenge now is how to make the most effective use of

these data.”

A key distinction Shuldiner and Shuldiner make is that Big Data are often

designed for another purpose, and their use in transport is secondary. Therefore,

they bring about new challenges, both in terms of the methods for how to use these

data, and governance issues related to their use for public versus private interests.

With respect to governance issues, the goals of this thesis fall squarely in the realm

of serving the public interest, while protecting the privacy of the data subjects. All

software is being made open source, and the scientific results will be published, but

no personally-identifiable information will be made available.

Regarding the methods for analysing these emerging Big Data sources, a good

deal of progress has been made in recent years.

National Cooperative Highway Research Program (NCHRP) Report 775 [59,

60] examines the use of GPS data to understand travel behaviour. GPS traces of

taxis are being used for traffic modelling [61, 62, 63, 64]. In addition to GPS,

mobile phone data has been used to observe travel patterns [65, 66, 67, 68, 69, 70],

and NCHRP Project 08-95 is further pursuing the problem [71]. Highway analysis

has further focused on the use of Bluetooth data [72], electronic toll transponder

data [73], Intelligent Transportation Systems (ITS) data [74, 72], and inductive loop

detector data [75, 76]. Transit data analysis has focused on three core sources: AVL

data [77, 78, 79, 80], APC data [81, 82, 83, 84], and transit farecard data [85, 86,

87, 88].

In addition to their independent use, GPS and other emerging technologies
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are also being used to enhance traditional travel survey methods, such as with the

GPS-based Cleveland household travel survey [89]. Zmud et al. [90] compile a

wide range of applications focused on the intersection of survey methods with Big

Data from the proceedings of the 9th International Conference of Transport Survey

Methods. There are more applications, but these examples give a flavour of the type

of analysis that is being conducted.

In spite of these important achievements, there remain areas where further

work would enhance the value of these data.

First is the integration of multiple data sets as a means for understanding and

correcting for the biases inherent in any one data source. The studies cited above

dominantly focus on a single data type, and because the sampling mechanism is

often not designed with travel demand analysis in mind, the biases inherent in the

data are often unknown. Smith [91] examines these issues in the context of the

maturation of survey research several decades prior, and argues in favour of hybrid

approaches that combine or cross-validate data sources in an effort to overcome

the limitations of each. In a way, travel demand models have always done this,

for example by estimating models from travel survey data, then validating them

against traffic counts, so it is natural for travel demand modellers to continue in this

direction.

The second area where the data offer largely untapped potential is in their use

as a longitudinal data source. Often these studies are focused on developing the

methods for analysing the data and using them to observe the current state of the

system. Wang et al. [69] offer an example in their study which processes a month’s

worth of mobile phone data, a common approach in most of the studies reviewed.

This is perfectly suitable for the stated goals, particularly as more data would often

increase the cost or computational burden of the study. However, an important fea-

ture of these emerging data sources, in contrast to conducting custom-designed data

collection efforts, is that they are often passively collected and provide a continuous

stream of information.

Because of their continuously collected nature, these emerging Big Data
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sources provide a unique opportunity to study the effects of transport project, ex-

post. By providing observations at more than one or two points in time, the trends

in demand can be more closely related to other trends that may contribute to the dif-

ferences observed. The key to taking advantage of these data is to develop a system

where the incremental burden of adding more data through time is small.

1.2 Research Questions and Overall Approach
The overall approach taken to conducting this research aligns with two overarching

research questions:

1. How can continuously collected data be leveraged to develop a data fusion

tool suitable for monitoring travel demand trends?

2. How can the outputs of that tool be used to gain insight into the drivers of

travel demand trends and to measure the transport project impacts?

The first question is focused on the methods and software needed to process

the data and report meaningful performance measures. The output of this work is a

prototype that can be run by a transport planner. It accepts new data as it becomes

available, and can be run to provide reports and summaries for the available time

periods.

The second question is addressed by applying the tool to study real-world

transport change. A core component of answering this question is the application

of statistical methods to estimate the treatment effect of the transport intervention,

separate from other confounding factors.

The City and County of San Francisco serve as the context in which to answer

both questions. The analysis focuses specifically on transit demand. Initial work

has established the methods necessary for incorporating detailed highway data, but

that work is not sufficiently complete for inclusion in this thesis. The time span

covered varies according to the availability of data, going as far back as 2001, but

focused in more detail on the 2009-2013 period where the most detailed data are

available.
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San Francisco was selected as as the test site for this work because the San

Francisco County Transportation Authority funded the initial research. In addition,

it is a good place to explore these issues for several reasons. First, it is a large city

with a rich transit system, allowing transit issues to be analysed in a location where

they are a major component of the travel market. Second, it is an economically

vibrant city and a centre for technology development, which presents an interest set

of topics to explore. Third, the author previously spent several years developing

travel models in the region, which made it easier to obtain the relevant data.

The transit analysis focuses on the two largest transit operators serving San

Francisco County: the San Francisco Municipal Railway (MUNI) and the Bay Area

Rapid Transit (BART). San Francisco is also served by commuter buses coming

from the East Bay, North Bay and Peninsula, and by the Caltrain commuter rail

which runs south to San Jose. The MUNI analysis focuses more specifically on the

MUNI bus system than on the MUNI light rail system, because detailed continu-

ously collected data are available for the buses, but not for the light rail vehicles.

The thesis specifically explores four related aspects of the broader problem, as

described in Section 1.6, but first, the unifying aspects of the approach are examined

in further detail in the remainder of this introductory chapter. Section 1.3 takes

inventory of the data sources available to this study. Section 1.4 describes the overall

system design, and Section 1.5 considers the methods available to analyse the data

output from the tool.

The review of existing literature is integrated into each chapter of the thesis,

allowing it to be presented closer to where it is relevant within the thesis. Literature

searches relied primarily on TRID (https://trid.trb.org/), a database that integrates

records from TRB’s Transportation Research Information Services and OECD’s In-

ternational Transport Research Documentation database. This database is preferred

because it is focused specifically on transportation, it is international in scope, and

it contains records for “grey literature”, such as government reports, in addition to

indexed academic journals. Searches were specific to the topics discussed in each

chapter, and the results were reviewed for relevance before inclusion in the thesis.
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These were supplemented by additional materials identified through pre-existing

knowledge and personal connections. Where published review papers were avail-

able, the thesis relies first on the published reviews, and supplements them with

materials published after the review paper was completed.

1.3 Available Data
The core of this study is determining how to take advantage of longitudinal data

sources to understand the transport system. Relevant data sources available to this

study are described here, segmented by category.

1.3.1 Transit Data

The transit data include schedule, location, demand, and farecard data.

General Transit Feed Specification (GTFS). GTFS [92] is a data specification

that allows transit operators to publish their schedules in a standard format. It

is commonly used for mapping and route-finding applications, and the stan-

dardisation allows application developers to write one set of code that works

for many agencies. It only covers the current schedule, but when a new ver-

sion is published, the old tends to be archived [93], so the differences can be

used to systematically identify transit service changes.

Automated Vehicle Location (AVL) and Automated Passenger Counter (APC) data.

About 25% of the San Francisco Municipal Railway (MUNI) bus fleet is

equipped with AVL/APC technology. The AVL records the location and

timestamp of the vehicle arriving at and departing from each stop. The APC

records the number of passengers boarding and alighting at each stop. The

buses with AVL/APC equipment are randomly assigned to drivers and routes

at the depot each day such that over a number of days all routes are observed.

These data are supplemented with manual counts of rail ridership, because

rail vehicles are not equipped.

BART monthly entry and exit matrices. The Bay Area Rapid Transit (BART)

system is a heavy rail system serving the San Francisco Bay Area. It is a
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major carrier of commuters into San Francisco, particularly because it pro-

vides a transit alternative to the heavily congested Bay Bridge. It is a closed

system using distance-based fares, so passengers must have their ticket read

both upon entering and exiting the system. Using this information, BART

publishes monthly matrices showing the number of trips by entry station and

exit station.

Transit smart card. In 2010, the Bay Area introduced the Clipper Card, a smart

card system that integrates payment across the major transit operators in the

region. About 30% of patrons currently use the cards. The system records a

timestamp, location, and fare type each time the card is used upon entering

a vehicle, or in the case of BART, entering or exiting. They are valuable

because they would provide information on transfers, allowing the analysis to

distinguish between unlinked and linked transit trips.

1.3.2 Highway Data

The available highway data come from three primary sources, described below.

California Performance Monitoring System (PeMS). The California Depart-

ment of Transportation (Caltrans) operates an extensive network of traffic

detectors on state highways, primarily the freeways in San Francisco. Data

from these detectors showing the volume, speed and density of traffic by lane

is published online in the PeMS [94]. These data are archived, often going

back as far as 2002. They provide a great deal of information on freeway

conditions.

Probe Vehicles. A long time series of taxi GPS traces were obtained from the Cab-

spotting project [95]. Cabspotting was a “data art” project that created visu-

alisations of taxi movements in San Francisco for an exhibit at the Explorato-

rium science museum. The primary use of these data is to be used as probe

vehicles providing observations of traffic speeds on city streets where PeMS

is unavailable.
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Local Traffic Counts. Given that PeMS is not available on all local streets, it is

desirable to have traffic counts on a broader range of locations. To do this,

counts are available from CountDracula [96], a database that integrates counts

from a wide variety of sources in San Francisco.

TTI Urban Mobility Scorecard. The Texas A&M Transportation Institute (TTI)

publishes an annual mobility scorecard that reports reports a number of

auto congestion metrics for urban areas in the US, with data going back to

1982 [97]. The metrics include total congestion delay, wasted fuel, the mon-

etary cost of congestion, and a travel time index, which is the ratio of travel

time in the peak period to travel time at free flow conditions.

TomTom Traffic Index. TomTom is a maker of car navigation devices, but also

uses data collected from those devices to monitor speeds. They report a con-

gestion index for major metropolitan areas, which is a measure of the extra

travel time attributable to congestion [98]. San Francisco data are available

annually from 2008 through 2015.

1.3.3 Data Sources for Demand Drivers

In addition to observations of the transport system itself, it is important to under-

stand the factors that drive demand for that system. Throughout this thesis, the term

“drivers” is used to indicate factors that contribute to a change in demand. This

terminology is selected to avoid indicating a formal causal relationship, although in

many situations, there are sound theoretical reasons to believe that the relationship

should be causal. In the event that it instead refers to a person driving a vehicle, it

will be specified at that point in the text and through the context. Key data sources

for observing those drivers are listed here.

LEHD Origin-Destination Employment Statistics (LODES). Traditionally, base

year employment data used by travel models is derived from either state un-

employment insurance records or commercial market research listings [99].

These sources often require a good deal of cleaning and error checking,

specifically to resolve headquarters issues [100] (such as all the employees of
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McDonald’s being listed at a corporate headquarters rather than at individual

stores). Therefore, it is common to only update the employment database in

five year increments. More recently, the US Census Bureau began producing

the Longitudinal Employer-Household Dynamics (LEHD), which combines

these same unemployment insurance records with other data sources to report

workforce indicators quarterly at the county level. Building upon the LEHD,

it began producing the LEHD Origin-Destination Employment Statistics

(LODES), which reports employed residents, employment and worker flows

down to a Census block level [101]. LODES is available for 49 of 50 states,

and is updated annually. This provides a new opportunity to monitor the

longitudinal changes in the level and spatial distribution of employment.

2010 Census. While it is not longitudinal, the 2010 Census provides a reliable ob-

servation of population, households and housing units that serves as the start-

ing point from which to measure changes.

Planning Department Building Completion Database. The City of San Fran-

cisco has provided a database of residential building completions that in-

cludes the address, opening date, and number of units in any newly com-

pleted residential building. It also includes information on any housing units

removed, allowing the net change can be monitored.

American Community Survey (ACS). The US Census Bureau conducts an an-

nual survey of 1% of households to collect information such as household in-

come, household composition, number of vehicles, and so forth [102]. These

data provide some ability to monitor trends in these measures, although at a

spatially aggregate level.

Fuel Price. The US Energy Information Administration (EIA) regularly updates

and publishes the average cost per gallon of gasoline and diesel fuel sold by

location [103].

Mileage Rates. Recognizing that the cost to operate a vehicle varies not only with
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fuel cost, but also with the vehicle efficiency, some measure of those trade-

offs is valuable. The Internal Revenue Service (IRS) provides this in their

rates at which mileage driven can be reimbursed [104]. Separate rates are

available for travel made for business purposes, versus travel made for medi-

cal visits or to move to a new city, all of which are tax deductible. The busi-

ness rate reflects the full cost of owning and operating a vehicle, while the

medical and moving rate represents the IRS’ assessment of the average cost

to operate a vehicle, exclusive of ownership costs. These values are generally

updated annually, with previous values archived.

Toll Schedules. Toll schedules for the bridges in the area were obtained from the

Bay Area Toll Authority (BATA) [105].

Parking Cost. Parking cost can be an important determinant of mode choice, and

also can vary significantly with changes in employment. The most reliable

way to monitor changes in parking costs is probably to walk the streets and

physically record the posted rates. Lacking the resources for such a labour-

intensive approach, this project instead relies on real-time data feeds of the

availability and cost of city-owned parking spaces. This information is avail-

able through the SFPark Application Program Interface (API) [106]. In ad-

dition, SFPark has recently conducted a citywide parking census, which pro-

vides an observation of base conditions.

Consumer Price Index (CPI). Given that prices are used, the Consumer Price In-

dex (CPI) is used to adjust all prices for inflation [107].

1.3.4 Other Related Data

While they are not directly incorporated into the data fusion tool described in Chap-

ter 3, there are several additional data resources available to the project that can

provide useful reference points for additional analysis or validation.

California Household Travel Survey (CHTS). The California Household Travel

Survey (CHTS) [108] is a large-scale travel survey collected in California
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from 2010-2012, with oversamples in the urban areas. In addition to a travel

diary, it includes GPS data collection for a subset of households. The combi-

nation provides a richness of information on individual travel behaviour that

is beyond what is available from the other sources, so it may be used as a

tool to enrich or expand other sources. It is not a longitudinal data sources,

though, so it does not fit within the core functionality of the data fusion tool.

Mobile Phone Derived Trip Tables. Trip tables derived from mobile phone loca-

tion data were obtained from two sources. Unfortunately, these data are not

available longitudinally, so can only be used as a check of or starting pivot

point with respect to the other data.

SF-CHAMP Travel Model. San Francisco Chained Activity Modeling Process

(SF-CHAMP) is an activity-based travel model for San Francisco and the

surrounding Bay Area. It operates using a microsimulation (agent-based)

approach to simulate the movement of individual travellers throughout the

region, and includes special functionality to consider pricing, bicycling and

transit crowding [109, 110, 111]. The model inputs and outputs provide a

useful picture of the transport system demand and supply.

DTA Anyway. Complementing SF-CHAMP is a citywide Dynamic Traffic As-

signment (DTA) model known as DTA Anyway [112]. A core component

of DTA Anyway is a set of tools to integrate network information from sev-

eral sources, with the inclusion of observed timing plans for all 1,100 traffic

signals in the city a major feat. These data are also available to the project,

but they are not explicitly tracked longitudinally.

1.4 Data Fusion and Performance Monitoring
The first phase of this work seeks to answer the first research question: “How can

continuously collected data be leveraged to develop a data fusion tool suitable for

monitoring travel demand trends?” This question is answered by developing a pro-

totype data fusion tool for the City of San Francisco, using that prototype to iden-
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tify lessons learned and key concepts for the future generalization of such tools and

transfer to other cities. This section describes the basic design of that system.

1.4.1 Key Design Goals

The data fusion tool seeks to fulfil five key design goals:

Usable. The target user group for this tool is professional transport planners or

modellers, and the tool seeks to be usable by that group. This particular user

group is well-placed to take advantage of the technology because they are

a group that decision-makers currently turn to for analysis of complex plan-

ning issues, so they bring an existing level of credibility within the planning

process. In addition, this group tends to bring an existing degree of com-

fort working with data and models, making them a more sophisticated user

group than the general public. The system design seeks to be highly usable to

this group, saving them effort from what would otherwise be a burdensome

data assembly exercise, and giving them incentive to adopt the tool. One of

the most important ways in which this is achieved is by encapsulating what

would often be manual data processing interventions into code or control files.

In this way, it follows the model of other data tools [113], to avoid a common

source of error, document the process, and make the results reproducible.

Representative. An important limitation of Big Data is that because they are often

used for a different purpose than they were originally collected for, there is a

risk that they are biased in a way for which a well-designed survey would be

able to adjust [91]. This tool seeks to mitigate such biases wherever possible,

and explicitly acknowledge them otherwise. It does this through the compar-

ison of and expansion to overlapping data sources where they are available.

For example, transit AVL and APC data are available for a sample of ap-

proximately 25% of city buses, but schedule data (GTFS) is available for all

buses. The AVL/APC data are expanded by route, direction, stop, month,

day-of-week and time-of-day to match the total number of bus trips as ob-

served in the GTFS data. This is similar to the process by which an onboard
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transit survey would be expanded to match ridership counts by route, or a

household travel survey would be expanded to match census control totals by

demographic group.

Consistent. Because the explicit goal of this tool is to measure change, the consis-

tency of the measurements over time is of particular importance. Therefore,

care is taken to ensure that the measurements are consistent even if data are

missing for certain periods, or the penetration rate of certain technologies,

such as the adoption of transit smart cards, changes over time.

Multi-level. Keeping in mind the target users, this system is designed to serve as

a multi-level analysis tool. This means that it automatically reports a set of

standard performance reports, but allows the user to run custom queries on

the full data set. In this way, it both recognises the tension between being

complete and overwhelming the user with details, and acknowledges that not

every possible use will be anticipated a priori.

Transparent and transferable. The prototype is developed for a single city, the

ultimate goal is that the tool can be modified and re-deployed elsewhere. This

is facilitated by the publication of the software via an open-source licence.

While there will be some cost to transferring the software and customizing

it to work with the data sets available in other cities, that effort is left as a

future development exercise, with this research serving to demonstrate the

feasibility of the process in the first instance.

1.4.2 Data Flow

Figure 1.3 shows the basic system design with respect to the flow of data.

Starting from the left, there are two mechanisms for inputting data to the sys-

tem. The first is “dump and transfer”, which simply means that the data are ex-

ported in a batch form and transferred into the system as a file. The transfer can be

via email, disk, download, or a variety of other formats, but generally requires man-

ual intervention to update. In many cases this approach is required when the data
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Figure 1.3: Data fusion tool design

are stored on a private server or in a proprietary format, but as long as future data

remain in the same format, the effort required to update the system remains small.

The second way to input data is via real time requests. These are handled through

the sfdata collector software [114] that was developed for this project. In

cases where real-time data are provided via an API, sfdata collector requests

those data at a specified time interval and stores them to a database. This provides a

means by which to archive those data, which would otherwise not persist, allowing

the trends to be analysed. sfdata collector is currently operational for the

SFPark parking information and pricing system [106], but can be expanded to other

real-time data sources using the same structure.

The data are stored on disk in their raw format, which varies by the type of

data. They are converted to a processed datastore by the sfdata wrangler

package [115]. This involves a series of steps which include converting the data

to a common format, identifying and handling problem records, adding derived

data fields, expanding and weighting less complete data sources to be consistent

with more complete sources, and adding aggregated tables (while retaining the dis-

aggregate data). Chapter 3 gives more details of what is done for the initial data

sets. The processed data are stored on disk using the Hierarchical Data Format 5



1.5. Analysis of Contributing Factors 49

(HDF5) [116], which allows the fast storage of and random access to very large data

files.

sfdata wrangler performs three additional functions for data output, as

shown on the right-hand side of Figure 1.3. First, it produces a set of performance

reports at various levels of aggregation. Examples include monthly summaries of

transit system ridership and level-of-service, and route-level demand profiles. Com-

plementary software [117] can be used to map these outputs. Second, the software

generates estimation files, which are in a structured format allowing statistical mod-

els to be estimated. Third, the processed data can be queried directly for custom

tabulations and extractions. This is handled through the pandas package [118]

which provides a range of data querying and analysis functionality that integrates

cleanly with the HDF5 datastore.

1.5 Analysis of Contributing Factors
The second phase of work seeks to answer the question: “How can the outputs

of that tool be used to gain insight into the drivers of travel demand trends and

to measure the transport project impacts?” In doing so, it seeks to measure the

treatment effect of transport projects, separate from other confounding factors, such

as changes in employment levels or changes to competing transport service.

1.5.1 Confounding Factors in Travel Demand

The most common type of ex-post evaluation in travel demand is a before-and-

after study, which simply compares measures for a time period before the project

to a time period after the project [119]. In traffic safety, where ex-post studies

are commonly used to evaluate safety improvements, this design is referred to as a

naive before-and-after study, and it is recognised to have difficulty distinguishing

between the treatment effect, and other effects, including changes to the exposure

level, underlying trends and random noise [120]. In travel behaviour, such factors

are sometimes discussed as considerations, but are rarely quantified [39]. The result

is that such studies are at risk of errors in the magnitude or even the direction of the

estimated project effect [119, 57].
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Observing these challenges, this research takes the position that a robust ex-

post analysis in transport should consider the following factors:

Treatment effect. The change attributable to the project itself.

Exposure effect. Changes attributable to an increase or decrease in the number of

travellers exposed to the project. This would manifest as a change in the level

of or spatial distribution of population and employment in the surrounding

area.

Trend effect. Underlying trends that are not accounted for in observed factors.

These might include demographic changes reflected in the observed variables,

seasonality, or cohort effects.

Random effect. Noise in the data due to natural variation, special events, or other

factors which are not directly measured.

Other observable effects. Non-project factors that can be observed and included

directly in the analysis. These might include changes in fuel cost, parking

cost, competition with cars and competition with other transit routes.

1.5.2 Methods for Controlling Confounding Factors

A number of methods have been used in past transport studies to control for con-

founding factors such as these. These methods can be grouped into four main cat-

egories: control groups, modelling the counter-factual, forms of regression, and

methods to deal with unobserved confounders. For a general discussion of such

methods for use in policy evaluation, see Coglianese [121], and for a discussion of

their application to transport, see Haight [119].

The first approach for accounting for these factors is to use control groups.

Tay et al. [122] provide an example of how this can be done in the context of a

before-and-after study. They examine the change in neighbourhood crime after the

introduction of rail stations, using the remainder of the city as a form of control

group. In their study of the effect of three types of policy on transit use, de Grange

et al. [123] employ a slightly different strategy of examining changes across 41
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different cities, with the cities serving as a form of control. While these examples

provide a form of control group, they are not true randomised control trials. In

the context of health research, Ogilvie et al. [124] do identify a number of studies

of interventions to promote walking that are randomised control trials, although it

is clear from the review that such strict methodological criteria limit the types of

policies that can be practically evaluated.

The second approach to separating the project treatment effect from other

confounding factors is to model the counter-factual. The counter-factual is what

would have happened had the project not been implemented. The EDR Group [125,

126] provides an example of this approach in their evaluation of Boston’s Central

Artery/Tunnel project. The Central Artery/Tunnel, also known as the Big Dig, was

the most expensive infrastructure project in US history, costing $15 billion, which

was triple the original estimate. However, EDR found that the mobility benefits

were 15-20 % higher than originally forecast, and the urban redevelopment bene-

fits were 10 times higher than estimated [127]. These estimates were derived by

updating an existing travel model and economic model with observed data, and us-

ing them to model current conditions without the project. The prerequisite for such

an approach is the existence of these models, as well as data with which to update

them.

The third approach used to controlling confounding factors is the estimation

of statistical regression models. A number of forms of such models have been used

in transport studies with a time-element, generally falling into the categories of ei-

ther time series models or longitudinal models. The distinctions lie in the number

of entities observed, and the number of times each is observed. Traditionally, time

series data referred to a single entity observed many times [128], such as Chen et

al.’s [129] study of total transit system ridership. Longitudinal data has multiple en-

tities observed multiple times. This can be Time Series Cross Section (TCSC) data

where there are a small number of units observed many times, or panel data where

there are a large number of units observed a small number of times each [130].

An example of TCSC data is Tang and Thakuriah’s [131] model of the effects of
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traveller information on bus ridership by route in Chicago. Frazier and Kockel-

man [132] use spatial panel approaches to model land cover change in Texas. These

models can be estimated with or without spatial correlations. The Frazier and Kock-

elman models are spatial, and Cheng et al. [133] demonstrate the use of spatial time

series models and also provide an example of the application of time series models

to data from multiple sensors. There can be overlap in the applicability of these

methods depending on how large and small are defined with respect to both obser-

vational units and temporal units. Often, the distinctions are by field, for example

with health scientists referring to longitudinal data and social scientists referring

to data of the same structure as panel data [130]. Within transport, there does not

appear to be a consistent body of work to identify a norm. The common theme to

all of these statistical models is that they provide a means by which to estimate the

effect of the project, other control variables which can be directly included in the

model, and some form of time trend.

The final approach to dealing with confounders is a suite of methods designed

to handle unobserved confounding factors. These are also statistical models, derived

from the health and social science fields. Examples include propensity scores, such

as Graham [134] and difference-in-difference methods, such as Li et al. [135]. The

advantage of these methods is that they deal with unobserved confounders that can

arise from the non-random assignment of treatment [121].

1.5.3 Selected Approach

For this study, data across multiple cities and true random control groups are not

practical. It would be possible to treat other parts of the same city as a control,

although this can be integrated into the statistical modelling approach discussed

below. Therefore, the control group approach is not used explicitly here.

In the context of this research, modelling the counter-factual is both a practical

and appealing approach. In the context of evaluating a transport project, either

the model that was used to originally develop forecasts for the project, or a newer

version should be available. In addition, the data fusion tool generates a continuous

series of data that can be used as input to the model for the appropriate dates. The
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appeal of this approach is that it would take advantage of a full-scale transport

model that is likely to be behaviourally and theoretically more sound than could be

estimated directly from the longitudinal data. The disadvantage to this approach

is that it is not independent, and potentially subject to the same limitations as the

original forecasts.

The statistical modelling approach is appealing in this context because it pro-

vides an independent means to estimate the project impact directly from the longi-

tudinal data. It offers an important step forward over a naive before-and-after study

design, and provides a mechanism to separate the treatment effect from the exposure

effect, trend effect, treatment effect, random effect, and other controllable factors.

The approaches to dealing with unobserved confounders may offer some ad-

vantage, because transport projects tend not to be randomly assigned (unless you

think very poorly of the political process involved in selecting them). However,

the focus of this research is on assembling the data such that as many of the criti-

cal factors as possible can be included as observed confounders. Therefore, these

approaches to dealing with unobserved confounders are not prioritised within this

study.

So we are left to consider two good, but different approaches: model the

counter-factual using an existing transport model or estimate statistical models di-

rectly from the longitudinal data. In this project, we choose to pursue the latter

because it 1) provides independent estimate and 2) it is able to utilise the full time-

spectrum of data assembled, and not just the data for the year of the counter-factual.

This provides both a stand-alone mechanism to estimate the project effects using

data that is being automatically collected and processed through the data fusion

tool. Time series models, specifically, are used here, although panel data models

offer a promising avenue for future research.

1.6 Thesis Structure and Contribution

The structure of the thesis and the broad research contributions are described below.
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1.6.1 Structure

The remainder of this thesis is structured around five chapters that explore specific

aspects of the problem.

Chapter 2 examines, in detail, the biases and limitations of one particular data

set, transaction data from the Bay Area’s transit smart card system, Clipper Card.

In contrast to much of the previous research that uses smart card data, the Clipper

data is subject to strong privacy restrictions, less complete data fields, and a lower

penetration rate. If Big Data methods are to be applied more broadly, it is important

to consider how they may apply to imperfect data sources. This chapter explores

that question, examining the remaining value of the Clipper data and the biases

inherent in those data.

Chapter 3 describes the development and features of the core software tool

used in this research. It focuses, in particular, on the process for merging transit

AVL/APC data with GTFS data, and weighting the former to make it representative

of the full system ridership. It discusses how the software tool may be useful for

performance based planning.

Chapter 4 uses the outputs of the data fusion tool to estimate time series models

of ridership on two transit systems: the MUNI bus system and the BART rapid

transit system. These models account both for service changes and external factors

expected to affect transit ridership.

In Chapter 5, the estimated models are used to explore and explain the diver-

gent ridership trends of the two systems, with BART experiencing strong ridership

growth while MUNI ridership stagnates.

Chapter 6 starts from these same time series models, and demonstrates how

they can be used in five example applications. Three of the applications relate to

the ex-post evaluation of transport changes. For these, the ridership effect measured

with the time series models is compared to the ridership effect implied by a naive

before-and-after comparison, and to the effect implied by the application of pub-

lished elasticities. Two of the applications demonstrate how short term forecasts

derived from the models may be useful in performance based planning.
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The thesis finishes with conclusions, lessons learned and next steps. These

relate both to the specific topics explored in the chapters, and the broader themes

described in this introduction.

Supplemental material is included in several appendices. Appendix A iden-

tifies related works that are based on the content of this thesis, and describes the

contributions made by co-authors of those works. Appendix B provides a full enu-

meration of the data summarised at the beginning of Chapter 4, and Appendix C

shows the formulas that can be used to apply the time series models estimated in

Chapter 4.

1.6.2 Research Contribution

This research addresses the two areas of need described at the end of Section 1.1.

It places a strong emphasis on examining multiple data sources in relation to

each other, both for the purpose of identifying important biases, and with the goal

of combining the data in a way to correct for those biases. For example, Chapter 2

identifies socio-economic biases in the available transit smart card data by compar-

ing them to onboard transit survey data, and estimates a set of correction factors

to mitigate those biases. Chapter 3 describes how the software component of this

project links sampled transit vehicle location and passenger count data with a full

enumeration of scheduled operations to develop a weighting scheme for the former.

In addition, this research is longitudinal in nature, focusing specifically on

data available through time. The longitudinal nature of the tool allows for a more

complete analysis of factors contributing to the changes in demand, which can be

obscured in a basic before-and-after study approach. The value of this approach

is demonstrated through the application of time series models in Chapter 5 and

Chapter 6.

By compiling the data necessary to better understand travel demand changes,

this research lays the groundwork for two important outcomes. First, it provides

the data necessary for the evaluation of past travel demand forecasts. Second, it

provides the tools and analytical framework necessary to build a library of empir-

ical case studies of transport projects. Together, these outcomes will allow better
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informed decisions about future transport investments.



Chapter 2

Transit Smart Card Data Evaluation

A core data source identified for use in this research is transaction data from the Bay

Area’s transit smart card system, Clipper Card. Chapter 3 will describe the devel-

opment of a data fusion tool aimed at measuring transit system performance, with

Figure 3.1 showing how Clipper data fits into that tool. However, when the Clipper

data were obtained, it was with several limitations not present in some of the earlier

published work exploring the uses of transit smart card data. These limitations in-

clude a data obfuscation process to protect privacy, a limited penetration rate, and

some key fields that are often missing. This opened up a different line of research

aimed at understanding the remaining value of data with such restrictions. This is

important because it helps define how broadly published methods can be applied

when some agencies have tighter privacy controls or different technology, and how

agencies can plan to maximise the value of data that may emanate from the systems

they operate.

2.1 Introduction
In recent years, transaction data from transit smart card systems have been used in

a range of transport planning applications. Pelletier et al. [87] provide an overview

of a range of those applications, including strategic, tactical and operational-level

studies. Since the time of that review, smart card data have continued to be used

in a number of cities. In Singapore, Medina and Erath used smart card data to

estimate workplace capacities for input to a MATSim model [136]. Chen et al. use
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Singapore smart card data in detecting the dynamics of urban structure [137], and

also to evaluate the day to day variability in mobility patterns [138]. Munizaga

and Palma used Santiago data to estimate disaggregate transit origin-destination

matrices [139]. Gordon et al. developed methods to infer linked transit journeys

using Oyster card data in London in combination with vehicle location [88]. Wang

et al. used smart card data from the Beijing Metro to evaluate the fare changes [140].

A commonality among these studies is that they tend to be based on systems

where the data are relatively complete, both in terms of the information recorded

and in the penetration rate among transit patrons. For example, in Singapore, the

data cover 97% of all transit trips, with both a tap-in and tap-out required for adult

users [136]. The Santiago system also achieves a penetration rate of 97%, with the

database recording the exact time of the tap-in and either the station code or a bus

vehicle ID [139]. The recorded bus ID is important because it allows the transaction

to be matched to the location of the vehicle, giving the boarding location. Similarly,

Oyster cards in London record the time of the transaction, and vehicle information

for buses, allowing the location to be derived by matching to vehicle location data.

Oyster is used by 90% of bus riders, and 80% of riders on the London Underground,

the latter of which requires both tap-in and tap-out at station locations [88]. The

Beijing data record both the entry and exit location and the line used, and are taken

in the study as an enumeration of the full demand in the system [140].

Collectively, these studies demonstrate that smart card data can have value in

understanding the spatial distribution of transit trips, trip-linking behaviour, and

measuring the effect of system changes. It is natural to seek to apply these methods

in other regions, but the data in other regions may be of variable quality. Smart card

systems could have lower penetration rates, local rules could impose stronger pri-

vacy restrictions, or the method in which the cards are used or the data are recorded

could impose further limitations. In such cases, can the data still be used in the same

ways, are they a valid representation of travel on the transit system as a whole, and

can any biases be corrected in a systematic way?

This chapter seeks to address these questions through an examination of the
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Clipper Card system in the San Francisco Bay Area. Clipper Card transaction data

provide a good opportunity to study these issues for several reasons. First, it covers

eight separate transit operators in the Bay Area, operating six distinct transit modes,

allowing for a comparison across different operators and payment policies within

the same database. Second, it is subject to a series of data obfuscation steps to more

strongly protect user privacy, as discussed by Ory [141]. Third, the penetration

rate is much lower than the studies cited above, at about 45% of average weekday

boardings.

The research contribution of this chapter is to evaluate the value of smart card

data with these limitations, and validate key dimensions of the data against available

external data sources. It proposes a method to mitigate the biases in smart card data

by estimating a discrete choice model of smart card use and applying the reciprocal

of the modelled probability of using a card as a correction factor. The chapter goes

on to provide information and recommendations to agencies on how to maximise

the value of their own data, with varying limitations.

The remainder of this chapter is structured as follows: Section 2.2 provides

the context of the Bay Area transit system and the Clipper Card payment system.

Section 2.3 describes the data used in this study, including the Clipper data and

supporting data sets. Section 2.4 evaluates the data along several key dimensions.

Section 2.5 presents the estimated choice models and the result of their application

as correction factors. Finally, Section 2.6 provides conclusions and recommenda-

tions for other agencies seeking to use such data.

2.2 Context

The 9-county San Francisco Bay area covers approximately 7,000 square miles with

a population of 7.5 million residents. It has three core cities of San Francisco,

Oakland and San Jose, and features geographic constraints in the Bay itself as well

as surrounding mountains. Figure 2.1 shows an overview of the transit system,

which includes the Bay Area Rapid Transit (BART) system, the Caltrain commuter

rail, light rail systems in San Francisco and San Jose, major bus systems in the core
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cities, and a number of smaller operators.

Travellers are faced with navigating this system that is both geographically

dispersed and operated by separate agencies with their own policies and payment

methods. The Clipper Card was introduced in 2010 to provide common fare media

for transit trips in the Bay Area. Clipper is a contactless smart card upon which

travellers can load either cash value or a transit passes. Users are required to tag-

on as they enter the transit system, and for modes with a zone-based fare, they

are required to tag-off as well. Clipper is currently accepted by all of the major

and some of the minor transit operators in the Bay Area. As the regional planning

agency, the Metropolitan Transportation Commission (MTC) coordinates the sys-

tem among the transit operators and houses the resulting transaction data. Planning

for the next generation Clipper system is currently underway.
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Figure 2.1: Bay Area transit operators [142]



62 Chapter 2. Transit Smart Card Data Evaluation

2.3 Data
The primary data source used in this study is an anonymous database of Clipper

Card transactions. In addition, several supporting data sources are used for the

purpose of validation. All are described here.

2.3.1 Clipper Card Data

MTC has provided an anonymous database of Clipper Card transactions covering

the period from March 2013 to September 2014. The data include one record each

time a user tags onto the transit system, with the record including information on the

card ID, the agency and payment type, the tag-on time and location, and the tag-off

time and location where applicable. Table 2.1 describes the fields in the database.

The card technology is such that transactions made on a vehicle are not pro-

cessed until after the data are downloaded when the vehicle is back at the station.

Therefore, while the time of the transaction is known, the location of that vehicle

at that time is unknown. The location of transactions made at stations, generally on

rail, is known.

To protect users’ Personally Identifiable Information (PII) and comply with

California’s strong privacy laws, MTC developed a multi-step data obfuscation pro-

cess as follows [141]:

1. Starting from the universe of Clipper transactions, the Clipper Card ID is

replaced with a random number that persists for one day. Therefore, within a

day it is possible to identify the transactions made by the same card, but it is

not possible to identify the transactions made by the same card on a different

day.

2. Discard a random selection of 50% of card IDs for each day.

3. The transaction times are grouped into 10 minute increments.

4. The transaction dates are obfuscated. Each Sunday within each month is

assigned a random number between one and ten. Three Sundays are randomly

selected, retaining the random identifying integer, and the fourth (and fifth, if

relevant) is discarded. This process is repeated for each day of the week. The
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Table 2.1: Clipper data dictionary

Field name Type Example Description Notes

Year smallint 2013 Transaction Year
Month smallint 10 Transaction Month (1

is January)

DayOfWeekID smallint 4 Transaction Day of
Week Integer

A day is defined as 3
am to 3 am the
following day

DayOfWeek char Wednesday Transaction Day of
Week Name

A day is defined as 3
am to 3 am the
following day

RandomWeekID smallint 6 Random Integer that
Identifies a Unique
Day

The Year, Month,
DayOfWeek, and
RandomWeekID fields
uniquely identify a day

ClipperCardID varbinary D88268EA105âC¦ Anonymised Clipper
card identifier

A random number
representing a unique
Clipper Card that
persists for one
circadian day (3 am to
3 am)

TripSequenceID bigint 2 Circadian Day Trip
Sequence

AgencyID int 1 Transit Agency Integer

AgencyName char AC Transit Transit Agency Name

PaymentProductID int 119 Payment Product
Integer

PaymentProductName char AC Transit Adult
local (31 Day
Rolling) pass

Payment Product Name

FareAmount money 0 Fare Monthly pass holders
have a zero fare for
each transaction

TagOnTime Time time 17:35:00 Boarding Tag Time Times are rounded
down to the nearest ten
minute interval

TagOnLocationId int 2 Boarding Tag Location
Integer

TagOnLocationName char Transbay Terminal Boarding Tag Location
Name

RouteID int 300 Route Integer

RouteName char F Route Name Not all bus operators
transmit route names,
e.g. all MUNI routes
are recorded as ’SFM
bus’

TagOffTime Time time 20:20:00 Alighting Tag Time Times are rounded
down to the nearest ten
minute interval

TagOffLocationId int 15 Alighting Tag Location
Integer

For systems that
require passengers to
tag out of the system

TagOffLocationName char Millbrae (Caltrain) Alighting Tag Location
Name

For systems that
require passengers to
tag out of the system
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result is that the data reveal that a transaction may have occurred on a Sunday

in October, but not which Sunday.

5. The data are released in monthly chunks, with a lag in the release of new data.

There are two specific points of concern that these processes are designed to

prevent. First, is avoiding the possibility of identifying individuals through their

regular travel patterns. Second is a desire to avoid locating the card precisely in

both time and space. The purpose of this data obfuscation is to make it impossible

to identify an individual from the data even if it were combined with other sources

and observations.

There is a trade-off between protecting privacy and having detailed data to

analyse, and this process represents an initial attempt to balance these competing

goals. MTC has asked for feedback on this balance, and this chapter presents ev-

idence to provide a better understanding of what is lost on the data analysis side

of that trade-off. By presenting this to the broader community, we invite others to

comment based both on this evidence and their own experience.

2.3.2 Data Processing and Weighting

The Clipper Card data were processed to derive additional fields used in this re-

search, including the mode, a transfer flag, and weights.

The transit mode was inferred based first on the agency name for agencies that

operate a single mode. These include rapid transit for BART, commuter rail for Cal-

train, Ferry for Golden Gate Ferry and SF Bay Ferry, and bus where not otherwise

specified. For Valley Transportation Authority (VTA), transactions where the route

name is LRV (Light Rail Vehicle) are coded as light rail, and others are coded as

bus. MUNI includes bus, light rail and cable car. Any transaction occurring at a

light rail station rather than on a vehicle was coded as light rail. Records with the

route name equal to CC59, CC60 or CC61 were coded as cable car. Those with a

route name of F, J, K, L, M and N were coded as light rail. The remaining MUNI

records are coded as bus.

Transfers were identified in the system based on two tag-ons occurring less
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than 90 minutes apart. 90 minutes was selected as the duration free transfer on

MUNI. When a transfer occurs, the transactions associated with that transfer (both

before and after) are assigned the same linked trip ID such that the data can be

summarised as linked trips in addition to boardings.

The data were weighted such that a month’s worth of weighted records repre-

sent the transactions for an average weekday, Saturday or Sunday during that month.

This involves scaling up by a factor of two to compensate for the 50% of card IDs

that were discarded, and scaling down by the number of weekdays, Saturdays or

Sundays in the monthly data set (15, three or three based on the number retained

in the data obfuscation process). A linked trip weight is calculated that divides the

base weight by the number of boardings in the linked trip. For example, a boarding

on BART followed by a transfer to AC Transit would be counted as half a linked

trip on each.

The calculation of modes, transfers and weights are imperfect, as discussed in

the data evaluation section, but they provide a sufficient basis for conducting that

evaluation. In particular, there is a risk that a changing penetration rate could be a

source of error because an increase in penetration would look the same in the data

as an increase in ridership. This risk is explored in Section 2.4.6.

2.3.3 Other Supporting Data

In addition to Clipper Card transactions, there are a number of other transit data

sources in the Bay Area. Several are used in this study to validate key dimen-

sions of the Clipper data. The Statistical Summary of Bay Area Transit Operators

provides overall ridership numbers by operator and mode [142]. BART monthly

ridership reports provide “entry/exit” matrices from the fare gates indicating total

numbers of riders traveling between each station pair [143]. There is Automated

Passenger Counter (APC) and Automated Vehicle Location (AVL) data for a sam-

ple of MUNI buses. These data have been expanded to the schedule information in

GTFS (General Transit Feed Specification) format such that they are representative

of total ridership, as described in Chapter 3.

Onboard transit surveys are available on Alameda County Transit (AC Tran-
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sit) [144], SamTrans (San Mateo County Transit) [145], Golden Gate Ferry [146],

Golden Gate Transit [147], San Francisco Bay Ferry [148], and Caltrain [149]. The

onboard surveys are expanded to match boarding counts by route, direction and

time-of-day. They are used throughout this chapter as a point of comparison against

the Clipper data, with the implicit assumption that the expanded onboard survey

data is a better representation of the true ridership than the Clipper data.

Given this assumption, it is worth acknowledging that the onboard survey data

are subject to their own set of limitations. First, it is a sample, and subject to sam-

pling error as a result (For these surveys, the goal was to collect a representative

sample of 5% of riders aged 16 or older). Second, it is expanded to boarding counts,

and is subject to any errors in those counts, which can be particularly challenging

when the transit vehicles become very crowded. Even if the counts are perfect,

there can be substantial day-to-day ridership variation, so there will be some varia-

tion depending on which day the counts were taken and which day the surveys were

conducted. Third, there can be data quality and recording errors, particularly for

manual transcription of paper-based surveys. Fourth, there can be non-response bi-

ases for certain categories of trips. For example, people making short trips may not

have sufficient time to respond to a survey, and in a diverse, multi-lingual region,

non-English speakers may be less likely to respond.

The methodology sections of the survey reports make it clear that the contrac-

tors understand these issues and have done their best to mitigate them. They employ

a methodology that involves a very short questionnaire to collect origin, destination

and contact information, followed by a telephone interview to collect more detailed

information. This is aimed at minimizing non-response bias, and allows the tele-

phone interview to be language-specific. The telephone interview features real-time

mapping of the responses, which allows erroneous entries to be identified and cor-

rected on-the-spot. In spite of these strategies, it is acknowledged that the onboard

surveys are imperfect.

The validation is not comprehensive, but focuses on subsets of the Clipper data

that overlap with the external sources. At the same time, if the Clipper data were
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to merely replicate existing sources, they would have limited additional value. So

these data also provide a benchmark for assessing what the Clipper data can be used

for over and above existing sources.

2.4 Data Evaluation
This section provides an evaluation of the Clipper Card data with respect to six

dimensions: system characteristics, penetration rates, geographic distribution, tem-

poral distribution, transfer rates and stability over time. This evaluation seeks to

provide insight into three key questions:

• What new information do these data provide?

• Are they representative of the system as a whole?

• What can be done to make the data more useful?

Unless otherwise specified, all data are weighted transactions for an average

weekday in March 2013. This month was selected because it is a month without

major holidays, when schools are in session, and when MUNI AVL-APC data are

also available.

2.4.1 System and Data Characteristics

The characteristics of the system itself, as well as details of how the data are coded

are an important factor in determining what data actually get recorded and how they

can be used. In the examples cited above [139, 88, 140], there is a clear distinction

between the data collected on metro systems versus that collected on bus systems.

The metros, like the London Underground, typically have fare barriers, and require

the user to tap-in and tap-out, generating data with a known location at both ends of

the trip. This structure generates the highest quality of data. By contrast, the buses

require only a tap-in, and the location of that tap-in is not known by default but must

be derived by matching that record to the location of the bus as recorded by AVL.

That matching requires that the route name and the vehicle ID be recorded.

Table 2.2 lists the agencies and modes covered by the Clipper Card data, with

selected characteristics of each. For the local bus systems (AC Transit, SamTrans,
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MUNI and VTA), as well as the MUNI cable cars, tag-ons happen on the vehicles,

and the location is not recorded. It is worth noting that MUNI allows boardings

through the rear door of the bus. Card readers are provided at the rear of the vehicle,

although on a very crowded bus reaching them can be problematic.

Table 2.2: Transit system characteristics

Agency Name Mode
Tag-On

Required
Tag-Off
Required

Tag
Location

Fare
Enforcement

Percent
with Route
ID Coded

Vehicle ID
Provided

AC Transit Bus Yes No Vehicle At Boarding 59% No

BART Rapid
Transit Yes Yes Station Barriers 0% No

Caltrain Commuter
Rail Yes Yes Station

Proof-of-
Payment 0% No

Golden
Gate
Transit

Bus Yes Yes Zone At Boarding 100% No
Ferry Yes No Station At Boarding 100% No

MUNI

Bus Yes No Vehicle
Proof-of-
Payment 6% No

Cable Car Yes No Vehicle At Boarding 100% No

Light Rail Yes No Vehicle or
Station

Partial
Barriers 4% No

SamTrans Bus Yes No Vehicle At Boarding 3% No

VTA Bus Yes No Vehicle At Boarding 86% No

Light Rail Yes No Station
Proof-of-
Payment 0% No

SF Bay Ferry Ferry Yes Yes Station At Boarding 0% No

The two light rail systems are both operated on a proof-of-payment system.

On VTA light rail in San Jose, the card readers are on the station platforms, and

users tap-in before boarding. Whereas most systems require a tap-in for a transfer,

it is not required for VTA as long as the transfer time window has not expired. The

MUNI light rail operates at the street level through much of San Francisco, and as a

subway in the downtown area. Riders boarding at the street level tag-on to a reader

on the vehicle. Riders boarding at the subway stations must pass through fare gates

and tag-on at the station.

BART requires tap-ins and tap-outs at the stations with fare barriers, providing

the most complete data set. The ferries are similar. While the Golden Gate Ferry

does not require a tap-out, there is a single destination so it is unnecessary. Caltrain

also requires a tap-out, but it is a proof-of-payment system. Golden Gate Transit

buses are similar in that they require a tap-out to accommodate their zone-based
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fare structure, but because the readers are on the buses, the transaction location is

only recorded at the level of a fare zone, not the specific location of the bus.

It is also important to note that the vehicle ID is not provided, and the route ID

is left uncoded for many transactions. This, plus the fact that the transaction times

and dates are deliberately muddied for privacy reasons, prevents the vehicle-based

tag-ons from being matched to AVL data to derive their location. The dilemma is

that the boarding location would be valuable information in terms of understanding

the state of the system, but deriving that information would require locating a card

precisely in both time and space. It is not an issue for the station-based data—the

location is fixed so the time can be imprecise—but having a 10-minute window for

an unspecific date makes it difficult to figure out where a vehicle is.

2.4.2 Penetration Rates

The penetration rate refers to the percent of transit users that pay using a smart card.

While meaningful conclusions can be drawn from a relatively small sample of data,

lower penetration rates mean that there is greater opportunity to magnify any biases

in who uses clipper cards. That is, for systems like Santiago and Singapore with a

97% penetration rate, there is a limit to how far the results can be skewed.

Table 2.3 presents the weighted average weekday Clipper transactions for each

Bay Area system in comparison to the total average weekday ridership [142]. The

penetration rate is calculated as the ratio of the two, and varies from 8% on MUNI

Cable Cars (with many tourists paying cash) to 91% on the Golden Gate Ferry. Re-

cent onboard surveys on some of the systems have asked about Clipper usage, and

the surveyed values are reported in the right-most column. Whereas the penetra-

tion rate calculated by these two methods compares reasonably well for most of the

cases, the reason for the large difference on AC Transit is not clear.

Beyond the penetration rates themselves, it is important to understand what, if

any, biases exist in who uses Clipper. Evidence in this regard is provided by the

onboard surveys. The surveys show that Clipper Card use is correlated with em-

ployment, income, Hispanic identification and number of transfers, with employed

travellers, higher-income travellers, non-Hispanics and trips with transfers more
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Table 2.3: Estimated Clipper Card penetration rates

Agency Name Mode
Weighted

Clipper
Transactions

Average
Weekday
Ridership

Penetration Rate
Penetration Rate
from Onboard

Survey

AC Transit Bus 57,732 173,169 33% 58%

BART Rapid Transit 214,724 420,396 51%

Caltrain Commuter Rail 8,487 49,031 17%
Golden Gate
Transit

Bus 9,053 11,986 76% 78%
Ferry 6,775 7,465 91% 81%

MUNI
Bus 273,311 511,733 53%
Cable Car 1,678 20,523 8%
Light Rail 65,926 164,488 40%

SamTrans Bus 15,709 40,970 38% 45%

VTA Bus 32,421 106,160 31%
Light Rail 5,824 33,730 17%

SF Bay Ferry Ferry 1,065 4,849 22% 36%

Total 692,703 1,544,500 45%

likely to use Clipper [145, 146, 148].

The income correlation is pronounced. On AC Transit, Clipper usage ranges

from 34% for household incomes less than $10,000 up to 71% for household in-

comes over $75,000 [144]. The bias is pronounced even with a reasonably high

penetration rate. On Golden Gate Transit buses, whose 78% penetration rate is

comparable to the Oyster Card usage on the London Underground, 33% of riders

with income less than $10,000 use Clipper compared to 91% of riders with an come

of $75,000 or more [147].

Unfortunately, it is not practical to directly weight the Clipper data to offset

these biases, because doing so would require knowing the socio-economic char-

acteristics of the card holders, and doing that would likely raise privacy concerns.

Instead, we explore whether the Clipper data are representative of the spatial and

temporal distributions of the full population of transit riders, with the idea that ac-

counting for any biases in these dimensions could reduce any socio-economic bi-

ases. Results are presented in the following sections.

2.4.3 Geographic Distribution

To validate the geographic distribution of Clipper transactions, it would be best to

compare to the geographic distribution of all trips from an independent data source.
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While such a data source is not available for the Bay Area as a whole, it does exist

for BART, which publishes a monthly ridership report showing the total entries and

exits between each station pair based on fare gate data [143].

Figure 2.2 shows these fare gate totals plotted against the Clipper Card transac-

tions between each station pair for an average weekday in March 2013. The Clipper

values are lower because the penetration rate is only about 50%, but the correlation

is strong. A line can be fit through the points with an R2 of 0.95. The two largest

outliers, located between 1,000 and 1,500 on the x-axis, are both directions between

San Francisco Airport and Powell Street in downtown San Francisco.

Despite this good overall fit, inspecting the results at a district level reveals that

the penetration rate varies in specific ways, with 63% penetration for trips within the

core area of San Francisco and Oakland, 54% penetration for trips from elsewhere

to that core, and 33% for trips outside that core. This trend is likely related to

higher-income commuters coming travelling to those areas.

2.4.4 Temporal Distribution

The temporal distribution of the data were assessed for MUNI buses, because

AVL/APC data were available for this system from which a detailed time-of-day

profile could be derived. These data were reported using the data fusion tool de-

veloped in Chapter 3. This was done for average weekday conditions in March

2013.

Figure 2.3 shows the temporal distribution in 10-minute increments from these

two data sources. The curves follow the same overall profile, with the primary

difference that the Clipper data shows a much higher AM peak, with less mid-day

travel. Again, this may be related to a higher rate of Clipper usage among higher-

income commuters.

2.4.5 Transfer Rates

An advantages of transit smart card data is the ability to observe a full day’s travel

for a particular card, allowing transfers to be inferred. This is in contrast to other

passive data collection systems, such as APCs, where it is not possible to identify
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Figure 2.2: Trips between BART station pairs estimated from Clipper Card transactions
and fare gate totals

which boardings are transfers and which are originating boardings.

As described in section 3.2, a Clipper tag-on that occurs within 90 minutes of

a previous tag-on by the same card is considered a transfer. This value corresponds

to valid free transfer window on MUNI, and reflects the difference in times between

tag-ons. This is a very simplistic rule, but it serves as a starting point for the analysis.

Varying time windows could be tested, and where transaction location data or tag-

offs are available, those factors can be considered as well.

Table 2.4 shows the number of transfers per linked trip, as derived from the

Clipper data. Table 2.5 shows the equivalent measures from the available onboard

surveys. The Clipper transfer rates are generally lower than those recorded in the

onboard surveys, which is interesting because at least one onboard survey found that

trips involving a transfer are more likely to be paid for with a Clipper Card [145].

It is possible that the 90 minute time window is too short for some trips once in-
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Figure 2.3: Time-of-day distribution from Clipper transactions and from AVL/APC data on
MUNI buses

vehicle time and waiting time elapse between tag-ons. Alternatively, it may be that

travellers are less likely to tag-on for a transfer than for an initial boarding.

Table 2.4: Transfers per linked trip, from Clipper transactions

Linked Clipper Card Trips

Number of Transfers to Complete Trip Boardings per
TripAgency Name Mode 0 1 2+

AC Transit Bus 68% 25% 7% 1.38

BART Rapid Transit 89% 9% 2% 1.12

Caltrain Commuter Rail 83% 15% 2% 1.19
Golden Gate
Transit

Bus 88% 11% 2% 1.14
Ferry 96% 4% 0% 1.04

MUNI
Bus 64% 27% 9% 1.45
Cable Car 75% 19% 6% 1.31
Light Rail 77% 19% 4% 1.27

SamTrans Bus 68% 25% 7% 1.38

VTA Bus 55% 32% 13% 1.58
Light Rail 70% 23% 8% 1.38

SF Bay Ferry Ferry 91% 9% 0% 1.10
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Table 2.5: Transfers per linked trip, from onboard surveys

Linked Clipper Card Trips

Number of Transfers to Complete Trip Boardings per
TripAgency Name Mode 0 1 2+

AC Transit Bus 56% 36% 9% 1.55
Caltrain Commuter Rail 67% 27% 6% 1.40
Golden Gate
Transit

Bus 70% 22% 7% 1.35
Ferry 84% 15% 1% 1.17

SamTrans Bus 58% 33% 9% 1.51
SF Bay Ferry Ferry 81% 17% 2% 1.21

2.4.6 Stability over Time

An important feature of smart card data is that they are collected continuously over

time, providing the opportunity to monitor trends or measure the effects of tran-

sit system changes. To be useful for this purpose, though, they must measure the

underlying system, and not an arbitrary data change.

To evaluate the usefulness of the data for this purpose, the average weekday

Clipper transactions on BART and MUNI bus are plotted against fare gate or APC

data for the same months, where available. These plots are shown in Figure 2.4 .

The months of April 2013, August 2013 and February 2014 are not in the available

Clipper database, but the surrounding months give a sense of the trend. The dip

in ridership in July and October 2013 is due to strikes on the BART system. The

Clipper data track the ridership moderately well, although with a bit more noise.

The Clipper data for both systems show the dip for the strikes, for example. The rise

in Clipper transactions in the final three months of data is interesting, because both

MUNI bus and BART show a parallel rise, and it is faster than the growth in total

BART ridership. One possibility is that the Clipper Card penetration increased at

this time, which highlights the risk of assuming that an increase in card transactions

is the same as an increase in ridership.

An appropriate response to this issue would to calculate a weight that varies

with time. In fact, based on the analysis contained in Chapter 2, this is what is done

in Chapter 3 for subsequent reporting of MUNI performance. As described at the

end of Section 3.3.2, an additional component is added to the Clipper weight for
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Figure 2.4: Trend in Clipper tag-ons on BART and MUNI, compared to total boardings

MUNI records that scales the weighted Clipper records to match the total boardings

as determined by the weighted and expanded AVL-APC data. This applies in cases

where both are available.

2.5 Estimated Model Correction Factors
In this section, the biases identified above are explored in a more systematic way,

and a method is proposed to mitigate those biases. The basis for both is a discrete

choice model of Clipper Card use estimated from the onboard survey data.

2.5.1 Estimated Models of Clipper Card Use

The models are binary logit models of whether an unlinked transit trip is made with

a Clipper Card, or via another payment method. The model takes the form:

Pr(Clipper) =
eU

1+ eU (2.1)

where Pr(Clipper) is the probability that the unlinked trip is made using a Clipper

Card, and U is the utility associated with using a Clipper Card. The utility can

be expressed as U = βX where β is the vector of estimated model coefficients
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and X is the vector of predictors. The model coefficients are estimated from the

onboard survey data using maximum likelihood estimation. The use of onboard

survey data is necessary because it provides a complete picture of trips made both

with and without Clipper. The structure of the data is such that there is one record

for each unlinked transit trip (boarding) in the surveys. If a Clipper Card was used

to pay when the boarding is made, then the dependent variable is coded with a one,

otherwise it is coded with a zero. Data are used for the six operators where the

surveys are available. Additional onboard surveys are underway, which will allow

for a more complete analysis in the future.

The estimated models allow for statistical inference of the factors correlated

with Clipper use. In the results presented, t-statistics greater than 1.96 or less than

-1.96 indicate the variable has a statistically significant correlation with Clipper use

at the 95% level. If Clipper use was representative of the system as a whole, all

of the descriptive variables would be expected to be insignificant. As the results in

Table 2.6 show, this is not the case.

Table 2.6 shows the model estimation results for two models. Model A in-

cludes a full set of trip characteristics and socio-economic variables as available in

the onboard surveys. It provides the best possible fit, and through the coefficient es-

timates shows the ways in which Clipper use is biased. Model B is limited to those

variables that are available in the Clipper data. It is still estimated from the onboard

surveys, but can be applied to the Clipper data to calculate correction factors, as

will be discussed in Section 2.5.2. When a coefficient changes noticeably between

Model A and Model B, it indicates that the variable is correlated with a variable

that has been excluded. The hope is that the variables remaining in Model B are

sufficiently correlated with the excluded socio-economic variables to allow Model

B to partially or wholly adjust for the biases in those socio-economic dimensions.

The model results first show a constant associated with each operator. In ad-

dition, Clipper use is positively correlated with the use of express bus and BART,

which can appear at any point during the linked trip. Trips with transfers are more

likely to be made with a Clipper Card, likely because the cards provide a convenient
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Table 2.6: Estimated models of Clipper Card use

Model A Model B
Variable coefficient t-statistic coefficient t-statistic
Operator

AC Transit -0.758 -10.12 -0.396 -10.75
Caltrain -0.763 -8.84 -0.186 -4.89
Golden Gate Transit (bus) -1.608 -12.61 -1.164 -10.87
Golden Gate Transit (ferry) 0.198 1.26 1.004 7.46
SF Bay Ferry -1.942 -12.75 -1.102 -8.64
SamTrans -0.945 -11.58 -0.559 -11.63

Path Attributes (base=Other mode)
Linked trip includes express bus 0.747 9.98 1.096 15.49
Linked trip includes BART 0.232 3.82 0.369 6.33

Transfers (base=None)
Linked trip has 1+ transfers 0.133 3.66 0.161 4.67

Time-of-Day (base=Off-peak/missing)
AM Peak 0.269 6.72 0.568 15.13
PM Peak 0.289 7.25 0.531 14.09

Fare Category (base=Adult)
Youth -0.186 -2.03 -0.113 -1.78
Senior -0.198 -1.73 -0.164 -2.47
Disabled -1.636 -18.39 -1.847 -21.69
Easypass or class pass -0.815 -10.40 -0.622 -8.86
Other discount -4.288 -9.36 -4.014 -8.78
Missing/do not know -0.172 -0.45 -0.054 -0.15

Access Mode (base=Walk access)
Linked trip has drive access or egress -0.110 -2.33

Tour Purpose (base=Other)
Work 0.745 15.15
College/university 0.599 8.69
Grade/high school 0.872 8.06

Household Income (base=under $10,000)
$10,000 to $25,000 0.128 2.09
$25,000 to $35,000 0.268 3.95
$35,000 to $50,000 0.472 6.53
$50,000 to $75,000 0.583 8.21
$75,000 to $150,000 0.746 10.98
$150,000 or higher 0.904 11.38
Under $35,000 (if refused detailed income) 0.230 1.68
$35,000 or higher (if refused detailed income) 0.695 5.19
Missing/refused 0.098 1.35

Race (base=White/Asian)
Black -0.187 -4.06
Other -0.237 -4.48
Missing 0.023 0.17

Hispanic (base=No)
Yes -0.215 -4.02
Missing -0.518 -2.39

Age Group (base=25-64)
Under 25 -0.195 -4.29
65 or older 0.198 1.72
Missing 0.380 2.95

Auto Ownership (base=1+ autos)
Zero autos in household 0.180 4.56

Work Status (base=Non-worker)
Full- or part-time -0.146 -2.74
Missing -3.982 -7.42

Student Status (base=no/missing)
Student 0.194 3.51

Model Statistics
Observations 19080 19080
Log-Likelihood at 0 -13224 -13224
Log-Likelihood -11617 -12237
Rho-squared 0.122 0.075
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means of transferring between operators. There is no discount provided for inter-

operator transfers, it merely avoids the necessity of carrying two separate tickets

purchased from separate machines or websites. Trips made during the AM or PM

peaks are also more likely to use Clipper. This is similar to what is observed in

Figure 2.3, and may be related to tour purpose, as discussed below. The fare cate-

gory provides a proxy measure of select socio-economic attributes, and is therefore

important to calculating the correction factors. It is an imperfect proxy, because it

is also related to the policies of the operator, such as the fare media upon which the

discounts are applied and distributed.

The remaining variables are included only in Model A. In several cases a

“Missing” category is retained in the model even though it is statistically insignifi-

cant. This is done in order to avoid biasing the remaining coefficients in that group.

Drive-access trips are less likely to use Clipper, all else being equal. Work, univer-

sity and school trips are all more likely to be made with Clipper than other trips.

This is likely because those trips tend to happen on a daily basis, so travellers are

more willing to make the effort to obtain a Clipper Card, than for trips that hap-

pen more infrequently. Consistent with Section 2.4.2, there is a clear income trend

where high-income travellers are more likely to use Clipper. A similar outcome

is found with ethnic and racial minorities, where blacks, other races and Hispan-

ics are all less likely to use Clipper than whites and Asians. In contrast to prior

expectations, persons aged 65+ are more likely to use Clipper, although that result

is marginally insignificant. Persons under 25 less likely, when controlling for the

other factors in the model. Similarly, having zero autos in the household is posi-

tively correlated with Clipper use. Workers are somewhat less likely to use Clipper

and students are somewhat more likely.

The additional variables result in a better fit for Model A, which has a rho-

squared of 0.122 compared to 0.075 for Model B. These rho-squared values are

calculated with respect to a model with a single constant. For comparison, the log-

likelihood of a model with a separate constant for each operator is -13059. If the

rho-squared values were calculated with respect to this model instead, they would
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be 0.110 for Model A and 0.063 for Model B. Either way, the variables beyond the

operator-specific constants describe a significant portion of the choice.

Collectively, these model results highlight some of the biases in the use of

Clipper. Some of the correlations were expected, such as with trip purpose and

income, but several would not otherwise be obvious. Of particular importance are

the trends estimated for income and race, because it means that using the Clipper

data unadjusted would under-estimate low-income and minority travel—a problem

from environmental justice analysis.

2.5.2 Application of Correction Factors

The above model can be used to calculate the probability that an unlinked trip is

made using a Clipper Card. If that probability is applied to all records in the onboard

survey, it will provide an estimate of the trips made by Clipper. Conversely, if the

reciprocal of that probability is applied to only the Clipper records, it will provide

an estimate of the total trips. Therefore, that reciprocal probability is proposed as a

correction factor to adjust for the biases in the use of Clipper. The correction factor

is calculated as:

CF =
1

Pr(Clipper)
=

1+ eU

eU (2.2)

where CF is the correction factor.

To demonstrate its application, the correction factors derived from Model A

and Model B were applied to the Clipper records in the onboard surveys. In Ta-

ble 2.7 and Table 2.8, these are compared to the total trips and the Clipper trips in

the onboard surveys, with no correction factors applied. In all cases, the summaries

do account for the survey weights.

Table 2.7 shows the boardings (unlinked trips) by operator. The surveys con-

tain a total of 278,000 boardings, of which 140,000 use a Clipper Card. The correc-

tion factors are applied only to the Clipper records, and scale up the 140,000 trips

they represent to an estimate of the total. Both models slightly over-estimated the

total, with notable over-estimates for Golden Gate Transit buses and for SamTrans.
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One possible explanation for this over-estimation is bias resulting from the

asymmetry of the inverse transformation. Very small probabilities will result in

correction factors that are very high, whereas very large probabilities will result in

correction factors close to one. On average, this will tend to bias the correction

factors upwards.

Table 2.7: Correction factors applied to onboard survey data, totals by operator

Values Percent Difference

Operator Total
Trips

Clipper
Trips

Model
A Model B

Clipper
Trips

Model
A Model B

AC Transit 158,571 75,025 154,740 151,673 -53% -2% -4%
Caltrain 52,463 31,038 51,743 54,387 -41% -1% 4%
Golden Gate Transit (bus) 11,986 6,933 14,562 13,731 -42% 21% 15%
Golden Gate Transit (ferry) 6,795 5,490 6,663 6,767 -19% -2% -0%
SF Bay Ferry 4,610 1,623 4,424 4,548 -65% -4% -1%

SamTrans 44,108 19,871 56,759 53,158 -55% 29% 21%

Total 278,533 139,981 288,890 284,263 -50% 4% 2%

Table 2.8 examines the share of trips made for the groupings of variables in-

cluded in Model A but not in Model B. In the model estimation, these variables were

found to be significantly correlated with Clipper use, which means that the unad-

justed Clipper trips are a biased estimate of the total shares. The values shown in the

Clipper Trips column are consistent with this expectation. The Model A correction

factors are expected to do a reasonably good job of correcting for these biases, and

the results show that the shares with the Model A correction are generally within

a few percent of the total shares. The question is whether the Model B correction

factors, which contain only variables that can be applied to the Clipper transaction

data, produces shares more similar to Model A or to the Clipper Trips column.

The Model B results in Table 2.8 are somewhere in between the uncorrected

values and Model A. The bias in drive-access shares is well corrected. The tour

purpose shares still show a 16% under-estimate for the other purpose, but this is

improved from a 32% under-estimate, and the share for the work purpose is also

improved. Similarly, there remains an under-estimate of low-income trips and an

over-estimate of high-income trips, but it is about half the magnitude found in the

unadjusted results. The racial and Hispanic biases are improved, but not eliminated.
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Table 2.8: Correction factors applied to onboard survey data, shares by category

Values Percent Difference
Attribute Total

Trips
Clipper
Trips

Model
A

Model
B

Clipper
Trips

Model
A

Model
B

Drive Access Shares
Yes 24% 28% 23% 24% 18% -1% 2%
No 76% 72% 77% 76% -6% 0% -1%
Total 100% 100% 100% 100% 0% 0% 0%

Tour Purpose Shares
Work 54% 63% 51% 57% 18% -5% 6%
College/university 12% 11% 12% 13% -5% 2% 7%
Grade/high school 5% 5% 5% 5% 6% -4% 11%
Other 30% 20% 32% 25% -32% 8% -16%
Total 100% 100% 100% 100% 0% 0% 0%

Household Income Shares
Under $10,000 14% 10% 14% 12% -30% 4% -15%
$10,000 to $25,000 17% 13% 18% 16% -21% 6% -6%
$25,000 to $35,000 11% 10% 11% 11% -9% 3% -2%
$35,000 to $50,000 9% 9% 9% 9% 7% -1% 5%
$50,000 to $75,000 10% 12% 10% 11% 17% -5% 7%
$75,000 to $150,000 17% 21% 16% 18% 27% -5% 9%
$150,000 or higher 9% 12% 9% 11% 37% -3% 16%
Under $35,000 2% 1% 2% 2% -13% 9% 5%
$35,000 or higher 2% 2% 2% 2% 22% -5% 14%
Missing/refused 10% 8% 10% 9% -17% -3% -11%
Total 100% 100% 100% 100% 0% 0% 0%

Race Shares
White/Asian 49% 56% 49% 53% 15% 0% 10%
Black 24% 21% 24% 22% -13% 0% -8%
Other 24% 21% 25% 22% -14% 2% -9%
Missing 3% 2% 2% 2% -18% -24% -21%
Total 100% 100% 100% 100% 0% 0% 0%

Hispanic Shares
Yes 21% 17% 21% 18% -16% 3% -11%
No 79% 82% 78% 81% 4% -1% 3%
Missing 1% 1% 1% 1% -15% -3% -16%
Total 100% 100% 100% 100% 0% 0% 0%

Age Group Shares
Under 25 26% 24% 27% 25% -9% 4% -5%
25-64 65% 68% 64% 66% 5% -1% 2%
65+ 7% 6% 6% 7% -13% -4% -0%
NA 2% 2% 2% 2% 11% -6% 8%
Total 100% 100% 100% 100% 0% 0% 0%

Zero Auto Shares
Yes 30% 27% 31% 30% -11% 2% -0%
No 70% 73% 69% 70% 5% -1% 0%
Total 100% 100% 100% 100% 0% 0% 0%

Work Status Shares
Full- or part-time 67% 75% 66% 70% 11% -2% 3%
Non-worker 32% 25% 32% 30% -22% 1% -5%
Missing 1% 0% 2% 0% -92% 149% -93%
Total 100% 100% 100% 100% 0% 0% 0%

Student Shares
Yes 29% 27% 30% 29% -6% 4% 3%
No/missing 71% 73% 70% 71% 2% -2% -1%
Total 100% 100% 100% 100% 0% 0% 0%
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The age shares are improved, particularly for the 65+ group, and the Model B cor-

rections eliminate the bias against zero-auto households. It is interesting that the

Clipper Trips column shows both persons aged 65+ and zero-auto households to

be under-estimated in the unadjusted data, whereas the model coefficients on both

those variables are positive. This demonstrates the complexity of the relationships

in the data, and the importance of the model estimation. Both the work status shares

and the student shares are corrected reasonably well.

With the exception of the two operators noted, Model A does a reasonable

job of correcting of the biases of variables included in the model. Model B nearly

eliminates the bias for some terms, and mitigates it for others. In spite of this

improvement, important biases remain for tour purpose, income, and race/ethnicity.

2.6 Conclusions
In contrast to research conducted using relatively complete transit smart card data

sets, the Clipper Card system in the San Francisco Bay Area is characterised by

strong privacy restrictions and limited penetration rates. This research has evaluated

the value of data with those limitations and proposed a method to develop correction

factors for the data using choice models estimated from onboard survey data.

2.6.1 Data Evaluation

The data evaluation has focused on three key questions, as articulated at the start of

Section 2.4. The conclusions to those questions are summarised here.

2.6.1.1 What New Information Do These Data Provide?

Perhaps the most significant advantage of smart card data, relative to other available

data sources is that it provides data for a full day’s worth of transit activity for

each card. This allows transfers to be inferred, and trip linking and trip symmetry

behaviour to be analysed. This is of particular importance in multi-operator, multi-

modal transit region, where the local systems often serve as feeders to regional

transit.

A second key advantage of the Clipper data is that it provides a common means

of measurement across several different systems. For example, MUNI has an APC
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system on many of its buses to collect detailed passenger counts. The equipment is

not installed on its light rail vehicles, so Clipper provides an alternative means of

measuring ridership.

It would be quite valuable if the data could be used to derive transit origin-

destination matrices throughout the system (as is possible on the BART), or at least

the geographic distribution of boarding locations. This is where the data fall short

for a combination of reasons. The Clipper Card technology does not record the

location of a transaction. That location cannot instead be inferred from AVL data

because the route ID and vehicle ID are not always coded, and because the exact

time of the transactions are obfuscated for privacy reasons.

2.6.1.2 Are they Representative of the System as a Whole?

The analysis reveals that the Clipper data generally align with the geographic and

temporal distribution of independent data sources where such sources are available,

but that certain biases persist. Onboard surveys reveal a bias where high-income

travellers are more likely to use Clipper. Geographic comparisons of BART data

show that Clipper usage is higher for trips to the core area of San Francisco and

Oakland than elsewhere in the region. Temporal comparisons show that the Clipper

data overstate AM peak travel, and under-state midday travel.

These findings are important from an equity standpoint. If the planning process

were to focus too heavily on meeting the needs of travellers as identified by smart

card data, there is a risk of under-serving the needs of low-income and minority

populations unless some mitigating steps are taken.

In addition, there is a risk in using smart card data over time that a changing

penetration rate would be erroneously recorded as a change in ridership. To avoid

this, it is beneficial to have external data, such as Automated Passenger Counter

(APC) data for the purpose of calculating weights that vary over time. Alternatively,

the risk is mitigated if the penetration rate is already high enough to be considered

saturated.
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2.6.1.3 What Can Be Done to Make the Data More Useful?

There may be some options to generate more complete bus boarding location in-

formation. One option would be to explore the possibility of obtaining technology

that records the location of the transaction when the smart card system is next up-

graded. Second, it might be possible to do the data matching on the agency side

behind a firewall, and only release the processed data. Third, it might be possible to

release more specific data to a limited number of users on a secure server, such as

the Transportation Secure Data Center (TSDC) [150].

Within the existing framework, the most important piece of missing informa-

tion is the route ID. On MUNI, for example, 94% of bus transactions have their

route coded as “SFM Bus”. The route ID can be provided using existing technol-

ogy and without any loss of privacy, although existing labour agreements may be

limiting.

2.6.2 Proposed Correction Factors

Onboard survey data were used to estimate binary logit models predicting the prob-

ability that a Clipper Card is used for each unlinked trip record. Two models were

estimated: Model A with a full set of trip attributes and socio-economic variables

and Model B with only those variables available in the Clipper transaction data. The

estimation results confirm that the biases observed in the Clipper data are statisti-

cally significant in dimensions including access mode, tour purpose, income, race

and ethnicity, age, auto ownership, worker status and student status.

The reciprocal of the modelled probability of using Clipper is proposed as a

correction factor to be applied to Clipper transaction data. Applying these correc-

tion factors would make the Clipper data more representative of the system as a

whole, although there will be some over-estimation due to the asymmetry in the use

of the inverse function.

To demonstrate its application in comparison to known result, these correction

factors are applied the Clipper transactions in the onboard surveys. This application

shows that both models slightly over-predict the total ridership. Model A reason-

ably corrects the biases in the Clipper records for most operators, and Model B
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mitigates, but does not eliminate those biases. Important biases remain, particularly

with respect to income and race/ethnicity. Therefore, users should be cautious if the

data are used for equity or environmental justice analysis.





Chapter 3

Transit Data Fusion

This chapter describes the development of the core software tool used in this re-

search. It fits within the larger system design, as described in Section 1.4 of the

introductory chapter, bearing in mind the design goals enumerated there. This is a

data intensive thesis, and a large portion of the effort is in developing the prototype

software tools needed to combine those data in a way that is both accessible and

representative of the system. That effort is described here, with the expanded data

produced by the tool used in the subsequent chapters.

3.1 Introduction
Performance-based planning builds upon the traditional transport planning pro-

cess by aligning planning goals and objectives with specific performance mea-

sures against which projects can be evaluated. The emergence of performance-

based planning received a boost from the recent U.S. federal transportation legis-

lation [32] which makes it more central to the overall planning process. In recent

years, researchers and practitioners have made significant progress in developing

approaches to performance-based planning [151], including approaches to estab-

lishing performance-based planning programs [152, 153], methods for converting

data into performance measures [154, 155, 156], and experience formulating rele-

vant performance measures from institutional priorities [152, 157, 153]. In spite of

this momentum, a number of challenges still remain, including the availability of

supporting data, the ability to synthesise those data into meaningful metrics and the
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resources required for analysis [158].

This research aims to meet these challenges by developing software tools to

support the fusion and analysis of large, passively collected data sources for the

purpose of measuring and monitoring transport system performance. Because they

are continuously collected, Big Data sources provide a unique opportunity to mea-

sure the changes that occur in the transport system. This feature overcomes a major

limitation of traditional travel data collection efforts, which are cross-sectional in

nature, and allows for a more direct analysis of the changes that occur before-and-

after a new transport project opens.

This work focuses on transit system performance, using San Francisco as a

case study. It takes advantage of the Automated Vehicle Location (AVL) and Auto-

mated Passenger Counter (APC) data available on the city transit system, as well as

data from the region’s transit smart card system, Clipper Card.

As of the year 2000, automated data collection systems were becoming more

common at transit agencies, but data systems were immature, network and geo-

graphic analysis methods were in their infancy, and the data were often used for

little beyond federal reporting requirements [159]. Subsequently, Transit Coopera-

tive Research Program (TCRP) Report 88 provided guidelines for developing transit

performance measurement systems, with a focus on identifying appropriate perfor-

mance measures to correspond to agency goals [160]. By 2006, TCRP 113 iden-

tified a wider range of AVL-APC applications, but still a dichotomy between APC

data which was used in its archived form and AVL data which was often designed

for real-time analysis and not archived or analysed retrospectively [81]. More com-

plete data systems have since been developed that encapsulate the data processing

and reporting [161, 84], apply data mining methods in an effort to improve opera-

tional performance [82], and examine bus bunching [79, 162]. Initial attempts have

been made to visualise the data at a network level [163, 164].

Several characteristics distinguish this study from previous work.

First, it operates on a sample of AVL-APC data, and a methodology is estab-

lished to expand the data to the schedule as a whole and weight the data to represent
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total ridership. This is in contrast to the examples given above which generally as-

sume full data coverage. Establishing expansion and weighting methods is impor-

tant because it allows Big Data analysis to be applied in a wider range of locations

with lower expenditure on data collection equipment.

Second, the tool integrates transit smart card data. Others have demonstrated

the value of smart card data either as a stand-alone data source [137, 138], or in

combination with other data [139, 88]. Here, they are valuable because they are

used to estimate the transfer rate, which cannot be determined from the AVL-APC

data themselves.

Third, this study develops a tool to analyse the trends over a significant time

period, from 2009 through the present, as opposed to many applications which focus

on using the data to understand a snapshot of current operations [161, 162, 165,

166]. The tool allows data for any two time periods to be queried and compared

at the analyst’s request, and puts the focus specifically on the changes that occur in

the system, and not just on observing current conditions. For example, changes that

occur in a specific portion of the city may be traceable to housing developments

or roadway projects at that location. These trends may go unnoticed given only

aggregate measures or cross-sectional totals.

The remainder of this chapter is structured as follows: Section 3.2 describes the

data sources used in this study. Section 3.3 covers the methodology for data process-

ing, including the approach used to expand and weight the data to be representative

of the system as a whole. Section 3.4 presents example outputs to demonstrate the

types of performance reports that the data mashing tool can produce. Section 3.5 is

conclusions and expected future work.

3.2 Data Sources

This research uses three primary data sources provided by the San Francisco

Municipal Transportation Agency (SFMTA) and the Metropolitan Transportation

Commission (MTC): AVL-APC data, archived General Transit Feed Specification

(GTFS) data, and transaction data from the Clipper Card transit smart card system.
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All three focus on the San Francisco Municipal Railway (MUNI) bus system in San

Francisco.

The AVL-APC data is formatted with one record each time a transit vehicle

makes a stop. At each stop, the following information is recorded:

• Vehicle location;

• Arrival time;

• Departure time;

• Time with door open;

• Time required to pullout after the door closes;

• Maximum speed since last stop;

• Distance from last stop;

• Passengers boarding;

• Passengers alighting;

• Rear door boardings;

• Wheelchair movements; and

• Bicycle rack usage.

In addition, identifiers are included to track the route, direction, trip, stop, se-

quence of stops, and vehicle number. The vehicle locations reflect some noise,

both due to Global Positioning System (GPS) measurement error and due to varia-

tion in the exact location at which the vehicle stops. However, because the stop is

identified, those locations can be mapped to the physical stop location, providing

consistency across trips. The count data become less reliable as the vehicle becomes

more crowded, but the data are biased in a systematic way, and SFMTA makes an

adjustment in the data set to compensate for this bias. The data are not currently

available on rail or cable car, only on the buses. Equipment is installed on about

25% of the bus fleet, and those buses are allocated randomly to routes and drivers

each day at the depot. These data are available from 2008 to the present.
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Because the AVL-APC data are available for only a sample of bus trips, the

GTFS data are used to measure the scheduled universe of bus trips. GTFS is a data

specification that allows transit agencies to publish their schedule information in a

standard format. It was initially used to feed the Google Maps transit routing, and

is now used by a wide range of applications. The data are in a hierarchical format

and provide the scheduled time at which each vehicle is to make each stop. The

full specification is available online [92]. The data used in this study were obtained

from the GTFS archive [93], from 2009 to present.

The Clipper Card data provide information on fare transactions made with the

cards. Clipper Card was introduced in 2010, and is used by eight transit operators in

the Bay Area. The data are subject to California’s laws governing personally iden-

tifiable information [167], making data privacy and protection issues of particular

importance. Therefore, they have been released with a multi-step anonymisation

and data obfuscation process [141]. Chapter 2 discusses the limitations of these

data in detail. In spite of those limitations, the data provide value over the above

other sources because they allow transfers to be identified.

For each transaction in the Clipper database, the following fields is available:

• Transaction Year;

• Transaction Month;

• Transaction Day of Week;

• Anonymised Clipper Card ID;

• Day Trip Sequence;

• Transit Agency;

• Payment Product;

• Fare;

• Tag-on Time;

• Tag-on Location;

• Route;
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• Tag-off Time; and

• Tag-off Location.

As part of the data obfuscation process, the exact date is not provided, only

the year month and day of week of the transaction. The Clipper Card ID is an

anonymous ID that persists for one day. This means that it is possible to identify

all transactions made by one card over the course of a single day, but not to identify

transactions made by the same card over multiple days. The day trip sequence

is the order of transactions by that card, over the course of the day. The transit

agency is the agency on which the transaction is made, keeping in mind that a

single linked trip can involve transfers between operators. The payment product

identifies whether it is a cash fare or a pass, as well as the type of pass and any

relevant discounts. The fare is the amount deducted for the transaction, which can

be zero if there is a pass or transfer. The tag-on time is grouped into a 10 minute

window, as is the tag-off time where it is relevant. The tag-on location is only known

if it is a fixed location, such as a rail station, not if the tag-on occurs on a moving

vehicle. The same applies to the tag-off location. The route should be recorded for

all transactions, but most are actually missing for MUNI. This is because the driver

must manually enter that information at the start of the shift, and not all do. Tag-

offs are only relevant for systems with distance or zone based fares, such as Bay

Area Rapid Transit (BART) and Caltrain, not to MUNI where the fare is only paid

at boarding.

Clipper Card currently has a penetration rate of approximately 50% of riders

on MUNI buses, meaning that only half of the actual boardings are recorded in

the Clipper database. In addition, as part of the privacy protections, the data made

available are a sample of 50% of the Clipper transactions, so together they represent

about 25% of total ridership. While disaggregate transaction records are provided,

the data are most useful at the aggregate level. This is because they cannot be

located precisely in time, due to the obfuscation of the exact travel day, or in space,

due primarily to the missing route information. What they can provide is average

weekday estimates for the MUNI bus system as a whole, for each month.
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3.3 Methodology
This section describes the methodology used to generate transit performance reports

from the raw data. To ensure the performance measures are a valid representation

of the transit system, the data area cleaned, expanded and weighted as outlined in

Figure 3.1. In this figure, the Clipper data are referred to generically as transit smart

card data.

Figure 3.1: Data processing flow

3.3.1 Cleaning Individual Data Sets

First, each individual data set is cleaned and converted into a common format. For

the AVL-APC data, this involves filtering out non-revenue service, records with-

out a valid route ID, stop ID or trip ID, duplicate records, and those that do not

meet quality control requirements. A number of derived fields are added, including

the arriving and departing passenger load, the schedule deviation, flags for on-time

arrival, time period groupings, and end-of-line flags. All date and time fields are

converted from string format to a native Datetime format that allows for easy sort-

ing and calculation of differences. An advantage of this class is that it supports

normal arithmetic operations, such that subtracting a start time from an end time

will give the correct difference, with the details of time zones, Daylight Savings
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Time and leap years all fully encapsulated. As part of this Datetime conversion,

special care is taken to handle the wrap-around effects of trips occurring between

midnight and 3 am, which continue the schedule of the day prior, and whose rider-

ship is counted with the day prior. An equivalency file is read to attach route IDs

consistent with the GTFS data so the two files can later be joined. As part of this

cleaning and processing, the data are converted from their raw text file format to an

Hierarchical Data Format 5 (HDF5) Datastore format, as described later in this sec-

tion. Throughout this chapter, when a Datastore is referenced, it is to this specific

file format, as opposed to a more generic use of data set.

The raw GTFS data are read and converted to a record-based format such that

they are directly comparable to the AVL-APC data. This format has one record for

each stop made by each vehicle trip on each transit route. These data are written

separately for each day, making the identification of weekday, Saturday or Sun-

day/holiday service explicit. The process makes time periods, trip IDs, direction

IDs and route IDs consistent with the equivalency used for the AVL-APC data. It

calculates the scheduled headway of each trip, the scheduled runtime from the pre-

vious stop, and the distance travelled from the last stop, and along the route shape

as a whole.

The Clipper Card Data are processed to use consistent month and day of week

codes as the other data. The mode is identified based on the agency name and the

route name. This allows the MUNI bus transactions to be separated from the MUNI

rail and cable car transactions, as well as from other modes and operators. A flag

is added to identify transfers. If two subsequent tag-ons occur within 90 minutes of

each other, the interchange is identified as a transfer. 90 minutes is selected based

on the duration of time that MUNI allows passengers to board a second bus without

paying additional fare. If there is a transfer, both the transaction before and after the

transfer are identified as part of the same linked trip.

3.3.2 Data Expansion and Weighting

After the initial cleaning and conversion, the AVL-APC and GTFS data are joined

to create an expanded Datastore. The goal of this expansion is to identify exactly
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what is missing from the sampled data, so they can be factored up to be represen-

tative of the universe as a whole. The relationship between the data sets is that

transit smart card data provides a sample of about 50% of riders, the AVL-APC

data provides 100% of riders on a sample of about 25% of vehicle trips, and the

GTFS data identifies 100% of vehicle trips. Therefore, the expansion chain allows

the more information-rich data sets to be combined with the more complete, but

less rich data, much like a household travel survey would be expanded to match

Census control totals. In this case, the expansion is a left join of the AVL-APC data

records onto the GTFS records. Rail does not have AVL-APC equipment installed,

so is excluded from the GTFS records as well. Note that this process is not able to

account for scheduled trips that are not run, due to driver or equipment availability

or other operational issues. The resulting Datastore has the full enumeration of ser-

vice, but ridership and actual time information attached to only a portion of records.

Without this step, it would not be possible to differentiate between trips that are

missing because of a service change or those that are missing because they were

simply not sampled. In a setting where we are explicitly interested in examining

service changes, this distinction is important.

The output of this expansion process is a Datastore whose structure is shown

in Table 3.1. The table also shows the source and data type of each field. These dis-

aggregate records are referred to as trip-stop records because there is one record for

each time a bus trip makes a stop (even if that stop is bypassed due to no passengers

boarding or alighting). More specifically, records are defined by a unique combi-

nation of values in those fields identified with as an index in the source column. A

related set of trip records is generated that aggregates across the SEQ field such that

there is a single record for each time a bus makes a trip.
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Table 3.1: Data dictionary for expanded and weighted trip-stop Datastore

Category Field Description Type Source

Time and

Date

MONTH Month and year Datetime Index

DATE Date Datetime Index

DOW Day of week (1=Weekday, 2=Saturday,

3=Sunday/Holiday)

Integer Index

TOD Time of day String Index

Index

Fields

AGENCY ID Agency ID (i.e. SFMTA) String Index

ROUTE SHORT NAME Route short name (i.e. 38) String Index

ROUTE LONG NAME Route long name (i.e. GEARY) String Index

DIR Direction (0=outbound, 1=inbound) Integer Index

TRIP Trip ID, as HHMM SEQ of first stop on trip Integer Index

SEQ Stop sequence within route Integer Index

ROUTE TYPE Type of route (0=tram, 3=bus, 5=cable car) Integer GTFS

Route

Attributes

TRIP HEADSIGN Headsign on bus indicating destination (i.e.

Ocean Beach)

String GTFS

HEADWAY S Scheduled Headway (min) Float Calculated

FARE Full fare ($) Float GTFS

PATTERN Pattern identifier calculated for all trips String GTFS

PATTCODE Pattern code (i.e. 38OB3) String AVL/APC

Stop

Attributes

STOPNAME Name of stop (i.e. Geary Blvd & Divisadero

St)

String GTFS

STOPNAME AVL Name of stop in AVL/APC data String AVL/APC

STOP LAT Latitude of stop location Float GTFS

STOP LON Longitude of stop location Float GTFS

SOL Start of line flag (1=start of line, 0=not) Integer GTFS

EOL End of line flag (1=end of line, 0=not) Integer GTFS

TIMEPOINT Timepoint flag (1=stop is a timepoint in

schedule, 0=not)

Integer AVL/APC

Times

ARRIVAL TIME S Scheduled arrival time Datetime GTFS

ARRIVAL TIME Actual arrival time Datetime AVL/APC

ARRIVAL TIME DEV Deviation from arrival schedule (min) Float Calculated

DEPARTURE TIME S Scheduled departure time Datetime GTFS

DEPARTURE TIME Actual departure time Datetime AVL/APC

DEPARTURE TIME DEV Deviation from departure schedule (min) Float Calculated

DWELL S Scheduled dwell time (min) Float GTFS

DWELL Actual dwell time (min) Float AVL/APC

RUNTIME S Scheduled running time (min), excludes

dwell time

Float GTFS

RUNTIME Actual running time (min), excludes dwell

time

Float AVL/APC

TOTTIME S Scheduled total time (min), runtime + dwell

time

Float GTFS

TOTTIME Actual total time (min), runtime + dwell time Float AVL/APC

SERVMILES S Scheduled service miles Float GTFS
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Continuation of Table 3.1

Category Field Description Type Source

SERVMILES Service miles from AVL/APC data Float AVL/APC

RUNSPEED S Scheduled running speed (mph), excludes

dwell time

Float Calculated

RUNSPEED Actual running speed (mph), excludes dwell

time

Float Calculated

ONTIME5 Vehicle within -1 to +5 min of schedule

(1=yes, 0=no)

Float Calculated

Ridership

ON Boardings Float AVL/APC

OFF Alightins Float AVL/APC

LOAD ARR Passenger load upon arrival Float AVL/APC

LOAD DEP Passenger load upon departure Float AVL/APC

PASSMILES Passenger miles Float Calculated

PASSHOURS Passenger hours, including both runtime and

dwell time

Float Calculated

WAITHOURS Passenger waiting hours, with wait as 1/2

headway

Float Calculated

PASSDELAY DEP Delay to passengers boarding at this stop Float Calculated

PASSDELAY ARR Delay to passengers alighting at this stop Float Calculated

RDBRDNGS Rear door boardings Float AVL/APC

CAPACITY Vehicle capacity Float AVL/APC

DOORCYCLES Number of times door opens and closes at this

stop

Float AVL/APC

WHEELCHAIR Number of wheelchairs boarding at this stop Float AVL/APC

BIKERACK Bikerack used at this stop Float AVL/APC

Crowding
VC Volume-capacity ratio Float Calculated

CROWDED Volume ¿ 0.85 capacity Float Calculated

CROWDHOURS Passenger hours when volume ¿ 0.85 capacity Float Calculated

Additional

ID Fields

ROUTE ID Route ID in GTFS Integer GTFS

ROUTE AVL Route ID in AVL/APC Integer AVL/APC

TRIP ID Trip ID in GTFS Integer GTFS

STOP ID Stop ID in GTFS Integer GTFS

STOP AVL Stop ID in AVL/APC Float AVL/APC

BLOCK ID Block ID in GTFS Integer GTFS

SHAPE ID Shape ID in GTFS Integer GTFS

SHAPE DIST Distance Along Shape (m) Float GTFS

VEHNO Vehicle Number Float AVL/APC

SCHED DATES Dates when this schedule is in operation String GTFS

Weights

TRIP WEIGHT Weight applied when summarizing data at trip

level

Float Calculated

TOD WEIGHT Weight applied when calculating time-of-day

totals

Float Calculated

DAY WEIGHT Weight applied when calculating daily totals Float Calculated

SYSTEM WEIGHT Weight applied when calculating system

totals

Float Calculated
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The resulting Datastore has a record for every scheduled trip-stop, with a full

enumeration of the associated schedule data, but ridership and schedule adherence

information is only available on the 20-25% of records that are fully observed. For

the remaining records, those fields are left with a missing value. The Datastore at

this root level is suitable for making comparisons of individual trips or trip-stops.

However, summing values across trips to generate time-of-day, daily, or system

totals would result in an under-estimate of the total ridership because of the missing

values. Therefore, a set of weights is developed to factor up the records to estimate

the totals at these more aggregate levels for each day.

Because an entire trip is observed together, weights are calculated for trips

and then broadcast to all stops in that trip. The weights are calculated by grouping

the trips to the level of aggregation of interest, and within the group, applying the

formula:

Wt =
N

∑t wt
wt (3.1)

Where: Wt is the weight for trip t, N is the number of trips in the group, and wt is

the base weight for trip t. In cases where there are no observed trips (and therefore

the denominator is zero), the resulting weight is set to zero, rather than an undefined

value.

These weights are built hierarchically, such that the higher-level weights incor-

porate the lower-level weights. At the lowest level, a binary flag indicating whether

or not the trip is observed is used as the base weight. The process is best explained

by means of the example shown in Table 3.2.

The first set of columns shows basic attributes of the trip: ID, route, time-

of-day and trip. The trip here is coded as the departure time from the first stop.

For simplicity of the example, the combination of route and trip identify a unique

record, although in reality it is the combination of date, agency ID, route, direction

and trip. These data are available for every scheduled trip from the GTFS records.

The next column, Observed, is a binary flag indicating whether the trip is ob-

served in the AVL/APC data. Only those records have ridership and actual (not
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Table 3.2: Trip weighting example

Weights

ID Route TOD Trip Observed TOD Day System

1 1 AM 700 1 2

1.5

1.17

2 1 AM 800 0
3 1 MD 1100 0 0
4 1 MD 1400 0
5 1 PM 1700 0 2
6 1 PM 1800 1
7 2 AM 730 0 2

1

8 2 AM 830 1
9 2 MD 1130 1 2

10 2 MD 1430 0
11 2 PM 1730 1 1
12 2 PM 1830 1
13 3 AM 800 0 0 0
14 3 PM 1600 0 0

scheduled) arrival departure times.

The last set of columns are the calculated weights, for three different levels of

aggregation: time-of-day, day and system. The first two are specific to the route and

the last is across all routes.

Within each TOD, the TOD weight is calculated as the ratio of scheduled trips

to observed trips. The day weight is the ratio of scheduled trips to observed trips

after the TOD weight has already been applied. For example, the day weight for

route 2 is 1 because the TOD weighted observed trips already sum to 6, which is

the number of scheduled trips for the day for route 2. The system weight is then

calculated as the ratio of scheduled trips for all routes to observed trips after both

the TOD and day weights have been applied. It can be verified that the product of

the last four columns sums to 14, the total number of scheduled trips.

The different weighting levels allow the data to be tabulated appropriately for

different levels of aggregation. For example, to obtain the total ridership on route

1 during the AM peak, the TOD weight would be applied to the observed records,

but not the higher level weights.

The weights are assigned to the disaggregate records, and the data are aggre-

gated with the weights applied to calculate route-stop, route, stop and system totals

by time-of-day and for the daily total. This is done separately for each day, provid-
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ing an estimate of the state of the system on each day for which data are available.

The weighted data are then aggregated by month used to calculate conditions for

an average weekday, an average Saturday and an average Sunday/holiday in each

month. These monthly average Datastores are the primary source of information

for the system performance reports, discussed in the next section, although the daily

data remain available for more detailed analysis.

After calculating the average monthly conditions from the combined AVL-

APC and GTFS Datastore, a separate set of weights is calculated for the Clipper

records. There are three components to the Clipper weight. The first component

simply scales up all records by a factor of two, to account for the fact that only a

sample of 50% of the total Clipper records are included in the available data set.

The second component converts from the monthly total to the average weekday,

Saturday or Sunday conditions. It does this by dividing by the number of week-

days, Saturdays or Sundays in the data set for that month. The third component of

the weight accounts for the fact that not all passengers pay their fare using a Clip-

per Card. Therefore the final weight is the ratio of total MUNI boardings from the

expanded and weighted AVL-APC and GTFS Datastore to the total MUNI trans-

actions in the Clipper data for that month. This weight is calculated separately for

weekdays, Saturdays and Sundays, and then applied to all relevant Clipper records

for that month. If more detailed Clipper data were available that fully identified

the route or tag-on location, a more detailed set of geographically specific weights

could be applied, but it the current format, it is limited to a system-level weight.

A second, linked-trip weight is then calculated by dividing the base weight by

the number of individual transit legs on the linked trip. If there are no transfers

then the divisor is one, if there is one transfer then the divisor is two, and so forth.

From these data, linked trip totals and average transfer rates can be reported for each

month and day of week type. These are reported in parallel to the aggregate monthly

outputs of the AVL-APC and GTFS Datastore, even though the disaggregate records

are only linked through the calculation of the weights.
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3.3.3 Percent of Trips Observed

The estimates resulting from this process will be more reliable if there is reasonably

good AVL-APC coverage of observations across routes. To examine the route cov-

erage, Table 3.3 shows the percent of trips observed on each route for each weekday

in July 2010. 22% of trips are observed, although this varies somewhat by route.

The weighting process should do a good job of accounting for these varying pene-

tration rates. More limiting are the cases where zero trips are observed on a route,

which are highlighted with red cells. In these cases, the weighting process scales

up the ridership on other routes to account for the missing values on that route. The

missing values tend to occur on the routes that make fewer trips. Overall, 93% of

routes are observed at least once during the month, with those routes covering 96%

of trips.

One of the challenges in this effort is that the sampling of trips is not entirely

random. There are operational constraints, such as certain types of buses (motor bus

versus trolley bus, and articulated versus standard length) being needed on certain

routes, and the fact that once a bus is assigned it tends to drive the same route back

and forth. The result is that the data will not be as reliable as could be achieved with

a well-designed sampling plan, but with a good overall coverage can be expected to

provide good estimates of the state of the system.

To evaluate the magnitude of the error that can be expected from the sam-

pling and weighting process, the number of service miles is used as an indicator.

Service miles serves as a useful indicator because it is calculated from the GTFS

data, so the enumerated value for the system as a whole is known. For compari-

son, the service miles are also calculated from the subset of observed records, with

the weights applied to scale up those observed records to the system total. These

calculations reveal that for months from 2009 through 2013, the average magnitude

of the weighting error at the system level is 1.0%, and the maximum magnitude is

3.3%.
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3.3.4 Software Environment

The software was developed in an open-source framework in the Python environ-

ment. It is available under the GNU’s Not Unix! (GNU) General Public License

Version 3 for distribution [115]. In its current state, the software is a prototype

that works specifically with San Francisco data, but it could be adapted for use

elsewhere with moderate effort. It leverages several open-source packages specif-

ically designed to provide high-performance data storage, access and analysis for

extremely large data sets. Specifically:

1. Pandas is used for in-memory data operations, providing data structures and

analysis tools for fast joins, aggregations, and tabulations of the data. Its

functionality is similar to what is available in an R dataframe.

2. Hierarchical Data Format 5 (HDF5) is used to store the data on disk. It is

designed for the fast and flexible storage of large data sets, allows for any

combination of key-value pairs to be written, and allows on-disk indexing of

the data.

3. PyTables is a package for managing hierarchical datasets designed to easily

cope with extremely large data sets. PyTables serves as the interface between

Pandas operations in memory and the HDF5 storage on disk.

The advantage to using this combination of technology is that it allows datasets

too large to be stored in memory to be written to disk, but allows for random ac-

cess to those data with very fast queries. The development has shown that the

converted data are dramatically faster to access than in their raw text format. This

workflow also provides much greater flexibility than using a traditional database,

which typically perform best with a stable data structure, making them less ideal

for exploratory analysis.

The process was tested in the Windows operating system on a machine with a

dual-core 2.1 gigahertz processor and 16 gigabytes of memory. It runs as a single-

stream process, and on this machine it took about two days to process the 2009

through 2013 data. The hard disk footprint of the resulting expanded and weighted
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Datastores is about 400 gigabytes. This scale fits the definition of Big Data as “any

data that cannot fit into an Excel spreadsheet” [168], although it is still practical

to work with these data using standard hardware. It is of the scale, though, that

software design decisions matter in terms of making the end result usable, and the

ability to pre-calculate then query the most computationally intensive portions of

the problem help this. Also, the software is structured that new data is appended to

the end of the existing Datastore, so there is not a need to re-compute the whole as

new data are added.

3.4 Sample Results
This section presents sample results from the data fusion tool. The purpose of this

section is to illustrate the types of performance measure the tool is capable of re-

porting, and how those measures might be useful in planning. In all cases, the

performance reports seek to report information that is both relevant to the planning

process and readily explainable to policy makers. It further seeks to put the focus

of the analysis on the changes that occur over time, rather than a single snapshot of

the system.

Table 3.4 shows a sample of the monthly transit performance report. It con-

solidates the core performance measures onto a single page, and compares them

to performance from another period, often the month before. The measures are

grouped in the following categories:

1. Input Specification: Attributes selected by the user to define the scope of the

report. The geographic extent can be the bus system as a whole, a route or

an individual stop, with some minor differences for the route or stop reports.

The day-of-week is weekday, Saturday or Sunday/holiday. Time-of-day can

be specified for the daily total, or for individual time periods allowing for

evaluation of peak conditions. The report generation date and a comments

section are provided. The notes in this case indicate that system-wide service

cuts occurred between the two periods, which corresponds to the nearly 10%

reduction in service miles. The report is generated for the same month before
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Table 3.4: Sample transit performance summary report
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and after these cuts to report to avoid reporting seasonal changes.

2. Service Provided: The service provided metrics measure the total scheduled

transit service, as found in the GTFS. Identical values mean that the schedule

did not change between those two months.

3. Ridership: Ridership measures provide the total passenger boardings, the dis-

tance and time passengers spend onboard, and the number of wheelchairs and

bicycles served. In this example, the ridership decreases by 3.2%, potentially

in response to the service cuts.

4. Level-of-Service: The level-of-service section provides measures of the qual-

ity of service provided, as experienced by users. The average run speed, the

dwell time per stop and the scheduled headway are measured as a function

of the buses themselves. Run speed is defined as the speed between stops,

so excludes the dwell time at stops. Scheduled headway is measured at each

route-stop, calculated as the time from the previous trip of the same route.

That is, it accounts for combined headways for multiple patterns of the same

route, but it does not account for combined headways across multiple routes.

The fare is reported as the average full cash fare across all routes and stops,

as shown in the GTFS. Separate revenue data would be needed to measure

the average fare paid accounting for discounts and passes. The average dis-

tance travelled, average passenger speed and average passenger wait are mea-

sured as a function of the passengers themselves. In contrast to the run speed,

the average passenger speed includes dwell time, making it generally slower.

Average waiting time is measured as half the scheduled headway, assuming

random passenger arrivals and perfect reliability. The system-wide average

passenger wait tends to be less than half the system-wide average scheduled

headway because passengers tend to use more frequent service. In this exam-

ple, both the average scheduled headway and passenger wait increase, which

is logical given less frequent bus service.

5. Reliability: Reliability measures indicate how well the buses adhere to their

schedule. Consistent with the Transit Capacity and Quality of Service Manual



108 Chapter 3. Transit Data Fusion

(TCQSM) [169], a vehicle is considered on-time if it departs from a timepoint

no more than one minute early or arrives more than five minutes late. In ad-

dition, two measures of delay are reported which are weighted to passengers

instead of buses. The waiting delay is the average time passengers wait at

their stop for a bus to arrive after its scheduled arrival time. Arrival delay is

the average time passengers arrive at their alighting stop, past the scheduled

time.

6. Crowding: For the purpose of this tool, a vehicle is considered to be crowded

if the volume of passengers onboard exceeds 85% of the capacity. The range

of 85-100% of total capacity corresponds roughly to the range of 125-150%

of the seated load, which is referenced in the TCQSM as the maximum design

load for peak-of-the-peak conditions. The crowding statistics report the aver-

age volume-capacity ratio, the percent of trips where the vehicle is crowded

at some point during the trip, and the number of passenger hours in crowded

conditions. These performance reports can easily be generated for each time

period, allowing for monitoring of crowding during the peak periods.

7. Observations: The report includes the percent of trips observed, the total num-

ber of days and the number of days with observations. At a system level, there

will generally be observations on each day, but specific routes or stops may

not be observed on some days. The measurement error calculates the percent

difference between the total boardings and alightings, providing an indica-

tion of the level of error that can be expected from the APC technology. The

weighting error calculates the percent difference between the scheduled ser-

vice miles and the weighted and expanded service miles, giving an indication

of the error that can be expected as a result of the sampling and weighting

process.

This performance report provides an overview allowing planners to quickly

scan a range of indicators for changes that might be occurring.

While the numeric performance measures provide valuable information, their

aggregate nature can wash out change that may be occurring in one portion of the
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city. Therefore, an interactive mapping tool was developed to plot key metrics in

their geographic context. Figure 3.2 shows a screenshot from this tool. The left map

shows a before period, the middle map an after period, and the right map shows

either the absolute or relative change between the two periods. In this case, the

comparison is between July 2009 and July 2010, before and after the service cuts

in spring 2010. The user can select which time-of-day, which performance measure

and which direction to plot. In this instance, the user has chosen to map the degree

of crowdedness in the outbound direction during the 4-7 pm time period. The warm

colours on the left two maps indicate more crowding, as measured by the average

volume-capacity ratio during the period. The results are logical, with reasonably

full buses moving west from the central business district towards residential areas

of the city, as well as North-South on Van Ness Avenue. The map on the right shows

the relative change in the metric between the two periods, with the warm colours

indicating an increase in crowdedness and the cool colours indicating a decrease. In

this instance, the change is concentrated on about three specific routes.

To accommodate further analysis of the changes that occur to specific routes,

the software generates route profiles as shown in Figure 3.3. In this example, aver-

age weekday ridership on the 1-California route is plotted in the inbound direction

during the AM peak. The x-axis is the sequence of stops along the route. The line

charts show the number of passengers on the bus between each stop. The bar charts

show the number of passengers boarding and alighting at each stop, with positive

bars indicating boardings and negative bars indicating alightings. In all cases, the

blue colours indicate the July 2009 period, and the red colours indicate the July

2010 period. The pattern of ridership remains similar between the two periods,

with riders accumulating through the residential portions of the route, and passen-

gers getting off the bus when it reaches the central business district, starting at the

Clay Street and Stockton Street stop. The PM peak ridership profile would show

the reverse. The route was shorted by the July 2010 period, with service no longer

provided to the last three stops. Therefore, in the July 2010 period there are no

alightings at these stops, and an increase in alightings at the new end-of-line stop.
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The overall volume on this route during the AM peak is lower after these changes.

These boarding profiles are useful when evaluating service changes made to specific

routes, or the ridership resulting from newly opened land developments.

Finally, line plots are output, as in Figure 3.4, to show the trends over a longer

period of time, rather than just for two periods. This particular example shows

the on-time performance, defined as the share of buses arriving no more than one

minute early or five minutes late. This is plotted for the daily totals, the AM peak

and the PM peak. The results show the on-time performance is generally 60-70%,

with higher values in the AM peak and lower values in the PM peak. Any of the

performance measures can be easily plotted in this way, and doing so is an important

step to understanding whether the changes observed are real, or simply within the

natural variation of the data.

The software can automatically generate each of the performance reports de-

scribed above, allowing for core analysis of the most important measures. In addi-

tion, the full weighted and imputed Datastore is available for advanced users who

seek to conduct further in-depth analysis or custom queries. Files suitable for model

estimation can also be written. The contents of those files are described in more de-

tail in Chapter 4.
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3.5 Conclusions and Future Development

The product of this research is a Big Data fusion tool that can be used to measure

transit system performance over time. The software is implemented for San Fran-

cisco, but can be adapted for use in other regions with similar data.

The chapter addressed some of the methodological and mechanical challenges

faced in managing these large data sets and translating them into meaningful plan-

ning information. One such challenge was the sampled nature of the data, where

not all vehicles have AVL-APC equipment installed. To make these data more rep-

resentative of the system as a whole, the vehicle trips in the AVL-APC data are

expanded to match the universe of vehicle trips identified by the GTFS data and

weights are developed to scale up to compensate for data that remain unobserved.

The expansion process applies strategies from traditional surveys where a small but

rich data set is expanded to match a less rich but more complete data set. Such

strategies are key to spreading the use of Big Data for urban analysis beyond the

first tier of cities that have near-complete data sets to those that are constrained by

partial or incomplete data.

The software is available under an open-source licence [115]. For working

with these large data sets, it was an important decision to work with libraries that

allow fast querying of on-disk data, but also the ability to easily modify the data

structure.

The data mashing tool reports and tracks transit system performance in the core

dimensions of: service provided, ridership, level-of-service, reliability and crowd-

ing. The performance measures are reported for the system, by route and by stop,

can also be mapped using an interactive tool. The focus of the tool is on provid-

ing the ability to monitor the trends and changes over time, as opposed to simply

analysing current operations. By making performance reports readily available at

varying levels of resolution, and the data mashing tool encourages planners to en-

gage in data-driven analysis on an ongoing basis.

One future enhancement could be to incorporate automatic alerts for notewor-

thy changes. The software could monitor the data as they are accumulated and
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identify cases where the values change by more than a given percentage, or go be-

yond a set of predefined thresholds. When such a case is encountered, the software

would send an alert to the user notifying her, and suggesting that they look at the

situation more closely. This would further reduce the user burden to monitor a large

number of indicators, and allow them to spend time on more interesting analysis.

The outputs of this tool are used in Chapter 4 to estimate time series models of

transit ridership. Those models are subsequently applied to understand the drivers

of transit ridership changes and to measure the ridership impacts of transit system

changes.





Chapter 4

Time Series Model Estimation

Chapter 3 described the development of a Big Data mashing tool for measuring

transit system performance. That tool combined several related and individually

incomplete data sources, and weighted them appropriately to be representative of

the San Francisco Municipal Railway (MUNI) bus system as a whole. The software

included tools to visualise changes in transit performance, and create performance

reports to summarise key indicators of transit performance. In this chapter, we use

the outputs of that tool, combined with several complementary data sources, to esti-

mate time series models of transit ridership. These models are designed to provide

insight into what is driving changes in ridership, both on MUNI and on the Bay

Area Rapid Transit (BART) system. In Chapter 5, they are applied to understand

why, over the 2009 to 2013 period, BART ridership experiences robust growth,

while MUNI ridership does not, given that both operate in the same metropolitan

area. In Chapter 6, they are applied to three ex-post evaluations of system changes

and two forecast applications to further demonstrate how they can be used to inform

transport planning.

4.1 Introduction
This research fits in the context of a broader body of literature examining the drivers

of transit demand.

In their 2003 working paper, Taylor and Fink [170] review the research on the

factors affecting transit ridership. They divide the research into descriptive anal-
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yses and causal analyses. Descriptive analyses are generally based on survey and

interview data, and tend to be more qualitative in nature. Causal analyses generally

involve multivariate regressions, and are of greater interest here, due to their ability

to quantify the contributing factors. Examples include [171, 172, 173, 174].

Taylor and Fink go on to list the factors commonly found to influence transit

ridership, with the key factors found to be:

• Access to private autos;

• Employment and Central Business District (CBD) employment;

• Income and auto ownership;

• Price of gasoline;

• Parking cost and parking availability;

• Housing density and employment density;

• Public funding for transit subsidies;

• Fare and pricing policy;

• Service quantity, usually measured as revenue miles or vehicle miles; and

• Service quality, including bus information, safety, cleanliness and reliability.

Of the studies reviewed, Kain and Liu [174] provide a useful model by which

econometric models can be applied to understand the major factors contributing to

ridership changes. They estimated models of transit ridership as a function of four

factors: employment, central city population, service miles and fares. They used

the model to calculate the elasticities associated with each of those factors, and

applied those elasticities to the observed percent change in each of the factors for

the Houston and San Diego transit systems. This research applies estimated models

in a similar manner, as described in Section 5.4.

Taylor and Fink point out that a key limitation of these studies is that their cri-

teria for which data are included tends to be those data that are readily available,

particularly as it relates to service quality. While this thesis does not claim to fully

move beyond limitation of data availability, it does involve a very extensive data
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assembly effort aimed at making a broad set of relevant variables available to the

analysis. This is facilitated by the inclusion of several data sets that were not avail-

able at the time of their review. These include Automated Vehicle Location (AVL)

and Automated Passenger Counter (APC) data which were relatively new at the

time and provide a means of measuring transit crowding and reliability, the Gen-

eral Transit Feed Specification (GTFS) as a detailed measure of transit schedules

which came into common use in 2009, the annual American Community Survey

(ACS) which began in 2005, and the Longitudinal Employer-Household Dynamics

(LEHD) data which provide geographically detailed estimates of employment and

workers on an annual basis. Section 4.2 describes these data sources, and how they

are combined from often different time scales and geographic resolutions.

There are several, more recent, contributions in this domain. Some focus on

estimating the effect of a specific factor, and others are more broad. These stud-

ies provide a useful overview of the methodological toolkit available, and also an

enumeration of the predictive variables commonly used in such models.

Brown and Neog [175] estimated regression models of the transit mode share in

82 Metropolitan Statistical Areas (MSAs) in the U.S. using journey-to-work mode

shares reported in the 2000 Census. They find significant relationships between

transit ridership and four descriptive variables: service frequency (ratio of vehicle

kilometres to route kilometres), service coverage (ratio of route kilometres to pop-

ulation, percent of households that do not own an auto and unemployment rate.

Taylor et al. [176] estimated models of transit ridership in 256 U.S. urbanised areas

using 2000 ridership and Census data. The find that the significant factors influ-

encing transit ridership per capita in metropolitan areas are: vehicle revenue hours,

geographic land area, median household income, non-transit non-single occupant

vehicle trips, transit fares and headways/service frequency. Both of these studies

are cross-sectional analyses that provide insight into the differences between cities,

but not into the trends over time.

A number of studies focus on the effect of fuel prices on transit ridership.

Haire and Machemehl [177] used additive seasonal decomposition to remove sea-
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sonal trends from transit ridership, and then estimated multiple regression models

to determine the effect of gasoline price on transit ridership. They found that sea-

sonal patterns accounted for about 60% of the variability in transit ridership, high-

lighting the importance of accounting for seasonality in such analyses. The analy-

sis accounts for vehicle revenue hours, the number of transit vehicles operating at

maximum service, fuel cost, fare, Consumer Price Index (CPI), and the number of

weekdays in the month, with the effect of fuel cost and CPI found to vary by region.

Lane [178] uses time series regression models to estimate the effect of gasoline

price on transit ridership, with consideration of lagged responses, while control-

ling for service changes and trend variables. Nowak and Savage [179] use Chicago

Transit Authority (CTA) data to estimate regression models of the 12-month sea-

sonal difference in the log of monthly transit ridership for the purpose of estimating

the elasticity of transit ridership with respect to changes in gasoline price. The 12-

month difference serves to remove the effect of seasonality (as discussed further

in the methodology section of this chapter). Their use of a logarithm on both the

dependent and descriptive variables allows the coefficients to be interpreted directly

as elasticities. Their model includes gas price, average daily transit miles, fare, un-

employment rate, and the proportion of weekdays in the month. Nowak and Savage

also include a long list of other research that has examined the relationship between

fuel price and transit ridership. These papers demonstrate the overall applicability

of regression with time series data to estimate the relationship between ridership

and other factors.

One more paper, which also focuses on fuel price is from Yanmaz-Tuzel and

Ozbay [180]. They take a different approach, though, and rather than estimating a

regression model on the time series data, they calculate the elasticity directly, based

on the changes before and after specific events. This approach is somewhat more

limited, because it does not consider the full extent of the data.

Not all topics receive as much attention as that of fuel price, but there are

some other topics considered. Anderson [181] uses a regression model with a dis-

continuity to estimate the effect of a 2003 transit strike in Los Angeles. Tang and
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Thakuriah [131] estimate the ridership effects of a real-time bus information system

in Chicago. Their analysis is valuable because it uses longitudinal data (or panel

data) rather than pure time series data, meaning that their data includes variation

both across observations and through time. In their case, they treat the ridership

on each bus route, for each month, as an observation. The real-time information

system is rolled out at different times on different routes, which allows their esti-

mated models to separate that effect from other factors with less risk of co-linearity.

Brakewood et al [182] follow an equivalent approach to estimate the ridership effect

of real time information on bus ridership in New York. One interesting outcome of

that study is that the introduction of bike sharing in New York led to a reduction

in bus ridership. This type of panel data analysis is viewed as a possible future

enhancement for this research, when efforts to unify the spatial foundation for the

estimation data are complete.

Chen et al. [129] combines a relatively broad consideration of factors affecting

transit use, with time series models. They use auto-regressive fractionally integrated

moving average (ARFIMA) models with independent regressors. Their final model

considers gasoline price, transit fare, employment, service level and a set of seasonal

constants.

An alternative approach is to examine travel trends more broadly. Metz [183]

considers the demographic determinants of travel demand in Britain. LeVine and

Jones [184] examine the trends in car and train travel in Britain. A specific focus

is the observation that car travel appears to have levelled off in recent years, while

train travel is growing rapidly. Their research draws from an analysis of different

waves of the National Travel Survey (NTS), a household travel survey conducted

annually in Britain. This allows for a detailed examination of trends for different

sub-groups of the population. Unfortunately, annual travel surveys are not common

in the United States, and not available for this study. The findings of these and

related “broad trend” studies are discussed in further detail in Chapter 5; for now the

focus is on identifying the appropriate method and the key variables to be captured

in model estimation.
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Collectively, these papers demonstrate the types of variables commonly in

econometric models of transit demand. Typically, a handful of descriptive vari-

ables are used, including a measure of service quantity (often service miles), fare,

gasoline price, and some measure of the economy (usually employment or the un-

employment rate). The time series models tend to account for seasonality, either

through seasonal differencing or by including seasonal constants. The two cross-

sectional models discussed include a term on either the percent of zero-auto house-

holds or median household income, but the time series models do not. This may

be because those factors tend to have greater variations between regions than over

time, so are more explanatory in the cross-sectional domain. The analysis of strikes

and service quality factors appears to be less common, and an area where further

research could be of value. These variables provide an initial list of variables to be

tested in model estimation.

This chapter seeks to build upon past research to understand why MUNI rider-

ship stagnates and BART ridership grows over the same time period. Its modelling

approach is most similar to that of Chen et al. [129], but it applies those models

in manner similar to Kain and Liu [174]. It seeks to consider a broader range of

descriptive factors than past research (specifically testing service quality factors, in-

cluding reliability and crowding) and presents a visual means of understanding the

effects of those factors through time. The findings with respect to the divergence

raise interesting questions about whether current trends can be expected to continue

in the future.

The remainder of this chapter is structured as follows. Section 4.2 describes

the data considered in this analysis, and discusses notable trends in those data. Sec-

tion 4.3 describes the methodology used to analyse the data. The methodology

considers three types of time series models, and discusses the potential strengths

and limitations of each. Section 4.4 examines the properties of the time series,

and presents estimation results for each of the three types of models. The results are

compared, and a preferred model of MUNI and BART ridership is selected. Finally,

conclusions are presented of relevance to the model estimation and to the approach
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for analysing the drivers of transit demand.

4.2 Data
The data used in this study fall into four categories: MUNI data, data for BART

and four other Bay Area transit modes, “drivers of demand” which are other factors

expected to influence changes in the demand, and commute mode shares. The di-

vergence of ridership and employment trends are explored towards the end of this

section.

4.2.1 MUNI

The data for the MUNI bus system comes primarily from transit AVL and APC data

recorded on a subset of MUNI buses. The equipment is installed on approximately

25% of the bus fleet, which are assigned to different routes throughout the city on

a daily basis to achieve coverage. Information on the complete schedule in oper-

ation is available in the form of the general transit feed specification (GTFS). The

AVL/APC data are expanded to the GTFS data, such that they are representative of

total system ridership on a daily basis, as described in Chapter 3.

These combined data are available for the period from June 2009 through

November 2013, with data in April 2010 missing. For the purpose of calculat-

ing time series statistics and estimating models, the April 2010 data are imputed.

The data are aggregated to average monthly conditions for weekdays, Saturdays

and Sundays/holidays. Table 4.1 lists the key performance variables produced by

the data fusion tool for average weekday conditions. Adjacent to each variable de-

scription is a sparkline showing the trend in the data over the period in question for

average weekday conditions. The sparklines shown are for the daily totals, but the

data are segmented into seven time periods: 3-6 am, 6-9 am, 9 am-2 pm, 2-4 pm,

4-7 pm, 7-10 pm and 10pm-3am. Each period is inclusive of the first minute listed

and exclusive of the last. A full enumeration of the data by month is included in

Appendix B.

Table 4.2 lists the same data fields, but with sparklines showing the change

from 12 months earlier. Positive values show up in blue, and negative values are red,
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Table 4.1: Trends from MUNI performance report

with the height indicating the change. This year-over-year change is used because

it excludes the change due to seasonality. The sparklines listed here begin in June

2010 as the first month for which the the 12-month difference is available.

Several points are of note in these data.

Between March and May of 2010, the service provided, both in terms of ve-

hicle trips and service miles, is reduced by approximately 10%. These cuts were

made in response to a budget shortfall, and represent one of the largest service cuts

in the history of MUNI [185]. That service is partially restored in September 2010,
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Table 4.2: Annual differences from MUNI performance report

after which there are a series of incremental service increases until July 2013 when

service miles are cut by approximately 2.5%.

With respect to ridership, the boardings, passenger miles and passenger hours

are generally horizontal with bumps that may be a seasonal trend. The difference

sparklines show three periods of general ridership decline and two periods of gen-

eral increases. There is a general upward trend in the number of wheelchairs served,

and a high point in the number of bicycles served that occurs between August and

November of 2010.

One of the biggest changes observed in these data is the number of rear-door

boardings, which increase from approximately 1,500 at the start of this period to

over 200,000 by the end. MUNI began an all door boarding policy in July 2012,

which was implemented in conjunction with a switch to a proof-of-payment sys-
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tem. This change was made with the goal of reducing the dwelling time required

to board passengers, and MUNI’s assessment of that policy found it successful at

doing so [186]. Interestingly, the number of rear door boardings recorded by the

APCs starts to ramp up in January 2011, and continues to increase throughout the

analysis period.

Several performance measures are recorded as indicators of the level-of-

service. The total speed is the average speed at which the bus travels, inclusive

of stop time. The run speed is the average speed between doors closed and doors

open. It excludes the time required for passengers to board and alight the bus, but

still includes acceleration and deceleration time. The dwell time is measured as the

time between doors open and doors closed each time the vehicle stops.

Following the April 2010 cuts, the dwell time increases and both speed mea-

sures decrease. This likely occurs because with fewer buses, there are more passen-

gers per bus. Not only do they take longer to board and alight, but the vehicles are

less able to skip stops when no passengers wish to board or alight. Changes to the

scheduled headway are what would be expected given the service changes.

Fare changes are discussed in the following section.

There are some increases in the average distance per passenger and average in-

vehicle time per passenger early in the analysis period. The increase in distance may

be because travellers making short trips switch to walking when the bus frequency

is reduced or fares are increased. The average wait time per passenger assumes that

passengers wait for half the scheduled headway for the route they are boarding, at

the time they board. The system-wide average wait time is less than half of the

system-wide average scheduled headway because there tend to be more passengers

on the more frequent routes. Essentially, it is weighted by the passengers boarding

at each stop versus the vehicles stopping at each stop.

Reliability is reported both as a percent of vehicles arriving on-time and based

on the average delay when passengers board (they are waiting longer for the vehicle

to arrive) and when they alight (they get to their intended destination later).

Crowding is reported both as the average volume-capacity ratio, and as the
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percent of trips where the volume exceeds 85% of the capacity. This varies substan-

tially by time-of-day and direction, as well as by route.

MUNI has struggled with both reliability and crowding issues in recent

years [187]. Motivated in part by these issues, there is currently an effort underway

to develop a person-based dynamic transit assignment model [188] in San Francisco

that would provide a means to include reliability and crowding in planning-level

models [189]. One of the interesting opportunities provided by these data is the

ability to empirically test what, if any, affect these measures have on ridership.

The last set of measures contain measures of the potential errors in the data.

The number of days and number of observations are self-explanatory.

The measurement error provides a means of considering errors in the values

recorded by the APCs. Passengers are recorded when they board the vehicle and

when they alight. The two values should add up to the same total for each trip a

vehicle makes, but the data reflect some minor differences.

The weighting error provides a means of considering the sampling and weight-

ing of the data, as described in Chapter 3. When the data are weighted and ex-

panded, the weighting is proportional to the number of trip-stops in the scheduled

versus sampled data. The number of service miles is also available both in the

scheduled and sampled data, so if the weighting process were perfect, the number

of service miles would match exactly. Instead, there are some minor differences,

with 95% of observations falling between -2.2% and +0.8%.

4.2.2 Other Transit Modes

Table 4.3 shows several key trends for five transit modes serving San Francisco:

MUNI bus, MUNI cable car, MUNI rail, BART and Caltrain. The bounds of the data

shown is this table are from January 2001 through September 2015. Appendix B

includes a full enumeration of the data by month.

MUNI bus is discussed above, and the mode for which the most detailed, au-

tomatically collected data are available.

As a matter of convenience, throughout this chapter, when “MUNI” is dis-

cussed without a qualifier, it refers to MUNI bus. While the cable cars are the
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iconic San Francisco transit mode, they carry only about 20,000 passengers on an

average weekday, compared to about 500,000 on the buses. A substantial share of

the cable car passengers are tourists, and the cash fare is set high, currently $6 per

trip, to capture revenue from visitors.

MUNI also operates a light rail system, which is at the street level in mixed

traffic throughout much of San Francisco. The light rail lines converge into a sub-

way underneath Market Street in downtown San Francisco. This subway is directly

aligned with, but on a different level from the BART subway in downtown San

Francisco. Unfortunately, automated data collection is not available on the MUNI

rail system, so counts are limited to manual counts no more than once per year.

BART, as discussed previously, is the regional rapid transit system, whose core

market is carrying passengers from the East Bay and from the Peninsula into San

Francisco.

The data reported in Table 4.3 come from several sources, which are available

at different temporal and geographic resolutions. The columns indicate the sources

and resolution of each data item. Table 4.4 shows the annual difference in each of

these measures, with the remaining columns the same.

An important source of longer term data is the Statistical Summary of Bay

Area Transit Operators [142]. This annual report is published by the Metropolitan

Transportation Commission, and includes financial and operating data from each of

the 24 Bay Area transit operators for the previous fiscal year. Key measures include

ridership counts, service miles and service hours, operating costs, revenue and fare-

box recovery ratios. The advantage of these data are that they are available for all

operators and offer a long time series, going back to the 1990s. They are, however,

limited in that they are only available at the system level, and only summarised for

each fiscal year. In Table 4.3, the statistical summaries provide a measure of the

average monthly service miles and the average weekday ridership on each of the

five modes. The data show service increases on BART and Caltrain for the first half

of the periods, and variability or cuts in service on the three MUNI modes. The

ridership growth on BART and Caltrain increases throughout this period, while the
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Table 4.3: Trends for other transit modes

ridership on the three MUNI modes is variable.

More detailed automated count data is available on the MUNI bus and BART.

The MUNI bus data comes from the APCs, and is processed as discussed above.

These data are, however, only available for a limited duration. BART provides

monthly “entry-exit” matrices that show the number of passengers traveling be-

tween each station pair for an average weekday, average Saturday, and average

Sunday/holiday [143]. These data are derived from BART’s faregate system. BART

fares are based on the distance travelled, so the system tracks the point of entry so

it can deduct the correct fare when the traveller exits the system. Historically, this

has been done using a magnetised paper ticket, but more recently BART has started

accepting Clipper Cards, which allow a consistent mechanism of payment across

different operators. Clipper Card transaction data was investigated as a contribut-

ing source of data to this study, and Chapter 2 discusses some of the limitations of
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Table 4.4: Annual differences other transit modes

those data. Where they are available, the APC and faregate data are preferred to the

values reported in the statistical summaries due to their better resolutions.

The cash fares are assembled from the published fare values. The operators

do not provide an archive or report of past fare values, but changes are publicly

announced. Therefore, the past fares are identified by collecting press releases and

newspaper articles announcing fare changes. All monetary values are inflation ad-

justed to year 2010 dollars, using the Consumer Price Index (CPI) for all urban

consumers [107].

Notable fare increases on MUNI are from $1.50 to $2.00 on 1 July 2009, and

an increase to $2.25 on 1 September 2014. BART’s recent policy is to implement

regular fare increases in line with inflation. The BART fares reported are for the

average fare paid, although the actual fare experienced by a traveller depends on the

entry and exit station.
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The average fare is measured as the revenue per boarding, and is in the range

of $0.80 per trip, in 2010 dollars, for most of this period. The difference reflects the

usage of transit passes and discount fares.

Next is another measure of weekday service miles, this one derived from the

GTFS data. The GTFS provides a more detailed measure of the transit schedule

between each stop, and for the exact dates for which the schedule was in operation.

The limitation is that GTFS is only available as far back as 2009. Therefore, an

additional measure of extrapolated service miles is provided that pivots from the

GTFS where it is available, and estimates the service prior to 2009 using the change

in the reported values in the statistical summaries.

4.2.3 Expected Drivers of Demand

While it is recognised that the transport system can influence the land-use and socio-

economic characteristics of a city, these factors are treated as exogenous for the

purpose of this study. This study is limited to short-medium term effects, while

the effect of transport on land use changes are assumed to occur over a longer time

period.

Table 4.5 shows several key trends that may drive changes in demand. The

bounds of the data shown is this table are from January 2000 through March 2015.

Table 4.6 shows the annual difference in each of these measures, with the remaining

columns the same. These data are for San Francisco, but all fields are available at

a county level, and for the 4-county area as a whole. Appendix B includes a full

enumeration of the data by month.

The tables start with measures of population and households. Most of these

measures are taken from the annual ACS, for which these tables are available at

the county level, starting in 2005. The 2000 Census provides the same tables mea-

sured for a larger sample, so 2001 through 2004 values are interpolated between the

Census and the ACS. Two specific measures are available from different sources.

The Census Bureau provides annual population estimates by county. Also, the San

Francisco Planning Department provided data on housing completions. These were

residential construction projects that were completed, with information for each
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Table 4.5: Expected drivers of demand trends

project that includes the address, the date the project was completed, and the net

change in housing units. These data are used to provide a direct measure of the

change in the number of housing units in San Francisco.

These data show that population and households are relatively flat at the start

of the period, and then start to grow in the latter portion of the period. There are

declines in the number of households with income less than $100,000 per year, and

growth in the number of households with income of $100,000 or more per year.

There is a general increase in the number of households that own zero vehicles. The

inflation adjusted median household income has two periods of decline and two
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Table 4.6: Expected drivers of demand annual differences

periods of growth, corresponding to broader economic conditions.

The next set of measures is for workers. A worker is a person who is employed,

and their location is recorded based on where they live, in contrast to an employee,

for which the location is recorded at the place of work. Workers are reported both

in total number, and segmented based on their annual earnings. The data show that

the number of workers in San Francisco declines during the two recessions, and

increases between the recessions and in the current recovery period.

Estimates of workers come from the LEHD Origin-Destination Employment

Statistics (LODES) data [101]. These data are provided by the Census Bureau, and
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are currently available annually from 2002 through 2014. LODES provides an es-

timate of employed people, summarised based on where they live and where they

work. There are three compilations of LODES data: Residence Area Characteris-

tics (RAC), Workplace Area Characteristics (WAC), and Origin-Destination (OD).

In all cases, the data are segmented by worker earnings and industry. They are

available at the scale of Census blocks, so for a very detailed geographic resolution.

The limitation of these data are that they are effectively a synthetic data set. The

Census Bureau combines several data sources to derive this information, including

reported unemployment insurance information from firms, and tax records. To pro-

tect privacy, the underlying source data are not released, and the public data are

“fuzzied” such that they match in aggregate, but some variation at small scales can

be expected. Nonetheless, they are widely available, updated annually, and appear

to be reasonable based on initial inspections.

For this research, the LODES is combined with another Census data product,

the Quarterly Census of Employment and Wages (QCEW) [190]. The QCEW pro-

vides estimates of employment by industry at the county level, as well as average

wages. It is derived from unemployment insurance information, and thus can have

some limitations for industries that are not required to file unemployment insurance,

such as certain categories of agricultural and military employment. The QCEW is

released on a quarterly basis, but the quarterly release includes estimates of em-

ployment for each month. Thus, it provides a less geographically detailed, but more

temporally detailed measure of employment than the LODES.

In the trends shown, the annual estimates of workers from the LODES are

adjusted to match the monthly distributions of employment in the QCEW for each

county.

Next, the tables show employment by industry and by worker earnings, as well

as the average monthly employee earnings. All are reported based on the work

location, and are derived from the combined LODES/QCEW.

The employment data show a few trends of note. First, the total employment

declines after the dot-com bust and after the financial crisis. The scale of the issue
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is such that it took until 2014 to surpass the previous employment peak in 2001.

Retail employment and leisure employment (hotels, restaurants, etc.) are both more

seasonal than total employment. Education and health employment has two discrete

increases, which are likely due to a change in how certain types of employment are

categorised, rather than a real change. The trends in employment by earnings are

equivalent to those in workers by earnings. Average monthly earnings are much

more seasonal than the household income estimates, and the trend larger trend is

somewhat less pronounced.

Next, a set of metrics tracks the jobs housing balance. The employees per hous-

ing unit is reported first. This has a similar shape to the employment curve, because

employment tends to change more rapidly than residential units. The employees per

worker in San Francisco grows over the latter portion of this time series, indicating

that more employees are living in outlying counties. The next three metrics are de-

rived from the LODES OD data: the number of workers who both live and work in

San Francisco, the number who live elsewhere and work in San Francisco, and the

number who live in San Francisco and work elsewhere. The latter peaks between

2005 and 2009, in spite of the more recent attention given to the Google buses (em-

ployee only buses operating between San Francisco locations and the company’s

Mountain View headquarters) [191].

The next section of the report shows trends in monetary costs. All costs are

adjusted to 2010 dollars using the CPI for all urban consumers, as reported by the

Bureau of Labor Statistics (BLS) [107].

The top several series are measures of the costs of auto travel. The average

fuel price is reported on a monthly basis from the US Energy Information Adminis-

tration (EIA) for the San Francisco Metropolitan Statistical Area (MSA). The fuel

price generally grows over this period, with a notable decline in 2009.

The average fleet efficiency is measured for the US as a whole, and is reported

by the Bureau of Transportation Statistics (BTS). The fleet efficiency increases most

rapidly in the years prior to 2009, corresponding to the most rapid increase in fuel

price. The average fuel cost, in dollars per mile, combines these two series.
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An alternative measure of the auto operating cost is provided by the Internal

Revenue Service (IRS). The IRS periodically provides an updated estimate of the

marginal cost of operating a vehicle. This estimate determines how much people

can deduct from their taxes when they use their vehicle for health, moving or char-

itable reasons. A separate measure, which is used when the vehicle is used for

business purposes, includes the total cost of owning and operating the vehicle, but

the ownership costs are excluded for the purpose of this research. The IRS rates are

similar to the average fuel cost, but because they are only updated periodically, they

reflect a less detailed set of changes.

From 2007 to 2012, a real estate analysis firm, Colliers International, con-

ducted an annual survey of parking costs in the Central Business District (CBD) of

major cities[192, 193, 194, 195, 196, 197]. Parking cost is expected to be a major

determinant of transit mode share, so this is valuable information. Unfortunately,

the survey was discontinued in 2012. Surveys were conducted prior to 2007, but

they are not archived in an available location, and Colliers was not interested in

providing them when contacted. It is expected that parking costs should be closely

tied to employment conditions, but the time series are not long enough to draw many

conclusions about their role.

The cost of tolls on the Bay Bridge and the Golden Gate bridge are included,

as reported by the Bay Area Toll Authority (BATA). There are several toll increases

over this period, and an introduction of tolls for carpools in 2010.

4.2.4 Commute Mode Shares

Table 4.7 shows the trends in commute mode shares, and Table 4.8 shows the annual

differences. These data are reported in the annual ACS from 2005 through 2014.

2000 values are taken from the decennial Census, and 2001 through 2004 are in-

terpolated. Values are reported as a total for all workers, and segmented by worker

earnings. These trends are for San Francisco, but they are available for each county,

and as a total. Appendix B includes a full enumeration of the data by month.

The data show a decline in auto modes and an increase in all other modes over

this period. The trends are similar for lower and higher earning workers. Focusing
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Table 4.7: Mode share trends

Table 4.8: Mode share annual differences
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on the period from 2005 through 2013, where annual data are available, the total

auto mode share (drive alone and carpool) declines from 48.0% to 41.3%. The

transit mode share increases from 32.7% to 34.0%. The remaining modes start

from a smaller share, but increase at a faster rate. Walk increases from 9.6% in

2005 to 11.2% in 2013. Taxi, bike and other increase from 3.4% to 6.5% and work

at home increases from 6.3% to 7.0%. These data do not explain why the mode

shift occurs, but it is notable nonetheless.

4.2.5 Divergence of Ridership and Employment

Past research [170] indicates that employment changes can be expected to be one of

the most important drivers of changes in transit ridership. However, as Figure 4.1

shows, MUNI ridership decreases relative to employment while BART ridership

increases relative to employment during the period of analysis. These divergent

relationships and their implications for model estimation are examined in further

detail here.

Figure 4.2 shows the MUNI ridership, the employment in San Francisco, and

the MUNI riders per employee for the period over which detailed data are avail-

able, from June 2009 though November 2013. These data show steady employment

growth in San Francisco from about 2011 onwards, but no accompanying ridership

growth. Instead, there is a general downward trend in MUNI riders per employee.

This trend is more clear when the MUNI riders per employee series is decom-

posed into its trend, seasonal and random components, as shown in Figure 4.3. The

decomposition is performed using the standard additive method [198]. The trend

line shows a reduction from about 0.94 riders per employee to 0.82 riders per em-

ployee. That is a reduction of about 13% in four years.

Figure 4.4 shows the BART riders, the employment in the 4-county area served

by BART, and the BART riders per employee. The BART data and accompanying

employment data are available for a much longer period, from January 2001 through

March 2015. Employment reached its peak in December 2000 with the dot-com

boom, an especially pronounced event in the Bay Area. Employment declined until

2004, and started to rebound in 2005 before falling again with the recession in late
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Figure 4.1: MUNI and BART riders per employee
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Figure 4.2: Trends in MUNI ridership and San Francisco employment

2008 and 2009. Employment growth has been strong from 2010 onwards, finally

surpassing its 2000 peak in late 2014. Similar periods of growth and decline can be

observed in the BART ridership data. The third sub-graph shows a general increase

in BART riders per employee over this period.

The pattern is more clear when the BART riders per employee time series is de-

composed into its trend, seasonal and random components, as shown in Figure 4.5.

The large spikes in the random component in 2013 are due to BART employee

strikes in July and October of that year. Over the period from 2001 through 2015,

the BART ridership increases from about 0.16 per employee to about 0.20 per em-

ployee, or about 25%.
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Figure 4.3: Decomposition of MUNI riders per employee

The models estimated in the subsequent sections seek to determine the rela-

tive influence of different factors, including employment, on the transit ridership

changes. They seek to answer the question of why the ridership trends diverge so

starkly.
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Figure 4.4: Trends in BART ridership and 4-county employment



4.2. Data 143

Figure 4.5: Decomposition of BART riders per employee
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4.3 Methodology

In order to quantify the contributions of a range of factors on the changes in MUNI

and BART ridership, a series of statistical models is estimated. The total ridership

on each system is modelled as a time series: a one-dimensional observation through

time. Future work will re-examine these data using a panel data structure where the

ridership at each stop or station in each period is treated as a separate observation.

That re-analysis is planned as a future student project, but is beyond the scope of

this research.

Three types of models are considered in this chapter: Autoregressive Integrated

Moving Average (ARIMA) models, regression on time series data, and Regression

with ARIMA Errors (RegARIMA).

ARIMA models are aimed at predicting future values of the time series as a

function of past values. The ARIMA approach provides a means of identifying and

estimating current and future values of the time series using past values.

The second approach is to use regression models on time series data. Regres-

sion models can include previous values of the time series, which would result in

a similar effect to ARIMA models, although ARIMA models are generally more

sophisticated in their handling of past values. Importantly, regression models can

also include other descriptive variables in cases where such measures are available.

This provides two advantages. First, it allows for those variables to be used in fore-

casting. Second, it allows for statistical inference with respect to the correlation of

the time series with those other descriptive variables.

Regression models with ARIMA errors combine elements of both types of

models. They are considered here as a means for overcoming a potential violation

of the standard regression assumptions, specifically that the model’s errors should

be independent of time.

The remainder of this section introduces these three types of models, as well

as associated strategies for working with time series data.
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4.3.1 Measuring Autocorrelation

An important attribute of time series data is that current values of the time series tend

to be correlated with past values of the series, meaning that they are autocorrelated.

There are two important implications of this. First, it means that past values can

be an effective predictor of current or future values. Second, it means that the data

contain less information than if each were an independent observation.

The autocorrelation for lag k can be calculated as [198]:

rk =
∑

T
t=k+1(yt− ȳ)(yt−k− ȳ)

∑
T
t=1(yt− ȳ)2

(4.1)

where yt is the value of the time series at time t, ȳ is the mean value of the time

series, and T is the length of the time series.

Similarly, the partial autocorrelation measures the correlation between the cur-

rent time series value and a lagged value, excluding the correlation contributed by

intermediate values. To give an example, consider a case where the value at each

period yt is correlated with the value at the previous period yt−1. It follows that

yt−1 is correlated with yt−2, and that yt is also correlated with yt−2 because yt−1

falls between and is correlated with both. The partial autocorrelation excludes this

intermediate effect and measures only the additional, direct, correlation between yt

and yt−2.

The partial autocorrelations are estimated as the φ coefficients of an Autore-

gressive (AR) model for the appropriate number of lags. AR models are discussed

in 4.3.3.

The Autocorrelation Function (ACF) is the series of autocorrelations for each

value of lag, and the Partial Autocorrelation Function (PACF), is the series of partial

autocorrelations for each value of lag. Plotting these provides a simple means of

identifying which lags have strong autocorrelations. Figure 4.6 shows an example

of a time series and its corresponding ACF and PACF plots. The dashed horizontal

lines are plotted at +/−1.96
√

T . If the time series is white noise, we would expect

95% of values to fall within these bounds for both the ACF and the PACF.
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Figure 4.6: Example ACF and PACF plots

In addition to considering the autocorrelation of individual lags, the Box-Pierce

test can be used as a measure of whether the autocorrelation in a group of lags is

significantly different than what would be expected from white noise. The Box-

Pierce test is written as [198]:

Q = T
h

∑
k=1

r2
k

Q∼ χ
2(h−K)

(4.2)

where T is the number of observations, h is the maximum number of lags consid-

ered, rk is the autocorrelation for lag k, K is the number of estimated parameters in

the model, and Q follows a chi2 distribution with the degrees of freedom equal to

the number of observations minus the number of estimated model parameters.

The test combines values of rk, such that large positive or negative values of rk

result in a large Q value. The value of h can be selected based on the number of sea-

sonal periods in the data. These models are based on monthly data, so the seasonal,
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or periodic, effects are expected to occur every 12 months. For our analysis, we

take h to be twice the number of seasonal periods (24) if T is large, and the number

of seasonal periods (12) if T is small (less than five seasons). Given the chi2 distri-

bution, we consider p-values less than 0.05 to indicate significant autocorrelation of

the group.

The Box-Pierce test has sometimes been observed to produce suspiciously low

values of Q, so a modified test has also been proposed, known as the Ljung-Box

test [199]. This test is expressed as:

Q∗ = T (T +2)
h

∑
k=1

(T − k)−1r2
k

Q∗ ∼ χ
2(h−K)

(4.3)

where T is the number of observations, h is the maximum number of lags consid-

ered, rk is the autocorrelation for lag k, K is the number of estimated parameters in

the model, and Q∗ follows a chi2 distribution with the degrees of freedom equal to

the number of observations minus the number of estimated model parameters.

To test the effect of the difference in these two tests, both were calculated for

the preferred models reported in this document. The conclusions about whether or

not the residuals are autocorrelated do not change regardless of which test is used.

For example, the preferred BART RegARIMA model has a p-value for the Box-

Pierce test of 0.207 and a p-value for the Ljung-Box test of 0.147, both of which

are above our threshold of 0.05. To avoid duplication of similar values, only the

Box-Pierce test results are reported in the tables in this chapter.

4.3.2 Stationarity and Differencing

A stationary time series is one whose properties do not depend on the time at which

it is observed [198]. Stationarity can usually be determined by plotting and visu-

ally inspecting the time series. A stationary time series should be horizontal with

constant variance. Seasonality also makes a time series non-stationary. ACF plots

can be used to assist in identifying stationarity. For example, the time series in Fig-
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ure 4.6 can be identified as non-stationary because 1) the series shows a downward

trend, 2) the series shows apparent seasonality and 3) the ACF plot shows strong

autocorrelation for the first several lags.

Stationarity is an important property, because estimating models on non-

stationary time series can lead to spurious regression, as discussed in Section 4.3.4.

In this analysis, differencing is used to transform a non-stationary time series to

a stationary one. Differencing is simply subtracting a lagged value in the time series

from the current value. Differencing for a lag of one means that the differenced time

series is the change from the previous point in time. It is possible to difference for

lags greater than one, which can be used as a means for removing seasonality from

the time series. For example, using a lag of 12 for monthly data means that the

differenced time series represents the change from a year earlier.

In cases where the differenced data remain non-stationary, a second difference

is taken. For the second difference, the lagged values of the differenced time series

are subtracted from the current values of the differenced time series.

Once the data are shown to be stationary, regression can be safely used. It is

only necessary to bear in mind what the resulting data represent, whether it is a

difference or an absolute value, for the purpose of interpretation and analysis.

4.3.3 ARIMA Models

ARIMA models provide a means of predicting the current value of a time series as a

function of its past values. Because ARIMA models do not, in themselves, provide a

means for including descriptive variables in the models, they do not provide insight

into why a time series changes in value. Nonetheless, they are presented here both as

a reference model, and for use in combination with regression models, as discussed

in Section 4.3.5.

The structure of an ARIMA model is expressed as:

ARIMA(p,d,q) (4.4)

where p is the order of the autoregressive component, d is the degree of differencing,



4.3. Methodology 149

and q is the order of the moving average component.

The model itself is written as:

(1−φ1B− ...−φpBp)(1−B)dyt = c+(1+θ1B+ ...+θqBq)et (4.5)

where yt is the value of the time series at time t, B is the backshift operator, such

that Byt = yt−1, B2yt = yt−2, and so forth, c is a constant, φ1 through φp are the esti-

mated autoregressive coefficients, θ1 through θq are the estimated moving average

coefficients, and et is the residual error at time t, with the et series assumed to be

white noise.

A few points are to be made about this model.

The backshift operator follows the normal rules of algebraic operations. It is

used here as a convenient notation to express more complicated ARIMA models.

(1−B)d is the differencing component of the model. d is taken as the degree

of differencing required to make the time series stationary. A model estimated on

data that is already stationary will be an ARIMA(p,0,q) model, which can also be

expressed as ARMA(p,q), leaving out the integration.

(1− φ1B− ...− φpBp) is the autoregressive component of the model. It is

effectively a weighted average of past values of the time series.

(1+ θ1B+ ...+ θqBq)et is the moving average component of the model. It

amounts to a weighted average of past model errors. The point of this term is to

account for shocks to the system, beyond what was anticipated by the model. The

expectation is that there may be some lingering effect of that shock that fades back

to zero over the long term. This is in contrast to the autoregressive terms, where

a sudden shock would carry forward to all future values of the time series. When

forecasting the time series beyond q periods, the future values of et are assumed to

be zero.

The interpretation of c depends on the degree of differencing. For d = 0, a con-

stant represents the mean value. For d = 1, a constant means that the model incor-

porates a linear trend. For d = 2, a constant indicates a quadratic trend. Quadratic

trends are excluded from this analysis due to their potential to lead to rapid changes.
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The data considered in this study have a seasonal component. Therefore, a

Seasonal Autoregressive Integrated Moving Average (SARIMA) model is used. It

is described as:

ARIMA(p,d,q)(P,D,Q)m (4.6)

where m is number of periods per season (such as 12 for monthly data), P is the

order of the seasonal autoregressive component, D is the degree of seasonal differ-

encing, Q is the order of the seasonal moving average component, and the remaining

terms are as described in Equation 4.4.

The Seasonal ARIMA model is written as:

(1−φ1B− ...−φpBp)(1−Φ1Bm− ...−ΦPBm+P)(1−B)d(1−Bm)Dyt =

(1+θ1B+ ...+θqBq)(1+Θ1Bm + ...+ΘQBm+Q−1)et

(4.7)

where Φ1 through Φp are the estimated seasonal autoregressive coefficients, Θ1

through Θq are the estimated seasonal moving average coefficients, and the remain-

ing terms are as defined above. While it is possible to include a constant in this

structure, the constant is not shown in this equation. In this structure, the seasonal

terms are simply multiplied with the non-seasonal terms. An advantage to including

a seasonal difference is that it avoids the need to estimate separate constants on each

season.

This research follows the Hyndman-Khandakar algorithm [200] to determine

the appropriate order of the ARIMA models, although with two deviations. First,

the search is constrained to seasonal models with a second difference, which both

forces stationarity and ensures that the models are consistent with the regression and

RegARIMA models. Second, in cases where the algorithm would select a model

with statistically insignificant coefficients, variations are tested to select a model

with significant parameter estimates.

The Hyndman-Khandakar algorithm provides the method for selecting the ap-
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propriate order of the models: the values of (p,d,q) and (P,D,Q). It does this by

selecting the values that minimise the AICc (defined in Section 4.3.7), within certain

constraints. The AICc is itself based on a likelihood function. For each combination

of (p,d,q) and (P,D,Q) considered, it is also necessary to estimate the coefficients

φ1 through φp, θ1 through θq, Φ1 through Φp and Θ1 through Θq. This estima-

tion is performed by maximising that same likelihood function, as applied to the

differenced data.

The estimation is complicated by the fact that one set of coefficients is based

on the model errors. The estimation of the ARMA model follows the algorithm of

Gardner, Harvey and Phillips [201]. Because the coefficient estimation is performed

on differenced data, it is reduced from an ARIMA model to an ARMA model. For

simplicity’s sake, we consider an ARMA(p,q) model, although can be extended as

needed to seasonal models. The log-likelihood is maximised by minimising the

function:

L∗(φ ,θ) = n log
( n

∑
t=1

ṽt
2)+ n

∑
t=1

log( ft) (4.8)

where n is the number of time steps, ṽt is the standardised residual at time t, and ft

is a value proportional to the prediction mean square error.

The reader is referred to Gardner, Harvey and Phillips [201] for the full details

of the algorithm. For both this and the Hyndman-Khandakar algorithm, we use the

implementation available in the forecast package in R.

4.3.4 Regression Models

The second type of model used in this study are linear regression models. The key

advantage to using regression models over ARIMA models is that they provide a

means of accounting for descriptive (independent) variables. The basic form of the

regression model, as used here, is:

yt = c+βXt + et (4.9)
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where c is an estimated constant, yt is the value of the time series at time t, Xt is

a vector of regressors at time t, β is the estimated vector of parameters applied to

those regressors, and et is the residual error at time t, assumed to be white noise.

When estimating regression models on time series data, Ordinary Least

Squares (OLS) regression can be used, treating each time point as an observation.

However, it is important that both the time series being modelled and all time se-

ries of descriptive variables used in the model be stationary. Estimating regression

models on non-stationary data can lead to spurious regression, where the correlation

between two variables is incorrect because both series contain a similar trend.

Hyndman and Athanasopoulos [198] provide an example of spurious regres-

sion in their textbook, which is shown in Figure 4.7. In this example, air passengers

in Australia are plotted against rice production in Guinea. Both show high levels

of growth between 1970 and 2010, and in the bottom plot appear to be highly cor-

related. A regression model would show a highly significant relationship between

these two variables, even though they are clearly unrelated.

To be more precise, one of the assumptions of standard regression models is

that the residuals are not autocorrelated [202], and models estimated from non-

stationary data risk having autocorrelated residuals. The parameter estimates re-

main unbiased, but will be inefficient. This means that the standard errors and

t-statistics will be inappropriate, which can lead to incorrect statistical inferences

and possible specification errors. For these reasons, we check the residuals of our

estimated regression models for autocorrelation using ACF and PACF plots.

It is worth noting that the regression models can also be estimated as a spe-

cial case of RegARIMA models, with no autoregressive or moving average terms,

and with the appropriate level of differencing. As a verification test, the preferred

regression models were also estimated using this approach, and both methods pro-

duced equivalent results.

4.3.5 Regression Models with ARIMA Errors

A third type of model is considered in this study combines features of the regression

model with ARIMA errors, or the RegARIMA model. Sometimes such models are
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Figure 4.7: Example of spurious correlation [198]
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referred to as dynamic regression. The advantage of the RegARIMA model is that

it includes descriptive regressors, but can also capture the more subtle trends that

ARIMA models can include. The latter is of particular importance if the residuals

from a simple regression model are found to remain autocorrelated. In our case, we

consider the regression model with seasonal ARIMA errors, which is expressed as:

yt = βXt +nt

(1−φ1B− ...−φpBp)(1−Φ1Bm− ...−ΦPBm+P)(1−B)d(1−Bm)Dnt =

(1+θ1B+ ...+θqBq)(1+Θ1Bm + ...+ΘQBm+Q−1)et

(4.10)

where nt is the error of the regression component of the model, which is assumed to

follow an ARIMA model as expressed in the second equation. et is the error of the

model as a whole, and assumed to be white noise. The backcast operator B operates

on nt in he left hand side of the equation and on et in the right hand side. Note that

Equation 4.10 is actually a pair of equations, where the first equation defines the

model as a whole, and the second equation defines nt specifically. This structure

follows the definition included in Hyndman and Athanasopoulos [198], where the

value of nt is defined separately because it is a function of past values of itself.

When estimating a regression model with ARIMA errors, the ARIMA compo-

nent affects the β estimates and the β estimates affect the ARIMA component. To

avoid this problem, an iterative estimation procedure is used, as outlined in [198].

Before starting this iterative estimation, the degree of seasonal and non-seasonal

differencing is selected manually such that the time series and the regressors are

stationary. Underlying this iterative process are the Hyndman-Khandakar algorithm

for order selection and the Gardner-Harvey-Phillips algorithm for coefficient esti-

mation, as described in Section 4.3.3.
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4.3.6 Lagged Variables

One advantage to estimating regression models on time series data is that it pro-

vides a convenient mechanism to test lagged effects of descriptive variables. This is

valuable in transportation, where travellers are expected to have different long-term

versus short-term responses to service or cost changes. This long versus short-term

difference can take place in several ways.

First, it may take travellers some amount of time to learn about recent changes

and settle on preferred means of fulfilling their desired activity patterns. While

travellers can reasonably be expected to maximise their utility, it is also clear that

people are creatures of habit who may continue in their current course, simply as a

matter of default until prompted to make a change.

Second, some important travel decisions are made on a longer term basis than

others. It is easy for a traveller to change routes in response to a service change, but

workplace locations and levels of car ownership change less frequently. Travellers

may also be locked into a certain transit fare pass or parking pass on a monthly or

yearly basis.

In the first two cases, the long term effect is expected to be greater than the

short term effect. It is also possible for a change to have a larger short term effect

that degrades over time. Such a result may occur for a sudden price increase, where

travellers respond quickly with a degree of “sticker shock”, and then gradually re-

sume their previous behaviour once they become acclimated to the change.

While it is possible to estimate model coefficients for any combination of im-

mediate response and lagged variables, experimentation on the data used in this

project revealed that it is difficult to get meaningful relationships between the pa-

rameter estimates when multiple lags are considered. Therefore, a structure is im-

posed where the lagged effect is distributed linearly across a number of periods.

The formula for this distributed lag is:

Di(S,L) =
L−1

∑
l=1

( L−l
L

L
2 − (S−0.5)

)
xi−l (4.11)
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where: Di(S,L) is the distributed lag result at time i, with a starting lag of S and an

ending lag of L, and xi is the value of the time series of interest at time i. For this

analysis, S is constrained to be either zero or one.

To demonstrate the effect of this formulation, Table 4.9 shows the calculation

for several values of S and L. By assuming that x is a series of ones, Table 4.9 shows

the weight given to the value from each period. The weight is largest for the first

month, and declines linearly thereafter. The weights always sum to one, which is

convenient for the interpretation of the parameters. This means that for a coefficient

estimated on a distributed effect, the long-term effect is that of the coefficient itself.

For the example of Di(0,3), the immediate effect is half the coefficient’s value.

Table 4.9: Example of distributed lag calculations

Lag (l) xi−l Di(0,3) Di(0,6) Di(0,12) Di(1,3) Di(1,6) Di(1,12)

0 1.0 0.500 0.286 0.154 0 0 0
1 1.0 0.333 0.238 0.141 0.667 0.333 0.167
2 1.0 0.167 0.190 0.128 0.333 0.267 0.152
3 1.0 0.143 0.115 0.200 0.136
4 1.0 0.095 0.103 0.133 0.121
5 1.0 0.048 0.090 0.067 0.106
6 1.0 0.077 0.091
7 1.0 0.064 0.076
8 1.0 0.051 0.061
9 1.0 0.038 0.045

10 1.0 0.026 0.030
11 1.0 0.013 0.015
12 1.0

Total 1.000 1.000 1.000 1.000 1.000 1.000

For distributed lags with S = 1, there is no immediate effect. In estimation,

models were tested that include both an immediate response variable, and a dis-

tributed lag on the same variable starting from S = 1. This is a more flexible struc-

ture that allows the estimation to determine the relative weight to allocate between

the immediate response and the distributed lag. If the coefficients have the same

sign, the long term effect is greater than the immediate response, and if the coeffi-

cients have opposite signs, the long term effect is less than the immediate response.

The latter is a useful specification to test for “sticker shock” effects.
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4.3.7 Goodness of Fit Measures

The regression models are estimated using ordinary least squares and use R2 as the

standard goodness-of-fit measure. It is defined as:

R2 =
∑(ŷi− ȳ)2

∑(yi− ȳ)2 (4.12)

where ŷi is the predicted value at time i, ȳ is the mean of the observed values,

and yi is the observed value at time i. Higher R2 values indicate a better fit. It is

worth noting that differencing has an important effect on R2 values. The mean value

of the observed differences (the average rate of change) is very different from the

mean value of the undifferenced time series. This means that R2 values calculated

from the undifferenced series will generally be higher than those calculated from a

differenced series.

The ARIMA and RegARIMA model are estimated using Maximum Likeli-

hood Estimation (MLE). The standard goodness-of-fit measures reported include

Akaike’s Information Criterion (AIC), and the Corrected Akaike’s Information Cri-

terion (AICc). They are defined as:

AIC =−2log(L)+2(k) (4.13)

AICc = AIC+
2k(k+1)
N− k−1

(4.14)

where L is maximum likelihood value, k is the number of number of estimated

parameters, and N is the number of observations,

Lower AIC and lower AICc values indicate a better fit. The key difference

between the two arises for short time series, where AICc further penalises the in-

clusion of marginal parameters.

In addition to these measures, it is desirable to compare all the model types on
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a consistent basis. To do this, we compare the Root Mean Square Error (RMSE):

RMSE =

√
1
N

N

∑
t=1

(ŷt− yt)2 (4.15)

where yt is the observed value at time t, ŷt is the estimated value at time t, and N is

the number of observations

To ensure that all models are evaluated against the same data, the RMSE is

calculated based on fit against the training data set starting at period 14. This is the

first period for which a 12-month seasonal difference and a 1-month second differ-

ence can be calculated internally from the data set. The RMSE is independent of

the level of differencing. The percent RMSE is also reported with the denominator

of the percentage based on the undifferenced time series.

4.4 Model Results
This section presents the model estimation results for three models of MUNI rid-

ership and three models of BART ridership. For each transit system, an ARIMA

model, a regression model and a RegARIMA model is tested. The underlying anal-

ysis involved estimating up to 100 models of each type to come to a preferred speci-

fication. Only the best model of each type is presented here. Section 4.4.5 compares

the models of each type and recommends a preferred model for application. Prior

to estimating the models, Section 4.4.1 examines the properties of the time series

and the degree of differencing required to make those time series stationary. Ap-

pendix C shows the derivation of the formulas that can be used to apply each of the

preferred models.

4.4.1 Stationarity and Differencing

In this section, three levels of differencing are examined for the MUNI riders and

BART riders time series that will be modelled. The goal is to identify the level of

differencing required to transform the series into stationary time series. This will

be the degree of differencing used in the ARIMA models. Similarly, the regression

models will be estimated on stationary time series to minimise the risk of spurious
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regression.

4.4.1.1 MUNI

Figure 4.8 shows the MUNI riders time series, a seasonal difference of the time

series and the second difference of the time series. The second difference is cal-

culated as the month-over-month change in the seasonal difference. The base time

series shows apparent seasonality and a slight downward trend, so is not stationary.

The seasonal difference seeks to remove both. It is difficult to determine visually

whether the seasonally differenced time series is stationary, but the second differ-

ence does appear stationary, with a constant mean and random variation around that

mean.

Figure 4.8: Differencing options for MUNI riders
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To confirm our visual inspection, we also examine the ACF and PACF plots for

each degree of differencing, as shown in Figure 4.9, Figure 4.10 and Figure 4.11.

The base series (Figure 4.9), shows significant positive autocorrelation for lags of

one and 12 months, and significant negative autocorrelations for lags of three and

nine months, confirming our assessment that the data are not stationary. The sea-

sonal difference (Figure 4.10) shows significant autocorrelation for the first lag, and

the second difference (Figure 4.11) shows no significant autocorrelation.

While it may be debatable as to whether second differencing is necessary, for

the regression models it is also important that all descriptive variables included in

the model also be stationary. The evaluation of those series is not included here

due to space limitations, but they revealed that a single seasonal difference was not

stationary for several important variables, including population, workers and em-

ployment. Further, by imposing the same transformations on the dependent and

descriptive variables, the relationships between those variables are preserved, aid-

ing in the interpretation of the model results. Therefore, the second difference is

selected as the basis for modelling MUNI riders going forward.

4.4.1.2 BART

Figure 4.12 shows the BART riders time series, a seasonal difference of the time

series and the second difference of the time series. Visually, the second difference

appears to be stationary, and the others do not.

The spikes toward the end of the time series are present because there are

labour strikes on BART that took place in July and October of 2013. This resulted

in a large, unexpected drop in ridership in those two months. When the time series

is differenced, this shows up both as a decrease on those months, and as an increase

in the subsequent months.

Figure 4.13, Figure 4.14 and Figure 4.15 show ACF and PACF plots for the

three degrees of differencing in the BART series. The significant and slowly declin-

ing autocorrelations in the base series indicate that the data are clearly not station-

ary. Similarly, it takes 10 lags before the autocorrelations in the seasonal difference

become insignificant, indicating that trends remain in the data. For the second dif-
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Figure 4.9: Autocorrelation of MUNI riders

Figure 4.10: Autocorrelation of seasonal difference in MUNI riders
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Figure 4.11: Autocorrelation of second difference in MUNI riders

ference, significant autocorrelations remain for some lags, but the pattern is more

random, not the slow-declining trend observed in the base series or the seasonal

difference.

A third difference is not considered, because doing so would result in a more

complex model structure that that may include undesirable non-linear trends. There-

fore, the second difference is selected as the basis for modelling BART riders as

well, and we proceed to model estimation. The autocorrelation of the model residu-

als will be checked after the models are estimated, as a goal of enforcing stationarity

at this point is to avoid correlated residuals at the back end. The worry is that cor-

related residuals could lead to spurious regression.
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Figure 4.12: Differencing options for BART riders
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Figure 4.13: Autocorrelation of BART riders

Figure 4.14: Autocorrelation of seasonal difference in BART riders



4.4. Model Results 165

Figure 4.15: Autocorrelation of second difference in BART riders
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4.4.2 ARIMA Models

This section shows the estimated ARIMA models of MUNI and BART ridership.

These models aim simply to reproduce the patterns contained in the time series.

While they do not offer explanation to why those patterns exist, they are included

as a useful reference point in building towards more descriptive models.

4.4.2.1 MUNI ARIMA Models

Table 4.10 shows the estimation results for the preferred MUNI ARIMA model,

which takes an ARIMA(1,1,1)(0,1,0)12 form. In addition to both a seasonal differ-

ence and a monthly difference, the model includes a single autoregressive term (φ1)

and a single moving average term (θ1). The lag column indicates that these apply

to the values from the previous month. Both coefficients are statistically significant,

and the goodness of fit measures are as shown.

Table 4.10: ARIMA model of MUNI boardings

Model Characteristics
Dependent variable MUNI boardings

Type ARIMA(1,1,1)(0,1,0)12

Date range Jun 2009 to Nov 2013

Predictive Variables
Description Lag Coefficient S.E. T-Stat

Autoregressive coefficient 1 0.4708 0.1751 2.69

Moving average coefficient 1 -0.9296 0.1051 -8.84

Model Statistics
Log likelihood -459.95

AIC 925.90
AICc 926.54
RMSE 17782
Percent RMSE 3.57%
Box-Pierce test p-value 0.998

Figure 4.16 shows ACF, PACF and time series plots for the residuals (et) from

this model. Due to the second difference, model values cannot be calculated until

after 13 periods. Therefore, the residuals are plotted as a horizontal line at value zero

for the first 13 periods, allowing the bounds of the plot to remain consistent with

other figures. The residuals appear stationary, and a Box-Pierce test, as reported in

Table 4.10, produces a high p-value confirming their stationarity.
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Figure 4.16: Residual autocorrelation from MUNI ARIMA model

Figure 4.17 shows a time series plot of the modelled and observed MUNI rid-

ers. The model is able to reproduce much of the observed pattern, although there

are some noticeable deviations, particularly in spring 2011 and summer 2013.

In addition to time series plots, it is also valuable to examine the model’s ability

to replicate the actual change in the training data set. This is done here by comparing

scatterplots for the modelled and observed annual difference and second difference,

as shown in Figure 4.18. In each of these plots, the blue line shows the diagonal, and

the points for a perfect model would lie on the diagonal. In this case, the changes

are of the correct order of magnitude, but appear to be just a cloud. The RMSE for

this model is 17,782, which is a 3.57% RMSE when calculated as a percent of the

original series.

4.4.2.2 BART ARIMA Models

Table 4.11 shows the estimation results for the preferred BART ARIMA model,

which takes an ARIMA(2,1,0)(0,1,1)12 form. In addition to the second difference,

the model includes two autoregressive terms (φ1 and φ2) and a seasonal moving av-
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Figure 4.17: MUNI boardings, observed vs. ARIMA model

Figure 4.18: Change in MUNI boardings, observed vs. ARIMA model
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erage term (Θ1). The BART model is estimated over a much longer time series than

the MUNI model, because there is a longer period over which data are available.

Table 4.11: ARIMA model of BART boardings

Model Characteristics
Dependent variable BART boardings

Type ARIMA(2,1,0)(0,1,1)12

Date range Jan 2001 to Mar 2015

Predictive Variables
Description Lag Coefficient S.E. T-Stat

Auto-regressive coefficient 1 -0.5977 0.0700 -8.54

Auto-regressive coefficient 2 -0.4494 0.0701 -6.41

Seasonal moving average coefficient S1 -0.8631 0.0756 -11.42

Model Statistics
Log likelihood -1743.35

AIC 3494.71
AICc 3494.96
RMSE 9508
Percent RMSE 2.72%
Box-Pierce test p-value 0.986

Figure 4.19 shows ACF plots for the model’s residuals, with non-zero values

starting after 13 periods. These plots show that the residuals appear stationary, and

a Box-Pierce test confirms that they are not autocorrelated.

Figure 4.20 shows a time series plot of the modelled and observed BART rid-

ership. Figure 4.21 shows scatterplots of the modelled and observed seasonal and

second differences. These appear to fit better than the MUNI model.
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Figure 4.19: Residual autocorrelation from BART ARIMA model

Figure 4.20: BART boardings, observed vs. ARIMA model
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Figure 4.21: Change in BART boardings, observed vs. ARIMA model

4.4.3 Regression Models

The estimation results of the preferred regression models are presented here. Before

estimating the models, both the dependent time series and all descriptive time series

are transformed using a second difference, the first of which is an annual difference.

4.4.3.1 MUNI Regression Models

Table 4.12 shows the estimation results for the preferred regression model of aver-

age weekday MUNI boardings. The model is estimated from monthly data cover-

ing the period from June 2009 through November 2013. The model includes three

variables that are statistically significant, and one that is marginally significant and

included because it is a logical contribution to the model.

The weekday service miles is a key level-of-service measure, with a positive

coefficient of 8,536 riders per 1,000 service miles. The service miles are measured

from the GTFS data, and is specific to MUNI buses. There are several service

increases and decreases during the estimation period.

In addition to the bus level-of-service, the model also represents competition

with rail, by including the service miles on MUNI rail. The MUNI rail system is
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distinct from BART, and operates exclusively within San Francisco, so is more of a

direct competitor. An increase of 1,000 rail service miles corresponds to a decrease

of 4,352 bus riders. The bus is less sensitive to service changes on rail, than to

service changes on bus, which is logical in the context of competition in the city

transit system.

Next, the model includes the average bus runspeed. The model indicates that

increasing the average runspeed by one mile per hour (mph) would increase rider-

ship by 64,000. This would be a large improvement, as the average speed over the

analysis period ranges between 10.5 and 11 mph.

Finally, the model includes the employment in San Francisco, with a coefficient

of 2.2 additional MUNI boardings for each additional employee. For comparison,

there are an average of about 500,000 MUNI boardings and 570,000 employees in

San Francisco over this period, for an average rate of 0.88 boardings per employee.

The estimated coefficient is higher than that, which may reflect that it is picking up

some effect associated with ridership that is correlated with another factor. A num-

ber of specifications were tested in an effort to achieve a more pleasing model. This

included the substitution of workers, population and households for employment,

combinations of the three, and the separate inclusion of workers and non-workers.

Employment was found to be the most reasonable specification.

Table 4.12: Regression model of MUNI boardings

Model Characteristics
Dependent variable MUNI boardings

Type Regression model of second differences

Date range Jun 2009 to Nov 2013

Predictive Variables
Description Lag Coefficient S.E. T-Stat

Weekday service miles, 1000s 8536 3647 2.34

Weekday service miles on MUNI rail, 1000s -4352 2725 -1.58

Average bus runspeed 63927 24592 2.60

Employment in San Francisco 2.201 0.953 2.31

Model Statistics
R-squared 0.391

RMSE 15,599
Percent RMSE 3.13%
Box-Pierce test p-value 0.816
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A number of additional variables were tested for inclusion in the model, but

were rejected either because they gave insignificant parameter estimates, or because

they resulted in coefficients that were illogical either in sign or in magnitude relative

to related coefficients.

Some additional level-of-service specifications were tested, such as the sub-

stitution of average headway for service miles, and the inclusion of the number of

stops or number of (bus) trip-stops as a measure of coverage. These were rejected.

The average bus total speed was tested as as a substitute for the average run-

speed. Both are actual, not scheduled, speeds. They are derived from the AVL data,

and processed as described in 3. Runspeed is the average speed between stops, mea-

sured from the time the door closes to the time the door opens. Total speed includes

the dwell time at stops. Including the total speed produced a negative coefficient,

meaning that higher speeds are correlated with fewer riders. This is the opposite of

the effect that would be expected with respect to travel behaviour, and is thought

to occur for operational reasons. That is, when ridership increases, the buses be-

come more crowded, and it takes more time for the passengers to board and alight,

slowing down the average total speed.

Measures were also tested for including transit crowding and reliability. The

AVL/APC data allow both to be measured on a vehicle-by-vehicle bases, for those

vehicles in the sample, with the values expanded to represent the system total. See 3

for a more detailed discussion of these calculations. In general, MUNI performs

poorly on both measures, so with the ability to measure these as they relate to rider-

ship, there should be an opportunity to estimate how much poor reliability and high

crowding discourages transit patronage. Depending on the specification, a positive

coefficient could be estimated for the average ontime performance, defined as the

bus being no more than one minute early or five minutes late, but that estimate

was insignificant. Some specifications resulted in a negative reliability coefficient,

which may occur because more crowded buses tend to be operationally less reliable

due to the time variation attributable to passenger boarding and alighting. Includ-

ing a coefficient on crowding, defined as the share of bus trips where the number
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of passengers exceed 85% of the bus capacity, produces a model with a positive

coefficient on crowding. This result is logical, but it is not helpful. It indicates that

if there are more riders on the buses, then the buses will be more crowded, not that

having more crowded buses would cause more people to ride the bus. Both these

terms could be re-visited using panel data models, where there may be some varia-

tion across routes as well as through time, possibly resulting in more robust model

estimates.

As noted above, combinations of population, households and workers were

tested. Households were tested with segmentation both by income group and by

auto ownership. The expectation was that lower income or lower auto households

would be more likely to generate transit trips, but the estimation results did not

show this to be the case. The median household income was tested as well, and

this resulted in a positive and insignificant coefficient. Workers were tested with

segmentation by worker earnings: with annual earnings up to $15,000, $15,000-

$40,000, and over $40,000, but the additional segmentation did not improve the

models. Median household income was tested, and the resulting coefficient was

positive and insignificant. In many of these cases, the challenge may be that these

income-related terms tend to be co-linear with employment, so the separate effects

of the two may be hard to distinguish.

Several tests were done including employment segmented by different indus-

tries. In particular, it was thought that retail employment or health care employment

might be important generators of transit trips, but this did not show up in the esti-

mation results.

Cost terms were tested for inclusion as well, including both the cash fare and

the average fare, considering monthly passes and other discounted fares. A rea-

sonable coefficient could not be estimated on either, because the only notable fare

change (beyond some relatively minor adjustments to monthly pass prices) to oc-

cur is only one month into the time series. The average car fuel cost per mile and

average gasoline price per gallon were tested, but resulted in negative coefficients,

indicating that higher fuel price would correspond to lower transit ridership. This
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relationship is the opposite of what we would expect.

Models were tested that included terms on the reported journey to work mode

shares, derived from the American Community Survey data. The goal was to test

whether the bike/taxi/other commuting, walking or working at home, which other-

wise would not be well represented in this model structure, dampened transit de-

mand. These tests resulted in negative parameter estimates, but the t-statistics were

only about 1.5, depending somewhat on the remaining model specification, which

did not provide sufficient confidence to include the terms in the model.

Distributed lags were tested on several variables, notably the level-of-service

variables. The immediate response specification performed better than a distributed

lag of three, six or 12 months.

Log specifications were tested on a number of variables, including the workers,

employment and cost terms.

Figure 4.22 shows ACF, PACF and time series plots for the residuals from

this model. These residuals appear stationary, and a Box-Pierce test, as reported

in Table 4.12, produces a high p-value confirming their stationarity. As with the

ARIMA models, the residuals from the regression model are zero for the first 13

periods due to the second difference.

Figure 4.23 shows the modelled and observed time series plots for this model.

Compared to Figure 4.17, the regression model does a better job of replicating the

observed values in summer 2013.

Figure 4.24 shows scatterplots comparing modelled and observed first and sec-

ond differences. The clouds of points appears to be somewhat more consolidated

than the MUNI ARIMA model, although still shows a high degree of scatter.

The RMSE for this model is 15,559, which is a 3.13% RMSE when calculated

as a percent of the original series. This is an small improvement over the MUNI

ARIMA model, which had an RMSE of 3.57%.

4.4.3.2 BART Regression Models

Table 4.13 shows the estimation results for the preferred regression model of aver-

age weekday BART ridership. The model is estimated from monthly data covering
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Figure 4.22: Residual autocorrelation from MUNI regression model

Figure 4.23: MUNI boardings, observed vs. regression model



4.4. Model Results 177

Figure 4.24: Change in MUNI boardings, observed vs. regression model

the period from January 2001 through March 2015. The model includes four vari-

ables, all of which are statistically significant.

The only level-of-service variable found to be significant is the number of sta-

tions. The number of stations increased from 39 to 43 in 2003 when the exten-

sion to San Francisco Airport opened. In 2011, an infill station opened at West

Dublin/Pleasanton, and in 2014 a connection opened to Oakland Airport. The re-

sults indicate that each additional station corresponds to an increase of 7,613 riders.

Several lags were tested for this variable, and a 12-month distributed lag was found

to work best. This implies that it takes travellers a year to adjust their travel pat-

terns to the new infrastructure. For each month in the first year of a new station, the

model would predict an increase of 634 riders (7,613 / 12). Service miles were also

tested as a level-of-service measure, but the parameter estimates were insignificant

in the regression models.

Next, the model includes employment, with each additional employee in the

4-county area generating 0.18 BART riders. This is much lower than the number

of MUNI boardings generated per employee because the area is larger, and more

travellers commute by car or other modes.
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The average cash fare is also included. The model indicates that a one dollar

increase in the fare would cause a reduction of about 23,000 riders.

BART employee strikes occurred in July and October 2013, while a new labour

contract was under negotiation [203, 204]. The first lasted four days, and the second

lasted three. These two months are noticeable outliers, with lower ridership than

the months before and after. Including a variable for the number of days in the

month with a BART strike resulted in a much improved model in terms of goodness

of fit, and a highly significant parameter estimate. This specification performed

better than a binary flag of whether or not a strike occurred, because it reflects the

larger magnitude of the July strike. The estimate indicates that the average weekday

ridership for the month is 20,000 less for each additional day of strikes.

Table 4.13: Regression model of BART boardings

Model Characteristics
Dependent variable BART boardings

Type Regression model of second differences

Date range Jan 2001 to Mar 2015

Predictive Variables
Description Lag Coefficient S.E. T-Stat

Number of Stations D(0,12) 7613 3418 2.23

Employment in 4-county area 0.1827 0.0522 3.50

Cash fare (2010 $) -23490 10250 -2.29

Days with a BART strike -19690 684.5 -28.77

Model Statistics
R-squared 0.845

RMSE 6733
Percent RMSE 1.94%
Box-Pierce test p-value 2.368e-09

In addition to these terms included in the model, a number of additional vari-

ables were considered for inclusion in the models. As with MUNI, combinations

of population, households and workers were tested, including tests of household by

income group, workers by earnings, and employment by industry. The employment

specifically in San Francisco County and the share of employment in San Francisco

County were tested, but not found to be distinct and significant relative to total em-

ployment. Average fuel cost per mile, average gasoline cost per gallon and median

household income were tested, but did not improve the model significantly.
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The level-of-service terms available for the BART estimation were more lim-

ited than for the MUNI estimation, because the data are less detailed. The demand

data are available as entry-exit matrices showing where travellers enter and exit

the system’s faregates, but detailed AVL/APC data is not available at the level of

individual vehicles, as it is for MUNI. The GTFS data do provide a detailed enu-

meration of the scheduled service, but is only available as far back as 2009. Prior to

2009, only an aggregate reporting of the service miles is available.

Detailed crowding and reliability are not available for BART. Anecdotally, re-

liability is much less of a problem on BART than on MUNI, although crowding is

an issue, with the transbay tube currently at capacity during peak periods [205].

The cost of tolls and carpool policies on the Bay Bridge were tested as predic-

tive variables, but not found to be significant.

Models were tested that included terms on the reported journey to work mode

shares, but these did not relate to BART ridership in the same way they did to

MUNI ridership. Distributed lags were tested on the cost and employment terms.

Log specifications were tested on a number of variables, including the workers,

employment and cost terms.

Figure 4.25 shows ACF, PACF and time series plots for the residuals from this

model. Non-zero values start at period 13 due to the second difference. These

show significant autocorrelation for several lags, notably at months one and 12. A

Box-Pierce test, as reported in Table 4.13, produces a very small p-value, confirm-

ing these autocorrelations. This result is problematic, because it indicates that the

regression results could be spurious.

Figure 4.26 shows a time series plot of the modelled and observed BART rid-

ership. Figure 4.27 shows scatterplots of the modelled and observed seasonal and

second differences.

The RMSE for this model is 6,733, which is a 1.94% RMSE when calculated

as a percent of the original series. This is an improvement over the BART ARIMA

model, which had an RMSE of 2.72%. In spite of the improved fit, the model is

rejected due to the risk of spurious regression, and RegARIMA models are explored
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Figure 4.25: Residual autocorrelation from BART regression model

as an alternative.
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Figure 4.26: BART boardings, observed vs. regression model

Figure 4.27: Change in BART boardings, observed vs. regression model
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4.4.4 Regression Models with ARIMA Errors

The estimation results for the RegARIMA models are presented here.

4.4.4.1 MUNI RegARIMA Models

Table 4.14 shows the estimation results for the preferred RegARIMA model of aver-

age weekday MUNI boardings. The model is estimated from monthly data covering

the period from June 2009 through November 2013.

The ARIMA portion of the model takes the form ARIMA(0,1,0)(0,1,0)12.

The autoregressive and moving average terms drop out of the model, reducing it to

a regression model on data that has been transformed with a second difference. In

fact, it is the same model as the preferred regression model described above. The

method of estimation being the only difference.

Table 4.14: RegARIMA model of MUNI boardings

Model Characteristics
Dependent variable MUNI boardings

Type ARIMA(0,1,0)(0,1,0)12

Date range Jun 2009 to Nov 2013

Predictive Variables
Description Lag Coefficient S.E. T-Stat

Weekday service miles, 1000s 8536 3647 2.34

Weekday service miles on MUNI rail, 1000s -4352 2725 -1.58

Average bus runspeed 63927 24592 2.60

Employment in San Francisco 2.201 0.953 2.31

Model Statistics
Log likelihood -454.03

AIC 918.06
AICc 919.78
RMSE 15,599
Percent RMSE 3.13%
Box-Pierce test p-value 0.691

A similar set of variables were tested and rejected in the RegARIMA models

as in the regression models. The goal was to determine whether a more flexible

model structure would allow the model to pick up more or different correlations.

While the results were different for a number of specifications, none was preferred

over this specification.

Several additional variables were tested in the RegARIMA models that were
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not previously tested in the regression models. These variables focus on the possible

effect of car ownership, car congestion and car mode shares.

The possible effect of car ownership focused specifically on households that

own zero vehicles, because those households are the most constrained in their travel

behaviour and therefore more likely to use transit. Car ownership data are available

annually at a county level from the ACS. Two variables were tested: the absolute

number of zero-car households, and the share of households that are zero-car. The

coefficient on the total number of zero-car households was positive, but insignifi-

cant. The coefficient on the share of households that are zero-car was negative and

insignificant.

Two aggregate measures of congestion were considered in the region: the

Texas A&M Transportation Institute (TTI) travel time index and the TomTom traf-

fic index. The TTI travel time index is the ratio of travel time in the peak period to

travel time in free-flow conditions. It increases from 1.38 in 2009 to 1.40 in 2013.

The estimated coefficient is negative, but insignificant. The TomTom traffic index

is a measure of the extra travel time associated with congestion. It increases from

26% in 2009 to 32% in 2013. The estimated coefficient is positive, but insignificant.

Car mode shares were measured using the ACS journey-to-work commute

mode share data. The analysis considers both the drive-alone mode share and the

total car mode share (drive-alone plus carpool). Both generally decrease over the

analysis period, but not uniformly, which may indicate some amount of noise in

the data. The drive-alone mode shares in 2009 through 2013 are: 38.9%, 36.0%,

37.7%, 36.3% and 36.4%. The total car commute mode shares from 2009 through

2013 are: 46.4%, 43.9%, 45.0%, 44.0% and 43.2%. The estimated coefficients on

both are large and negative (a 1% decrease in the car mode share would be associ-

ated with a increase of 18,000 MUNI bus riders), but insignificant.

These tests of car ownership, car congestion and car mode shares do not lead

us to select a different preferred model.

Figure 4.28 shows ACF, PACF and time series plots for the residuals from

this model. These residuals appear stationary, and a Box-Pierce test, as reported
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in Table 4.14, produces a high enough p-value to confirm the lack of significant

autocorrelation. Figure 4.29 shows the modelled and observed time series plots for

this model. Figure 4.30 shows scatterplots comparing modelled and observed first

and second differences.

Figure 4.28: Residual autocorrelation from MUNI RegARIMA model

4.4.4.2 MUNI RegARIMA with Constrained Employment Term

Recognising that the estimated MUNI models are more sensitive to changes in em-

ployment than might be expected, an alternative set of models is estimated in which

the employment coefficient is constrained. The constrained coefficient is set to

to the average rate of MUNI boardings per employee over the analysis period, or

0.876, and the remaining model coefficients are re-estimated.

Table 4.15 shows the results of this estimation. The same exogenous terms are

included in the model, but the selected structure becomes ARIMA(0,1,1)(0,1,0)12,

with the addition of a moving average coefficient. The signs of all the coefficients

remain the same, but the magnitude change somewhat, and the t-statistic is lower

for rail service in particular.
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Figure 4.29: MUNI boardings, observed vs. RegARIMA model

Figure 4.30: Change in MUNI boardings, observed vs. RegARIMA model
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Table 4.15: RegARIMA model of MUNI boardings with constrained employment term

Model Characteristics
Dependent variable MUNI boardings

Type ARIMA(0,1,1)(0,1,0)12

Date range Jun 2009 to Nov 2013

Predictive Variables
Description Lag Coefficient S.E. T-Stat

Moving average coefficient 1 -0.3092 0.1852 -1.67

Weekday service miles, 1000s 7971 3105 2.57

Weekday service miles on MUNI rail, 1000s -2777 2488 -1.12

Average bus runspeed 49853 25692 1.94

Employment in San Francisco 0.876 fixed fixed

Model Statistics
Log likelihood -453.56

AIC 917.12
AICc 918.83
RMSE 15,401
Percent RMSE 3.09%
Box-Pierce test p-value 0.873

As with the other models, a variety of model specifications were tested, but a

better one could not be found.

The model residuals are confirmed to be stationary, based on an inspection

of the ACF and PACF plots in Figure 4.31, and the Box-Pierce test shown in Ta-

ble 4.15. Figure 4.32 shows the modelled and observed time series plots, and Fig-

ure 4.33 shows scatterplots.
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Figure 4.31: Residual autocorrelation from MUNI RegARIMA model with constrained
employment term

Figure 4.32: MUNI boardings, observed vs. RegARIMA model with constrained employ-
ment term
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Figure 4.33: Change in MUNI boardings, observed vs. RegARIMA model with con-
strained employment term

4.4.4.3 BART RegARIMA Models

Table 4.16 shows the estimation results for the preferred RegARIMA model of aver-

age weekday BART boardings. The model is estimated from monthly data covering

the period from January 2001 through March 2015.

The ARIMA portion of the model takes the form ARIMA(0,1,2)(0,1,1)12.

There is a second difference, two moving average terms, and a seasonal moving

average term. This structure offers a mechanism to capture the residual autocorre-

lation found in the BART regression model.

The model includes all of the variables already included in the regression

model, plus three additional terms: service miles, the percent of employment in

San Francisco and the average car fuel cost.

The service miles coefficient, which was found in the regression model to be

insignificant, shows up significant and with a logical sign. The model implies that

each increase of 1,000 service miles results in 2,712 additional riders. Also, each

new station results in 5,472 additional riders. Both terms are specified with a 12-

month distributed lag, meaning that when there is a change, 1/12th of the additional
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ridership is allocated each month for a year. Several lag specifications were tested,

and this worked best. It is interesting to note that testing distributed lags on the

MUNI service miles was not effective. This could be because the MUNI models

are estimated from a shorter time series, making it more difficult to capture lagged

effects.

The model results indicate that each additional employee in the 4-county area

generates 0.2 additional BART riders. This is similar in magnitude to the regression

models, but much more strongly significant.

A coefficient was estimated on the percent of 4-county employment in San

Francisco. This coefficient is positive, and indicates that an increase of 1% of the

employment in San Francisco corresponds to an increase of about 5,500 BART

riders. This term represents the employment concentration, as distinct from the

total employment. Commute trips to downtown San Francisco are a core market for

BART, so it makes sense that BART ridership is closely related to San Francisco

County employment specifically.

The cash fare shows up as negative and significant, with each dollar increase

in fare corresponding to a decrease of about 21,000 riders.

In addition to the fare, a significant coefficient could be estimated for the av-

erage car fuel cost in this model. It is positive, which means that higher costs to

drivers result in a mode shift to BART. The fuel cost is expressed in dollars per

mile, and is based on the price per gallon of gasoline and the average fuel economy

of the fleet. Average fuel economy increases over this period, dampening the effect

of increases in gasoline price.

The number of days with a BART strike is negative, significant, and of a similar

magnitude to the regression models. The effect of this term is similar to what would

be achieved by estimating the models only from the average ridership on non-strike

weekdays during those months.

As with the BART regression models, a number of terms were tested for inclu-

sion in the model, but rejected. These include various combinations of population,

households, workers and employment segmented by income, earnings or industry.
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Table 4.16: RegARIMA model of BART boardings

Model Characteristics
Dependent variable BART boardings

Type ARIMA(0,1,2)(0,1,1)12

Date range Jan 2001 to Mar 2015

Predictive Variables
Description Lag Coefficient S.E. T-Stat

Moving average coefficient 1 -0.5701 0.1122 -5.08

Moving average coefficient 2 -0.2827 0.1032 -2.74

Seasonal moving average coefficient S1 -0.6603 0.0782 -8.44

Weekday service miles, 1000s D(0,12) 2712 1310 2.07

Number of Stations D(0,12) 5472 1057 5.18

Employment in 4-county area 0.2027 0.0185 10.96

Percent of 4-county employment in SF 8099 3860 2.10

Cash fare (2010 $) -20795 8332 -2.50

Average car fuel cost (2010 $/mile) 86312 31504 2.74

Days with a BART strike -19010 906.5 -20.97

Model Statistics
Log likelihood -1571.65

AIC 3165.30
AICc 3167.04
RMSE 4923
Percent RMSE 1.42%
Box-Pierce test p-value 0.2068

Tests of the median household income showed it to be positively correlated with

BART ridership, although not significant.

Several different specifications were tested for how to include both total em-

ployment and employment in San Francisco. A challenge is that they tend to be

co-linear both because employment in San Francisco is a large share of employ-

ment in the 4-county area, and because they are both related to the state of the

economy. The total employment and percent in San Francisco worked well because

it provided both a measure of the quantity and the concentration.

As with the regression models, the level-of-service variables available for in-

clusion in the BART RegARIMA models are somewhat limited, although the com-

bination of service miles and stations appears to work reasonably well.

In contrast to the MUNI RegARIMA models, BART ridership does not appear

to be related to the journey to work mode shares for walk, bike, taxi and other. This

may be because BART trips tend to be longer, and often across the Bay, so there is
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less opportunity for substitution.

Several alternatives were tested that included either distributed lags or log

transformations of variables.

As with the MUNI models, several additional variables were tested in the

BART RegARIMA models to consider the possible effects of car ownership, car

congestion and car mode shares.

The estimated coefficients on both the total number and the share of zero-

vehicle households were negative and insignificant. The drive-alone mode share and

the car mode share coefficients were both positive and insignificant. The TTI travel

time index produced a coefficient that was positive (indicating more congestion

is associated with higher BART ridership), but insignificant. The TomTom traffic

index only goes as far back as 2008, so an estimated model with that as a variable

must be based on a shorter time series than the full BART data set that goes back

to 2001. This was done as a test, and it produced a coefficient on the TomTom

traffic index that was marginally significant, with a t-statistic of 1.74. However, the

coefficient was negative, indicating that higher levels of congestion are associated

with lower BART ridership: the opposite of what we would expect. In addition,

other coefficients in the model change substantially and become insignificant when

estimated using this shorter time series. Given these results, the preferred models

remain unchanged.

Figure 4.34 shows ACF, PACF and time series plots for the residuals from the

BART RegARIMA model. These plots show a possible autocorrelation for a lag of

17 months, but the Box-Pierce test, as reported in Table 4.16, has a p-value of 0.2,

indicating that the autocorrelations as a whole are not significant.

Figure 4.35 shows a time series plot of the modelled and observed BART rider-

ship. The model appears to track the observed ridership nicely. Figure 4.36 shows

scatterplots of the modelled and observed seasonal and second differences. The

RMSE for this model is 4,923, which is a 1.42% RMSE when calculated as a per-

cent of the original series. This is an improvement over the regression model, which

had a 1.94% RMSE.
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Figure 4.34: Residual autocorrelation from BART RegARIMA model

Figure 4.35: BART boardings, observed vs. RegARIMA model
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Figure 4.36: Change in BART boardings, observed vs. RegARIMA model

4.4.5 Comparison of Results

Having come to a preferred model of each type, the three models are compared

here.

4.4.5.1 MUNI Comparison

Table 4.17 compares the estimation results for the three models of MUNI ridership.

There is little to compare between the ARIMA models and the others, and the other

two models are the same. The regression and RegARIMA models have a lower

RMSE than the ARIMA model.

Table 4.18 compares the RegARIMA model with an estimated employment

coefficient to the RegARIMA model with a constrained employment coefficient.

In comparing these models the most prominent difference is the employment term

itself, as well as the introduction of a moving average coefficient. The service miles

coefficient is of the same sign, and similar in magnitude. The rail service coefficient

is still negative, but about 40% lower in magnitude. The bus runspeed coefficient is

still positive, but about 20% lower in magnitude.

The goodness of fit measures are slightly better in the constrained model. This
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Table 4.17: Three models of MUNI boardings

Model Characteristics
Dependent variable MUNI boardings

Date range Jun 2009 to Nov 2013

Predictive Variables
ARIMA Regression RegARIMA

Description Lag Coef T-Stat Coef T-Stat Coef T-Stat

Autoregressive coefficient 1 0.4708 2.69

Moving average coefficient 1 -0.9296 -8.84

Weekday service miles, 1000s 8536 2.34 8536 2.34

Weekday service miles on MUNI rail,
1000s

-4352 -1.58 -4352 -1.58

Average bus runspeed 63927 2.60 63927 2.60

Employment in San Francisco 2.201 2.31 2.201 2.31

Model Statistics
RMSE 17,782 15,599 15,599
Percent RMSE 3.57% 3.13% 3.13%
Box-Pierce test p-value 0.998 0.691 0.691

is presumably because there is one extra parameter included (the moving average

coefficient), but the number of parameters actually estimated is the same.

Table 4.18: Comparison of MUNI RegARIMA Models with and without employment con-
straint

Model Characteristics
Dependent variable MUNI boardings

Date range Jun 2009 to Nov 2013

Predictive Variables
Unconstrained Constrained

Type ARIMA(0,1,0)(0,1,0)12 ARIMA(0,1,1)(0,1,0)12

Description Lag Coef T-Stat Coef T-Stat

Moving average coefficient 1 -0.3092 -1.67

Weekday service miles, 1000s 8536 2.34 7971 2.57

Weekday service miles on MUNI rail, 1000s -4352 -1.58 -2777 -1.12

Average bus runspeed 63927 2.60 49853 1.94

Employment in San Francisco 2.201 2.31 0.876 fixed

Model Statistics
Log likelihood -454.03 -453.56

AIC 918.06 917.12
AICc 919.78 918.83
RMSE 15,599 15,401
Percent RMSE 3.13% 3.09%
Box-Pierce test p-value 0.691 0.873

A reasonable case can be made for selecting either of these models. Our ten-
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dency is to prefer the model with a constrained employment term, because it results

in a model whose elasticity with respect to changes in employment is more in line

with other published results, as examined in Chapter 5.

4.4.5.2 BART Comparison

Table 4.19 compares the estimation results for the three models of BART ridership.

The ARIMA model includes two autoregressive terms and one seasonal mov-

ing average term, whereas the RegARIMA model includes two moving average

terms and one seasonal moving average term.

The RegARIMA model includes a broader array of descriptive variables than

the regression model, including the weekday service miles, the percent of 4-county

employment in San Francisco, and the average car fuel cost. These terms were

tested in the regression model, but were found to be insignificant or otherwise un-

satisfactory. Of the remaining terms that are included in both models, all have the

same sign, and three of the four are of similar magnitudes. The largest difference is

for the coefficient on the number of stations, which is likely because the BART ex-

tension to San Francisco International Airport included both additional stations and

added service miles. Therefore, leaving service miles out of the regression model

means that the stations term picks up the effect to compensate.

The RegARIMA model has the lowest RMSE of the three. Also, the Box-

Pierce tests show that there is significant residual autocorrelation in the regression

model, risking spurious regression. This is shown by the p-value very close to

zero for the regression model. The parameter estimates should remain unbiased,

and it appears that they are given their similarity to the RegARIMA model, but

the t-statistics are not correct. This can lead to improper inference and specifica-

tion errors. Given the variables left out of the regression model, compared to the

RegARIMA model, it appears that the regression model does suffer from this prob-

lem.

To separate the effects of model specification from the model form, Table 4.20

compares the model estimation results for the preferred RegARIMA model to a re-

gression model with the same descriptive variables included. The t-statistics in the
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Table 4.19: Three models of BART boardings

Model Characteristics
Dependent variable BART boardings

Date range Jan 2001 to Mar 2015

Predictive Variables
ARIMA Regression RegARIMA

Description Lag Coef T-Stat Coef T-Stat Coef T-Stat

Auto-regressive coefficient 1 -0.598 -8.54

Auto-regressive coefficient 2 -0.449 -6.41

Moving average coefficient 1 -0.5701 -5.08

Moving average coefficient 2 -0.2827 -2.74

Seasonal moving average coefficient S1 -0.863 -11.42 -0.6603 -8.44

Weekday service miles, 1000s D(0,12) 2712 2.07

Number of Stations D(0,12) 7613 2.23 5472 5.18

Employment in 4-county area 0.1827 3.50 0.2027 10.96

Percent of 4-county employment in SF 8099 2.10

Cash fare (2010 $) -23490 -2.29 -20795 -2.50

Average car fuel cost (2010 $/mile) 86312 2.74

Days with a BART strike -19690 -28.77 -19010 -20.97

Model Statistics
RMSE 9508 6733 4923
Percent RMSE 2.72% 1.94% 1.42%
Box-Pierce test p-value 0.986 2.368e-09 0.207

RegARIMA model are generally larger in magnitude than in the regression model.

The coefficient values are all of the same sign, but some differ notably in magnitude.

The service miles coefficient is half the value in the regression model as in the Re-

gARIMA model, while the number of stations coefficient is larger in the regression

model. The other large difference is for the coefficient on the percent of 4-county

employment in San Francisco, for which the regression value is about a third of the

RegARIMA value.

Given both that the RegARIMA model fits better, and that the regression model

suffers from autocorrelated residuals, the RegARIMA model is selected as the pre-

ferred model of BART ridership.

4.4.5.3 MUNI versus BART Comparison

Table 4.21 compares the estimation results for the MUNI RegARIMA model (with

constrained employment) and the BART RegARIMA model. Because they are esti-

mated from different data sets, measures such as AICc are not directly comparable.
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Table 4.20: Comparison of BART regression and RegARIMA models with equivalent spec-
ifications

Model Characteristics
Dependent variable BART boardings

Date range Jan 2001 to Mar 2015

Predictive Variables
Regression RegARIMA

Description Lag Coef T-Stat Coef T-Stat

Moving average coefficient 1 -0.5701 -5.08

Moving average coefficient 2 -0.2827 -2.74

Seasonal moving average coefficient S1 -0.6603 -8.44

Weekday service miles, 1000s D(0,12) 1261 0.23 2712 2.07

Number of Stations D(0,12) 7214 1.81 5472 5.18

Employment in 4-county area 0.1953 3.21 0.2027 10.96

Percent of 4-county employment in SF 2891 0.74 8099 2.10

Cash fare (2010 $) -18150 -1.68 -20795 -2.50

Average car fuel cost (2010 $/mile) 77120 1.57 86312 2.74

Days with a BART strike -19690 -28.74 -19010 -20.97

Model Statistics
RMSE 6511 4923
Percent RMSE 1.86% 1.42%
Box-Pierce test p-value 6.958e-11 0.207

However, the difference in percent RMSE shows that the BART model fits better

against BART data than the MUNI model fits against MUNI data. In addition, the

BART model includes more variables of stronger significance. Overall, the BART

model inspires more confidence, with the key difference being that it is estimated

from a longer time series, so the estimation process is better able to pick up mean-

ingful relationships.
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Table 4.21: Comparison of MUNI and BART RegARIMA Models

Model Characteristics
Dependent variable MUNI boardings BART boardings

Type ARIMA(0,1,1)(0,1,0)12 ARIMA(0,1,2)(0,1,1)12

Date range Jun 2009 to Nov 2013 Jan 2001 to Mar 2015

Predictive Variables
MUNI BART

Description Lag Coef T-Stat Coef T-Stat

Moving average coefficient 1 -0.3092 -1.67 -0.5701 -5.08

Moving average coefficient 2 -0.2827 -2.74

Seasonal moving average coefficient S1 -0.6603 -8.44

Weekday service miles, 1000s 7971 2.57

Weekday service miles, 1000s D(0,12) 2712 2.07

Number of Stations D(0,12) 5472 5.18

Weekday service miles on MUNI rail, 1000s -2777 -1.12

Average bus runspeed 49853 1.94

Employment in San Francisco 0.876 fixed

Employment in 4-county area 0.2027 10.96

Percent of 4-county employment in SF 8099 2.10

Cash fare (2010 $) -20795 -2.50

Average car fuel cost (2010 $/mile) 86312 2.74

Days with a BART strike -19010 -20.97

Model Statistics
Log likelihood -453.56 -1,571.65

AIC 917.12 3,165.30
AICc 918.83 3,167.04
RMSE 15,401 4,923
Percent RMSE 3.09% 1.42%
Box-Pierce test p-value 0.873 0.2068

4.5 Conclusions

To understand the contributors to ridership changes on MUNI and BART, detailed

estimation data were assembled from multiple sources. These include passively col-

lected data such as transit AVL/APC data and faregate counts, and data sources that

have emerged over the past several years, such as the LODES and GTFS. A pro-

cess was developed, as described in Chapter 3 to expand sampled AVL/APC data

to ensure that they are representative of the system as a whole. Series available at

different spatial or temporal resolutions were combined as appropriate, to achieve a

consolidated estimate of key variables. Collectively, this data development process

has provided a rich set of variables for consideration in the model estimations, in-
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cluding measures of transit service, reliability, crowding, employment by industry,

workers at their residential location, fuel costs, and reported estimates of commute

mode shares.

These data were used to estimate time series models of MUNI and BART rid-

ership. All models were estimated based on a second difference, with one of the

differences being seasonal. This ensured that the data were stationary, and pro-

vided a parsimonious mechanism for including seasonality. Three types of models

were considered: ARIMA models, regression models, and regression models with

ARIMA errors (RegARIMA). In general, the RegARIMA models provided the best

fit and allowed the highest number of logical descriptive variables to be included.

The RegARIMA models also avoided a problem of residual autocorrelation ob-

served in the BART regression models.

The unconstrained MUNI estimation produced models that were more sensi-

tive to employment than would be expected given other supporting evidence. For

this reason, a second set of models is estimated in which the employment coeffi-

cient is constrained to the average number of MUNI boardings per employee. This

constrained model is used for the remaining analysis.

It is recognised that a key limitation of the analysis is that it was found to be

challenging to estimate significant parameters, and to separate different effects that

may move in the same direction at the same time. The challenges in estimation

appear two-fold. First, the models are estimated from a relatively short time series

because those are the data that are available. In this way, the BART models give

somewhat more satisfactory results because they are estimated from a much longer

time series, and therefore trends that may show up to some degree over a short

period can be confirmed with more data. The second challenge is inherent to the

nature of the approach. Because the data only change in one dimension, time, there

is a risk of co-linearity in dependent variables, which can make it more difficult to

parse out the relative effects of different factors that we believe to be important.

Therefore, it may be valuable to estimate the models instead as panel data

models, where the boardings or alightings at each stop or station, in each month,
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are an observation. This would require additional data development to ensure that

the descriptive variables are appropriately associated with the stops, and issues of

overlap are properly handled. The structure would be similar to a transit direct-

demand model, such as [206, 207, 208, 209], although each of those examples is a

cross-sectional model. Only one example of a transit direct demand model could be

found using panel data [209], so there appears to be room for further development

in the area.



Chapter 5

Understanding Ridership Trends

In Chapter 4, time series models were estimated of ridership on two San Francisco

Bay Area transit systems: the San Francisco Municipal Railway (MUNI) bus sys-

tem and the Bay Area Rapid Transit (BART) system. Those models account for

service changes, for other drivers of demand (such as employment changes), and

for underlying trends beyond what can be explained by the included variables. In

this chapter, those models are applied to understand why BART ridership growth is

robust, while MUNI ridership stagnates.

5.1 Introduction
In the previous chapter, Section 4.1 provided background on the research context,

providing a basis for understanding how this work fits with past studies examining

the drivers of transit demand. This section introduces the planning context in the

San Francisco Bay Area, with a focus on the divergent ridership trajectories of these

two transit systems. It sets the stage for why the topic is of interest from a transport

planning and research perspective.

The 9-county San Francisco Bay area covers approximately 7,000 square miles

with a population of 7.5 million residents. It has three core cities of San Francisco,

Oakland and San Jose, and features geographic constraints in the Bay itself as well

as surrounding mountains. Figure 5.1 shows an overview of the transit system. Of

interest in this situation is the MUNI bus system and the BART rapid transit system.

MUNI operates in the city of San Francisco at the northernmost portion of the
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Figure 5.1: Bay Area transit system [142]
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peninsula, and specifically serves trips within the city. As of 2014, it carried about

520,000 average weekday riders [142].

BART is a regional rapid transit system that serves four of the Bay Area’s

nine counties. Importantly, it includes transbay service between Oakland and San

Francisco, in competition to the Bay Bridge. Phase one of an extension to San

Jose is currently under construction. As of 2014, BART carried about 430,000

average weekday riders [143]. The last major extension to BART was an eight mile

extension from Colma to San Francisco International Airport (SFO) that opened in

June 2003, although there have been single-station additions since.

Figure 5.2 shows an annotated plot of the ridership trends for both systems,

in addition to toll transactions on the Bay Bridge. Over the period from fiscal year

1998 (July 1997 to July 1998) to fiscal year 2013, BART ridership increased by

nearly 50%, whereas MUNI bus ridership is nearly identical to its 1998 value.

Figure 5.2: Trend in Bay Area transit ridership

Several events are noted on the figure, which appear to have an important effect

on the values. The ridership peak in 2001 corresponds to the first dot-com boom,

after which the Bay Area lost nearly 20% of its employment in the subsequent



204 Chapter 5. Understanding Ridership Trends

bust [210]. The financial crisis in late 2008 appears to have had a similar effect.

There is a BART extension to the airport, and several MUNI service changes during

this period.

Of particular interest are the very different trends from 2010 to 2013, a period

over which more detailed data are available. Over this period, MUNI experiences

modest changes in ridership, but BART ridership increases from about 335,000 to

392,000 average weekday riders.

Part of the motivation for this analysis is the author’s own experience with

the latter. In 2013 I was engaged to provide forecasts to prioritise the seismic

retrofit of various BART segments [211]. The issue is that older portions of the

BART system do not meet modern earthquake safety standards and need to be re-

built or retrofitted. The forecasts were used to identify which segments of the sys-

tem were most critical and should be prioritised to be updated first. This effort

used the Metropolitan Transportation Commission’s (MTC’s) activity-based travel

model [212], which had been calibrated to 2010 conditions. When reviewing the

initial forecasts, I found that the current 2013 BART ridership was actually higher

than the forecast 2020 BART ridership, with the 2020 forecasts including the Phase

one extension to San Jose. Upon discussing with the client, some of the transit plan-

ners at BART were convinced that this provided evidence of younger generations

being more inclined to ride transit, and that all future forecasts should therefore be

updated to reflect these changing preferences. While that is one possible explana-

tion, there are other factors that could drive this trend as well.

This analysis uses time series data from both systems to understand what is

driving ridership changes on both of these systems, starting from the models esti-

mated in Chapter 4. An important component of that is to identify underlying trends

in the data that cannot be sufficiently explained by known and measurable factors,

such as service and employment changes.

The remainder of this chapter is structured as follows. The next section

presents a review of recent literature that seeks to examine and explain recent trends

in travel demand. In Section 5.3, several hypotheses are proposed that may explain
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the ridership divergence between BART and MUNI. The preferred MUNI and the

preferred BART models from Chapter 4 are then applied to understand the contri-

bution of each variable included in the model to the change in ridership. Section 5.4

shows this analysis. In Section 5.5, each of the hypotheses is re-examined in light of

the evidence provided by the models. Finding that the explanations in the previous

section do not fully explain the trends, additional analysis was performed to con-

sider the possible effects of an ageing population. These are reported in Section 5.6.

Finally, conclusions are presented both of relevance to the specific planning ques-

tions, and in regards to the approach used to answer those questions.

5.2 Literature Review

This section considers literature that seeks to explain recent trends in travel demand.

While the review in Chapter 4 focused on the methods for modelling transit demand,

and the variables included in those models, this review focuses more on the expla-

nations, even if those explanations cannot be directly included in the models. This

assemblage of explanations seeks to provide a basis for identifying hypotheses that

would explain the BART and MUNI divergence, and serve a complement to the

quantitative model analysis.

In the US, most transit systems experienced large decreases in ridership from

the 1950s through the 1990s, corresponding to the decentralisation of jobs and

households, rising incomes and increasing auto ownership. It was in this period

of general decline that Kain and Liu [174] studied the factors that drove ridership

increases on two successful transit systems, finding that the increases could be ex-

plained primarily by large service increases combined with fare reductions during

times of employment and population growth. These factors should not be surpris-

ing, and show that it is important to first account for the obvious explanations of any

differences. In our case, this means examining whether the divergence in ridership

between BART and MUNI can be explained by different level-of-service trends or

by different land use trends affecting the two systems.

More recently, transit ridership in the US and Canada has increased faster than
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population growth. Rosenberger et al [213] examine several possible explanations,

and suggest that it may be driven largely by growing minority populations and grow-

ing income inequality, with minorities and low-income travellers being more likely

to ride transit.

The challenges have continued for MUNI, though. In 2005, an influential local

non-profit, the San Francisco Bay Area Planning and Urban Research Association

(SPUR), published a report about MUNI’s “downward spiral” [214]. It observes

that MUNI’s high cost structure had led to repeated service cuts, which hurt fare-

box revenue and led to more service cuts. It identified a number of strategies for

breaking the spiral, including targeted changes to the route structure focused on im-

proving speed and reliability in the busiest bus corridors. Planning for such changes

has been slow, and the budget challenges of the recession were not helpful (see

the discussion of service cuts in Section 6.1), but the 5L Fulton Pilot Project is an

example of such a targeted change (considered in Section 6.2).

It has been recently observed that auto Vehicle Miles Travelled (VMT) per

capita, which had been increasing for decades, has levelled off both in the US and

in the UK. A number of studies have examined whether this trend represents a sat-

uration point in the demand for car travel, often referred to as “peak car” [215, 216,

217, 218]. A challenge in answering that question is separating persistent effects

from temporary effects, such as recent economic weakness [219]. A selection of

studies that seek to explain the relevant trends are discussed next.

Metz [183] observes that per capita travel demand has historically grown with

income, but in Britain, this relationship has recently become uncoupled, with per-

sonal daily travel ceasing to grow since about 1995. He discusses the possible

explanations for such a change. First, he notes that residential development has

recently been concentrated in brownfield cites which are more readily served by

transit and do not accommodate additional road capacity. This reinforces the need

here to consider urban versus suburban growth. Second, he considers the special

case of London, which has recently seen robust economic and population growth,

corresponding with declining auto mode shares. The net result is that total auto use
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is flat, as is the road capacity. Interestingly, the introduction of congestion pricing

in London is not offered as one of the reasons for declining auto use. This points

to a possible consideration of the changing cost of auto travel, either through in-

creased congestion or changing monetary cost. Third, he notes the possible effect

of an ageing population, where it is observed that older individuals are likely to

have different travel behaviour, but also that there are license holding trends which

may be important, where older women are more likely to hold a license than in past

cohorts, while younger men are less likely to hold a license than in past cohorts.

These factors may not show up as among the key explanatory variables in our mod-

els, but could be part of the explanation for trends that the models are not able to

fully capture.

LeVine and Jones [184] examine recent travel trends in Britain, focusing on the

observation that car travel has recently levelled off in Britain, while train travel has

surged. They describe different trends in London, versus the rest of the country. The

London findings more relevant to this work due to the parallels between London and

San Francisco. Both are economically vibrant cities with strength in the financial

and technology sectors, have high levels of road congestion with well-developed

transit systems, face imposing housing cost issues, and have diverse populations

that may be attracted to the lifestyle of the city. Several major trends they find are:

• While the average car mileage per capita has changed little over the analysis

period, there are important differences for certain sub-groups. This points

out a limitation to the aggregate analysis used in our study because some of

the trends by sub-group may be masked in our aggregate models, but could

be considered as a possible explanation for the aspects of the world that our

models are not able to capture.

• Changes in the taxation policy of company cars in Britain appear to be related

to a drop in car use. Given the different tax structures in the two countries,

this change is unlikely to be replicated in the US over our study period.

• There are trends in car mileage by sex and age that may be related to the
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driver’s license holding patterns of the different cohorts. Older women are

more likely to hold a license and drive more than in past cohorts, while

younger men are less likely to hold a license and drive. While the burden

of obtaining a license is notably different in the two countries, this may be a

contributing factor.

• The growth in rail travel appears to be related to an increase in the number of

people using rail, rather than an increase in mileage for existing customers.

Less information is provided on the causes of these trends, but several possi-

ble explanations are offered, including changes to car running costs, reductions in

traffic speeds (due to the essentially fixed road capacity in London), investments in

improving rail service, income and GDP effects and emerging technology to enable

telecommuting or online shopping.

While these two studies are more about car travel, it is interesting to consider

whether similar factors may be at play in the stagnation of urban bus ridership in

San Francisco. Changes in car running cost or speed could disproportionately affect

BART ridership because BART trips tend to be longer than MUNI. Also, with ef-

fectively fixed road capacity in San Francisco, the buses will be subject to the same

traffic congestion as the cars, potentially causing a shift to rail. If this were the case,

we would expect it to be captured by the average bus speed variable in our models.

Differences in bus versus rail level-of-service changes may apply. Income is a po-

tentially interesting effect, given that low income travellers are more likely to use

transit. Could it be that San Francisco has become so expensive that transit users

are priced out? The emergence of new technology certainly could be a factor, given

that the adoption of such technology will be uneven across the population, this may

be related to the cohort and demographic effects discussed, although one might ex-

pect that young men who opt out of driving would choose to live in the city and be

more likely to take a bus. It may be possible, though, that they (or other groups) are

instead opting for an alternative mode or substituting technology for travel.

The ACS data do track the number of workers who report working at home,

so that may offer a rough indication of changes in telecommuting behaviour. Two
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other possible substitutes are bicycle travel and shared mobility services. Pucher et

al [220] reports on a possible bicycle “renaissance” in North America, with strong

growth in bicycle mode shares in the US and Canada, but especially in nine large

cities, including San Francisco. Brakewood et al [182] found a significant reduc-

tion in bus ridership in New York when bike sharing was introduced. In addition,

shared mobility modes such as Uber and Lyft are emerging. While they share many

characteristics with taxi travel, the technology integration and labour practices of

these companies allows them to offer a less expensive and possibly more conve-

nient means of travel to consumers. The Shared Use Mobility Center [221] exam-

ines the implications of such service for public transit, and argues that they are more

of a complement than competition, due to the high use of shared mobility during

off-peak hours, particularly late at night. Together, technology substitution, bicy-

cling and shared mobility may play a role in explaining the trends observed in this

research, although with limited data it may be difficult to draw strong conclusions.

This set of possible explanations found in the literature is used as a starting

point to propose several hypotheses for why MUNI ridership is relatively flat while

BART ridership grows. These hypotheses are described in the next section.

5.3 Working Hypotheses
Several hypotheses are explored that might explain why MUNI and BART ridership

trends diverge. These hypotheses are introduced here, and re-visited in Section 5.5

in light of the evidence provided by the time series models. The analysis focuses in

detail on the period from 2009 to 2013 when the most complete data are available.

However, trends are considered in a broader time context where available.

5.3.1 Different Level-of-Service Trends

A logical explanation for divergent ridership between the two systems is that the

transit agencies have made different decisions about the level-of-service they pro-

vide.

Figure 5.3 shows the trend in service miles provided by each operator. To pro-

vide the best possible long-term estimate of service miles, these time series combine
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data from two data sources available at different temporal resolutions. Starting in

2009, the General Transit Feed Specification (GTFS) provides a detailed represen-

tation of the transit schedules, with the specific dates for which the schedules were

in operation. This is the preferred source where it is available. Prior to 2009, the

best available source of schedule information are annual reports for each fiscal year

from the Transit Statistical Summaries. Therefore, prior to 2009, the time series are

“blockier”. For the period where both are available, the fiscal year data are scaled

to match the GTFS, and they pivot from this base beforehand.

The data in Figure 5.3 show that MUNI service is highest between 2001 and

2005, with a step down in 2005, and another step down in 2010. After this, there is

an increase in late 2010, and several smaller changes. BART has some changes early

in the decade, notably with the opening of the extension to SFO in 2003. Service

is highest between 2007 and 2009, with a step down in Summer 2009, about nine

months before MUNI’s major service cut. BART service is stable after this.

Figure 5.4 shows the trends in fares for MUNI and BART. The cash fare and the

average fare are tracked separately. Both are adjusted to 2010 US dollars, indicated

on the figure as “2010$”. The cash fare is based on a compilation of press releases

and news articles announcing fare changes. The average fare is based on the ratio

of reported farebox revenue to reported ridership for each fiscal year. It is adjusted

such that the fiscal year totals match the reported values, but fare increases occur on

the dates of the cash fare increases, often 1 September. The difference between the

MUNI cash fare and average fare is large, because a high number of MUNI riders

use monthly passes, or other discounted fares. BART has a much more limited fare

discount scheme, so the values are more similar. BART uses a distance based fare

scheme, so the reported values are for an average trip.

For both systems, the fares in inflation-adjusted dollars are higher in 2015 than

in 2001. The patterns in interim years are more jagged.

Given that the changes are different, both in service provided and in fares,

it is reasonable to expect that differing levels of service would play a role in the

divergent ridership trends on the two systems. The lumpiness of these plots makes
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Figure 5.3: MUNI and BART service miles

it clear that such conclusions would be sensitive to the precise starting and ending

points chosen for the analysis.

5.3.2 Suburban Growth Exceeds Urban Growth

MUNI and BART serve different travel markets, with MUNI operating exclusively

within San Francisco County, and BART serving a larger, 4-county region. A core

market for BART is commuters coming into San Francisco from the outlying coun-

ties, particularly those east of San Francisco Bay. Given these differences, a higher

rate of growth in the outlying counties could drive a higher rate of BART ridership

growth. As a starting point for understanding whether that may be an important

factor in the divergence, the growth trends are compared for San Francisco versus

the 4-county area.

Figure 5.5 shows the employment growth in San Francisco, in the 4-county
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Figure 5.4: MUNI and BART fares
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area, and the share of employment in San Francisco. Early in the period, in the

wake of the dot-com bust, the share of employment in San Francisco declines. It

then steadily increases from about 2006 onwards.

Figure 5.5: Employment in San Francisco and 4-county area

Figure 5.6 shows equivalent plots for population, and Figure 5.7 shows the

plots for workers, based on their residential location. The trends in San Francisco
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and in the 4-county area follow the same basic trends. There is some variation in

the share in San Francisco, but the scale of the graph indicates that it is a small vari-

ation. The plotted lines are smoother than those in the employment plots these data

come from the annual American Community Survey (ACS), and are interpolated

to monthly values, whereas employment is measured at a monthly resolution. In

additional, there are seasonal employment effects beyond what would be expected

for population.

These initial data show a general increase in the concentration of employment

in San Francisco, and little change in the concentration of population and workers.

These factors are tested in the model estimation, but this initial evidence does not

suggest it to be a major driver.

A limitation of this analysis is that employment, population and workers are

only considered at a county level. It is possible that variations in the spatial distri-

bution and growth of these at a more detailed level could be an important factor.

5.3.3 MUNI Trips Shift to Rail

It is possible that MUNI bus trips, which are the focus here, are shifting to rail.

To consider this possibility, Figure 5.8 shows the service miles on MUNI bus,

rail and cable car, and Figure 5.9 shows the ridership on MUNI bus, rail and cable

car, as reported in the annual Transit Statistical Summaries. The service data show

high points in the share of bus service miles between 2007 and 2009 and from 2011

onwards. The ridership data show that the share of bus ridership is highest before

2007 and after 2013.

It should be noted that the ridership and operating data provided in the statisti-

cal summaries is expected to be less reliable than the bus data based on AVL/APC

data. Rail ridership, in particular, is based on infrequent manual counts.

5.3.4 Increased Cost of Car Travel

Another possibility is that increases in the cost of car travel have caused a mode

shift to transit. It is expected that such a shift would disproportionately affect BART,

which serves longer trips, and where the cost differences would likely be amplified
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Figure 5.6: Population in San Francisco and 4-county area
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Figure 5.7: Workers in San Francisco and 4-county area
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Figure 5.8: Service miles on SFMTA submodes
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Figure 5.9: Ridership on SFMTA submodes
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due to trip length.

Figure 5.10 shows the trends in several measures of car costs. The average fuel

cost largely tracks the price of gasoline, but is dampened by improvements to the

average fuel efficiency. The average parking costs in the Central Business District

are only available for a limited period, and vary from $24 to $28 per day.

Tolls on the Bay Bridge, the competing alternative to BART for crossing the

Bay, were increased at several points. Of interest is the increase that occurred in July

2010, when peak tolls were increased, but not off-peak tolls, and a peak carpool toll

was introduced for the first time. The goal of this change was to shift trips to the

off-peak period and smooth congestion [222, 223].

To test this hypothesis, these terms were included in the time series model

estimations. They currently focus on monetary costs as opposed to travel time costs.

In addition, aggregate congestion measures for the Bay Area were tested in

model estimation, but the estimated coefficients were found to be statistically in-

significant. A separate effort was started to use probe vehicles and a traveller in-

formation system to track how car travel times change over this period in a more

detailed manner, but those measures are not sufficiently complete to be included in

this analysis.

5.3.5 Transit Riders are Priced out of San Francisco

San Francisco has been at the centre of the recent technology boom, with that and

other factors shifting the character of the city as it grows. Issues associated with

gentrification and inequality have recently been a source of tension [224]. Given

that lower income travellers are more likely to use transit, is it possible that transit

users are being priced out of San Francisco?

In consideration of this possibility, Figure 5.11 shows the trends in households

by income group over this period. These data show that the net growth has been

exclusively among households with an annual income of $100,000 or more. Those

households double, from about 80,000 to 160,000. All other groups have declined

not only in share, but in absolute numbers. To put the values in context, the median

annual household income in the United States is about $50,000. A household with
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Figure 5.10: Car travel costs
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an annual income of $100,000 would be in the top 10% of U.S. households, and the

top 25% of Bay Area households.

The income breakpoints used here are aligned with breakpoints in the Ameri-

can Community Survey (ACS), which is the source of the data. Those breakpoints

are not adjusted for inflation, so part of the effect is an overall growth in nominal

incomes, but the effect is stark enough that there appears to be a true shift in the

households as well.

Figure 5.12 examines this trend using the earnings of workers instead of house-

hold income, and finds that the growth in workers living in San Francisco is exclu-

sively among workers earning $75,000 or more in annual wages.

Figure 5.13 uses the same grouping of workers, but examines the reported

commute mode share of those workers. The data show a strong upward trend in the

share of workers earning $75,000 or more who commute by transit, increasing from

22% in 2001 to 34% in 2015. This transition largely closes the gap with the transit

mode share of workers earning less than $75,000.

The net effect of changes in households by income, workers by earnings, and

work mode shares are not clear. These factors are tested in the model estimations.

5.3.6 The “Uber Effect”

Examining the annual trends in commute mode shares in San Francisco reveals a

strong growth in the share of commutes made by walk, and made by taxi, bike and

other. Figure 5.14 shows these trends, with the bottom chart indicating that their

combined effect is to increase the share from 13% in 2005 to 18% in 2015. For

comparison, the transit mode share over this period (from Figure 5.13) ranges from

31% to 34%.

What might be causing these trends? There are two things that come to mind.

First, recent residential development in San Francisco has been concentrated

in the eastern portion of the city, particularly in the South of Market (SoMa) area

and along Market Street towards the Civic Center. Both areas are within walking

distance of the Central Business District, and generally higher density than the west-

ern portion of the city, where the neighbourhoods are filled with row houses. It may
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Figure 5.11: Households in San Francisco by income group
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Figure 5.12: Workers living in San Francisco by earnings
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Figure 5.13: Transit mode share by earnings for workers living in San Francisco
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Figure 5.14: Walk, bike, taxi and other commute mode shares for workers living in San
Francisco
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simply be that the spatial configuration of development is more suited to walking

and less suited to riding the bus.

Second, the growth in bike, taxi and other fits with two larger trends that may

explain the effect. San Francisco, like other large cities, has experienced an impres-

sive growth of bike travel in recent years. This corresponds both to the advent of

bike share systems, and to investments in bicycle lanes and other bike infrastruc-

ture [225]. Some research has shown that investments in cycle lanes may have a

very small effect on mode shares [226], so it is possible that the growth is driven

more by cultural attitudes towards cycling than by infrastructure investments. Re-

gardless, there is a change. In addition, this time period corresponds to the rise of

Uber, which was founded in San Francisco in 2009 [227]. Uber, and other shared

mobility services, can be both much cheaper than a taxi, and more convenient, par-

ticularly for a technology-savvy population, such as San Francisco’s. Such trips

would be reported as either taxi or other in the ACS. It is reasonable to expect that

people who use these modes will use them habitually for many trips, beyond just

commuting, and that people who still commute by bus or other modes may make

an increasing share of non-work trips by walk, taxi, bike or other.

We hypothesise that there may be an “Uber Effect”, where the growth of these

alternative modes is directly related to the lack of growth in MUNI ridership. It

is logical to expect that such an effect would disproportionately affect MUNI over

BART, because the trips are shorter, concentrated in the core city, and do not traverse

the Bay or equivalent physical barriers.

The causal mechanism of such an effect could work in several directions. It

could be that these alternative modes are becoming more attractive, such as with the

large cost savings offered by Uber over taxi. It could be that MUNI is becoming

less attractive, and these modes are picking up the slack. Finally, it could be part

of a larger demographic or cultural shift in how people consume transportation.

This research is insufficient to explain the causal mechanism, but it does explore

the relationship between these trends and MUNI and BART ridership to see if the

correlations support the idea of an “Uber Effect”.
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5.4 Understanding Demand Changes
The Regression with ARIMA Errors (RegARIMA) models estimated in Chapter 4

were applied to understand the factors contributing to changes in BART and MUNI

ridership. For convenience, the preferred MUNI and BART model estimation re-

sults are repeated here in Table 5.1 and Table 5.2. Of particular interest is the diver-

gence of ridership between the two systems during the 2009 to 2013 period, where

BART ridership increases and MUNI ridership does not. The goal is to understand

why these diverge.

Table 5.1: RegARIMA Models of MUNI boardings with constrained employment term

Model Characteristics
Dependent variable MUNI boardings

Type ARIMA(0,1,1)(0,1,0)12

Date range Jun 2009 to Nov 2013

Predictive Variables
Description Lag Coefficient S.E. T-Stat

Moving average coefficient 1 -0.3092 0.1852 -1.67

Weekday service miles, 1000s 7971 3105 2.57

Weekday service miles on MUNI rail, 1000s -2777 2488 -1.12

Average bus runspeed 49853 25692 1.94

Employment in San Francisco 0.876 fixed fixed

Model Statistics
Log likelihood -453.56

AIC 917.12
AICc 918.83
RMSE 15,401
Percent RMSE 3.09%
Box-Pierce test p-value 0.873

This analysis is done in three parts. First, the model elasticities are calcu-

lated and compared to published values, where available. Second, for each variable

included in the model, bivariate area plots are presented comparing the actual rider-

ship to what the ridership would have been if that variable remained constant. This

provides an indication of how much that variable contributes to the change. Third,

tables are presented which show the change in each variable between September

2009 and September 2013, and calculates the ridership change associated changes

to each variable.
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Table 5.2: RegARIMA models of BART boardings

Model Characteristics
Dependent variable BART boardings

Type ARIMA(0,1,2)(0,1,1)12

Date range Jan 2001 to Mar 2015

Predictive Variables
Description Lag Coefficient S.E. T-Stat

Moving average coefficient 1 -0.5701 0.1122 -5.08

Moving average coefficient 2 -0.2827 0.1032 -2.74

Seasonal moving average coefficient S1 -0.6603 0.0782 -8.44

Weekday service miles, 1000s D(0,12) 2712 1310 2.07

Number of Stations D(0,12) 5472 1057 5.18

Employment in 4-county area 0.2027 0.0185 10.96

Percent of 4-county employment in SF 8099 3860 2.10

Cash fare (2010 $) -20795 8332 -2.50

Average car fuel cost (2010 $/mile) 86312 31504 2.74

Days with a BART strike -19010 906.5 -20.97

Model Statistics
Log likelihood -1571.65

AIC 3165.30
AICc 3167.04
RMSE 4923
Percent RMSE 1.42%
Box-Pierce test p-value 0.2068

5.4.1 Model Elasticities

Table 5.3 shows the elasticity of MUNI ridership with respect to a change in each

of the descriptive variables in the RegARIMA model from Table 4.14. The model

follows the form of Equation C.26 in Appendix C. For each variable, x, the elasticity

is calculated as β
x
y , where y is the demand [228]. Because the elasticity depends

on the value of x and y, it changes over the course of the time series. Therefore,

the lowest and highest values are presented. The coefficient and mean value of each

variable are also shown. For reference, the average MUNI ridership over this period

is 501,734.

The elasticity of MUNI ridership with respect to a change in service miles is

between 0.89 and 1.05. This means that a 1% increase in service miles would result

in ridership increasing between 0.89% and 1.05%. The elasticity for changes in

MUNI rail service is between -0.10 and -0.16. It is logical that the value would be
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negative and smaller in magnitude for changes in service to a different mode than

to the same mode. The model is more elastic with respect to changes in bus speed

with the values ranging from 1.26 to 1.48.

The elasticity with respect to changes in employment in San Francisco is be-

tween 2.19 and 2.90. This elasticity is at the high end of several other studies that

have calculated the elasticity of transit ridership with respect to changes in employ-

ment. In metropolitan Houston and San Diego, Kain and Liu [174] estimated an

elasticity of 0.25. Chen et al. [129] found it to be 0.6 in a study of New Jersey Tran-

sit. Gomez-Ibanez [173] estimated an elasticity of 1.25 to 1.75, and Yanmaz-Tuzel

and Ozbay [180] estimated a range of 1.6 to 2.7 for New Jersey Transit. Overall,

these studies present a wide range of elasticities, with the estimated values at the

high end.

Table 5.3: Elasticities from MUNI RegARIMA model with unconstrained employment
term

Mean Elasticity

Description Lag Coefficient Value Low High

Weekday service miles, 1000s 8,536 55.69 0.89 1.05

Weekday service miles on MUNI rail, 1000s -4,352 13.82 -0.10 -0.16

Average bus runspeed 63,927 10.65 1.26 1.48

Employment in San Francisco 2.201 570,931 2.19 2.90

For comparison, Table 5.4 shows the elasticities calculated using the MUNI

RegARAMA model with a constrained employment coefficient. As with the pre-

vious table, the lowest and highest elasticity from the time series are reported to

provide a range of values. The biggest difference is that the elasticity with respect

to changes in employment is much lower, between 0.87 and 1.16. The values for

rail service and bus runspeed are also somewhat lower. This employment elasticity

is more towards the middle of the range of published values, and it is intuitively

logical that ridership would increase proportionally to employment, and not faster.

For these reasons, the model with a constrained employment term is used for the

remaining analysis in subsequent sections.

Table 5.5 shows the elasticity of BART ridership with respect to a change in

each of the descriptive variables in the preferred BART RegARIMA model, show-



230 Chapter 5. Understanding Ridership Trends

Table 5.4: Elasticities from MUNI RegARIMA model with constrained employment term

Mean Elasticity

Description Lag Coefficient Value Low High

Weekday service miles, 1000s 7,971 55.69 0.83 0.98

Weekday service miles on MUNI rail, 1000s -2,777 13.82 -0.07 -0.10

Average bus runspeed 49,853 10.65 0.99 1.16

Employment in San Francisco 0.876 570,931 0.87 1.16

ing the lowest and highest elasticity from the data set. The model follows the form

of Equation C.32, and the elasticity is calculated in the same manner as above. The

average BART ridership over this period is 344,532.

The elasticity of BART ridership with respect to changes in service miles is

between 0.17 and 0.25. This is lower than the equivalent elasticity in the MUNI

model, which may indicate that competing modes can be more easily substituted

for MUNI trips than for BART trips, given the limited options for transbay travel in

particular.

The elasticity for the number of stations is between 0.55 and 0.80.

BART ridership has an elasticity of between 0.95 and 1.38 with respect to

changes in employment. The elasticity for the concentration of employment in San

Francisco is between 0.58 and 0.82.

The elasticity for BART fares is between -0.16 and -0.25. A fare term could

not be estimated for the MUNI model due to the lack of meaningful fare changes

during the analysis period.

The elasticity of BART ridership with respect to changes in average fuel cost

is between 0.020 and 0.044.

For days with a BART strike, it is between zero and -0.237, although this is not

particularly meaningful, given that the number of strike days is always either zero,

three or four.

These values generally appear reasonable in comparison to published val-

ues [39, 228]. More specific comparisons of changes estimated from these models

versus changes estimated from published elasticities are provided in Chapter 6.
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Table 5.5: Elasticities from BART RegARIMA model

Mean Elasticity

Description Lag Coefficient Value Low High

Weekday service miles, 1000s D(0,12) 2712 27.12 0.17 0.25

Number of Stations D(0,12) 5472 42.54 0.55 0.80

Employment in 4-county area 0.2027 1,908,263 0.95 1.38

Percent of 4-county employment in SF 8099 29.53 0.58 0.82

Cash fare (2010 $) -20795 3.39 -0.16 -0.25

Average car fuel cost (2010 $/mile) 86312 0.13 0.020 0.044

Days with a BART strike -19010 0.04 0.000 -0.237

5.4.2 Calculating the Factors Contributing to Ridership Changes

The following sections examine the contribution of each factor in the preferred

MUNI and BART models to changes in ridership. To visualise the contribution

over time, this work takes inspiration from William Playfair’s plots of the trade bal-

ance between England and Denmark and Norway [229], shown in Figure 5.15. In

Playfair’s plot, the level of imports is plotted as a yellow line and the level of ex-

ports is plotted as a red line, both with time on the horizontal axis. The difference

between the two lines is the trade deficit or surplus, and the colour of shading in-

dicates whether there is a deficit or surplus at each time point. This type of plot is

generally known as a bivariate area plot, with the graphics in this instance devel-

oped using R code developed by Yau [230]. More general discussions of Playfair’s

contributions are available in [231] and [232].

For this research, the actual time series is plotted against a hypothetical time

series that would have occurred if the variable in question remained constant. The

difference between the two show the contribution that changes to that variable have

made to changes in the time series. Red shading indicates that changes to the vari-

able correspond to a relative decrease in the time series. Green shading indicates

that changes to the variable correspond to a relative increase in the time series.

The analysis separately considers each of the descriptive variables in the pre-

ferred RegARIMA model. Recall that Equation 4.10 shows the general formula

for a RegARIMA model, with Appendix C showing the specific formulas for each
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Figure 5.15: William Playfair’s plots of English exports and imports to and from Denmark
and Norway [229]

model. Starting from the former, the time series with term i held constant is:

Yi,t = βixi,0 +
J

∑
j=1, j 6=i

β jx j,t +nt

(1−φ1B− ...−φpBp)(1−Φ1Bm− ...−ΦPBm+P)(1−B)d(1−Bm)Dnt =

(1+θ1B+ ...+θqBq)(1+Θ1Bm + ...+ΘQBm+Q−1)et

(5.1)

where Yi,t is the number of MUNI boardings that would occur at time t, if term i

is held constant, βi is the estimated coefficient for term i, xi,0 is the value of the

variable for term i at time 0, β j is the estimated coefficient for term j, x j,t is the

value of the variable for term j at time t, J is the number of regressors in the model,

and all other items are as described previously.

The ARIMA component of the model is the same, and it is only the regression
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portion that differs. Alternatively, it can be calculated as:

Yi,t = yt−βi(xi,t− xi,0) (5.2)

Thus, the difference is based simply on the coefficient times the change in the value

of the variable.

In addition to changes that can be explained by each of the regression terms,

there will be some portion of the change in the value of the time series that remains

unexplained by the variables included in the model. This portion of the change is

nt−n0.

This unexplained portion of the model can be broken into two components:

the change in the residual error et − e0, and the remaining change (nt − et)− (n0−

e0). The change in the residual error can be considered as purely random, but

the remaining change accounts for trends and seasonality in the data beyond what

can be explained by the regression variables. We refer to this as the unexplained

trend. In a way, it is analogous to an alternative specific constant in a mode choice

model, because it represents something about the world that the model is otherwise

unable to account for. The unexplained trend, and the change due to random error

are tracked separately in this analysis to better understand the role they play in

understanding changes in demand.

5.4.3 Changes in MUNI Ridership

This section examines the contribution of each factor in the MUNI model to changes

in ridership using bivariate area plots, as described above. In all cases, the reference

point (t = 0) is set to September 2009. Even though this is a few months into the

time series, the changes for previous months can still be calculated. September

2009 is selected as the first available month where schools are in session, and to

correspond to the differences calculated in Section 5.4.5.

5.4.3.1 Service Miles

Figure 5.16 shows the change in MUNI ridership attributable to changes in service

miles. The black line is the observed ridership. The shaded red area shows the
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difference between the actual ridership, and what the ridership would have been if

the service miles remained at their September 2009 levels (assuming the models are

correct). If there were no change in service miles, the time series would be shifted

to the top of the shaded red/pink area. In this specific plot, there is no green.

This shift is directly related to the trends in service miles discussed in 3.2.

The service provided reflects a 10% reduction in May 2010. The cuts are partially

restored in September 2010, and there are a series of subsequent, smaller changes.

The plot shows that if it were not for these service cuts, ridership in the summer

of 2010 would have been close to 540,000 instead of below 500,000. As late as

autumn 2013, ridership remains 25,000 lower than it would have been if not for the

cuts to service miles.

Figure 5.16: Effect of changes in service miles on MUNI ridership, vs. Sep 2009

5.4.3.2 Rail Service Miles

Figure 5.17 shows the change in MUNI ridership attributable to changes in rail

service.

The shading in this plot is green. This indicates that cuts to rail service have
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served to increase the MUNI bus ridership. If rail service were held constant

throughout this period, the bus ridership would follow the trend shown at the bottom

of the shaded green area, instead of the actual ridership along the black line.

Figure 5.17: Effect of changes in rail service on MUNI ridership, vs. Sep 2009

5.4.3.3 Bus Runspeed

Figure 5.18 shows the change in ridership associated with changes in bus runspeed.

The red indicates that slower bus runspeeds correspond to less ridership than would

otherwise be expected. It is important to note that the runspeed is not truly inde-

pendent of ridership. The drop occurs in conjunction with the 2010 service cuts,

and it may be that by running fewer buses, there is more crowding that serves to

slow the buses down. While there may be some uncertainty in the true nature of the

underlying relationship, the basic result is logical, and maintained for this analysis.

5.4.3.4 Employment in San Francisco

Figure 5.19 shows the change in MUNI ridership attributable to the change in em-

ployment in San Francisco.
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Figure 5.18: Effect of changes in runspeed on MUNI ridership, vs. Sep 2009

The plot shows some small negative effects early in 2009 and early 2010. Start-

ing in the second half of 2010, employment starts to grow and contributes to a

relative increase in ridership. The latter portion of the time series in particular cor-

responds to a period of strong economic growth.

5.4.3.5 Unexplained Trend

Figure 5.20 shows the unexplained trend from the MUNI RegARIMA model. This

represents the non-residual change that cannot be explained by the descriptive vari-

ables in the regression model. For most of the time span, the trend serves as a

substantial drag on MUNI ridership.

5.4.3.6 Residual Error

Figure 5.21 shows the residual error from the MUNI RegARIMA model. This can

be interpreted as a purely random component of the ridership. Some values are

positive, and some are negative, and there is no clear pattern.
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Figure 5.19: Effect of changes in employment on MUNI ridership, vs. Sep 2009

Figure 5.20: Effect of unexplained trend on MUNI ridership, vs. Sep 2009
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Figure 5.21: Effect of residuals on MUNI ridership, vs. Sep 2009

5.4.4 Changes in BART Ridership

In this section, the same method is applied to examine the contribution of each

factor in the BART model to changes in ridership. A longer time series is available

for BART. It is desirable both to understand the trends in the full time series, but

it is also desirable to be directly comparable to the MUNI plots for understanding

the 2009 to 2013 ridership trends in detail. Therefore, for each variable, two sets

of plots are shown. The first shows the full time series and sets the reference point

to January 2001. The second shows only the period for which MUNI data are also

available, and sets the reference point to September 2009.

5.4.4.1 Service Miles

Figure 5.22 shows the contribution of the change in service miles to BART rider-

ship. There are some modest ridership increases associated with service improve-

ments over January 2001 levels starting in about 2004.

Figure 5.23 shows the contribution of the change in service miles to BART

ridership for the 2009 through 2013 period. There are some modest decreases due



5.4. Understanding Demand Changes 239

Figure 5.22: Effect of changes in service miles on BART ridership, vs. Jan 2001

to service cuts over this period, relative to the September 2009 reference point.

5.4.4.2 Number of Stations

Figure 5.24 shows the contribution of the change in the number of stations to BART

ridership. The biggest change follows the BART extension to SFO, which opened

in 2003. Due to the lagged effect on ridership, the full ridership shift does not occur

until 2004, after which it persists through the remainder of the period.

Figure 5.25 shows the contribution of the change in the number of stations to

BART ridership for the 2009 to 2013 period. The only new station to open in this

period is an infill station at West Dublin/Pleasanton, and the effect can be seen in

the plot as a modest upward shift.

5.4.4.3 Employment in 4-County Area

Figure 5.26 shows the effect of employment changes on BART ridership. These

changes are relative to January 2001 levels.

January 2001 was at the end of the dot-com boom, so employment was at a
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Figure 5.23: Effect of changes in service miles on BART ridership, vs. Sep 2009

Figure 5.24: Effect of changes in stations on BART ridership, vs. Jan 2001
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Figure 5.25: Effect of changes in stations on BART ridership, vs. Sep 2009

high point. Employment does not exceed this high point again until 13 years later,

where there is some green observed at the end of the plot. The red shading shows

the degree to which the dot-com bust, and the recession following the financial

crisis pushed BART ridership downwards. If it were not for these recessions, BART

ridership would follow a much more steady upwards trajectory.

Figure 5.27 focuses on the 2009 to 2013 period, and shows the change in BART

ridership attributable to the change in employment from September 2009. Employ-

ment changes make an important contribution to ridership growth over the second

half of this period.

5.4.4.4 Percent of 4-County Employment in San Francisco

The percent of 4-county employment in San Francisco is a measure of employment

concentration in the region’s central city. Figure 5.28 shows the effect of changes

in employment concentration on BART ridership.

Over the first half of the period, employment becomes less concentrated, con-

tributing to a relative decline in ridership. Over the second half of the period, em-
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Figure 5.26: Effect of changes in employment on BART ridership, vs. Jan 2001

Figure 5.27: Effect of changes in employment on BART ridership, vs. Sep 2009
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ployment becomes more concentrated, contributing to a relative increase in rider-

ship.

Figure 5.28: Effect of changes in percent of employment in San Francisco on BART rider-
ship, vs. Jan 2001

Figure 5.29 shows the effect of changes in employment concentration on BART

ridership over the 2009 to 2013 period. Over this period, employment becomes

more concentrated, contributing to a relative increase in ridership.

5.4.4.5 Fare

Figure 5.30 and Figure 5.31 show the change in ridership attributable to fare

changes. Fares are relatively stable over both periods, so the changes are not large.

5.4.4.6 Car Fuel Cost

Figure 5.32 and Figure 5.33 show the change in ridership attributable to changes in

car fuel cost. Fuel cost increases contribute to a small ridership increase.
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Figure 5.29: Effect of changes in percent of employment in San Francisco on BART rider-
ship, vs. Sep 2009

Figure 5.30: Effect of changes in fare on BART ridership, vs. Jan 2001
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Figure 5.31: Effect of changes in fare on BART ridership, vs. Sep 2009

Figure 5.32: Effect of changes in car fuel cost on BART ridership, vs. Jan 2001
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Figure 5.33: Effect of changes in car fuel cost on BART ridership, vs. Sep 2009

5.4.4.7 Strikes

Figure 5.34 and Figure 5.35 show the effect of strikes on BART ridership. The

effect is limited to the two months in which there are strikes, and indicates that the

time series would otherwise follow the ongoing trend.

5.4.4.8 Unexplained Trend

Figure 5.36 shows the change in BART ridership that cannot be explained by either

the regression variables included in the model, or by random error.

There is a strong, and generally increasing unexplained trend over this period,

that appears to be larger after 2009 than before. At the end of this period, BART has

about 70,000 more riders than can be explained by the terms included in the model.

This is a 20% higher than what it otherwise would have been.

While it may be tempting to think that the growth attributable to this trend will

continue to increase, focusing on the 2009 to 2013 period, as shown in Figure 5.37

shows that the unexplained trend is not a major contributor to change over this

period. Rather, the unexplained trend over this period mostly smooths the peaks
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Figure 5.34: Effect of strikes on BART ridership, vs. Jan 2001

Figure 5.35: Effect of strikes on BART ridership, vs. Sep 2009
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Figure 5.36: Effect of unexplained trend on BART ridership, vs. Jan 2001

and valleys associated with seasonality.

In mentally rectifying the two plots, this means that the width of the green

shading in Figure 5.36 is relatively constant from September 2009 through 2013.

5.4.4.9 Residual Error

Figure 5.38 and Figure 5.39 show the effect of changes in the residual error on

BART ridership. The first plot shows that the errors are minimal, while the second

shows a general decrease. The latter is the change in et from September 2009, so it

implies that there happens to be an especially large residual in that particular month.
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Figure 5.37: Effect of unexplained trend on BART ridership, vs. Sep 2009

Figure 5.38: Effect of residuals on BART ridership, vs. Jan 2001
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Figure 5.39: Effect of residuals on BART ridership, vs. Sep 2009

5.4.5 Comparison for 2009 to 2013 Period

The factors contributing to the change in MUNI and BART ridership between

September 2009 and September 2013 are examined in further detail here. The goal

of this analysis is to explain why BART ridership increases while MUNI ridership

decreases, both during a period of economic growth. The September beginning and

end points factor out the effect of seasonality, and covers a “typical” month when

schools are in session and there are no strikes.

Table 5.6 shows the contribution of each factor in the model to the change in

MUNI ridership, and Table 5.7 shows the contribution of each factor to the change

in BART ridership. Over this period, MUNI ridership decreases by 35,000 riders,

or 6.5%, while BART ridership increases by 62,000 riders, or 17.6%.

Service cuts reduce MUNI ridership by 4.6%. However, that change is par-

tially offset, because rail service is also cut, shifting some riders back to bus. Lower

runspeeds, from almost 11 mph in September 2009 to 10.5 mph in September 2013,

contribute another 4.3% ridership reduction. Together, these three service changes
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Table 5.6: Contributions to change in MUNI ridership: Sep 2009 to Sep 2013

Value Ridership Change

Description Lag Coef Sep-09 Sep-13 Absolute Percent

Weekday service miles, 1000s 7,971 57.75 54.62 -24,995 -4.6%

Weekday service miles on MUNI rail, 1000s -2,777 16.71 12.43 11,892 2.2%

Average bus runspeed 49,853 10.97 10.50 -23,431 -4.3%

Employment in San Francisco 0.876 544,587 615,119 61,786 11.3%

Unexplained trend -890,620 -967,172 -76,552 -14.0%

Residual -87 15,875 15,962 2.9%

Total Ridership 547,166 511,830 -35,337 -6.5%

Table 5.7: Contributions to change in BART ridership: Sep 2009 to Sep 2013

Value Ridership Change

Description Lag Coef Sep-09 Sep-13 Absolute Percent

Weekday service miles, 1000s D(0,12) 2712 28.56 27.37 -3,224 -0.9%

Number of Stations D(0,12) 5472 43.00 44.00 5,472 1.5%

Employment in 4-county area 0.2027 1,812,112 1,993,007 36,667 10.4%

Percent of 4-county employment in SF 8099 30.05 30.86 6,570 1.9%

Cash fare (2010 $) -20795 3.57 3.34 4,803 1.4%

Average car fuel cost (2010 $/mile) 86312 0.14 0.16 1,841 0.5%

Days with a BART strike -19010 0.00 0.00 0 0.0%

Unexplained trend -514,832 -496,144 18,688 5.3%

Residual 7,477 -1,217 -8,694 -2.5%

Total Ridership 353,681 415,805 62,124 17.6%

add up to a 36,500 ridership reduction, or 6.7% of the total. This is slightly more

than the total change, indicating that if it were not for the service cuts, MUNI rider-

ship would be nearly identical to its starting value.

In contrast, cuts to BART service over this period correspond to a slight de-

crease in ridership, but this is offset by one additional station that opens. The net

effect of BART service and infrastructure changes is less than 1%.

Over this period, the employment in San Francisco grows from 545,000 to

615,000, or about 13%. The model predicts that this is corresponds to a 11.3%

increase in MUNI ridership. Over this same period, the employment in the 4-county

area grows by 10%, resulting in a 10.4% increase in BART ridership. Employment

becomes more concentrated in San Francisco County over this period, increasing

from 30.05% of the 4-county total to 30.86% of the 4-county total. The employment

concentration contributes an additional 1.9% to BART ridership.
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During this period, the average BART fare goes down from $3.57 to $3.34. The

value is inflation adjusted to 2010 dollars, and the decrease reflects that inflation

adjustment. BART fares were increased in July 2009, shortly before this analysis

period. The model predicts that this change relates to a 1.4% increase in BART

ridership. MUNI fares also increased in July 2009, and were stable over this period

except for the inflation adjustment. A cost coefficient could not be estimated for the

MUNI model, but its effect is be expected to be small over this period.

The average cost of fuel increases from $0.14 per mile to $0.16 cents per mile.

This reflects an increase in the price of gasoline, that is partially offset by an increase

in the average fuel economy of vehicles. This change results in a small increase in

BART riders, of about 0.5%.

There are no strikes in either month, so the BART strikes have no effect on the

ridership change.

The biggest drag on MUNI ridership is the unexplained trend, which serves to

reduce MUNI ridership by 77,000 or 14%. In contrast to MUNI, The BART model

has an unexplained trend over this period that results in BART ridership increasing

by 18,000, or about 5.3%. The residual error contributes +2.2% to MUNI ridership

and -2.5% to BART ridership.

It is not clear what is causing the large downward trend in MUNI ridership,

other than that it is not something fully reflected in the model. It is interesting to

note that the trend more than offsets the ridership growth due to the increase in

employment. Tests of the MUNI model with an unconstrained (and much higher)

employment coefficient showed that the unexplained trend in that model was more

negative, still offsetting the ridership growth associated with employment growth,

so the two appear to be related in opposite directions. One possible explanation is

that MUNI ridership is simply insensitive to employment growth. Another is that

MUNI ridership is sensitive to employment growth, but there is some other factor

influencing ridership at the same time. These possibilities are considered, as the

hypotheses are re-visited in the next section.
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5.5 Hypotheses Revisited

At the start of this chapter, several hypotheses were proposed that might explain

why BART ridership grows while MUNI ridership sputters, given strong economic

conditions for both. Those hypotheses are revisited here to examine whether the

evidence of the time series models is consistent or inconsistent with those explana-

tions.

Table 5.8 summarises and compares the major factors contributing to changes

in ridership for these two systems, grouped into slightly more aggregate categories

than the tables above. This table provides the basic explanation for why BART

ridership increases while MUNI ridership does not, and provides the basis for dis-

cussion of the hypotheses.

Table 5.8: Comparison of factors contributing to changes in MUNI vs. BART riders: Sep
2009 to Sep 2013

Change in MUNI Riders Change in BART Riders

Associated with change in: Absolute Percent Absolute Percent

Service and fare changes -48,425 -8.9% 7,051 2.0%

Employment and employment concentration 61,786 11.3% 43,238 12.2%

Change in MUNI rail service 11,892 2.2% 0 0.0%

Increased cost of auto travel 0 0.0% 1,841 0.5%
Unexplained trends and random error -60,589 -11.1% 9,994 2.8%

Total Change -35,337 -6.5% 62,124 17.6%

5.5.1 Different Level-of-Service Trends

The first possible explanation was that the divergent ridership trends could be ex-

plained by differences in the level-of-service provided by the operators. The anal-

ysis indicates that this explains part, but not all, of the divergence. Service cuts

(changes to service miles and runspeed) between 2009 and 2013 result in a 8.9%

loss of MUNI ridership. On BART, there is a slight reduction in service miles,

which is offset by the opening of one new station and a decline in the real value of

BART fares. Together, these factors result in a 2.0% positive contribution to BART

ridership.
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5.5.2 Suburban Growth Exceeds Urban Growth

Our next hypothesis was that suburban growth exceeded urban growth, contributing

to a faster increase in BART ridership because BART serves more suburban areas.

Examining the growth of employment, population and workers showed that

employment became more concentrated in San Francisco over the analysis period,

and that there was little change in the concentration of population and workers in

San Francisco versus the outlying counties.

The model analysis showed that the strong economy, and associated growth in

employment and the concentration of employment in San Francisco contribute to

ridership gains on both systems. The gains are slightly greater for BART (12.1%)

than for MUNI (11.3%).

There is some uncertainty in the estimate for MUNI, because the model con-

sidered here reflects a constrained employment coefficient. Leaving the coefficient

unconstrained results in an estimate 2.5 times as high, which would suggest a larger

growth in ridership associated employment growth. However, in both cases, this is

offset by an unexplained downward ridership trend. This could indicate either that

MUNI ridership is less sensitive to employment growth than indicated here, or that

there is some other factor causing a relative ridership decline. There are both the-

oretical reasons to believe that transit ridership should be tied to employment, and

enough empirical evidence from other studies [174, 129, 173, 180] to suggest that

it is, that we are inclined to believe the latter, even if the magnitude is uncertain.

From this analysis, we do not find evidence that suburban growth exceeding

urban growth is a major factor driving the divergence.

5.5.3 MUNI Trips Shift to Rail

Another possible explanation was that there was a shift of MUNI bus trips to the

MUNI rail system. The analysis was inconsistent with this hypothesis, and appears

to indicate an effect in the opposite direction. Rail service was cut during this

period, contributing to a relative increase in MUNI bus ridership.
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5.5.4 Increased Cost of Car Travel

One reason BART ridership would increase faster than MUNI ridership would be

if the cost of auto travel increased. Because BART trips tend to be longer, they are

likely to be more sensitive to changes in auto travel costs.

The analysis showed that the increases to the average car fuel cost does increase

BART ridership, and no equivalent factor could be estimated for MUNI. However,

the effect is small over the 2009 to 2013 period, contributing less than 1% to the

increase in BART ridership.

With the data available, we were not able to find a significant relationship be-

tween aggregate car congestion measures and BART or MUNI ridership.

5.5.5 Transit Riders are Priced out of San Francisco

This research considered the possibility that as San Francisco becomes a more ex-

pensive city, transit riders are being priced out of the city, and into other counties.

This would be logical, given that net growth in households in San Francisco in

recent years has been exclusively among households earning $100,000 or more per

year, and higher income travellers tend to be less likely to use transit. However, it

is also observed that transit commute mode shares among high-wage workers have

increased, and are now about as high as among lower wage workers.

To test whether there is evidence that income changes were contributing to the

stagnation of MUNI ridership, a number of income related variables were tested in

model estimation, both for the MUNI and BART models. These included house-

holds segmented by income, workers and employees segmented by wages, and the

median household income. These tests produced either insignificant or illogical

model parameters.

The end result is that this analysis does not provide evidence to support the

hypothesis that transit riders are being priced out of San Francisco.

5.5.6 The “Uber Effect”

Another hypothesis is that there is an “Uber Effect”, whereby new or alternative

modes become attractive enough to draw substantially from MUNI ridership. The
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journey to work data show a marked upswing in the share of workers commuting

by walk, and commuting by bike, taxi and other. To test this hypothesis, descriptive

variables were included in the models for the number and share of workers commut-

ing by walk, bike, taxi and other modes. The estimated coefficients were negative,

as expected, but insignificant. It is logical that it would not affect BART ridership,

because BART tends to attract longer regional trips for which these modes would

be less competitive, but a relationship with MUNI may be reasonable to expect.

To examining the relationship further, Figure 5.40 shows the unexplained trend

from the MUNI model in comparison to the trend in walk, bike, taxi and other com-

mute mode share. The unexplained downward ridership trend corresponds to an

upward trend in walk, bike, taxi and other commutes, but it is a rough relationship.

The analysis is hampered by the fact that measurements of the commute mode share

are aggregate in time because they are based on an annual survey, and that they are

an imperfect proxy for total travel by these modes. In fact, the Shared Use Mobil-

ity Center (SUMC) suggests that trips by shared mobility services tend not to be

work trips, and that social trips which can substitute for drunk driving are a particu-

larly important market [221]. SUMC argues that for these reasons, shared mobility

modes tend to be more complementary than competitive with transit systems.

While it may be possible that there is an “Uber Effect” that contributes to the

unexplained trend in MUNI ridership, the data and relationships do not provide

sufficient evidence to make a case that it is present.
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Figure 5.40: Unexplained trend in MUNI ridership vs. walk, bike, taxi and other com-
muters

5.6 The Effect of an Ageing Population
Having re-considered our original hypotheses given the evidence provided by the

application of the time series models, we do not find the explanations to be fully sat-

isfactory in terms of explaining the ridership divergence between BART and MUNI.

Specifically, the models do a reasonably good job of explaining the trends in BART

ridership, but there remains an large downward trend in MUNI ridership that the

models cannot explain. Therefore, we consider one more possible explanation: that

the changing composition of the population by age group could negatively affect

MUNI ridership more than BART ridership. This explanation builds from the trends

found in the UK where older women now drive more than in past cohorts while

younger men drive less than in past cohorts [183, 184]. Could it be that a similar

trend is affecting bus ridership?
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This section considers that possibility in two parts. First it describes a series of

additional models estimated to test age effects, and next it considers the ridership

implications of these revised models.

5.6.1 Model Estimation

A series of additional RegARIMA models were estimated to consider the effects

of age on BART and MUNI ridership. These models do not explicitly consider the

cohort effects, but rather the aggregate effect of changes in the age composition of

the population. The starting point is the preferred RegARIMA model of BART rid-

ership (Table 4.16), and the preferred RegARIMA model of MUNI ridership with a

constrained employment term (Table 4.15). For each, five new variables were con-

sidered, measured either for 4-county area for BART, or for San Francisco County

for MUNI. The variables tested include: median age, percent of the population age

20 to 29, percent of the population that is male and age 20 to 29, percent of the

population age 65+ and percent of the population that is female and age 65+. These

variables were selected to consider the possibility that there is a different travel

behaviour by young adults, specifically by young males, by older adults, or specif-

ically by older women. Combinations of these variables were also tested, such as

both the young adults and older adults terms. In all cases, the data are taken from the

annual American Community Survey (ACS), and interpolated to monthly values.

For the BART models, only one of the terms estimated gives a significant coef-

ficient: the percent of the population age 65+. It has a positive coefficient of about

46,000, indicating that for each 1% increase (such as from 14% to 15%) in the share

of the population age 65+, there is an increase of 46,000 riders. The trade-off to in-

cluding this new variable is that the coefficient on service miles becomes small and

insignificant. There appears to be co-linearity between these two terms, making it

difficult to separate the effects. We would find it strange to have a model that is not

sensitive to the service provided, so prefer the previous BART model.

For MUNI, the best model is one that includes the percent of the population

age 65+. The percent of the population age 20 to 29 was also significant on its own,

but when the two terms are included together, they both become insignificant.
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Table 5.9 shows the results of this estimation, with the addition of a term on

the percent of the population aged 65+, and with the employment term still fixed.

A direct comparison against the previous estimation results is shown later in this

section. The interpretation of the age term is such that a 1% increase in the percent

of the San Francisco population age 65+ (such as from 14% to 15%) is associated

with a decrease of 155,000 MUNI bus riders. This is a large number, so it should

be noted that the data vary within a narrow range over the estimation period, from a

low of 13.7% to a high of 14.3%. This result should be used with a dose of caution,

especially if the values change substantially in future applications.

Table 5.9: RegARIMA model of MUNI boardings with constrained employment term and
age

Model Characteristics
Dependent variable MUNI boardings

Type ARIMA(0,1,1)(0,1,0)12

Date range Jun 2009 to Nov 2013

Predictive Variables
Description Lag Coefficient S.E. T-Stat

Moving average coefficient 1 -0.4516 0.1994 -2.26

Weekday service miles, 1000s 11432 3203 3.57

Weekday service miles on MUNI rail, 1000s -3579 2248 -1.59

Average bus runspeed 37859 26678 1.42

Employment in San Francisco 0.876 fixed fixed

Percent of population age 65+ -155305 72339 -2.15

Model Statistics
Log likelihood -451.62

AIC 915.24
AICc 917.71
RMSE 14,667
Percent RMSE 2.94%
Box-Pierce test p-value 0.622

The model residuals remain stationary, as confirmed by Figure 5.41, and the

Box-Pierce test shown in Table 5.9. In addition, the Ljung-Box gives a p-value

of 0.49. Figure 5.42 shows the modelled and observed time series plots, and Fig-

ure 5.43 shows the resulting scatterplots.

Table 5.10 shows a comparison of the model estimation results with and with-

out the age term. The employment coefficient is fixed, and remains unchanged. The
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Figure 5.41: Residual autocorrelation from MUNI RegARIMA model with constrained
employment term and age

Figure 5.42: MUNI boardings, observed vs. RegARIMA model with constrained employ-
ment term and age
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Figure 5.43: Change in MUNI boardings, observed vs. RegARIMA model with con-
strained employment term and age

moving average coefficient, weekday service miles and MUNI rail service miles in-

crease in magnitude and significance, while the average bus runspeed decreases in

magnitude and significance. In spite of this lower significance, the runspeed term

is retained in the model for consistency with the previous models and for its policy

sensitivity. The goodness of fit measures improve for the model with the age term.

Overall, the model appears to be improved with the addition, although the large

magnitude of the age coefficient should lead us to be cautious when applying the

model if there are large changes in the percent of the population aged 65+.

5.6.2 Ridership Changes

In this section, the updated model is applied to quantify the contributors to the

change in MUNI ridership between September 2009 and September 2013, as shown

in Table 5.11. These values are then compared to the calculations with the base

model, shown in Table 5.12.

The major difference between these two sets of calculations is that the large

unexplained trend in the base model is partially explained by the effect of an ageing
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Table 5.10: Comparison of MUNI RegARIMA Models with and without age term

Model Characteristics
Dependent variable MUNI boardings

Date range Jun 2009 to Nov 2013

Predictive Variables
Base Model With Age Term

Type ARIMA(0,1,1)(0,1,0)12 ARIMA(0,1,1)(0,1,0)12

Description Lag Coef T-Stat Coef T-Stat

Moving average coefficient 1 -0.3092 -1.67 -0.4516 -2.26

Weekday service miles, 1000s 7971 2.57 11432 3.57

Weekday service miles on MUNI rail, 1000s -2777 -1.12 -3579 -1.59

Average bus runspeed 49853 1.94 37859 1.42

Employment in San Francisco 0.876 fixed 0.876 fixed

Percent of population age 65+ -155305 -2.15

Model Statistics
Log likelihood -453.56 -451.62

AIC 917.12 915.24
AICc 918.83 917.71
RMSE 15,401 14,667
Percent RMSE 3.09% 2.94%
Box-Pierce test p-value 0.873 0.622

population in the revised model. Specifically, the base model has a -14% unex-

plained trend, compared to the revised model with a -4.8% unexplained trend plus

a -8.2% trend explained by the age term, for a combined effect of -13%. Thus,

it appears that this age term can explain about 60% of the previously unexplained

decline in MUNI ridership.

This appears to be a valuable improvement to the model and to the analysis.

However, there is reason to remain sceptical, because the percent of the popula-

tion aged 65+ only changes from 14.0% to 14.3% over this three year period. Can

such a small change in age composition really affect transit ridership that much? In

examining this question, we consider two additional items. First, the ACS, which

is the source of the age share data, provides margins of error on their estimated

values. The margin of error on the percent of the population aged 65+ in San Fran-

cisco is 0.1%, so the change of 0.3% is beyond the margin of error. Second, we

consider the change in trips relative to the actual number of people in the age 65+

group. Between September 2009 and September 2013, the population aged 65+ in-
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creases from 113,604 to 119,698, for an increase of 6,094 persons in that age group.

According to Table 5.11, the age variable is associated with a decrease of 44,945

MUNI boardings. This implies that for each additional person aged 65+, there are

7.4 fewer MUNI boardings. Given that there are only 0.6 MUNI average weekday

boardings for each person living in San Francisco in 2013, the rate of 7.4 fewer

boardings per person aged 65+ appears to be unreasonably high.

While is difficult to be certain of the quantity, it does appear that population

composition effects, such as an ageing population, may be an important factor to

consider when predicting transit demand.

Table 5.11: Contributions to change in MUNI ridership, considering age effect: Sep 2009
to Sep 2013

Value Ridership Change

Description Lag Coef Sep-09 Sep-13 Absolute Percent

Weekday service miles, 1000s 11,432 57.75 54.62 -35,848 -6.6%

Weekday service miles on MUNI rail, 1000s -3,579 16.71 12.43 15,326 2.8%

Average bus runspeed 37,859 10.97 10.50 -17,794 -3.3%

Employment in San Francisco 0.876 544,587 615,119 61,786 11.3%

Percent of population age 65+ -155,305 14.0 14.3 -44,945 -8.2%

Unexplained trend 1,222,445 1,195,976 -26,469 -4.8%

Residual 172 12,779 12,607 2.3%

Total Ridership 547,166 511,829 -35,337 -6.5%

Table 5.12: Comparison of contributions to change in MUNI ridership, with and without
age effect: Sep 2009 to Sep 2013

Base Model With Age Term

Description Absolute Percent Absolute Percent

Weekday service miles, 1000s -24,995 -4.6% -35,848 -6.6%

Weekday service miles on MUNI rail, 1000s 11,892 2.2% 15,326 2.8%

Average bus runspeed -23,431 -4.3% -17,794 -3.3%

Employment in San Francisco 61,786 11.3% 61,786 11.3%

Percent of population age 65+ -44,945 -8.2%

Unexplained trend -76,552 -14.0% -26,469 -4.8%

Residual 15,962 2.9% 12,607 2.3%

Total Ridership -35,337 -6.5% -35,337 -6.5%
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5.7 Conclusions
This research has considered recent divergent trends in ridership on two San Fran-

cisco Bay Area transit systems. Between 2009 and 2013, BART ridership has in-

creased 17%, while MUNI bus ridership has decreased 6.5%. The research focuses

specifically on the 2009 to 2013 period where the most detailed data are available,

but these changes are part of a longer trend, where BART ridership has increased

50% between 1998 and 2013, while MUNI ridership is nearly identical to its 1998

value.

5.7.1 What is Driving the Ridership Divergence?

The preferred RegARIMA models were applied to determine the relative contribu-

tion of each descriptive variable to the change in ridership that occurred on each

system between 2009 and 2013. This provided evidence in favour or opposition to

six hypotheses that were proposed to explain the different trajectories of BART and

MUNI ridership.

The research found that different level-of-service changes and a shifting jobs-

housing balance were important contributing factors to the difference. Service and

fare changes contributed to 9% less MUNI ridership and 2% more BART ridership.

With respect to land use characteristics, we had hypothesised that suburban

growth exceeding urban growth would contribute to relatively higher growth in

BART ridership. When measured at a county level, the households, population

and workers do not become less centralised over this period, while the employment

actually becomes more concentrated in San Francisco. Together, employment and

its concentration in San Francisco drives a 11% increase in MUNI riders and a 12%

increase in BART riders, while no additional effect could be found for households,

workers and population. This data does not support the hypothesis of decentralised

growth.

The research did not find evidence in support of the next three hypotheses. We

hypothesised that MUNI bus trips had shifted to rail over this period, but found

evidence to suggest that cuts in rail had instead increased bus ridership. Increases

in car fuel cost do contribute to an increase in BART ridership, whereas no effect
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could be estimated for MUNI. The difference is small, though, contributing less than

1% additional BART ridership. Evidence was not found to support the hypothesis

that MUNI riders are being priced out of the city as San Francisco becomes more

expensive.

Similarly, the research did not find significant evidence in support of an “Uber

effect”, whereby a shift towards non-motorised and shared mobility modes causes a

drag on MUNI demand. After controlling for all the factors included in the model,

there is an unexplained downward trend in MUNI ridership, moving in the opposite

direction from the upward trend observed in commutes made by walk, bike, taxi or

other modes, but the relationship is weak.

The analysis shows that the biggest factor contributing to the divergent rid-

ership is an unexplained trend. In combination with the residual error, this trend

contributes to an 11% reduction in MUNI ridership versus a 3% increase in BART

ridership over the analysis period.

Going back to the author’s original motivation for this work, this analysis

shows that most of the growth in BART ridership can be attributed to factors that

should already be included in the regional travel demand model. It appears that the

source of the 2013 under-prediction of BART ridership observed during the seismic

retrofit project was most likely due to employment inputs in the model that did not

reflect recent growth, rather than an underlying change in the behaviour of young

people.

The interpretation of the unexplained trend is simply that something is causing

this change beyond what is already accounted for in the model. The literature review

(Section 5.2) provides some ideas from the types of explanations others have offered

in understanding observed travel trends. It may be that the change relates to the

introduction of a new mode (Uber and other shared mobility services) that cannot

be picked up at the resolution of the data available. It could be a cultural shift in

favour of active travel (walk and bike). It could be a demographic shift, or a shift in

the spatial distribution of land use below the county level.

One possible explanation that was explored in further detail was the possible
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effect of the changing age composition of the population. Additional model esti-

mations and applications showed that an increase in the percent of the population

age 65+ in San Francisco can explain about 60% of the previously unexplained de-

cline in MUNI ridership, with no similar effect on BART. While the small change in

age distribution leads to some uncertainty in this estimate, it appears that an ageing

population is an important factor to consider when predicting transit demand.

It is likely that there is some combination of factors causing the remaining

downward trend in MUNI ridership. This trend is large enough that it has important

implications to expected level of transit demand in the medium term, and warrants

further research to better understand.

5.7.2 Future Research

There are a few directions that future research on the topic can go.

The first would be to extend this analysis to 2016 or beyond, to determine

whether the trend persists, and whether a longer time series would allow significant

estimates for a broader range of variables. The practical challenge here is bureau-

cratic rather than technical. There are delays in the release of certain data sources,

such as the LEHD Origin-Destination Employment Statistics (LODES), and as staff

contacts who have provided data in the past change jobs, it is necessary to invest in

developing new relationships to gain access to other data.

Another direction is to attempt to replicate the findings in other, similar, cities.

London and New York both come to mind as major cities with high transit mode

shares, and technologically savvy populations that may be early adopters of shared

mobility services, as well as markets for active travel.

Third, it may be beneficial to attempt a panel data approach, as suggested in

the conclusions to Chapter 4.

5.7.3 Implications for Travel Forecasting

The large unexplained trends found in this research raise interesting questions about

the stability of models over time, and whether the constants and other parameters

can be expected to stay the same over time. One simple explanation is that the
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trend persists because some important variable is left out of the model, and if that

variable were included the trend would be more stable. It may be that full scale

travel models, estimated from disaggregate data, do a better in this regard because

they are able to incorporate more variables. However, for models estimated from

cross-sectional data, that data provides no indication as to the temporal stability of

the models parameters.

Fox [233] examined this issue in the context of travel surveys collected across

20 years in Toronto and Sydney. He found that for mode and destination choice

models, improving the model specification did tend to improve temporal transfer-

ability. Interestingly, models that accounted for tasted heterogeneity were found

to have a better fit against cross sectional data, but did not necessarily do better in

terms of temporal transferability.

A related means of addressing this issue may be to take advantage of multi-

year travel surveys, such as the UK National Travel Survey (NTS). Mode choice

models could be estimated with a mode-specific constant that varies by year. A

constant that has a significant and monotonically changing trend across years may

indicate that there is some underlying change not accounted for by the descriptive

variables otherwise included in the model. Such a model would probably work best

if the level-of-service data were also updated to be year specific, a process may

become less cumbersome as data such as GTFS can be used to facilitate network

development.

Broadly, this points to a situation where cross-sectional fit is not everything,

and there is a value in incorporating data that varies over time into the travel fore-

casting process. Further work is needed to better capture and process recently avail-

able time-varying data, as well as to sort out how they can best be used to improve

forecasts.





Chapter 6

Project-Level Applications

This thesis began, in Chapter 1, with a discussion of the value of ex-post evaluations

of transport project demand. Such studies are useful to the field of travel demand

forecasting, because they provide basis against which models can be compared for

their ability to replicate past changes, and they build a body of reference cases

against which to compare future forecasts [14].

Pratt [39] notes that most ex-post studies of transit change use a naive before-

and-after approach that is limited because it does not account for the statistical noise

in the data and can be highly dependent on the time periods chosen. The limit-

ing factor in terms of applying even moderately sophisticated methods is often the

cumbersome nature of assembling the required data, or in many cases, the lack of

foresight to collect the right data in the first place [234].

Chapter 3 describes a data mashing tool developed in an effort to address this

problem. It is focused on transit, and implemented for San Francisco as an exam-

ple. The software tool accumulates continuously collected data from from several

related sources, including the General Transit Feed Specification (GTFS) for the

schedules, transit Automated Vehicle Location (AVL) and Automated Passenger

Counter (APC) data, and transit smart card data. It combines them by expanding

the less complete data sources to the more complete data. Data from other Bay Area

transit systems are also included in the database, as are “drivers of demand” data.

By drivers of demand, we mean those data that describe something about changes

in the city that might drive changes in transit ridership. In addition, Chapter 3 noted
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the emerging trend towards performance based planning, and discusses how the data

tool may be useful in facilitating performance based planning.

Chapter 4 took advantage of the outputs of this system, and estimated time

series models of transit demand for the BART and MUNI systems in the San Fran-

cisco Bay Area. Chapter 5 went on use these models to understand the drivers of

changes in transit demand.

This chapter goes further in linking these chapters through several example

applications. It applies the models estimated in Chapter 4 for the purpose of ex-post

evaluation, and it applies those same models to generate short term forecasts useful

for establishing targets in the context of performance based planning. The goal is

an approach that provides a quality answer for a low incremental cost of analysis.

The remainder of this chapter is structured as follows.

Section 6.1 starts by introducing three methods for estimating ex-post ridership

changes. Then, three changes are evaluated with the time series based analysis: a

set of systemwide service cuts to the San Francisco Municipal Railway (MUNI) bus

system in 2010, a set of systemwide Bay Area Rapid Transit (BART) service cuts

in 2009, and the 2003 extension of BART to San Francisco International Airport

(SFO). For each change, the models are used to estimate the change in ridership

attributable to the service changes. This result is compared to the result that would

be obtained using two common methods of ex-post analysis: a naive before-and-

after calculation, and the application of published elasticities.

Section 6.2 begins with a short introduction to performance based planning.

Then, two examples are considered to demonstrate how short term forecasts from

these models may be useful in establishing reference points for project evaluations.

Both examples are pilot projects, where a target for a specific ridership change is

considered prior to the pilot implementation. The examples show that such targets

may be more or less difficult to achieve given pre-existing trends.

Finally, Section 6.3 summarises conclusions for both sets of analyses.

The contribution of this research is two-fold. First, it further highlights the lim-

itations of evaluation methods commonly used in practice, and demonstrates how
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time series models can be used to mitigate those limitations. Second, it demon-

strates how short term forecasts produced using the same set of time series models

may be valuable in defining appropriate performance targets for planning projects.

6.1 Ex-Post Applications

In this section, three examples of transit system changes are considered, and three

options are considered to measure the ridership change associated with each case.

The first is a before-and-after evaluation. In this approach, measurements are

taken before a project is implemented, and after its implementation. The difference

is the estimate of the change, sometimes with a qualitative discussion of poten-

tial confounding factors. The limitations of such an approach are well known, as

discussed by Higgins and Johnson [235]. The basic problem is that it can remain

unknown whether the change is attributable to the project, to some other external

factor, or to random noise. In addition, Olsson et al. [57] demonstrated that the

reference points selected for the before point-in-time and the after point-in-time can

affect the conclusions in ex-post evaluations of major rail projects. In spite of these

known limitations, such studies remain common, such as [29, 236, 237].

The second option is to apply elasticities reported in the literature. Such an

approach is simple to apply and can provide a quick estimate of the expected change

in demand associated with a change in service or price. Elasticities can be derived

using time series analysis, such as in [129, 179]. However, they are non-constant

and context specific, so selecting an appropriate elasticity to apply can be perilous.

Erhardt et al. [238] explore the range of elasticities encountered for different toll

road scenarios as the pricing scheme and level of competition vary. TRL Limited

provides detailed analysis and guidance on the use of elasticities as they relate to

transit demand [228], and elasticities are a core component of the application of

Transit Cooperative Research Program (TCRP) Report [39]. Both acknowledge the

limitations of such an approach, but the attention given to the topic makes it clear

just how common it is.

Of greatest interest to this study are the elasticities of transit demand with
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respect to changes in vehicle kilometres or vehicle miles. For the studies included

in TCRP 95, the elasticities of bus ridership with respect to a change in bus service

range from 0.33 to 1.34. The meta-analysis included in the TRL report shows the

range to be 0.10 to 0.74 in the short term, and 0.22 to 1.04 in the long term. The

evidence as it relates to rail is more sparse. TCRP 95 found a single study for

rail, based on the London Underground, which found the elasticity with respect

to a change in service to be 0.08, or about half the value for London buses [239].

TRL’s meta-analysis included three rail studies, and found the short run elasticities

to range from 0.65 to 0.90.

Wardman [240] provides a more extensive review and meta-analysis of time

elasticities of travel demand in the UK. The focus is on travel time, rather than

service miles, but there is evidence provided on headway elasticities, which is of

interest to us, because many of the changes we consider are service mile changes

that result in a change in headway, rather than an extension (the BART to SFO ex-

tension being a notable exception). Wardman finds the average headway elasticity

to be -0.29 for bus and -0.26 for train. Graham et al [241] derived a long-run elas-

ticity of metro ridership with respect to changes in service frequency of (measured

as rail car kilometres per route kilometre) of 0.51. Litman [242] also assembles a

very extensive set of travel demand elasticities from a number of studies. He reports

a range of 0.6 to 1.0 for the elasticity of transit demand with respect to changes in

service miles. A number of other examples can be found, but for the purpose of this

analysis, we need a reasonable range for comparison, and accept these as a point of

comparison.

Fare elasticities are also relevant to one of the examples. TCRP 95 finds a range

of published transit fare elasticities from -0.1 to -0.6, with a “common rule” value of

-0.3. TRL reports the overall bus fare elasticity as -0.41 and the overall metro fare

elasticity as -0.29, both reported as short run values. Wardman [243] provides a very

extensive review and meta-analysis of price elasticities for surface travel demand in

the UK. He finds that the average price elasticity of the studies reviewed is -0.46

for bus, -0.28 for underground and -0.86 for rail. The bus and underground values
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are comparable to TRL’s findings, with a higher rail elasticity. For our purposes,

we consider BART to be more comparable to underground than to rail, because the

travel market is intra-urban, the rider experience is more comparable and the fare

structure is similar. Litman also reports that urban rail (such as Chicago’s L) fare

elasticities are often lower than bus fare elasticities.

The final option considered is to estimate and apply regression models using

time series data. This allows the project effect to be estimated while controlling

for factors, such as the change in employment, that may also affect demand. In

this research, the preferred models from Chapter 4 are used as the starting point,

which take the form of Regression with ARIMA Errors (RegARIMA) models. The

models are applied to evaluate the change using three possible approaches. One

simply applies the change in the value of service variables in combination with

the existing model coefficients to estimate the change in demand. The other two

consider that the specific service variables are likely to be a coarse representation

of the actual service change, and estimate a constant associated with the change to

capture the effect not fully explained by a variable such as service miles. The two

differ in whether all variables are re-estimated or only the constant.

6.1.1 2010 MUNI Service Cuts

In May 2010, MUNI implemented system-wide service cuts in an effort to close a

budget deficit [185]. The cuts reduced transit frequencies, particularly in the late

night period, and amounted to an approximately 10% service reduction. Service

was partially restored in September 2010. Related work used the data produced by

the data fusion tool developed in Chapter 3 to explore the implications of these cuts

by comparing specific months before and after the cuts were implemented [117,

244]. Here, the time series models estimated in Chapter 4 are used to estimate the

ridership effect of those cuts, which is compared to the estimated ridership effect

using before-and-after comparisons and using an elasticity calculation.

Table 6.1 shows three RegARIMA models estimated to capture the effects of

these service cuts, which went into effect on 8 May 2010. The base model is identi-

cal to the preferred model estimated in Chapter 4. The constrained and re-estimated
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models follow the same specification, but add one additional variable: a constant

for the service change. This constant is set to one for each month starting from

May 2010, and zero for each month prior to May 2010. In the constrained model,

the regression coefficients previously included in the model are fixed, and only the

constant and the ARIMA terms are re-estimated. In the re-estimated model, all

coefficients are re-estimated.

The column labelled “Change in Value” shows the change in the value of model

variables associated with the service cuts. The cuts are associated with a reduction

of 5,582 weekday bus service miles and 2,984 weekday MUNI rail service miles.

The constant for the service change switches from zero to one. The final row of

the table shows the estimated effect of the service change. This is calculated as the

product of the change in variable values times the model coefficients.

Table 6.1: Estimated effect of MUNI 2010 service cuts

Model Characteristics
Dependent variable MUNI boardings

Type ARIMA(0,1,1)(0,1,0)12

Estimation date range Jun 2009 to Nov 2013

Service change date 8 May 2010

Predictive Variables
Change

in
Base Model Constrained Re-estimated

Description Lag Value Coef T-Stat Coef T-Stat Coef T-Stat

Moving average coefficient 1 -0.3092 -1.67 0.2991 -1.80 -0.2938 -1.52

Weekday service miles, 1000s -5.582 7971 2.57 7971 fixed 7347 1.84

Weekday service miles on MUNI
rail, 1000s

-2.984 -2777 -1.12 -2777 fixed -2800 -1.12

Average bus runspeed -0.34 49853 1.94 49853 fixed 49540 1.94

Employment in San Francisco 0.876 fixed 0.876 fixed 0.876 fixed

Constant for service change 1 -3319 -0.17 -7247 -0.25

Model Statistics
RMSE 15,401 15,397 15,391
Percent RMSE 3.09% 3.09% 3.09%
Box-Pierce test p-value 0.873 0.820 0.808

Effect of Service Change
Estimated total effect -53,158 -56,477 -56,748

The results of the constrained model estimation show a coefficient of -3,419

on the service change constant. This implies that the actual change in ridership

is slightly worse than would be implied simply by the change in service miles on
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bus and rail. It is logical to expect that the exact schedule, routes cut, and other

details would affect the ridership, so it is reasonable that there may be some non-

zero constant. The t-statistic for this constant is only -0.17, though, indicating that

it is not significantly different from zero. The remaining regression coefficients are

fixed, and the moving average coefficient only changes slightly.

When the full model is re-estimated, the service change constant is higher,

at -7,247, although the t-statistic indicates that it is still not significantly different

from zero. This higher service change constant is offset by a lower coefficient on

weekday service miles. Both are changing at the same time, so by capturing some

of the effect in the constant, the service miles coefficient is able to adjust so it better

matches changes at other points in time.

When the change in variable values are applied to the base model, the results

indicate that the service change is associated with a reduction of 53,200 riders for an

average weekday. When applied with the constrained model, the estimated effect is

a reduction of 56,500 riders. The difference between the two is the inclusion of the

constant. The re-estimated model implies a reduction of 56,700 riders. These three

approaches provide a relatively narrow range of estimated effects, so it appears that

it may be reasonable to use any, without a large risk of fundamentally changing our

understanding of the effect of the change. These estimated changes represent an

approximately 12% reduction in ridership associated with a 10% service cut.

As a point of comparison, Table 6.2 shows a comparison of ridership before

and after the May 2010 service cuts. To avoid capturing seasonal effects, the year-

over-year difference is shown for each of 10 months before the cuts, and each of

10 months after the cuts. Depending on which month is selected, the difference

ranges from -44,000 riders to +6,000 riders. The average over the 10 month period

is -23,000. The variation in the difference by month highlights how challenging it

can be to report meaningful before-and-after results.

Next, elasticities are used to calculate the change in ridership associated with

these service cuts. Table 6.3 reports the results of these calculations. The pub-

lished elasticities of bus ridership with respect to service miles range from 0.10 to
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Table 6.2: Before and after calculations for MUNI 2010 service cuts

Date MUNI Boardings

Before After Before After Difference
Jun-09 Jun-10 522,835 485,692 -37,144
Jul-09 Jul-10 510,301 491,666 -18,635
Aug-09 Aug-10 514,248 493,783 -20,465

Sep-09 Sep-10 547,166 517,500 -29,666

Oct-09 Oct-10 528,611 519,322 -9,290
Nov-09 Nov-10 524,436 494,313 -30,123
Dec-09 Dec-10 467,521 458,600 -8,920
Jan-10 Jan-11 484,088 490,064 5,976
Feb-10 Feb-11 529,754 489,776 -39,979
Mar-10 Mar-11 533,800 489,976 -43,824

10 Month Average 516,276 493,069 -23,207

1.34 [228, 39], implying a ridership change from -5,000 to -67,000. The before-

and-after results (Table 6.2) fall within this range for all months, and the estimated

change (Table 6.1) is at the high end of this range. This is a wide range, so it may

not be worth bragging about the model’s ability to fall within this range.

Table 6.3: Elasticity calculations for MUNI 2010 service cuts

Starting Ridership 514,248

Low High

Percent change in service miles -9.67%

Published elasticity 0.10 1.34

Calculated ridership change -4,971 -66,605

The corollary question becomes: if the RegARIMA model predicts a different

effect than simple before-and-after tabulations, what accounts for the difference?

This question is examined in a manner similar to the analysis of the factors con-

tributing to changes in ridership presented in Chapter 5.

Table 6.4 summarises the factors contributing to the change in ridership be-

tween August 2009 and August 2010. The August to August change was selected

because its change is most similar to the average change over the 10 month pe-

riod. The re-estimated model from Table 6.1 is used to calculate these changes.

The change in weekday service miles and the change in weekday service miles on

MUNI rail are the two factors associated with the May 2010 service cuts. The
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other factors are unrelated. The analysis shows that the change associated with the

May 2010 service cuts is -64,000, but that this is partially offset by an increase of

28,000 riders associated with other explained factors in the model, and an increase

of 17,000 associated with an unexplained trend and the random variation. This anal-

ysis suggests that if not for the service cuts, MUNI ridership would have increased.

The total change in ridership between the two months is -20,000.

Table 6.4: Contributions to change in MUNI ridership: Aug 2009 to Aug 2010

Value Ridership Change

Description Lag Coef Aug-09 Aug-10 Absolute Percent

Weekday service miles, 1000s 7,347 57.75 52.05 -41,921 -8.2%

Weekday service miles on MUNI rail, 1000s -2,800 16.71 13.28 9,616 1.9%

Average bus runspeed 49,540 10.94 10.60 -16,844 -3.3%

Employment in San Francisco 1 541,409 548,146 5,902 1.1%

Constant for service change -7,247 0 1 -7,247 -1.4%

Unexplained Trend -879,378 -844,874 34,504 6.7%

Residual -144 -4,619 -4,475 -0.9%

Associated with May 2010 service cuts -56,396 -11.0%

Associated with other explained factors 5,902 1.1%

Associated with unexplained trend or random variation 30,029 5.8%

Total Ridership 514,248 493,783 -20,465 -4.0%

6.1.2 2009 BART Service Cuts

In 2009 BART faced a budget deficit [245], and chose to meet that deficit with a

combination of a fare increase and service cut [246]. The fare increase was a 6.1%

adjustment implemented on July 1, 2010. The service cuts were a decrease in train

frequency, amounting to approximately 5% less overall service, implemented on

September 14, 2009.

Table 6.5 shows three RegARIMA models estimated to capture the effects of

the 2009 BART service cuts and fare increase. The base model is identical to that

estimated in Chapter 4, while the constrained and re-estimated models include a

constant for the service change. Because the cuts take effect halfway through the

month, the value of the constant term is set to 0.5 for September 2009, one for all

months after September 2009, and zero for all months prior to September 2009. The

constant is specified with a 12-month distributed lag, as defined in Section 4.3.6.
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This means that 1/12th of the coefficient value is added each month, up to a max-

imum of 12 months. It is consistent with the lag in changes to service miles and

stations used in the broader model estimation.

For the constrained model, the estimated service change constant is -867, in-

dicating that the ridership effect of these cuts is slightly worse than would be ex-

pected purely from the service change. This constant is not significantly different

from zero, however. The re-estimated model produces a larger constant, offset by a

somewhat smaller service miles coefficient. The constant in the re-estimated model

is still not significant.

The change in values associated with these service cuts are a reduction of 1,531

service miles, fare increase of $0.22, and the service change constant. The estimated

total effect of these service changes ranges from -8,700 riders for the base model to

-9,900 riders for the re-estimated model. For a 5% cut in service miles and a 6%

increase in fares, BART ridership is reduced by between 2.5% and 2.9%. This is a

lesser effect than shown for MUNI, which may be because there is less competition

of other modes with BART. It is consistent with previous evidence from London of

the relative elasticities of bus and rail ridership with respect to service changes [46].

Table 6.5 shows a comparison of BART ridership before and after the Septem-

ber 2009 service cuts. Here, the values in each month are reported for the 10 month

period prior to the change, compared to the 10 month period starting on year af-

ter the changes. This delay allows the lagged effect to be incorporated. This table

shows that the before-and-after difference ranges from -25,000 riders to +16,000

riders, with an average change of -6,200 riders. The broad range of changes makes

it more challenging to look at these data and determine what the most appropriate

estimate of the change might be.

Table 6.7 shows the application of elasticities to calculate the ridership effect

of these 2009 BART service cuts. The published elasticities for urban rail rider-

ship with respect to changes in service miles range from 0.08 to 0.90 [228, 39].

These elasticities correspond to a ridership change of between -1,500 and -16,700.

The published fare elasticities range from -0.10 to -0.60 [228, 39]. The total rider-
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Table 6.5: Estimated effect of BART 2009 service cuts

Model Characteristics
Dependent variable BART boardings

Type ARIMA(0,1,2)(0,1,1)12

Estimation date range Jan 2001 to Mar 2015

Service change date 14 Sep 2009

Predictive Variables
Change

in
Base Model Constrained Re-estimated

Description Lag Value Coef T-Stat Coef T-Stat Coef T-Stat

Moving average coefficient 1 -0.570 -5.08 -0.571 -7.23 -0.579 -4.57

Moving average coefficient 2 -0.283 -2.74 -0.281 -3.34 -0.285 -2.62

Seasonal moving average coeff. S1 -0.660 -8.44 -0.658 -8.96 -0.659 -8.34

Weekday service miles, 1000s D(0,12) -1.531 2712 2.07 2712 fixed 2400 1.53

Number of Stations D(0,12) 5472 5.18 5472 fixed 5515 5.31

Employment in 4-county area 0.2027 10.96 0.2027 fixed 0.2005 9.69

Percent of 4-county employment in SF 8099 2.10 8099 fixed 8496 1.83

Cash fare (2010 $) 0.22 -20795 -2.50 -20795 fixed -20875 -2.41

Average car fuel cost (2010 $/mile) 86312 2.74 86312 fixed 89439 2.70

Days with a BART strike -19010 -21.0 -19010 fixed -18999 -20.80

Constant for service change D(0,12) 1 -867 -0.24 -1709 -0.35

Model Statistics
RMSE 4923 4923 4920
Percent RMSE 1.42% 1.42% 1.42%
Box-Pierce test p-value 0.207 0.162 0.154

Effect of Service Change
Estimated total effect -8,685 -9,552 -9,934

Table 6.6: Before and after calculations for BART 2009 service cuts and fare increase

Date BART Boardings

Before After Before After Difference
Sep-08 Sep-10 379,996 354,579 -25,417

Oct-08 Oct-10 370,502 356,545 -13,957
Nov-08 Nov-10 364,329 353,502 -10,827
Dec-08 Dec-10 351,130 323,669 -27,461
Jan-09 Jan-11 344,786 334,045 -10,741
Feb-09 Feb-11 348,046 346,196 -1,850
Mar-09 Mar-11 346,658 343,971 -2,687
Apr-09 Apr-11 347,237 352,160 4,923

May-09 May-11 342,394 352,052 9,658

Jun-09 Jun-11 339,133 355,436 16,303

12 Month Average 353,421 347,215 -6,205
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ship effect reflects the combination of both. The estimated effects in Table 6.5 fall

towards the low to middle part of this range. The average before-and-after calcula-

tions shown in Table 6.5 are towards the lower end of this range.

Table 6.7: Elasticity calculations for BART 2009 service cuts and fare increase

Starting Ridership 348,046

Low High

Percent change in service miles -5.33%

Published service elasticity 0.08 0.90

Calculated ridership change -1,485 -16,706

Percent change in fares 6.10%

Published fare elasticity -0.10 -0.60

Calculated ridership change -2,123 -12,738

Total ridership change -3,608 -29,444

Table 6.8 shows the factors contributing to the change in BART ridership be-

tween March 2009 and March 2011. March was selected as the month closest in

value to the 10-month average. This analysis is based on the re-estimated model,

shown in Table 6.5. It indicates that the ridership change associated with the service

cuts is -9,900. Because the fare values are adjusted for inflation, the inflation effect

is reported separately from the July 2009 fare increase. In total, the fare increase is

only slightly larger than the effect of inflation over the two year period. Explained

factors, beyond the service cut and fare increase, contribute to a relative increase in

ridership, offsetting about half the policy effect. The unexplained trend and residual

contribute towards some additional relative increase. The total effect is a reduction

of 4,000 BART riders.

6.1.3 2003 BART SFO Extension

After a planning process that dates to the original inception of the system in the

1960s, BART opened an 8.7 mile extension to SFO in June 2003 [247]. In addi-

tion to a station at SFO, it included three additional stations in San Mateo County,

just south of San Francisco. Two years into its operation, ridership on the exten-

sion was lower than forecast, and operational adjustments were made in an effort to

contain costs [248]. A few studies have examined conducted retrospective evalua-

tions of this extension in varying degrees of detail. Shortly after its opening, West
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Table 6.8: Contributions to change in BART ridership: Feb 2009 to Feb 2011

Value Ridership Change

Description Lag Coefficient Mar-09 Mar-11 Absolute Percent

Weekday service miles, 1000s D(0,12) 2400 28.71 27.17 -3,692 -1.1%

Number of Stations D(0,12) 5515 43.00 43.29 1,626 0.5%

Employment in 4-county area 0.2005 1,865,020 1,812,752 -10,480 -3.0%

Percent of 4-county employment in SF 8496 29.86 30.28 3,593 1.0%

Cash fare (2010$): Inflation before change -20875 3.42 3.37 1,159 0.3%

Cash fare (2010$): Fare change -20875 3.37 3.58 -4,550 -1.3%

Cash fare (2010$): Inflation after change -20875 3.58 3.45 2,718 0.8%

Average car fuel cost (2010 $/mile) 89439 0.10 0.17 6,335 1.8%

Days with a BART strike -18999 0 0 0 0.0%

Constant for service change D(0,12) -1709 0 1 -1,709 -0.5%

Unexplained Trend -521,516 -519,410 2,106 0.6%

Residual -1,519 -2,697 -1,178 -0.3%

Associated with Sep 2009 service cuts -9,951 -2.9%

Associated with other explained factors 4,951 1.4%

Associated with unexplained trend or random variation 927 0.3%

Total Ridership 348,046 343,971 -4,073 -1.2%

and Herhold [249] compared forecasts from various stages of planning to actual

ridership. They found that in the first month after opening, ridership specifically

at the SFO BART station “mostly matched recent expectations.” These levels were

not maintained, however, as subsequent research reported a drop in ridership by

December 2003 [250]. That latter analysis also focused specifically on the SFO

station. It compared the air passenger mode shares using BART to those of other

comparable systems, and found them to be in line with what might be expected.

Freeman et al. [247] and Mason [251] each examined the planning process that led

to the selected design and found that the complexity of that planning process and

the trade-offs made in the political process led to a design that may have been less

than ideal. Together, these two studies provide an excellent overview of the history

of the project and the factors involved in the decision making process.

This analysis adds to that existing knowledge base by applying the RegARIMA

models developed in Chapter 4 to estimate the ridership increase associated with the

extension, and distinguish it from other background factors that are changing over

this period. In doing so, it provides an opportunity to validate the time series models
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by comparing the predicted ridership difference to the entries and exits specifically

at the four new stations.

Table 6.9 shows the three RegARIMA models estimated to capture the rider-

ship effect of the BART extension to SFO. The extension is associated with four new

stations and an increase of 1,517 service miles, as shown in the change in value col-

umn. The constrained model shows a positive, but insignificant constant associated

with the service change. The re-estimated model shows a larger positive constant,

although it is still not significant. There is an associated decrease in the size of the

service miles and number of stations coefficients in the re-estimated model. As with

the models above, the constant is specified with a 12 month distributed lag.

These model results indicate that the ridership increase associated with the

SFO extension is between 26,000 and 27,000 riders. This is approximately a 9%

ridership increase associated with a 6% increase in service miles and a 10% increase

in the number of stations.

Table 6.10 shows the BART ridership before and after the SFO extension. To

account for lagged effects, the after period does not begin until 12 months after the

opening of the extension. These data show that the increase ranges from 6,000 riders

to 27,000 riders, depending on the month. The average change over the 12 month

periods is 14,000 riders. February is the month closest to the 12-month average.

As a second point of reference, the station level passenger entries and exits

were tabulated for the new stations [143]. These data show 20,500 entries and exits

on the new stations for an average weekday in February 2005. By February 2010,

there were 28,400 entries and exits at these four stations, and by February 2015

it they had increased to 30,500. The value predicted by the RegARIMA models

is larger than the 2005 station-specific ridership, and slightly lower than the 2010

station-specific ridership. The models are specified with additive variables, which

constrains the estimated ridership change to a single value. As a future test, it would

be interesting to test whether a multiplicative term does a better job of capturing the

ridership trend on the SFO line.

All of these values, however, are much lower than the forecasts included in the
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Table 6.9: Estimated effect of BART SFO extension

Model Characteristics
Dependent variable BART boardings

Type ARIMA(0,1,2)(0,1,1)12

Estimation date range Jan 2001 to Mar 2015

Service change date 22 Jun 2003

Predictive Variables
Change

in
Base Model Constrained Re-estimated

Description Lag Value Coef T-Stat Coef T-Stat Coef T-Stat

Moving average coefficient 1 -0.5701 -5.08 -0.569 -7.20 -0.563 -5.51

Moving average coefficient 2 -0.2827 -2.74 -0.278 -3.22 -0.267 -2.74

Seasonal moving average coeff. S1 -0.6603 -8.44 -0.658 -8.95 -0.658 -8.53

Weekday service miles, 1000s D(0,12) 1.517 2712 2.07 2712 fixed 2358 1.64

Number of Stations D(0,12) 4 5472 5.18 5472 fixed 3176 1.08

Employment in 4-county area 0.2027 10.96 0.2027 fixed 0.2076 10.87

Percent of 4-county employment in SF 8099 2.10 8099 fixed 7663 2.25

Cash fare (2010 $) -20795 -2.50 -20795 fixed -22673 -2.66

Average car fuel cost (2010 $/mile) 86312 2.74 86312 fixed 80085 2.47

Days with a BART strike -19010 -21.0 -19010 fixed -19055 -21.26

Constant for service change D(0,12) 1 1074 0.27 11264 0.85

Model Statistics
RMSE 4923 4923 4915
Percent RMSE 1.42% 1.42% 1.42%
Box-Pierce test p-value 0.207 0.169 0.187

Effect of Service Change
Estimated total effect 26,002 27,076 27,544

final 1996 environmental impact statement (EIS) for the project, which projected

69,000 daily riders by 2010 [249]. To be fair, the forecasters during the booming

economy of the 1990s would not have expected 2010 Bay Area employment to be

only marginally higher than its 1996 level, and nearly 10% lower than in 2000 [210],

but this only serves to further highlight the challenges of long-term forecasting for

major infrastructure projects.

Published elasticities were used to calculate the ridership effect of the BART

extension to SFO, using the same elasticities as in the previous sections. Specific

elasticities were not available for urban rail extensions, so the increase in service

miles was used instead, although it is admittedly a crude proxy. Table 6.11 shows

the result, which indicates a ridership increase of between 1,400 and 15,800 pas-

sengers. If the same elasticities were applied to the 10% increase in the number
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Table 6.10: Before and after calculations for BART SFO extension

Date BART Boardings

Before After Before After Difference
Jun-02 Jun-04 302,730 308,793 6,063
Jul-02 Jul-04 300,921 308,190 7,269
Aug-02 Aug-04 296,473 304,724 8,251

Sep-02 Sep-04 309,640 323,236 13,596

Oct-02 Oct-04 303,796 315,753 11,957
Nov-02 Nov-04 294,360 313,975 19,615
Dec-02 Dec-04 282,622 294,788 12,166
Jan-03 Jan-05 288,638 297,524 8,886
Feb-03 Feb-05 295,525 310,053 14,528
Mar-03 Mar-05 296,030 310,722 14,692
Apr-03 Apr-05 292,949 319,649 26,700

May-03 May-05 289,681 315,888 26,207

12 Month Average 296,114 310,275 14,161

of BART stations, the estimated ridership increase would be between 2,400 and

27,000 passengers. The monthly before-and-after differences generally fall within

these ranges, while the estimated effect in Table 6.9 is at the high end of the lat-

ter range. It is logical that constructing new track would have a larger effect than

simply adding service to existing track.

Table 6.11: Elasticity calculations for BART SFO extension

Starting Ridership 295,525

Low High

Percent change in service miles 5.94%

Published elasticity 0.08 0.90

Calculated ridership change 1,404 15,792

Table 6.12 shows the factors contributing to the change in BART ridership

between February 2003 and February 2005. The analysis uses the re-estimated

model from Table 6.9. The change stations and the constant are associated with the

SFO extension. The service miles term is broken into two components. When the

SFO extension opened in 2003, the BART service miles increased from 25,550 to

27,090. Service was later cut, in 2004, back to 26,190 service miles on an average

weekday. For the purpose of this analysis, the 2003 increase is treated as a part of

the project, and the 2004 cut is treated an unrelated measure.
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The analysis shows that the increase associated with the SFO extension is

28,000 riders, while there is a decrease of 14,000 associated with other explained

factors. About 60% of the drag on ridership is associated with a decline in employ-

ment and in the share of employment in San Francisco. The other 40% is associated

with factors within BART’s control: the service cuts in 2004 and a fare increase

also in 2004.

Table 6.12: Contributions to change in BART ridership: Feb 2003 to Feb 2005

Value Ridership Change

Description Lag Coefficient Feb-02 Feb-05 Absolute Percent

Weekday service miles, 1000s: SFO
extension

D(0,12) 2358 25.55 27.09 3,636 1.2%

Weekday service miles, 1000s: Other cuts D(0,12) 2358 27.09 26.19 -2,116 -0.7%

Number of Stations D(0,12) 3176 39.00 43.00 12,702 4.3%

Employment in 4-county area 0.2076 1,876,808 1,845,497 -6,500 -2.2%

Percent of 4-county employment in SF 7663 28.26 28.01 -1,915 -0.6%

Cash fare (2010 $) -22673 3.29 3.46 -3,837 -1.3%

Average car fuel cost (2010 $/mile) 80085 0.11 0.11 198 0.1%

Days with a BART strike -19055 0 0 0 0.0%

Constant for service change D(0,12) 11264 0 1 11,264 3.8%

Unexplained Trend -426,070 -427,950 -1,881 -0.6%

Residual -2,559 418 2,977 1.0%

Associated with SFO extension 27,602 9.3%
Associated with other explained factors -14,170 -4.8%

Associated with unexplained trend or random variation 1,096 0.4%

Total Ridership 295,525 310,053 14,528 4.9%

6.2 Forecasting Applications
In this section, two examples are considered to demonstrate how the time series

models estimated in Chapter 4 can be applied to generate short-term forecasts that

may assist in establishing reference points against which projects can be evaluated.

Such applications are of particular importance as performance-based planning be-

comes more common.

In performance based planning, planning goals and objectives are aligned with

specific performance measures against which projects and policies can be evalu-

ated. A range of examples are provided in [151]. Recent federal transportation

legislation establishes performance based planning as central to the broader plan-
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ning process [32].

The San Francisco Municipal Transportation Agency (SFMTA) strategic

plan [252] is a good example of performance based planning. SFMTA oversees

transport in San Francisco, and in that role it both operates the MUNI transit system,

and is responsible for parking and traffic. The strategic plan reflects this combined

role, and sets four strategic goals:

1. Create a safer transportation experience for everyone.

2. Make transit, walking, bicycling, taxi, ridesharing, and carsharing the pre-

ferred means of travel.

3. Improve the environment and quality of life in San Francisco.

4. Create a workplace that delivers outstanding service.

Each goal is associated with a set of performance indicators and associated

targets, which are regularly monitored and reported [253]. For goal two, which is

of the most relevance here, the performance indicators and targets are:

1. Improve the customer satisfaction rating by 0.5 points for each budget cycle.

2. Eliminate transit bunches and gaps for 25% of ridership.

3. Reduce the private auto mode split to below 50%.

4. Maintain a 75% to 85% occupancy of public metered parking spaces in the

areas managed by the SFPark system.

The mobility goals do not explicitly consider transit ridership. Instead, it is

implicit in the broader goal of reducing the private auto mode split. Given that

recent trends in MUNI ridership (observed and discussed in Chapter 5) show an

unexplained downward trend in MUNI ridership, but growth in commutes by walk,

taxi, bike and other modes, this is perhaps both a logical and an achievable goal.

More broadly, this highlights a key challenge of performance based planning:

that a range of factors beyond the control of the planning agency will affect whether

or not a target is met. It is possible that either pre-existing trends can be used as a
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basis for declaring success for an intervention, or that trends in the opposite direc-

tion can undermine the perception of what is otherwise a successful intervention.

Instead, the goal should be to set targets that meaningfully inform or promote the

development of a better transport system. Because the planning process implies that

targets should be set a priori, short term forecasts of performance with no interven-

tion can be a valuable tool to help set targets. This is further illustrated at the project

level with two examples of pilot projects in the Bay Area.

6.2.1 MUNI 5L Fulton Pilot Project

This example considers a route-level service change rather than a major set of

system-level changes. In this example, MUNI implemented a pilot project for the

5L Fulton line aimed at increasing bus speed and improving ridership. One goal of

the pilot project was to increase ridership on the 5L by a fixed percentage. The anal-

ysis presented here considers the the rate of growth in MUNI ridership that could

be expected systemwide, and compares that growth to the target ridership increase

for the pilot.

In October 2013, the San Francisco Municipal Transportation Agency

(SFMTA) opened the 5L Fulton pilot project [254]. Operating in a busy east-west

transit corridor traversing the city, the project seeks to reduce crowding, reduce

travel times and improve reliability. As shown in Figure 6.1 the core change is

that the existing 5 route is spilt into two parallel bus routes. The 5 makes all stops,

but only runs for a portion of the corridor, while the new 5L runs the full length

of the corridor, but skips some stops where it overlaps with the 5. Thus, the 5L is

designed to offer faster service to those who travel further. In addition a series of

complementary physical changes are made in the corridor, including the removal of

some bus stops altogether, changes to the location of other stops relative to signals

and reducing the number of travel lanes in a section of the corridor.

The 5L is important because it serves as a test for similar changes that are

planned throughout the city as part of the Transit Effectiveness Project [255]. Prior

to the pilot launch, SFMTA established an evaluation metric for the project, related

to ridership [256]. The metric was defined as:
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Figure 6.1: Overview of service for 5L Fulton pilot project [254]

• Ideal: Beyond six months after pilot implementation, when compared with

observations made prior to pilot implementation, ridership increases by 3%.

• Meets Standard: Beyond six months after pilot implementation, ridership in-

creases by less than 3%.

• Substandard: Beyond six months after pilot implementation, when compared

with observations made prior to pilot implementation, ridership does not in-

crease.

In establishing such metrics, it would be useful to put them in the context of the

ridership change that would otherwise be expected. To do this, the preferred MUNI

RegARIMA models (from Table 4.15) were applied to forecast the MUNI bus rid-

ership from December 2013 through March 2015. If more detailed results were

desired, a similar set of forecasts could be calculated for a time series specific to the

5/5L route. For these forecasts, the observed employment in San Francisco County

is used, taken from the Quarterly Census of Employment and Wages (QCEW). The
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level-of-service characteristics (service miles, rail service miles and runspeed) are

extended from the last value of the observed time series, assuming no change.

Figure 6.2 shows a plot of the observed time series in black, and the forecast

time series in blue. Table 6.13 shows a comparison of the modelled MUNI ridership

in Autumn 2012 through Winter 2013, compared to the modelled ridership in Au-

tumn 2014 through Winter 2015. The model predicts that on average, the ridership

in the latter period is 3.9% lower than the earlier period. This indicates that for the

pilot project to meet the standard of a ridership increase greater than 0% and less

than 3%, the 5 and 5L would need to outperform what is expected from the system

as a whole.

Figure 6.2: MUNI ridership forecast

One caveat to this analysis is that there is a question as to what the best point

of comparison is for ridership trends on a particular route. In other words, what is

the control group? Graham [134] considers the issue of control groups and causal

inference in transport. He notes that transport interventions tend not to be randomly

assigned (unless you think very poorly of the political decision making process in-

volved), so the evaluation is different than in fields like medicine where randomised

control trials are the norm. The selection of a control group is ultimately a matter
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Table 6.13: Baseline forecast of MUNI ridership

Date MUNI Boardings

Before After Before After Difference Pct Diff
Sep-12 Sep-14 523,525 464,049 -59,475 -11.4%

Oct-12 Oct-14 513,029 491,988 -21,041 -4.1%
Nov-12 Nov-14 496,804 487,496 -9,307 -1.9%
Dec-12 Dec-14 475,040 501,018 25,979 5.5%
Jan-13 Jan-15 500,984 482,895 -18,089 -3.6%
Feb-13 Feb-15 494,449 460,621 -33,828 -6.8%

6 Month Average 500,638 481,345 -19,294 -3.9%

of judgement. In this situation, we are treating the system-level trends as a control,

which is an improvement over having no control. However, it may be preferable to

instead identity specific routes that have similar characteristics to the 5 and 5L: serv-

ing downtown San Francisco from a residential area with similar levels of growth

and development. One option is the parallel routes, as discussed in the next para-

graph. While comparable in many ways, these have their own limitation in that they

are not independent: improvements to the 5 and 5L may cause some diversion from

parallel routes. Acknowledging these limitations, we move forward to consider the

actual changes.

In reality, on weekdays when both are in service, ridership on the 5 and 5L

increased by 17% between the period from Autumn 2012 through Winter 2013 to

Autumn 2014 through Winter 2015 [256]. Ridership on two parallel routes, the 21

Hayes and 31 Balboa, decreased by 6% and increased by 1%, respectively. This

change clearly meets the ideal ridership metric, whether the reference point is no

change or a 3.9% decrease.

6.2.2 BART Perks Pilot Project

As ridership has increased in recent years, BART patrons face heavily crowded

trains, particularly on transbay trains with passengers alighting in downtown San

Francisco [257]. A major capacity expansion would involve constructing a second

transbay tube, at a cost of up to $12 billion [205]. In an effort to explore lower cost

interventions to mitigate the crowding issues, in March 2016, BART launched a six-

month pilot project called BART Perks [258]. Administered by the Bay Area tech
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startup Urban Engines [259], BART Perks involves recruiting BART commuters to

sign up for the program in which they will download a smartphone app, and link

their Clipper Card to their profile. They will then be offered incentives to shift

their commute out of the peak period. The incentives scheme that Urban Engines

offers is based on research conducted by the founders of Urban Engines at Stanford

University [260, 261].

From a planning perspective, there are two questions for which this research is

relevant. First, are the biases in Clipper Card use problematic for the project imple-

mentation? Second, how will the effectiveness of the pilot project be evaluated?

In terms of the biases, it was observed in Chapter 2 that minorities and low

income travellers are less likely to use a Clipper Card as a means of fare payment.

For a program that requires the use of a Clipper Card for the purpose of monitor-

ing peak travel, as well as a smartphone app to participate, these biases raise two

further questions. First, does it limit the effectiveness of the program to exclude

low-income travellers who could reasonably be expected to have a lower value of

time and therefore be more responsive to incentives? Second, does it create an eq-

uity problem to give incentives exclusively to a population that tends to be higher

income and more white? We do not answer these questions here, but merely raise

them as issues to be considered.

For the evaluation, it is important to consider how to measure the effectiveness

of the pilot in a way that would help BART decide whether or not to continue the

program. In January 2016, I engaged with the planners at the San Francisco County

Transportation Authority (SFCTA) and their contractor responsible for evaluating

the pilot. In early discussions with Urban Engines and BART, several performance

metrics had been discussed, including the number of enrollees, and a possible target

of a 5% reduction in peak period BART trips to the four most crowded stations. It

was noted that the former only incentivised program enrolment and not behavioural

change, while the latter could be challenging in the context of overall ridership

growth.

To gain further insight into the expected baseline growth, the preferred BART



292 Chapter 6. Project-Level Applications

RegARIMA model was applied to forecast the system-wide BART ridership for a

six-month pilot period in 2016, compared to the same period in 2015. It is acknowl-

edged that this forecast is not specific to the stations of interest in the peak period,

and does not reflect a capacity constraint. Nonetheless, it does give a broad picture

of the expected demand trend.

Starting from the estimation data set that extended to March 2015, the forecast

was run for a 24 month period from April 2015 through March 2017. To generate

the forecasts, the descriptive variables were first forecast or extended. Observed

employment data was available through September 2015 from the Quarterly Census

of Employment and Wages (QCEW). Values beyond that point were forecast using a

seasonal ARIMA model. Separate models were developed for the total four-county

employment, and for employment in San Francisco county. They were combined to

calculate the share of employment in San Francisco.

The service miles and number of stations were held constant throughout the

forecast period. This excludes the possible effect of the Oakland airport connection

and the Warm Springs BART station. The Oakland airport connection is an auto-

mated guideway system, operated by BART, that links the Coliseum BART station

to Oakland International Airport [262]. It replaces a previous bus route, serving

the same connection. It is excluded from this analysis because it is not part of the

regular BART system. The Warm Spring Station is a new station that is part of a

5.4 mile BART extension south towards San Jose [263]. It is expected to open in

2016, although the exact date has not been specified [264]. Due to the schedule

uncertainty, it is excluded from the analysis. If it were included, the effect in the

model would be to shift the ridership forecast upwards by 5,472 riders per station

once the full effect is in place.

The fuel cost is extended using the last value of the time series: $0.14 per mile,

in 2010 dollars. It was assumed that the nominal fares would remain constant over

the forecast period, so the real value of the fare was scaled assuming 2% annual

inflation. No strikes were assumed during the forecast period.

Figure 6.3 shows a plot of the observed time series in black, and the forecast
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time series in blue. The forecast continues forward the recent trend of strong rider-

ship growth. There is a 12 month period for which observed and forecast values are

both available. These are data which were excluded from the model estimation, but

recently became available. They provide an opportunity to validate the short-term

forecasts.

Figure 6.3: BART ridership forecast

Table 6.14 compares the forecast and observed ridership values for this over-

lapping validation period. The modelled values are, on average, 1.4% higher than

observed, with the over-estimates slightly larger towards the latter part of the period.

The Root Mean Square Error (RMSE) is 2.1% for these forecasts, which compares

to 1.4% RMSE for the estimation period. These results appear reasonable, at least

for this relatively short period.

Table 6.14 shows the baseline forecast of BART ridership, comparing the

modelled values in April through September 2015 to the modelled values in April

through September 2016. The model predicts an average 6.1% growth in ridership

for the 2016 period compared to a year earlier. This change is driven dominantly

by the projected employment increase following current trends. The projected in-

crease would be even higher if the effect of the Warm Springs BART station were
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Table 6.14: Validation forecast of BART ridership

Date BART Boardings

Date Observed Modelled Difference Pct Diff
Apr-15 429,910 423,140 -6,770 -1.6%

May-15 424,312 427,631 3,319 0.8%

Jun-15 432,869 426,717 -6,152 -1.4%
Jul-15 427,467 432,822 5,355 1.3%
Aug-15 429,750 437,768 8,019 1.9%

Sep-15 445,103 452,031 6,928 1.6%

Oct-15 446,008 457,835 11,827 2.7%
Nov-15 435,397 443,893 8,496 2.0%
Dec-15 412,284 422,603 10,319 2.5%
Jan-16 422,314 435,357 13,043 3.1%
Feb-16 446,650 448,911 2,261 0.5%
Mar-16 431,535 448,614 17,079 4.0%

12-month
Average

431,966 438,110 6,144 1.4%

RMSE 9,225 2.1%

considered.

Table 6.15: Baseline forecast of BART ridership

Date BART Boardings

Before After Before After DifferencePct Diff
Apr-15 Apr-16 423,140 453,498 30,358 7.2%

May-15 May-16 427,631 455,268 27,637 6.5%

Jun-15 Jun-16 426,717 456,194 29,477 6.9%
Jul-15 Jul-16 432,822 456,334 23,512 5.4%
Aug-15 Aug-16 437,768 461,099 23,330 5.3%

Sep-15 Sep-16 452,031 475,972 23,941 5.3%

6 Month Average 433,352 459,727 26,376 6.1%

As discussed in the previous case study, the choice of using the system-level

trend as the control has limitations. It would be preferable to build a model of

the trends at the specific stations in question during the peak period, to account

for the possibility that trend at those stations differs from the system as a whole.

In addition, this particular case study has one more feature that makes evaluation

challenging: a capacity constraint. A time series model estimated from data where

the ridership is below capacity may not longer apply once that threshold is met.

In such situations, this type of model should be used with caution, particularly for

long-term forecasting. Nonetheless, there is value in bringing multiple methods or
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multiple types of models to the forecasting process, precisely because they may

produce different results, and highlight the risks of a project or the limitations of a

method.

This analysis highlights the challenge of trying to define a ridership based tar-

get to judge the performance of a program such as BART Perks. In the context

of 6% projected ridership growth, even a small increase in peak period ridership

at the target stations might be considered a successful intervention, depending on

the effect of the capacity constraint. Acknowledging these limitations, the planners

responsible for the pilot evaluation looked into the feasibility of collecting a con-

trol group, such that their behavioural change could be compared to the program

participants.

6.3 Conclusions
This research has examined several specific applications of the time series models

developed in Chapter 4, using data assembled from the tool described in Chapter 3.

The applications fall into two categories: ex-post applications and forecasting ap-

plications. The findings from each set of applications are discussed, as well as their

potential integration into practice and future research.

6.3.1 Ex-Post Applications

For ex-post applications, the models are applied to three examples of transit service

changes to estimate the change in ridership associated with those service changes,

controlling for changes in the other terms included in the model. For each example,

the model is applied in three ways. First, it is tested using only the service variables

included in the original specification: service miles, fare, etc. Then, it is tested

with a constant included to capture the effect of the service change beyond what

is already captured by the existing variables. When the constant is estimated, the

existing coefficients are held constant in the second option, and all coefficients are

re-estimated in the third option. For each of the examples tested, the service change

constant is not statistically significant, and the difference between the estimated

ridership change using each of the three approaches is modest.
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The ridership change derived from the time series models is then compared to

the ridership change implied by a naive before-and-after difference. In each case,

the time series estimate is notably different from the before-and-after estimate. Fur-

ther, the before-and-after estimates are quite sensitive to the dates selected for the

before period and the after period. For example, the average before-and-after dif-

ference for the 2009 BART service cuts is -6,200, but the range is from -27,000 to

+16,000. The analysis goes on to examine the factors that contribute to the differ-

ence between the estimates, and finds that they fall into different categories for each

example. This analysis serves to highlight the challenges associated with a simple

before-and-after approach.

The time series results are also compared to the ridership change that would be

estimated using elasticities found in the literature. For each example, the time series

estimates fall within the range of published elasticities, but the range of published

elasticities is broad. While useful as a reasonableness check, the elasticity can be

highly context specific, and vary depending on the level of competition with other

facilities [238]. Therefore, local estimates are preferred to published data where

they are available.

6.3.2 Forecasting Applications

Two forecasting applications were considered in the context of performance based

planning. Each is for a transit pilot project. In the MUNI 5L Fulton pilot project,

a bus route was reconfigured in an effort to improve speed and reliability. In the

BART Perks pilot project, an incentive program is being introduced in an effort to

shift BART travellers out of the peak period to relieve crowding. In both, there was a

desire to set a performance target prior to implementation against which the success

of the pilot can be judged. The challenge is similar to that posed by before-and-after

studies, because ridership changes can be driven by factors beyond the intervention

itself. The time series models predict a downward trend in MUNI ridership and

an upward trend in BART ridership over the implementation period, separate from

any project effect. These trends can potentially affect the evaluation outcome, and

planning agencies would be prudent to consider such short term forecasts when
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setting targets at the planning stage.

Batty [168] argues that as the nature of available data shifts to include more

streaming sources from sensors and related data that are available at a high tem-

poral resolution, there is an accompanying shift towards how we understand cities,

with weight added to short term issues. The models presented here further enable

that trend, not as a replacement for, but as a complement to long term forecasting

models.

6.3.3 Integration into Practice

While the methodology used to analyse these examples is not new (see Washington,

Karlaftis and Mannering [202] for a good discussion of such models and their appli-

cations) it is clear from the examples studied that when ex-post evaluations are even

attempted, they often use very simplistic methods. Hartgen [19] cites a widening

gap between research and practice as a challenge to producing good travel forecasts,

and the same may be true in ex-post evaluations and in setting performance metrics.

This research has demonstrated that RegARIMA models, estimated from local

data, and controlling for a few key factors can offer advantages both for ex-post

evaluations and for short term forecasting applications. For ex-post evaluations,

they offer an ability to distinguish the project affect from other confounding factors

in a way that avoids some of the challenges of a simple before-and after assessment.

Short term forecasts from such models can be useful for understanding the baseline

trends that may make performance targets easier or harder to hit.

Further, once the framework is in place, the incremental effort needed to apply

such models to a range of applications is low. This makes it entirely practical that

they can be applied more broadly. The biggest challenge may be in assembling

the relevant data. However, the proliferation of continuously collected or regularly

updated data sources provides an opportunity to do this. These sources include both

transport data, such as automated passenger counters, vehicle location data, transit

farecard data, and “drivers of demand” data, such as the Longitudinal Employer-

Household Dynamics (LEHD) data. Further work is needed to continue the data

wrangling started in Chapter 3 to make these data more accessible, and lower the



298 Chapter 6. Project-Level Applications

barriers to using them in models.

6.3.4 Future Research

There are two areas where future enhancements could substantially benefit this re-

search: the integration of highway congestion measures and the estimation of panel

data models.

These models notably exclude any measure of traffic congestion, which could

reasonably be expected to influence transit ridership. The challenge is that obtaining

a good measure of how auto speeds change over time can be difficult. As part of this

research, an approach was developed to derive network-wide link speeds from GPS

traces on a fleet of taxi cabs, starting from a path inference method developed by

Hunter et al [265]. That process could successfully be applied to a few days worth

of data, but computational constraints made it impractical for several years’ worth

of data, at least within the schedule of this thesis. That remains a topic for future

development, and integration into the modelling.

It was also observed in Chapter 4 that it can be difficult to obtain strong param-

eter estimates from the one-dimensional time series models used here. The problem

seems to be that there are a limited number of degrees of freedom, because variables

change only in time, which makes estimation difficult, particularly when there is co-

linearity among descriptive variables. One strategy to mitigate this problem would

be to switch to panel data models. In this approach, each stop or station would be

treated as a separate observation that varies through time, and modelled with vari-

ables such as the employment within a certain radius. This is possible with detailed

transit observations and the LEHD. It would allow the data to vary both in time

and across observations, which may allow for enough variation in the data to obtain

stronger parameter estimates. This exercise is left to future research.
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Conclusions

This research developed a data fusion tool that combines several large, continuously

collected data sources to monitor travel demand trends, as well as the factors that

may influence those trends. It explored the biases and limitations of the data sources

used, and estimated time series models from the outputs of that data fusion tool. The

planning applications of these models were explored in several examples.

This chapter presents the overall conclusions from that work. It is organised as

follows. Section 7.1 reviews the specific findings of the individual research chap-

ters. Section 7.2 proposes several directions for future research. Section 7.3 sum-

marises several lessons learned during the conduct of this research, in an effort to

allow future endeavours to benefit from those lessons. Finally, Section 7.4 considers

the broader implications for the field of travel forecasting.

7.1 Research Findings
This thesis began with two overarching research questions:

1. How can continuously collected data be leveraged to develop a data fusion

tool suitable for monitoring travel demand trends?

2. How can the outputs of that tool be used to gain insight into the drivers of

travel demand trends and to measure the transport project impacts?

Rather than seeking to address these questions through broad generalisations,

they are explored through specific working examples, as described in Chapters 2
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through 6. While they are not the only way to develop such tools and applications,

they represent a thoughtful and defensible approach to doing so. By exploring the

topic in this way, we have gained insight into the broader questions, with specific

conclusions described below.

7.1.1 Transit Smart Card Data Evaluation

Chapter 2 explored the value and limitations of transaction data from the Clip-

per Card transit smart card system in the San Francisco Bay Area. While transit

smart card data have been used for a range of planning applications [87], many of

those applications rely on very complete data sets [136, 139, 88, 140]. The Clipper

data, however, is subject to strong privacy restrictions, has relatively low penetra-

tion rates, and has a high rate of missing data in several important fields. The key

question in this situation is: Do the positive aspects of smart card data analysis de-

veloped on high quality data sets still apply when the data are more limited? Our

findings are as follows.

From a privacy standpoint, it is desirable that a transaction not be precisely

located both in space and time. To do so could allow the card holder to be identified

by in-person observation. The obfuscation process applied to Clipper data prevents

this.

However, this obfuscation relates, in part, to an important limitation of the

Clipper data. Except for transactions at fixed rail stations, it cannot be used to

geographically identify the boarding location. Past research [139] has used the exact

transaction time and the route number to match smart card data to AVL data as a

means to identify the location of the transaction. This method cannot be applied to

Clipper because 1) the exact boarding time is obfuscated, and 2) the route number is

often not recorded. The latter is perhaps more limiting, and due to a combination of

the specific technology used, and the institutional challenge of getting the operator

to enter the route number at the start of a shift. We suggest that the most reliable

means of overcoming this limitation would be a change in technology to a system

that automatically records the route and transaction location. In such a system,

the transaction time and exact vehicle could be obfuscated to continue to protect
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privacy. To be cost effective, such a switch would need to occur when new fareboxes

are acquired anyway, so there is value in the transit agency being aware of the

potential data uses at the time of such a transition.

In spite of this limitation, the research finds that the Clipper data provide value

over existing data sources by recording aggregate transfer rates and by providing a

consistent form of observation across multiple operators.

Another important issue to consider when working with smart card data is that

unless the penetration rate is very high (perhaps higher than 95%), the data reflect

potential biases in terms of who chooses to pay with a smart card versus some other

medium. When examining the use of Clipper in available onboard transit surveys,

the research found several biases, one of which is that that low income and minority

travellers were less likely to pay by Clipper. If the data are used for planning studies

without accounting for that bias, there is a risk that the needs of these groups will

be systematically under-represented.

A correction factor was estimated in an effort to correct this bias. When con-

strained to use only those variables available in the Clipper data set, the correction

factor was found to mitigate, but not eliminate, those biases (they were reduced by

about 50%).

The question then is, what can be done about these equity issues? Three sets

of approaches might be considered: improve the analysis, increase the use of smart

cards among target populations, or mitigate equity issues in the real world. They

are not mutually exclusive.

For the analysis, it would be ideal if a better weighting and scheme could be

developed that fully accounts for these biases. Including a geographic component

to the weight may be beneficial to the weighting scheme, given that low-income

and minority travellers are likely concentrated in certain portions of the city. Our

analysis is limited because we cannot derive the boarding location for the Clipper

card transactions, but if that were known, it may also prove useful in correcting

for these other issues. If that is not possible, it may be necessary to bring other,

unlinked data for consideration. One can imagine the environmental justice section
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of a report written to acknowledge this limitation, and also to show overlays of the

project location versus low-income and minority populations as recorded by the

Census, as an alternative means for identifying the populations that a project might

serve.

A second strategy is to make a concerted effort to increase the use of smart

cards, especially among target populations. When AC Transit riders who did not

use Clipper were asked why, the top reasons were that they preferred cash, they did

not want to pay for it or they did not know how to obtain one[144]. This suggests

that initiatives to make the cards free, to provide a financial incentive to use the

cards or to improve the marketing, outreach and communication of the cards may

be effective at increasing their use.

Third, it may be possible to mitigate equity issues in the real world even if the

analysis is limited. This can be done by providing free or reduced fares to certain

groups (the smart card mechanism enables very detailed targeting to certain popu-

lations), or by investing in improvements targeted in certain areas. Such strategies

may be part of the “package” necessary for a large project to move forward.

7.1.2 Transit Data Fusion

Chapter 3 described the development and functionality of the core software tool

used in this research: a data fusion tool used to measure transit system performance

over time. It is implemented for San Francisco, but available under an open source

licence and adaptable for use in other regions. The core functionality of the tool is

to track transit system performance in four areas: service provided, ridership, level-

of-service, reliability and crowding. Performance measures are reported at several

levels of resolution, and the software is structured to generate files structured to

facilitate model estimation.

There are two distinguishing features of this product.

First, it focuses specifically on monitoring changes over time. In this way, it is

useful as a tool for performance based planning, and it provides the data necessary

to measure transport project effects in a way that may be useful for informing travel

model validation or forecasting.
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Second, a key challenge is that the Automated Vehicle Location (AVL) and

Automated Passenger Counter (APC) data used in the tool are incomplete, because

equipment is installed on only a fraction of buses. To scale these sampled data up

to represent the system as a whole, they were merged with General Transit Feed

Specification (GTFS) data and weighted based on the ratio of scheduled (bus) trips

to recorded trips. This expansion process is similar to expanding a household travel

survey to match Census targets of total households by type, and an important strat-

egy for expanding the use of Big Data to locations where only partial or incomplete

data are available.

In itself, the use of GTFS data as a means of recording the change in transit

schedules is an important enabler of future transport research with a temporal ele-

ment. Transit routes and schedules are an important determinant of travel patterns,

but prior to their recording in a GTFS archive, the details of schedule changes could

easily be lost to history. Certainly this is an advance over past norms, as illustrated

by one of the first tasks I was given as a travel forecasting intern, in which I was

handed a stack of paper bus schedules for New Orleans, and told to code them in

MinUTP.

By automating this data processing in a way that can easily be updated as

more data become available, this tool enables the analysis of those data for a low

incremental cost.

7.1.3 Time Series Model Estimation

In Chapter 4, the outputs of the data tool described in Chapter 3 were used to esti-

mate time series models of transit ridership on the San Francisco Municipal Rail-

way (MUNI) and Bay Area Rapid Transit (BART) systems in the San Francisco

Bay Area. Three types of models are considered: Autoregressive Integrated Mov-

ing Average (ARIMA) models, regression models and Regression with ARIMA

Errors (RegARIMA) models. The ARIMA models themselves do not provide a

mechanism to account for known factors that affect ridership. The regression mod-

els allow such factors to be considered, but in the case of the BART models, suffer

from residual autocorrelation and the risk of spurious regression. Considering both
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sets of models, the RegARIMA structure performs the best, allowing for a range

of predictors to be included, but avoiding problems with residual autocorrelation.

It remains challenging to obtain significant parameter estimates for more than a

few predictors, probably because a one-dimensional time series allows for a lim-

ited number of degrees of freedom, and there can be co-linearity among predictive

variables. In spite of this limitation, the models are able to predict ridership as

a function of several key variables, including service characteristics, employment

changes, fuel cost and an unexplained trend.

7.1.4 Understanding Ridership Trends

Chapter 5 explored divergent ridership trends on two transit systems. Between 2009

and 2013, MUNI ridership decreased by 6.5%, while BART ridership increased by

17.6%. Both systems serve the same region, and employment growth is strong over

this period for the markets served by both, so it is surprising that their trajectories

are not better aligned.

To understand why, the models estimated in Chapter 4 were applied to break

out the factors driving the divergent ridership trends.

The analysis found that the 14.7% of the 17.6% increase in BART ridership

could be explained by the terms included in the model. The biggest factor in the

increase is employment growth, followed by some modest service increases. There

is an additional 2.8% ridership increase beyond what can be explained by the re-

gression terms in the model, which is instead captured as an trend in the ARIMA

component of the model.

The analysis found that employment growth had a similar positive effect on

MUNI ridership, but that it was offset by two factors. First, was a set of service

cuts that served to reduce bus frequency and decrease average runspeed. Second,

and more than twice as large, was a downward ridership trend that could not be ex-

plained by the terms considered in the model. This trend accounts for a net 11.1%

decrease in MUNI ridership, meaning that without it, we would expect MUNI rider-

ship to increase by 4.6%. Several possible explanations were considered to explain

this trend, such as a cultural shift towards active transport, the introduction of new
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shared mobility modes, or the effects of an ageing population. Additional model

analysis showed that an increase in the share of the population age 65+ could ex-

plain about 60% of this previously unexplained decline. There is weak correlation

with other factors, such as the increase in the share of workers commuting by walk,

bike, taxi or other modes.

In general, the BART model is more successful at explaining the ridership

trends than the MUNI model. One notable difference between the two models is

that the BART model is estimated from a much longer time series. It could be that

some of the variables tested during estimation and rejected as insignificant would

show up as significant when estimated from a longer time series. Doing this may

explain more of the trend, but the only way to know for certain would be to try.

Alternatively, re-estimating the models as panel data models could potentially im-

prove the significance of additional terms if there is appropriate variation for dif-

ferent stops across time. Finally, it may be that the important factors to consider

are difficult to observe or difficult to quantify. For example, we consider whether

the reported commute mode share for bike, walk, taxi and other is correlated with

the downward trend in MUNI ridership, and find a weak relationship. However, we

also know that the use of some of these modes is focused on purposes other than

commuting, such as the market for late night social trips via shared mobility modes.

More detailed data on the use of and trends in these modes would be beneficial to a

better understanding of these issues.

7.1.5 Project-Level Applications

Chapter 6 explored additional applications of the time series models estimated in

the previous chapter. The applications are broken into ex-post applications and

short term forecasting applications.

In the ex-post applications, the models are applied to measure the change in

ridership attributable to each of three separate transit service changes. A key ad-

vantage to conducting the evaluation using time series models such as these is that

they provide a means for controlling for other factors, beyond the service change,

that can be expected to affect ridership. When the results are compared to the re-
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sults obtained by a simple before-and-after difference which does not control for

those factors, the results can be quite different. The results are also compared to the

ridership change that would be implied by applying elasticity values found in the

literature. The published elasticities tend to have a broad range of values, and while

they are a useful point of comparison, the locally estimated values are preferred.

The forecasting applications considered the cases of two transit pilot projects.

Following the performance based planning paradigm, each of the pilot projects con-

sidered a ridership target that would be set prior to implementation. The analysis

showed that the underlying, short-term ridership trends can affect how easy or dif-

ficult such a target is to meet, and argues that they should be considered explicitly

when setting such targets.

7.2 Future Research Directions
There are several logical extensions to this research, as outlined in this section.

7.2.1 Incorporating Highway Measures

While this work focuses specifically on transit, a logical extension would be to

incorporate measures of highway performance.

An initial step in incorporating temporal measures of highway performance

at a system level, as opposed to for a specific facility or corridor, is to system-

atically track the network changes. Often, planning organisations may code new

base highway networks in five year increments, but for the resolution desired here,

that may be too coarse. It is possible to code networks based on known plans, the

management of which can be facilitated by tools such as the San Francisco County

Transportation Authority (SFCTA) Network Wrangler [266]. On the transit side,

the GTFS provides a convenient mechanism to track network changes. A direct

equivalent does not exist on the highway side, although commercial data sets, such

as TomTom [267] may fill the need.

Commercial data sets may also be useful both for monitoring speed and relia-

bility [268]. In the Bay Area, loop detector data from the PeMS [94] provides very

detailed data from at a large number of freeway locations, but not on surface streets.
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Exploratory work has begun using a Global Positioning System (GPS) traces from

a fleet of taxi cabs to monitor speed changes in the dense San Francisco network,

but that work is not complete at this time.

In terms of observing how demand evolves, traffic counts provide a starting

point, although it is more complete if they are available from detectors rather than

ad-hoc counts. Origin-destination matrix estimation can be used to translate counts

into trip matrices [269], although the problem is not without its challenges [270].

Mobile phone location data also offers a promising path for inferring trip ta-

bles [271]. Such an approach was investigated for this study, but data was not

available across a sufficiently long time period.

This is an area where there are quite a few pieces in place, and a key research

direction is to combine them in an effective manner to learn about the evolution of

travel patterns.

7.2.2 Combining with Rolling Household Travel Surveys

A second area where additional data may be advantageous is to take advantage of

rolling household travel surveys, such as the UK National Travel Survey (NTS).

Household travel surveys are a much richer travel source in terms of the in-

formation available, but their limited sample sizes can make for noisy results when

tracking trends. In their analysis of car and train travel trends in Britain, LeVine and

Jones [184] managed this issue by grouping multiple years of data, spaced five years

apart (1995-1997, 2000-2002 and 2005-2007). A broader question becomes: when

considering multiple data sources varying richness and completeness, is it solely up

to the analyst to judge how to weight the evidence, or can something more formal

be done?

A related issue and opportunity arises in model estimation. Consider the case

of estimating mode and destination choice models in Sydney, where multiple waves

of data are available. Fox, Patruni and Daly [272] discuss the trade-off between

adding more waves of data to increase the sample size, and moving further from the

base year for which detailed level-of-service (LOS) data are available. While, on

average, the LOS change is probably small from year to year, there may be specific
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corridors in which a transport project is completed, and the LOS change is impor-

tant, particularly if it involves a mode becoming newly available for those zone

pairs. If annual LOS data were available for a relatively low level of effort, that

trade-off would become a non-issue, and more data could be included in the model

estimation. This would also fit with the findings of Chapter 5, which found an un-

derlying trend beyond what the model variables could explain. Such a structure in

disaggregate estimation could test the inclusion of time-varying variables or con-

stants, and if none are found to be significant, add to the confidence in the stability

of the models.

7.2.3 Panel Data Models

As noted in Chapter 4, it was found to be challenging to obtain significant parameter

estimates for more than a few explanatory variables using the time series model

structure. This may be because a unitary time series does not allow for sufficient

independent variation as it relates to those variables. One possible improvement

would be to instead use panel data models where there is both cross-sectional and

temporal variation permitted in the data. In this instance, an observational unit may

be the boardings or alightings at a particular transit stop or station.

In 1990, Kitamura [273] described the virtues of panel analysis in trans-

port planning, which focus largely on the ability to observe changes. His focus

was on surveys conducted of the same individuals, although a similar approach

could be employed using the type of aggregate data considered here. Tang and

Thakuriah [131] and Kerkman et al.[209] provide examples of how such analyses

can be used.

7.2.4 Integration into Practice

In addition to furthering the research, it would be valuable to further integrate the

types of approaches used in this research into the practice of transport planning. As

discussed in Chapter 6, the approaches used here could provide advantages over

common practice, and they are not so complicated as to be impractical for use

among many planners and modellers. This is particularly important in the public
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sector, where transport agencies may be sitting on valuable data, but not in a posi-

tion to take optimal advantage of it. Researchers may have the skills to learn from

those data, so effective partnerships may be mutually beneficial. However, there are

challenges to establishing such partnerships and working with these data, such as

privacy and ownership considerations. These issues are explored further in the next

section.

7.3 Lessons Learned
This thesis has explored questions of how to use continuously collected Big Data for

the purpose of understanding travel demand trends and measuring transport project

impacts. It has done this through specific examples: building a prototype data fusion

tool, examining the biases in one specific data set, and applying models to gain

insight into specific planning issues. In doing so, we have learned valuable lessons

about how to do this sort of work effectively. In this section, the lessons learned

from that experience are shared, such that others wishing to continue this sort of

work may benefit. These lessons are of particular relevance to transport agencies

who may be both sitting on valuable data and facing important planning questions,

but still getting their heads around how to best take advantage of those data.

7.3.1 Plan Ahead for Data Archival

The nature of the data considered in this study is that they tend to be continuously

collected, providing a record of change in the system. For the planning insights

of interest here, a reasonably long record of data is needed, spanning the periods

before-and-after transport projects are constructed. However, that record does not

begin until someone “hits start”. Until that happens, the data can either be lost for

good, or can be very difficult to re-create.

A good example of this situation occurs in the case of real time data feeds.

Chapter 1 discussed the sfdata collector software [114], which queries the

SFPark Application Program Interface (API) every two minutes to obtain the avail-

ability and price of public parking spaces in San Francisco, and write those infor-

mation to a database. These data can then be analysed to understand trends and
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patterns. However, the data are not used in the models estimated in Chapter 4 and

applied in Chapters 5 and 6, because the record does not begin until after the main

2009 to 2013 analysis period. While a modest effort up front can provide a valuable

resource down the road, the time lags are considerable.

French planners appear to have learned this lesson. Ex-post evaluations have

been required of major transport projects in France since 1982, but those evaluations

were slow to come to fruition due to a number of implementation challenges [274].

One tool introduced to allow such evaluations is the permanent observatory [275].

A permanent observatory is established at the start of a project and records relevant

data, including socio-economic information, to allow for the project evaluation later

on. An important tension in such observatories balancing the desire to record short

lived data, with the complexity and quantity of data recorded.

In a related issue, the data evaluation in Chapter 2 showed how decisions made

at the time of contracting or equipment procurement can affect the value of data for

years to come. It is important, therefore, to have an awareness of data needs as one

consideration among many, such that interventions can be considered at the time

when they would be cost-effective.

7.3.2 Big Data is Not a Replacement for Survey Data

A second lesson of this research is that Big Data should be viewed as a complement

to travel surveys, not a replacement for travel surveys. For example, Chapter 2

showed the biases that can be found in transit smart card data. It was the avail-

ability of onboard transit surveys in the same region that allowed those biases to be

detected. If the onboard surveys were not available, we would be in the precarious

position of having a data set that we expect to be biased in some way, but which we

do not know how.

Even if Big Data were to provide a perfect enumeration of the population, it

remains far less rich than travel survey data because it does not record information

such as reported trip purpose and mode. This is consistent with the findings of Vij

and Shankari [276] who used simulated data sets to determine that larger volumes

of data available from GPS-only travel surveys are offset by a loss in data quality.
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While this research has demonstrated some ways that Big Data can be used in

transport planning, it is important not to sacrifice the data that the industry has come

to rely on for years.

7.3.3 Data Access Constraints are a Barrier to Research

Perhaps the biggest risk to the completion of this research successfully was gaining

access to the data sets of interest. The most frequently used strategy was to call

and ask, but that was contingent on knowing whom to call. In this instance, it was

helpful to have worked in the region previously and be able to draw from some pre-

existing relationships to find the right points of contact. In spite of this, there were

challenges. For example, I was the first person to ask for the Clipper Card data.

The technical staff at the Metropolitan Transportation Commission (MTC) were

supportive, until the legal team reviewed the initial proposal and added a layer of

caution. To their credit, MTC developed a data obfuscation process to accommodate

the request [141], but the whole process took about a year of development and

negotiation.

To compound the issue, researchers who are working with new and novel data

sources are not necessarily incentivised to share those data. There are often good

reasons for this, as there may be privacy or licensing restrictions, but there are also

competitive incentives to hold data tight.

These access constraints serve as a barrier both to getting a diverse range of

people and ideas engaged in this type of research, and to the replicability of the

science it produces. This points us towards open data initiatives where they are

viable, but it is broadly an issue that we, as a field, must grapple with.

7.3.4 Strategies for Data Privacy

While open data initiatives can be a valuable means for engaging a broader range

of analysts, a sometimes competing interest is that of data privacy. Big Data, par-

ticularly if it is passively collected data about individuals, poses a very different

set of issues than survey data. Central to those issues is the notion of informed

consent. When someone responds to a survey, it is a clear and deliberate opt-in on
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the part of the respondent in a way that does not necessarily occur in the case of

passively collected data, even if it is listed in the fine print of a licence agreement.

For these reasons, it is of the utmost importance that we act as good stewards of the

data with which we are entrusted. Four strategies for protecting data privacy while

maintaining the ability to analyse the data to varying degrees are:

Aggregation. If the data released are sufficiently aggregate, it will be impossible

to identify individuals.

Obfuscation. This includes strategies such as those used for the Clipper Card data

to deliberately repress or “fuzzy” certain fields or information.

Limited distribution. Limiting the distribution to trusted individuals or organisa-

tions, perhaps with a data licensing agreement, can serve as a protected mea-

sure. In the extreme, there is a big difference between making the data avail-

able to an individual researcher versus posting it on the web for anyone to

experiment with.

Secure servers. The detailed data can be stored on a secure server, such that re-

searchers can analyse the data on the server, but not remove it. An example is

the Transportation Secure Data Center (TSDC) [150].

Each of these strategies involves managing a balance between data protection

and the usefulness of those data, so it is valuable for there to be some feedback on

how limiting the restrictions end up being.

7.3.5 The Role of Technology Companies

As Big Data becomes trendy, and is increasingly viewed as an asset, commercial

interests are looking for ways to monetise that asset. These can be start-ups, such

as Urban Engines [259], large technology companies, such as Google or Apple,

or firms such as Cubic [277], which is the vendor of the Clipper Card and Oyster

Card systems, but is also establishing a data analytics practice to take advantage

of the data that comes from those systems. To the degree these firms engage with

transport planners as a potential market, they bring a different business model than
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the engineering firms and software vendors that have traditionally played a large

role in transport planning and modelling. It is worth considering how this may

shape the profession in the coming years, and how to engage such firms in a way

that best serves the public interest.

Consider the case of AirSage [278] as an example. AirSage uses mobile phone

location data to generate trip tables and sells those trip tables for the purposes of

transport planing and modelling. They have an exclusive arrangement to use data

from two of the three major mobile phone carriers in the US, and a proprietary

algorithm for processing those data. The result is a very convenient way to get a

base year trip table, assuming you are willing to pay the licensing fee.

There are a few questions to ask if you are on the purchasing end.

The first is whether the data are accurate. The black-box nature of the algo-

rithm makes this question difficult to address, so alternative strategies must be con-

sidered, such as Huntsinger and Donnelly’s work comparing AirSage data to travel

model outputs [68]. It is worth considering as well, that the aggregate nature of the

data are actually beneficial from a privacy perspective. Any privacy issues occur

behind a firewall on AirSage’s servers, and the entity purchasing the trip tables does

not have direct exposure to those data.

The second question is whether it is worth the price. This must be weighed

against the cost of a do-it-yourself solution, if such a solution is possible. Such

firms may have access to venture capital, which can exceed the resources available

to individual transport planning agencies or university research groups. With a high

level of resources, such firms can play an important role in advancing the methods

and the state of practice. In some instances, if they hold the data resources, they

may be the only entities that can advance the field. This raises questions about what

role universities can and should play in such research.

At the same time, it is reasonable to expect that investments in developing such

methods would be paid back eventually. This can be mutually beneficial if there is

sufficient value to the buyer, but there is also a risk that the price will eventually be

based on a “data monopoly”, rather than on the analytical value added to those data.
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While these are not questions that I claim to answer in this thesis, they are

raised here as issues to be faced.

7.4 Implications for Travel Forecasting

This thesis began by considering observed problems with demand forecast accuracy

for transport projects, and it finishes with the same. Placing an increased focus on

ex-post evaluation of transport projects is one path to improving forecasts, because

it provides a basis against which to identify the causes of forecast errors, and it

builds a body of reference cases against which forecasts can be compared. Ex-post

evaluations have been hampered in the past by the lack of systematic data collection

to monitor system changes. Often, transport data are cross-sectional in nature and

do not capture changes, or there is a high burden associated with assembling the

needed data. Emerging, continuously collected, Big Data were identified as an

opportunity to move beyond this barrier.

Using the case of two transit systems in the San Francisco Bay Area, this thesis

has demonstrated how such data can be combined to better understand the factors

that drive changes in travel demand, and to produce the data streams necessary for

ex-post ridership analysis. A key feature is that once such a system is in place, it

can be regularly updated as new data become available, and the incremental cost of

analysis is low. This opens up a range of additional opportunities to learn from past

system changes for the purpose of better predicting the effects of future changes.

There are several additional steps that are necessary to get to the point of im-

proving travel models, notably the evaluation of models against system changes as

a means to understand what they get right and what they get wrong. A way for-

ward may be through the Travel Modeling as a Science initiative of the Transporta-

tion Research Board (TRB) Committee on Transportation Demand Forecasting.

This initiative started from a straw man proposal for improving travel forecasting

through a concerted effort that draws from the lessons of the National Oceanic and

Atmospheric Administration (NOAA) Hurricane Forecasting Improvement Pro-

gram [279]. This has evolved into a somewhat more developed proposal [280], an
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important component of which would be to make available multi-year data for two

or more sample cities as a basis against which researchers can judge their model’s

performance. The goal is to promote models that capture the change, and not just

those that calibrate well against base year conditions. This research offers one step

towards enabling such a situation.
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[70] Çolak, S., L. P. Alexander, B. G. Alvim, S. R. Mehndiretta, and M. C. Gon-

zalez. Analyzing Cell Phone Location Data for Urban Travel: Current Meth-

ods, Limitations and Opportunities. In: Transportation Research Board An-

nual Meeting. Washington, D.C., 2015.

[71] Transportation Research Board. NCHRP 08-95. May 30, 2014. [ONLINE]:

http://apps.trb.org/cmsfeed/TRBNetProjectDisplay.

asp?ProjectID=3637 (visited on 10/30/2014).

[72] Haghani, A. and M. Hamedi. Application of Bluetooth Technology in Traf-

fic Detection, Surveillance, and Traffic Management. Journal of Intelligent

Transportation Systems 17.2 (2013), pp. 107–109.

http://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=3637
http://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=3637


326 REFERENCES

[73] Kim, J., F. Kurauchi, N. Uno, T. Hagihara, and T. Daito. Using Electronic

Toll Collection Data to Understand Traffic Demand. Journal of Intelligent

Transportation Systems 18.2 (2013), pp. 190–203.

[74] Bertini, R. L., S. Hansen, A. Byrd, and T. Yin. Experience implementing

a user service for archived intelligent transportation systems data. Trans-

portation Research Record 1917.1 (2005), pp. 90–99.

[75] Yuan, Y., H. Van Lint, F. Van Wageningen-Kessels, and S. Hoogendoorn.

Network-Wide Traffic State Estimation Using Loop Detector and Floating

Car Data. Journal of Intelligent Transportation Systems 18.1 (2013), pp. 41–

50.

[76] Himpe, W. W. E., C. M. J. Tampère, and B. Moelans. A Parsimonious

Method for Offline Freeway Travel Time Estimation From Sectional Speed

Detectors. Journal of Intelligent Transportation Systems 18.1 (May 13,

2013), pp. 67–80.

[77] Berkow, M., J. Chee, R. L. Bertini, and C. Monsere. Transit performance

measurement and arterial travel time estimation using archived AVL data.

In: ITE District 6 Annual Meeting. Portland, Oregon, July 2007.
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Published Works

As declared in the preamble, the work contained in my thesis is my own, and I

have indicated where work has been derived from other sources. In that spirit, this

appendix lists several related works I have published or presented elsewhere during

the course of this research. In cases where those works were published with co-

authors, it describes the contribution of each author.

The first paper is based on and closely follows Chapter 3. This work was

originally presented at the Workshop on Big Data and Urban Informatics at the

University of Illinois at Chicago, Chicago, Illinois in August 2014, and appears in

the proceedings from that conference as:

Erhardt, G.D., Lock, O., Arcaute, E., Batty, M. (2015). “A Big Data

Mashing Tool for Measuring Transit System Performance”. In Pro-

ceedings of NSF Sponsored Workshop on Big Data and Urban Infor-

matics, University of Illinois at Chicago, Chicago, Illinois.

After a peer-review process and subsequent changes, the paper was accepted

for publication in a book edited by the organisers of that conference. The forthcom-

ing volume is:

Erhardt, G.D., Lock, O., Arcaute, E., Batty, M. (in-press). “A Big Data

Mashing Tool for Measuring Transit System Performance”. In Seeing

Cities Through Big Data - Research, Methods and Applications in Ur-

ban Informatics, edited by V. Thakuriah, N. Tilahun, and M. Zellner,

Springer, forthcoming.
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The contribution of each co-author is: I wrote the document and completed

the development of the data processing and reporting tools. Oliver Lock prepared

Figures 2, 3 and 4, with Figure 2 based on a visualisation tool developed for his

MRes thesis. Elsa Arcaute and Michael Batty provided guidance, direction and

review.

The second conference paper is referenced in Chapter 3, and with two of the

figures coming from the paper and attributed to the paper.

Lock, O., Erhardt, G.D. (2015). “Keeping Track—The Fusion of Large,

Automatically Collected Transport Data in Capturing Long-Term Sys-

tem Change”, paper presented at the 2015 Australian Institute of Traf-

fic Planning and Management (AITPM) National Traffic and Transport

Conference, Brisbane, Australia.

This work was written by Oliver Lock and is based on his MRes thesis [117].

Oliver’s thesis uses data output from the data fusion tool and to visualise the differ-

ences. I provided data for input to Oliver’s visualization tools, and supervised his

thesis and the subsequent paper.

A third paper is based on Chapter 2. It is:

Erhardt, G.D. (in-press) “How smart is your smart card? Evaluating

transit smart card data with privacy restrictions and limited penetration

rates”. In Transportation Research Record, No. 2544.

This paper was presented as a poster at the 2016 Transportation Research

Board Annual Meeting in Washington, D.C. An earlier version appears in the con-

ference pre-prints. It was revised based on reviewer comments, and accepted for

publication after a re-review. Chapter 2 is a longer version that incorporates mate-

rials both from the pre-print and the publication version.

Three invited presentations were given that draw from the content of this the-

ses. They include:

Erhardt, G.D. (2015) “Looking Forward and Looking Back: Activity-

Based Models and Data Fusion for Improved Travel Forecasts”, pre-
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sented at the Department of Civil Engineering, University of Kentucky,

Lexington, Kentucky.

Erhardt, G.D. (2015) “Back to the Data: From Data-Driven Travel

Models to Theory-Driven Travel Models and Back”, presented at the

Urban Big Data Centre, University of Glasgow, United Kingdom.

Erhardt, G.D. (2015) “Activity-Based Travel Models and Big Data as

Tools for Complementing and Extending UK Research Strengths”, pre-

sented at the Department of Civil Engineering, University of Kentucky,

Lexington, Kentucky.

Each of these presentations draws from the broad themes described in the in-

troduction, and presents selected materials from Chapter 3 and Chapter 4, in com-

bination with other material.

During the course of this research, I have published or presented several items

not related to the content of this thesis. These include:

Erhardt, G.D., Patil, S., Light, T., Tsang, F., Burge, P., Sorenson, P,

Zmud, M. (2016). “Understanding the Potential of Variable Tolling

to Smooth Congestion on Downstream Facilities: Applications of a

Joint Time-of-Day and Route Choice Model”, Transportation Research

Record, No. 2563.

Light, T., Patil, S., Erhardt, G.D., Tsang, F., Burge, P., Sorensen, P.,

Zmud, M. (2016). “The Impact of Adopting Time-of-Day Tolling:

Case Study of 183A in Austin, Texas”, RAND Corporation, RR-969-

CTRMA, Santa Monica, CA.

Erhardt, G.D. (2015). “Using Stated Preference Data and Choice Mod-

els to Measure the Impact of Time-of-Day Tolling”, presented at the

Transport Modellers’ Forum, London, United Kingdom.

Hood, J., Erhardt, G., Frazier, C., Schenk, A. (2014). “Estimating

Emissions Benefits of Bicycle Facilities with Stand-Alone Software

Tools”, Transportation Research Record, No. 2430.
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Erhardt, G.D. (2014). “Microsimulation in Activity-Based Travel Mod-

els: Motivation, Stochastic Variation and Opportunities”, presented at

the Activity-Based Modelling and Appraisal Workshop, University of

Hertfordshire, United Kingdom.

Erhardt, G., Hood, J., Frazier, C., Schenk, A. (2013). “Using Smart-

phone Location Data to Estimate the Air Quality Benefits of Bicycle In-

frastructure”, presented at the Seminars on Land Use, Transport Mod-

els and Big Data, The Martin Centre, University of Cambridge, Cam-

bridge, United Kingdom.

Erhardt, G.D., Sall, E.A., Zorn, L., Tischler, D., Alsup, R., Nassir, N.

(2013). “Development and Application of a Dynamic Traffic Assign-

ment Model for San Francisco”, presented at the 41st European Trans-

port Conference, Frankfurt, Germany.

The first three are based on work completed through my affiliation with RAND

Europe, and the remainder are based on past work completed while I was an em-

ployee at Parsons Brinckerhoff.
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Enumeration of Full Monthly Time

Series

This appendix presents a full enumeration of the monthly performance report data,

as referenced in Chapter 4.

The MUNI bus performance report data begins on page 356. Performance

report data for other transit modes begins on page 360. The drivers of demand data

begin on page 372, and the commute mode shares begin on page 384.
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Appendix C

Model Application Formulas

This appendix shows the formulas used to apply the models estimated in Chapter 4.

The formulas for applying the preferred model of each type are derived from the

general formula for each model type. While only the RegARIMA models are used

for the remainder of the analysis, it is useful to show the ARIMA and regression

formulas as a means of building towards those.

ARIMA Models

Equation 4.7 shows the general equation for a seasonal ARIMA model, and serves

as the starting point for these model application formulas.

MUNI

Table 4.10 shows the estimation results for MUNI riders (yt), which follows an

ARIMA(1,1,1)(0,1,0)12 form. Substituting these results into the general equation,

gives:

(1−φ1B)(1−B)(1−B12)yt = (1+θ1B)et (C.1)

yt is isolated on the left hand side, in a series of steps:

(1−φ1B)(1−B−B12 +B13)yt = (1+θ1B)et (C.2)
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(
1− (1+φ1)B+φ1B2−B12 +(1+φ1)B13−φ1B14)yt =

(1+θ1B)et

(C.3)

(
1−B12− (1+φ1)(B−B13)+φ1(B2−B14)

)
yt =

(1+θ1B)et

(C.4)

yt =B12yt +(1+φ1)(B−B13)yt

−φ1(B2−B14)yt +θ1Bet + et

(C.5)

yt =yt−12 +(1+φ1)(yt−1− yt−13)

−φ1(yt−2− yt−14)+θ1et−1 + et

(C.6)

Adding the model coefficients gives:

yt =yt−12 +1.4708(yt−1− yt−13)

−0.4708(yt−2− yt−14)−0.9296et−1 + et

(C.7)

Equation C.7 is the final equation for predicting MUNI ridership using the preferred

ARIMA model.

The interpretation of the autoregressive terms is that the current value is equal

to the value from 12 months earlier, plus 147% of the year-over-year change from

one month earlier, minus 47% of the year-over-year change from two months earlier.

That portion of the equation is continuing the current rate of change. It is acceptable

that the first term (1.4708(yt−1− yt−13)) is greater than one, because it is offset by

the second term, the autoregressive terms as a whole sum to one. The moving

average component of the model (−0.9296et−1) serves to dampen any unexpected

trends. If et−1 is positive, it is because the change in the previous month ((yt−1−

yt−13) was bigger than expected, so subtracting off the previous error brings the

model back in line with the longer term trend. et is the error in the current period,

which is assumed to be white noise.
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BART

Table 4.11 shows the estimation results for BART riders, which follows an

ARIMA(2,1,0)(0,1,1)12 form. Following equivalent logic to above, the model ap-

plication formula is:

(1−φ1B−φ2B2)(1−B)(1−B12)yt = (1+Θ1B12)et (C.8)

(1−φ1B−φ2B2)(1−B−B12 +B13)yt = (1+Θ1B12)et (C.9)

(
1−B12− (1+φ1)(B−B13)+(φ1−φ2)(B2−B14)+φ2(B3−B15)

)
yt =

(1+Θ1B12)et

(C.10)

yt =B12yt +(1+φ1)(B−B13)yt

− (φ1−φ2)(B2−B14)yt−φ2(B3−B15)yt

+Θ1B12et + et

(C.11)

yt =yt−12 +(1+φ1)(yt−1− yt−13)

− (φ1−φ2)(yt−2− yt−14)−φ2(yt−3− yt−15)

+Θ1et−12 + et

(C.12)

Adding the model coefficients gives:

yt =yt−12 +0.4023(yt−1− yt−13)

+0.1483(yt−2− yt−14)+0.4494(yt−3− yt−15)

−0.8631et−12 + et

(C.13)

Note that the net autoregressive coefficients again sum to 1, representing a weighted

average of the year-over-year change across the previous three months. Equa-
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tion C.13 is the final equation for predicting BART ridership using the preferred

ARIMA model.

Regression Models

Equation 4.9 shows the general equation for a regression model. The application

form depends on the degree of differencing. A model with a single, seasonal differ-

ence can be expressed as:

(1−B12)yt = β (1−B12)Xt + c+ et (C.14)

Which translates to:

yt = B12yt +β (1−B12)Xt + c+ et (C.15)

yt = yt−12 +β (Xt−Xt−12)+ c+ et (C.16)

This equation says that the current value is equal to the value from one year prior,

plus the change change contributed by the change in the regressors, plus a constant

and an error term. The constant represents a linear trend beyond what is attributable

to changes in the descriptive variables.

The MUNI and BART models have been estimated on data that have been

transformed with a second difference, with one of the differences being seasonal.

Neither includes a constant, which would be a quadratic trend in a model of second

differences. Therefore, the models can be expressed as:

(1−B)(1−B12)yt = β (1−B)(1−B12)Xt + et (C.17)

Isolating yt on the left hand side, in a series of steps, gives:

(1−B−B12 +B13)yt = β (1−B−B12 +B13)Xt + et (C.18)
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yt =B12yt +β (1−B12)Xt

+
[
(B−B13)yt−β (B−B13)Xt

]
+ et

(C.19)

yt =yt−12 +β (Xt−Xt−12)

+
[
(yt−1− yt−13)−β (Xt−1−Xt−13)

]
+ et

(C.20)

The first two terms indicate that the current value is equal to the value from 12

months prior, plus the regression coefficients times the year-over-year change in the

X values. The term in brackets includes the difference between the actual year-over-

year change observed one month prior minus the year-over-year change that would

have been predicted purely by the regressors. It plays a role similar to the constant

in a model of first differences: representing trends beyond what is attributable to

changes in descriptive variables. Finally, there is an error term.

MUNI

When the coefficients from the MUNI estimation are included, and the rate is con-

verted to the total, the application equation becomes:

yt = yt−12

+8536× (WkdyServMiles1000t−WkdyServMiles1000t−12)

−4352× (WkdyRailMiles1000t−WkdyRailMiles1000t−12)

+63927× (Runspeedt−Runspeedt−12)

+2.201× (EmpSFt−EmpSFt−12)

+
[
(yt−1− yt−13)

−
(
8536× (WkdyServMiles1000t−1−WkdyServMiles1000t−13)

−4352× (WkdyRailMiles1000t−1−WkdyRailMiles1000t−13)

+63927× (Runspeedt−1−Runspeedt−13)

+2.201× (EmpSFt−1−EmpSFt−13)
)]

+ et

(C.21)
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BART

When the coefficients from the BART estimation are included, and the rate is con-

verted to the total, the application equation becomes:

yt = yt−12

+7613× (NumStationst−NumStationst−12)

+0.1827× (Emp4Ctyt−Emp4Ctyt−12)

−23490× (CashFaret−CashFaret−12)

−19690× (StrikeDayst−StrikeDayst−12)

+
[
(yt−1− yt−13)

−
(
7613× (NumStationst−NumStationst−12)

+0.1827× (Emp4Ctyt−Emp4Ctyt−12)

−23490× (CashFaret−CashFaret−12)

−19690× (StrikeDayst−StrikeDayst−12)
)]

+ et

(C.22)

Equation C.21 is the final equation for predicting MUNI ridership using the pre-

ferred regression model model. Equation C.22 is the final equation for predicting

BART ridership using the preferred regression model model.

Regression Models with ARIMA Errors

Equation 4.10 shows the general equation for a regression model with ARIMA er-

rors. This combines elements elements of the application equations discussed in the

previous two sections.

MUNI

The regression errors from the MUNI model takes the form ARIMA(0,1,1)(0,1,0)12.
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For the MUNI model, the model is:

yt = βXt +nt

(1−B)(1−B12)nt = (1+θ1B)et

(C.23)

yt = βXt +nt

(1−B−B12 +B13)nt = (1+θ1B)et

(C.24)

yt = βXt +nt

nt = B12nt +(B−B13)nt +θ1Bet + et

(C.25)

yt = βXt +nt

nt = nt−12 +(nt−1−nt−13)+θ1et−1 + et

(C.26)

Adding the estimated model coefficients from Table 4.15 gives:

yt =7971×WkdyServMiles1000t

−2777×WkdyRailMiles1000t

+49853×Runspeedt

+0.876×EmpSFt

+nt

nt =nt−12 +(nt−1−nt−13)−0.309et−1 + et

(C.27)

Equation C.27 is the final equation for the application of the MUNI regression

model with ARIMA errors.

BART

The BART model (regression with ARIMA(0,1,2)(0,1,1)12 errors) is:

yt = βXt +nt

(1−B)(1−B12)nt = (1+θ1B+θ2B2)(1+Θ1B12)et

(C.28)
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yt = βXt +nt

(1−B−B12 +B13)nt =

(1+θ1B+θ2B2 +Θ1B12 +θ1Θ1B13 +θ2Θ1B14)et

(C.29)

yt = βXt +nt

(1−B12− (B−B13))nt =

(1+θ1B+θ2B2 +Θ1B12 +θ1Θ1B13 +θ2Θ1B14)et

(C.30)

yt =βXt +nt

nt =B12nt +(B−B13)nt

+θ1Bet +θ2B2et +Θ1B12et +θ1Θ1B13et +θ2Θ1B14et + et

(C.31)

yt =βXt +nt

nt =nt−12 +(nt−1−nt−13)

+θ1et−1 +θ2et−2 +Θ1et−12 +θ1Θ1et−13 +θ2Θ1et−14 + et

(C.32)

Adding the estimated model coefficients from Table 4.16 gives:

yt =2712×WkdyServMiles1000t

+5472×NumStationst

+0.2027×Emp4Ctyt

+8098×SFEmpPctt

−20794×CashFaret

+86312×FuelCostt

−19010×StrikeDayst

+nt

nt =nt−12 +(nt−1−nt−13)

−0.5701et−1−0.2827et−2−0.6603et−12

+0.3764et−13 +0.1867et−14 + et

(C.33)
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Equation C.33 is the final equation for the application of the BART regression model

with ARIMA errors.
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