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Abstract

Appreciation for the medical and research potential of ultrasound neuromodulation

is growing rapidly, with potential applications in non-invasive treatment of neuro-

degenerative disease and functional brain mapping spurring recent progress. A full

understanding of the mechanical interaction of sound waves and neural tissue could

allow tailor-made stimuli to produce different effects or specifically stimulate sepa-

rate tissue types, adding great value to an already promising technique. Despite this

worthy goal, little progress has been made in our understanding of the nature of the

ultrasound-tissue interaction. The current study forms part of a long term goal to tackle

this issue by isolating and characterising the effects of, and sensitivity to ultrasound for

all the different structures found in nervous tissue. A simple, well characterised model

of nervous transmission is therefore used along with a tightly controlled acoustic envi-

ronment so that the characteristics of direct US stimulation effects can be investigated.

Experiments are performed that demonstrate the capability of ultrasound to directly

stimulate unmyelinted peripheral axons, characterise the stimulus response dynamics

and determine the responsible ultrasonic force mechanism. A Passive Cavitation De-

tector (PCD), unimpeded ultrasound path and wavelet acoustic analysis techniques are

used to detect different modes of cavitation with high sensitivity which are then tested

for correlation to nerve responses. In the present case, direct ultrasound stimulation

of peripheral axonal tissue is found to require either stable or inertial cavitation. The

lowest intensity at which stimulation is observed is 25 W/cm2, similar to previous neu-

romodulatory thresholds found in peripheral nerves. This study therefore represents

a significant advance in our understanding of the mechanisms behind the ultrasound

neurostimulation phenomenon.
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Chapter 1

Introduction

This chapter will begin by giving the background knowledge of ultrasound mechanics

and nerve structure necessary for an understanding of the subject. A brief introduc-

tion to the field and applications of neurostimulation will then be given, summarising

the strengths and weaknesses of current techniques and thus outlining the niche that

ultrasound neurostimulation can fill. An evaluation of the technique thus far will be

provided followed by the motivation, aims and original contributions of the current

work.

To understand the state of Ultrasound (US) neurostimulation literature and the

introduction to the current study, a basic understanding of both US mechanics and the

physiology of nervous tissue is recommended. The following sections 1.1 and 1.2 are

intended to bring readers up to this basic level and should be skipped if not required.

1.1 Overview of Ultrasound
Ultrasound is a longitudinal pressure wave consisting of periods of compression and

rarefaction in a fluid. Particle motion is parallel to the axis of wave propagation, not

perpendicular. The frequency of this wave must be above 20 kHz, the upper limit of

human hearing to be considered ultrasonic. Piezoceramic materials are most commonly

used to generate US, transducing an oscillating electrical voltage to oscillating shape

change which creates the pressure wave. These devices are known as US transducers.

1.1.1 Ultrasound Transducers

Single element piezoelectric bowl shaped transducers are the most prevalently used

in the literature for US neuromodulation. High Intensity Focused Ultrasound (HIFU)



1.1. Overview of Ultrasound 24

transducers usually have a very tight bandwidth so that production of the desired fre-

quency is efficient and specific, allowing them to be driven at high intensities. Although

an in depth understanding of US generation is not required for interpreting this report,

there are some transducer properties that will be useful to know:

> Resonant (or centre) frequency

– The frequency at which transduction to ultrasound energy is most efficient.

Also known as the fundamental or driving frequency.

> Efficiency

– The particular transducer’s efficiency of conversion from electrical to

acoustic energy.

> Damping factor

– The rate at which the oscillations of the piezoelectric material die down

once the driving signal stops.

> Bandwidth

– Defines the frequency range that can be produced by the transducer. This

determines how far from the centre frequency the transducer can be driven,

and the subsequent reduction in transduction efficiency.

> Focusing

– All the transducers used in the current study are spherically focused to in-

crease the amplitude of the acoustic field in a specific area known as the

focal point or zone.

1.1.2 Acoustic Output Parameters

The ultrasound that a transducer outputs can have many different variants and parame-

ters. The terms that will be used in this study to describe US stimulation protocols are

listed and explained here:

> Pressure
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– Defined as the Force per unit area that the wave exerts on the medium, as

a deviation from the ambient pressure, usually described by peak (instanta-

neous) pressure.

– Root Mean Square (RMS) pressure is the mean of squares of the instanta-

neous values of the pressure waveform, square rooted.

– The pressure variation of US can be measured by a hydrophone in water as

opposed to intensity which is much more difficult to measure directly.

> Intensity

– Defined as the acoustic energy per unit area normal to the direction of beam

propagation at a particular instant. For measurement purposes the instanta-

neous intensity can be linked to pressure by the equation:

ISPT P =
Pa

2

ρc
, (1.1)

where ISPT P is the spatial peak, temporal peak intensity, Pa is instantaneous US

pressure, ρ is the density of the medium and c is speed of sound in the medium. Since

the instantaneous intensity does not give any information about how intensity varies

over time, there are three commonly used measures of intensity for ultrasound pulses:

> Spatial Peak Temporal Average Intensity (ISPTA).

– The mean of the instantaneous intensity over a time period at the location

of maximum intensity in the acoustic field. For the purposes of this study

high intensity will be defined as anything above 720 mW/cm2, which is

the FDA limit for diagnostic imaging [of Ultrasound in Medicine Clini-

cal Standards Committee, 2015]. This measure combined with the absorp-

tion/attenuation characteristics of a medium is most relevant to predicting

heating for long exposure times.

> Spatial Peak Temporal Peak Intensity (ISPT P)

– The greatest instantaneous intensity value reached both in space and time,
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ISPT P has a maximum limit for obstetric examination of 310 W/cm2 [Pre-

ston et al., 1988].

> Spatial Peak Pulse Average Intensity (ISPPA)

– The same as the temporal average intensity but over just the pulse ”on” du-

ration. ISPPA has a maximum limit for obstetric examination of 190 W/cm2

[Preston et al., 1988].

Though some of the above US intensities may seem high compared to other non-

destructive medical exposures, most of the ultrasonic energy is efficiently transmitted

through the tissue with very little energy being absorbed. Attenuation of US energy

by tissues is dependent on their attenuation coefficient α (Equation 2.4) which is a

combination of absorption, reflection and scattering effects. More mechanisms of US-

tissue interaction will be discussed in section 2.3.

> Pulsing

– intermittent US generation is known as pulsing, as opposed to constant US

which is known as Continuous Wave (CW).

– Pulsing is often used to reduce total energy deposition and associated heat-

ing rates while maintaining mechanical effects.

– Pulse length is the length of time of the pulse ”on phase”, producing a

certain number of cycles of the fundamental frequency.

– Pulse period is the time from the start of one pulse to the start of the next.

– Pulse Repetition Frequency (PRF) is the inverse of the pulse period.

– Duty Cycle (DC) gives the ratio of pulse ”on time” to pulse period.

> Total Stimulus Duration (TSD)

– Total length of time during which the stimulus protocol is applied.

1.1.3 Material Acoustic Properties

How the ultrasound wave interacts with the medium it is travelling through is dependant

on the properties of that medium, these determine the combination of mechanical and
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thermal effects that are produced. The properties and concepts which are likely to be

new to the reader are described below:

> Specific acoustic impedance

– The ratio of driving force to particle velocity response of a specific medium.

For a plane wave this ratio can be determined as a product of the density

and speed of sound in a medium and is known as the characteristic acous-

tic impedance [Kinsler et al., 1982]. As speed of sound in any medium

does not vary much, specific and characteristic acoustic impedance can be

approximated as frequency independent.

> Attenuation coefficient

– The rate at which ultrasound energy is dissipated within a transmission

medium, summing the effects listed below. This is usually used for bio-

logical tissue or other complex media where the individual mechanisms are

difficult to quantify. The attenuation coefficient is therefore experimentally

determined for different tissues.

– Scattering

* If a complex medium such as soft tissue contains objects smaller than

the ultrasound wavelength, the object will scatter the wave in all direc-

tions, known as Rayleigh scattering. Larger, irregularly shaped objects

can also scatter the sound in a similar manner.

– Reflection

* This occurs where a wave passes through the interface between two

media with different acoustic impedances causing a portion of the

wave’s energy to be reflected. Planar reflection is governed by Snell’s

law (Equation 4.2).

– Absorption

* As ultrasound propagates through a medium, it periodically displaces

particles (or points in a medium) which relax back to their original po-

sition at a rate dependant on the material properties. If the media’s
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natural relaxation time is longer than the period of the US wave and is

still returning when the next compression arrives, it will require more

energy to reverse it’s direction. This can cause the tissue to absorb

more energy though the effect becomes negligible at very high or low

frequencies compared to the relaxation time. This is usually the dom-

inant mechanism of ultrasound energy loss in soft tissue Shung et al.

[2012].

> Non-Linearity

– Perfectly linear wave propagation would result in a received wave, some

distance from a source, maintaining the exact same waveform (frequency

components) as when it was produced. However, the higher temperature

and speed of sound in the compressed regions of the wave cause the peaks

to travel faster than the troughs. This is known as non-linear transmission

and all compressible media are to some extent non-linear, though the effect

greatly increases at high pressure amplitudes.

– As the wave travels, the sinusoidal wave profile will change because of

this effect, shifting towards a sawtooth profile which introduces higher har-

monics of the fundamental frequency when analysed. This can alter the

interaction with the transmission media, such as increasing absorption and

in extreme situations causing shock waves.

1.1.4 Radiation forces

Ultrasonic radiation force is caused by the pressure gradient of the waveform between

a peak and a trough, and is therefore a time oscillating force for any point or parti-

cle in the transmission media. The net force should be zero in a time-averaged linear

scenario but acceleration of suspended particles is always observed in the direction of

propagation. This time-averaged forward force results from non-linearity in the wave

propagation and can be estimated using equation 2.2, the result of which is usually

orders of magnitude smaller than the linear, harmonic oscillating force, though unidi-

rectional and therefore able to create much greater displacement and stretch.

Radiation forces can also be caused by reflections as the momentum of the wave
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changes, transferring kinetic energy onto the reflecting surface. The difference in

impedances between a gas or vapour bubble and water is very high which means that

bubbles reflect and scatter a large proportion of the US energy, propelling them in the

direction of propagation. This is known as the primary radiation force on bubbles.

The oscillation of bubbles can also cause secondary radiation (Bjerknes) forces as

they re-radiate energy from the initial driving wave which can have significant effects

in bubble agglomeration over short distances [Crum, 1975, Leighton, 1994].

1.1.5 Cavitation

Cavitation is defined here as the formation, collapse or stable oscillation of gas or

vapour cavities. These cavities can form or grow during the negative pressure phase

of the ultrasound wave by reducing the pressure below the partial pressure of dissolved

gas and vapour pressure in the fluid. Practically speaking this will not occur without

nucleation points, which are inhomogeneities such as hydrophobic crevices on which

gas phase can form and grow, or pre-existing gas bubble nuclei. Once of a sufficient

size, bubbles will compress and expand under pressure oscillations much more than the

surrounding fluid [Young, 1999], creating direct forces on nearby structures or micro-

flows in the fluid.

> Stable cavitation

– Bubble oscillation that does not result in breakup or collapse of the bub-

ble, acting much like a spring under oscillating compression. Growth or

shrinkage due to rectified gas/vapour diffusion across the bubble surface

may occur.

> Inertial cavitation

– Violent bubble collapse resulting in very high localised temperatures and

forces.

the likelihood of inertial cavitation in soft tissue is most often qualified by the

Mechanical Index (MI), which relates to the peak negative pressure of an US exposure

protocol via the equation [of Ultrasound in Medicine Clinical Standards Committee,

2015]:
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MI =
PNP√

Fc
, (1.2)

where PNP is the Peak Negative Pressure and Fc is the centre frequency of the

ultrasound wave. This is only an approximate measure as the probability of inertial

cavitation is highly unpredictable, especially in complex environments such as soft tis-

sue and depends on factors such as dissolved gas pressure, ambient pressure, cavitation

nuclei, tissue non-linearity and other factors.

1.1.6 Cavitation Signal Analysis

To the author’s knowledge, no US neurostimulation study thus far has analysed acous-

tic signals during stimulation protocols, though the use of a PCD is common practice

for detection and characterisation of cavitation in other fields. This section will give

the reader an introduction into acoustic cavitation detection and characterisation tech-

niques, highlighting their relative strengths and weaknesses for this application.

In order to understand what kind of cavitation may be occurring, several methods

have been developed to identify and quantify the different acoustic emissions by which

different bubble behaviours are characterised. These fall into the categories of passive

and active cavitation detection. Active cavitation detection [Roy et al., 1990] measures

the backscattered signal from an emitted pulse and is not used in this study as it does not

easily differentiate between inertial and stable caviation, and the interrogation pulse can

affect the cavitation that it is trying to measure [Hsieh et al., 2011]. Passive cavitation

detection, which is used in the current study, measures the emission spectra of the

cavitating bubbles using a focused or planar US transducer called a PCD.

Passive cavitation detection takes advantage of the different acoustic emissions

that bubbles can produce when collapsing (inertial cavitation) or oscillating (stable

cavitation) to identify types of bubble activity present. Inertial cavitation will usu-

ally cause a high amplitude, short duration signal that has a very broad frequency range

as the bubble implodes and fractures. In contrast, stable cavitation is characterised by

a signal containing multiple harmonics of the driving frequency or the bubble’s natural

resonant frequency.

Cavitation resulting from ultrasound usually creates a bubble cloud instead of a
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single oscillator, which complicates the signal. This is especially true in situations

with heterogeneous cavitation nuclei as many different inertial events and oscillation

modes will be occurring simultaneously with overlapping frequency spectra and often

vastly different amplitudes. Furthermore, there are sources of confounding noise and

other oscillation modes such as bubble surface oscillations, forced and unforced bubble

oscillations, non spherical bubble geometries and non-linear US propagation [Leighton,

1994], making differentiating individual events and determining the causative event a

difficult task.

To analyse the frequency components of a signal over a specified time period, a

Fast Fourier Transform (FFT) algorithm is used and often analysed in isolation to de-

termine cavitation activity [Chen et al., 2003, Tu et al., 2006]. This however will not

give any information on how the frequency spectra will change over time. In order

to solve this problem, the time window can be shortened and repeated over the total

time of interest, known as an Short Time Fourier Transform (STFT). The spectra of

every interval is then combined to create a spectrogram of the acoustic emission fre-

quencies over time which is often interpreted qualitatively after digital signal filtering

for cavitation detection [Farny et al., 2009, McLaughlan et al., 2010a,b]. STFTs and

other time-frequency analysis techniques such as wavelet transforms [Graps, 1995] and

Bilinear distribution functions [Janssen, 1994, Semmlow, 2011], analyse both the tem-

poral and spectral information of a signal in a continuous manner which is more suited

to time varying signals such as cavitation.

The fundamental limitation of an STFT is fixed resolution. Increasing the size

of the time window increases the frequency resolution but decreases the temporal res-

olution and vice versa. In contrast, wavelet analysis techniques are multi-resolution

and can give good time and frequency resolution simultaneously, enabling accurate

detection and time location of both inertial, short duration events and long duration,

low frequency patterns [Graps, 1995]. In other words, the wavelet transform analyses

the signal at different frequencies with different resolutions as opposed to resolving

each spectral component equally as was the case with the STFT. This is ideal for com-

plex signals with a broad frequency range such as those produced by cavitation clouds.

The technique has been used for cavitation detection in several applications already

[Haqshenas and Saffari, 2015, Yujin Zong, 2006]. Wavelet is also preferred over Bilin-
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ear distributions as these create unwanted cross-terms when analysing complex signals

[Cohen, 1995], arising in distributions which are a non-linear function of the signal

[Papandreou-Suppappola, 2002].

1.2 Overview of the Nerve Fibre
This section is intended as a brief overview of relevant biological structure and function

to facilitate understanding of US-tissue interaction theories which will be posed in this

report. More in depth information about these topics can be found in text books [Alberts

et al., 2002].

A typical mammalian peripheral nerve bundle consists of afferent sensory, and

efferent motor neurons as well as sheath tissue and myelination cells call Schwann

cells. The nerve cells will all have dendrites, a cell body containing the nucleus and

machinery for protein production and folding, a long axon and a synaptic terminal. A

basic example of these major features is shown in figure 1.1(a), though individual nerve

cells in the Central Nervous System (CNS) can be significantly more complicated in

structure, involving thousands of input and output connections.

Neurons are cells that have highly electrically polarised membranes, at rest their

interior is highly negative with respect to the positive outside (Figure 1.1(a)). This

electrical gradient is maintained by using trans-membrane proteins and energy to pump

charged ions in opposite directions against their concentration gradients. The ions in-

volved in this electrical polarisation along the peripheral nerve axon are sodium and

potassium (Figure 1.1(b)), whose distribution inside and outside the cell is also con-

trolled by several other types of trans-membrane proteins.

Within the axonal membrane are many trans-membrane proteins that form chan-

nels for the ions to pass through, facilitating passive diffusion of ions down their electri-

cal and chemical gradients. These channels are entropically stabilised in the membrane

by hydrophobic sequences in the protein structure that create an outwardly hydrophobic

layer in the middle of the protein, shown in orange in Figure 1.1(b), which is approxi-

mately the same thickness as the hydrophobic membrane. Most of these rest in a closed

state and are gated by local changes in membrane voltage, known as voltage gated ion

channels. This means that once a certain threshold voltage is reached the channels will

change conformation and open, allowing passage of sodium and potassium ions down
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the electro-chemical gradient to depolarise or hyperpolarize the membrane respectively.

This in turn will alter the local membrane potential and open more voltage-gated chan-

nels, propagating the depolarisation down the axon in a wave. If multiple axons in close

proximity generate action potentials synchronously, the combined ionic flux creates a

negative potential wave in the extra-cellular environment which can be measured by

electrodes and is known as a Compound Action Potential (CAP).

Upon the action potential reaching the pre-synapse (Figure 1.1(c)1), a cascade of

events occurs that leads to release of chemical messengers (neurotransmitters) which

are received by and cause a response in the second cell. The incoming action potential

will cause voltage gated calcium channels to open in the pre-synaptic terminal, initiat-

ing a rapid influx of calcium into the cell (Figure 1.1(c)2). The primary effect of this

is to initiate fusion and docking machinery, causing primed synaptic vesicles (bags of

neurotransmitter) in contact with the pre-synaptic membrane to fuse and release their

neurotransmitter into the synaptic gap (Figure1.1(c)3). This signal is detected by the

receptor proteins in the post-synaptic membrane which transmit the signal inside the

cell by changing their conformational shape (Figure 1.1(c)4). The effect that this has

on the post-synaptic cell can vary greatly depending on the cell type, position of the

input on the cell, type of neurotransmitter and many other factors.



1.2. Overview of the Nerve Fibre 34

(a) (b)

(c)

Figure 1.1: Example diagrams of nerve structure and function (a) a Diagram of a typical
motor neuron cell showing membrane polarisation and unidirectional action potential
propagation from the cell body located in central ganglia to the axon terminal in periph-
eral muscle tissue. (b) More detailed diagram of the structure of the nerve membrane
at rest, showing the majority of potassium ions in the nerve lumen and the majority
of sodium ions outside. An example trans-membrane protein is shown with the hy-
drophobic thickness in orange and hydrophilic sections in green. (c) Diagram of the
axon terminal and synapse including functional structures involved with a simplified
process of synaptic transmission.

These basic mechanics of nervous transmission are conserved between many types

of nerves and even between distant species such as crabs and humans. However, most

mammalian peripheral nerves are myelinated (some are not), whereas invertebrate ax-

ons are not. Myelination involves a modified fatty Schwann cell, wrapped around the

axon to electrically insulate, aiding faster nervous transmission. Myelinated action
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potential transmission also works slightly differently, where the depolarisation jumps

between nodes (not covered by myelin) where ion channels are densely clustered.

1.3 Background and Motivations
Diseases and dysfunction of the nervous system, both central and peripheral, are com-

mon causes of morbidity and mortality around the world. Despite huge investment into

pharmaceutical solutions for some of the more prevalent problems, progress has been

slow. For a few of these diseases, successful new treatments have been found in neu-

rostimulatory medical devices. Examples include deep brain stimulation for Parkin-

son’s disease, Vagus nerve stimulation for epilepsy and depression as well as Sacral

neuromodulation for incontinence. The gold standard for all of these are implantable

electrodes, which themselves are associated with much morbidity from the need for

highly invasive surgery, regular battery replacements and immunosuppression.

Though implants are improving, techniques that allow non-invasive neurostimu-

lation such as Transcranial Magnetic Stimulation and Direct Current Stimulation are

gaining favour since they avoid the complications mentioned above. However, neither

of these techniques can replicate the location specificity, reliability, or stimulation depth

that implants can achieve.

US, through the development of HIFU for ablative surgery and blood-brain bar-

rier disruption, has demonstrated its ability to overcome both of these targeting issues,

reaching anywhere in the brain and other body areas with millimetre precision. Pioneer-

ing studies have demonstrated its capability to elicit neurostimulation at low intensities

in vitro [Tyler et al, 2008] and in small animal models [Tufail et al, 2010, Yoo et al,

2011a, Younan et al., 2013]. Despite the short time that has passed since these studies,

the same techniques have already been demonstrated to be effective for neuromodula-

tion in primates and humans [Deffieux et al., 2013b, Hameroff et al., 2012, Lee et al.,

2015, Legon et al., 2012, 2014].

As with the preceding wave of HIFU research, new medical treatments and de-

vices have facilitated academic research into US neurostimulation and paved the way

for rapid uptake into the clinic. HIFU devices used in hospitals specifically, as well

as potentially other ultrasound devices, can be adapted to produce neurostimulation

protocols potentially allowing rapid transition from the lab bench to the clinic.
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As well as medical applications in the diseases mentioned above and many others,

non-invasive, highly specific neural stimulation has huge diagnostic and research poten-

tial for probing brain function. No other technique as yet can safely affect the function

of different brain areas in awake humans and the availability of such a technology may

revolutionise many areas of diagnosis, treatment and research.

Despite the recent progress in the application of the technique, still very little is

known about the mechanisms at work behind the observations. Understanding in this

regard has been hampered by poor characterisation of the ultrasound field, especially

in small animal models where small cranial volumes make reflections a significant

problem [Younan et al., 2013]. Combined with the variety of tissue and animal models

used, very little consensus has been achieved on successful US parameters, exemplified

by occasional directly conflicting or negative findings [Colucci, 2009, Gavrilov and

Tsirulnikov, 2012].

This mechanistic and parametric confusion in the literature highlights the need for

more rigorous approaches involving well characterised ultrasound, which have in fact

recently started to emerge. The most recent studies in primates and humans require

much less complex modelling to achieve accurate predicted intensity values due to the

larger brain volumes and there has been some acknowledgement and work towards

fixing the small target volume problems [Kamkin and Kiseleva, 2009, Mehic et al.,

2014, Younan et al., 2013]. However, though the field is moving in the right direction,

studies with a focus on accurate ultrasound characterisation are still low in number.

On the biological side, the complexity of the brain tissue targets makes it impos-

sible to know whether any observed effects, such as motor activity, occurred through

inhibition or enhancement of existing activity, or by generation of entirely new action

potentials. Though there have been many in vitro studies in the past that have simplified

the biological targets, only one of these achieved a simultaneously well controlled US

field [Colucci, 2009], though this group was investigating the inhibitory, not stimula-

tory effect.

In order to address these issues, the current study uses a controlled in vitro environ-

ment, directly stimulating and recording CAPs from excised crab nerves. The aim of

this approach is to create an environment where both the biological and ultrasound en-

vironment can be measured and modelled accurately to identify reliable thresholds and
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subsequently gain insight into the mechanism by which mechanical forces are trans-

duced into propagating electrical activity in nerve fibres.

1.3.1 Experimental Rationale

The axon, cell body and synapses of a single neuron may have different responses to

mechanical action, affected by the varying structural geometry, ion channel expression

and other factors. Reducing the structural variation and potential cellular mechanisms

at play is therefore critical to fully understand how cells respond to ultrasonic forces.

Consequently, the current study examines the US effects on solely axonal tissue and

support cells.

An ex vivo rat Saphenous nerve and then crab leg nerve model were chosen as

simple, robust and well characterised examples of axonal tissue [Horridge and Chap-

man, 1964, Janicak et al., 2010, Selvı́n-Testa and Urbina-Vidal, 1975] that are easy to

source, handle and record CAPs from. An in vitro model was essential in providing the

primary novelty and aim of this study, in its degree of accuracy of US pressure and in-

tensity measurement. As well as allowing more reliable comparisons with quantitative

acoustic models, the simpler US field and lack of any tissue depth allows more accu-

rate measurements of the acoustic noise at the stimulation site than in vivo experiments,

helping identification of cavitation activity. Secondarily, as well as being representitive

of unmyelinated nerves in humans, the response of this axonal transmission model sys-

tem to US has not yet been investigated.

The simplicity of these models at the current stage means that US effect on bio-

logical structures such as synapses and cell bodies cannot be investigated as they are

not present in the extracted tissue. The current report will therefore only concern itself

with the action of ultrasound on the structures of nerve axons.

1.4 Objectives and Novelty
The current work aims towards the much highlighted necessity in the literature for

a basic mechanistic understanding of the US-neurostimulation phenomena, which will

be essential in separating the different effects that US can have on nervous tissue and for

finding novel applications. The ultimate contribution of this fundamental understanding

will be in discovering and optimising US neurostimulation protocols for medical or
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research applications.

Within the general remit of understanding the US force mechanism and US-tissue

interaction, using the experimental procedures detailed in section 3.1 and 4, the authors

aim to answer these specific questions:

• Can peripheral axonal tissue alone be directly stimulated by ultrasound?

Does the stimulation protocol cause damage?

• What is the intensity or pressure threshold?

Is the response success determined by either US radiation force, or cavita-

tion?



Chapter 2

Literature Review

This chapter will review the literature around the subject of ultrasound neurostimula-

tion, with a specific focus on giving the reader an understanding of the progress and

current understanding of its mechanism of action. A short summary of the history of

the technique will first be given, followed by a critical appraisal of more recent key

papers in central and peripheral US neurostimulation. A discussion of the evidence for

involvement of different bio-structures and US force mechanisms in the US-nerve re-

sponse will then be given. To conclude, a summary of where the weight of mechanistic

evidence lies in the literature will be given, and a hypothesis proposed.

2.1 History
The use of US for neuromodulation has been investigated sporadically for over 80

years but is only recently gaining significant momentum as a viable research area. Ini-

tial studies by Harvey and then later by Fry and others showed a variety of different

US effects on neural tissue including potentiation and inhibition [Fry et al., 1950, Har-

vey, 1929, Wall et al., 1953]. After the initial study in 1929 by Harvey, it wasn’t un-

til Gavrilov et.al. in 1975 that ultrasound stimulation was achieved independently of

electrical stimulus again, although their initial focus was on specifically Mechanosen-

sitive (MS) neuronal structures such as the skin or inner ear [Gavrilov, 1984, Gavrilov

et al., 1977, 1975]. the first recent indication that US could stimulate non-specifically

mechanosensitive structures came from stimulation of the auditory nerve in cats [Foster

and Wiederhold, 1978] in 1978 later confirmed by Gavrilov et.al in frog models with

destroyed labyrinth structures [Gavrilov, 1984]. In both studies the thresholds for stim-

ulation were a lot higher than with an intact labyrinth, or on other known mechanosen-
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sitive structures. Activity was observed in the midbrain auditory centres in response

to the focused ultrasound, and histological analysis showed activated auditory nerve

fibres.

In keeping with these findings of auditory nerve stimulation, in 1993 an effect was

seen in humans during ultrasound Doppler imaging procedures where subjects heard

high frequency tones, equating in pitch to the PRF and in amplitude to the intensity

[Magee and Davies, 1993]. However it is possible that this is a direct effect on the

cochlea rather than any nerves as the characteristics of the stimulation are different as

well as seemingly being a lot more reliable than typical neurostimulation observations.

There are also many observations of US inhibiting nerve firing [Colucci, 2009,

Foley et al., 2008, Juan et al., 2014, Young and Henneman, 1961] instead of, or as

well as stimulating it, which is being used by some groups to develop treatments like

suppression of epileptic seizures [Min et al, 2011b, Tufail et al, 2011, Yoo et al, 2010].

To try and combine the observations of stimulation and inhibition, often seen in the

same studies [Mihran et al., 1990, Muratore et al., 2009, Tsui et al., 2005, Velling and

Shklyaruk, 1988], Muratore et al. suggested an intensity dependent interaction between

the two mechanisms summed up in figure 2.1. Due to the focus of the current study

on neurostimulation rather than inhibition, discussion of inhibitory mechanisms and

observations in the literature will largely be omitted.

Before 2008, exploratory studies almost all focused on examining effects on pe-

ripheral nerves [Dalecki et al., 1995, Foley et al., 2008, Fry, 1968, Gavrilov et al.,

1977, Lele, 1963, Mihran et al., 1990, Sheltawy and Dawson, 1966, Tsui et al., 2005,

Wright et al., 2002, 2015, Younan et al., 2013] with a few targeting central nervous

structures [Tsirulnikov et al., 1988, Wall et al., 1953]. This preference shifted dramat-

ically towards the central nervous targets after 2008 when Tyler’s group demonstrated

that hipocampal slices could be stimulated at much lower intensities than those used

on peripheral nerves (Figure 2.2) [Tyler et al, 2008]. Subsequent to this, studies on the

effects of low intensity US in the living brain have yielded a range of exciting results,

such as stimulating motor activity [Tufail et al, 2010], affecting GABA release [Yang

et al., 2012], reversibly inhibiting epileptic activity [Min et al, 2011b] and eliciting

somatosenory sensations [Lee et al., 2015].

This difference in sensitivity, first identified by Dr. Tyler’s group, is a general



2.1. History 41

Figure 2.1: Concept graph of an ideal nerve’s response to US dose. The dose and
activity axis intersect at the threshold intensity on the horizontal and the basal activity
level, pre-sonication on the vertical axis. Stimulatory effect at low doses is labelled as
an unknown ”second mechanism”. The higher dose mechanism is assumed to be heat
based inhibition alone. Image taken and modified from Muratore et.al., 2012.

theme in the literature, showing that Peripheral Nervous System (PNS) tissue is less

sensitive to US stimulation than CNS tissue. The dramatic difference can be seen in

figure 2.2 although it should be kept in mind that unreliable US reporting standards

make comparisons difficult. As such figure 2.2 is a comparison of the time averaged

Intensity (ISPTA) which is the most widely reported standard. It is likely be that the

pulse average intensity is more important for mechanically induced bio-effects as this

will determine the peak mechanical forces. A comparison of ISPPA or peak pressures

instead of ISPTA for example may correct for some of the difference as the primarily in

vivo CNS studies tend to use protocols with short pulses a lot to avoid potential heating

which significantly lowers the resultant ISPTA values. However, given that this cannot

account for a difference so large, the information can be used to guide investigation

into the likely biological target structure as some of the numerous differences between

CNS and PNS tissues are likely to be the cause of the differing sensitivity and therefore

key to the mode of action. For ease of identification and comparison therefore, the

remainder of this section will be split into CNS and PNS sub sections.
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Figure 2.2: Comparison of aggregated threshold intensity data (Spatial peak temporal
average) from past literature on peripheral versus central nervous US induced modula-
tion or stimulation. Error bars denote standard deviation. In studies where a range
of intensities were investigated, the highest value was used. All studies with suc-
cessfully demonstrated effects and well reported stimulus parameters were included
[Dickey et al., 2011, Fry et al., 1950, Hu et al., 2011, Lee et al., 2015, 2014, Legon
et al., 2012, 2014, Menz et al., 2013, Mihran et al., 1990, Min et al, 2011a, Tsirulnikov
et al., 1988, Tych et al., 2013, Tyler et al, 2008, Yoo et al., 2013, Yoo et al, 2011a,
Younan et al., 2013].

2.1.1 Central Nervous System

Tyler’s paper, as mentioned in section 2.1, was the first of a recent trend in demonstrat-

ing and investigating US neurostimulation effects in CNS neurons at low intensities

[Tyler et al, 2008]. As well as demonstrating the existence of a direct stimulation ef-

fect on CNS neurons, they found that both sodium and calcium flux and exocytosis of

synaptic vesicles could be detected in response to US stimuli in mouse hippocampal

slice cultures. As both of these ionic flux effects could largely be blocked by TTX (a

sodium channel blocker), it was claimed that the mechanism of stimulation was pri-

marily the direct effect of membrane stretch on sodium channels. However, the same

observation would have held true for activation that was initiating further upstream than

the involvement of sodium channels in the signalling pathway. This was later acknowl-

edged and the same group expanded their hypothesis to include many more possible

mechanisms of action [Tyler, 2010].

The direct US stimulatory effect was then demonstrated in vivo in the brain of a
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living anaesthetised mouse in both the motor cortex and hippocampus in the absence

of significant temperature rise [Tufail et al, 2010]. As with Tyler’s study before, the

intensities used in these experiments were remarkably low, staying around or often well

under 100 mW/cm2, much lower than previous peripheral nerve investigations [Dalecki

et al., 1995, Mihran et al., 1990, Wright et al., 2002]. In this first study by Tufail et al.,

an ”US collimator” 2-4.7 mm in diameter was used to deliver the stimulus to the rat’s

head, which is less than or close to the wavelength of US (4.6mm at 0.35MHz used in

their study). This would have acted like a point source, radiating US in all directions

through the mouse’s head rather than focusing onto the motor cortex as was claimed.

The same issue would also have been present in a similar study, also stimulating mouse

brains [Moore et al., 2015]. Despite these issues, many of the findings of both papers

remain valid and intriguing, demonstrating that US is able to differentially target and

stimulate different functional brain regions [Tufail et al, 2010].

A more acoustically controlled study followed in 2011 stimulating rabbit brains

in a similar manner but with a phased US array, a craniotomy of the intervening skull

layer, and real time MRI monitoring of the US focal position [Yoo et al, 2011a]. The US

was shown to induce increases in the Blood Oxygen Level Dependant (BOLD) signal

of the somatomotor cortex, which are often associated with brain region activity, and

elicit forepaw movement from the anaesthetised animal. The BOLD signal increase

was observed at amplitudes lower than the threshold for forepaw movement [Yoo et al,

2011a]. Although it is tempting to attribute this to low level neurostimulation effects,

it could be due to other factors such as vasodilation caused by nitric oxide release

induced by low intensity ultrasound [Altland et al., 2004, Iida et al., 2006], temperature

rise or possibly by activation of more sensitive MS channels in the endothelium of

blood vessels [Olesen et al., 1988, Schmidt et al., 2012]. This means that a BOLD

signal cannot be used to prove US stimulation success but could have the advantage of

allowing useful guidance feedback while at sub-stimulatory intensities.

In the same study however, sonication of the visual cortex using slightly different

parameters did not produce any BOLD response and in fact reversibly reduced the

amplitude of visual cortex responses to light stimulus applied to the rabbit’s eye, thus

demonstrating a region specific, opposing effect of US neuromodulation. Along with

other differences in parameters, the stimulatory pulse average intensity threshold in
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this study was much larger than in previous examples by Tyler and Tufail in mice (12.6

W/cm2 compared to 23-163 mW/cm2), though in later studies by the same group the

intensity of stimulation was dropped to 1-6 W/cm2 [Kim et al., 2014a], probably due

to optimisation of their other stimulation parameters such as pulsing and frequency.

A potential problem with the MRI guidance technique is that static magnetic fields

are known to affect ion channel activity, especially mechanosensitive ones [Hughes

et al., 2005] as well as bio-membrane phospholipids. This raises questions about stim-

ulation results from studies combining US stimulation and MRI observation like Dr.

Yoo’s. Tissue motion generated by US radiation forces in a magnetic field may also be

generating current via Lorentz forces [Fry, 1968, Norton, 2003].

The third group to examine the mouse twitch response, essentially repeating stud-

ies by Tufail and Yoo [King et al., 2013], confirms Tufail’s original findings that US

can stimulate motor reflexes and that lower frequencies are more effective. The scope

of this study was much broader, testing and reporting on a number of different ultra-

sound variables including 8 different frequencies at 3 different intensity levels in three

mice tested per point (Figure 2.6). Although contradictions with other studies are posed

such as a preference for CW protocols here, this paper and others not mentioned here

in detail add to the finding of a robust US neurostimulatory effect in the CNS [Choi

et al., 2013, Menz et al., 2013, Min et al, 2011a, Muratore et al., 2009, Yang et al.,

2012, Younan et al., 2013].

Reflections within the head of small animal models or in vitro setups are a major

confounding factor both for brain region targeting and the accuracy of intensity mea-

surements made by a hydrophone in free water, which has been the standard in the

literature. This was only acknowledged and accounted for in 2013 by Younan et al.,

who found through modelling and acoustic phantom experiments that sub-wavelength

peaks were created within a rat skull with a factor of 3.6 times greater acoustic in-

tensity (ISPT P) than measurements in free water would predict [Younan et al., 2013].

As the first study to take good account of acoustic reflections by modelling the wave

propagation within the rat’s head, Younan’s experimental data has added significant ev-

idence for US’s neurostimulatory effect in the brain and has provided the first reliable

threshold data (ISPPA = 17.5 ± 7.5 W/cm2 using 0.32 MHz US).

Also addressing the problems of small volume brains, several recent studies have
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simply started applying US stimulation to larger brain models [Deffieux et al., 2013a,b,

Hameroff et al., 2012, Lee et al., 2015, Legon et al., 2014]. In both monkeys and

humans, these studies have observed successful modulation of activity in various brain

areas and although they can provide useful threshold data for effect observation, they

shed little light on the biological mode of action due to the tissue complexity present.

It is difficult to even claim if stimulation or inhibition occurred given the possibility for

inhibition or stimulation of inhibitory pathways, resulting in the ubiquitous use of the

term ”neuromodulation”.

Although larger brain volumes solves one problem it also opens up another. The

greater soft tissue depths and skull transition is more likely to generate significant non-

linearity in the beam propagation, which has not been factored into intensity or pres-

sures measurements in any of these studies [Deffieux et al., 2013a,b, Hameroff et al.,

2012, Lee et al., 2015, Legon et al., 2014]. Although the low intensities of these stud-

ies reduce the possible influence of non-linearity, the often very short pulse lengths can

increase its effect and for ensuring accurate metrology, it should always be considered.

Another vital piece of information that the most common live animal studies can-

not bring is the timescale of the US stimulation cellular response. The latency between

CNS stimulation and motor response involves many different processes making it im-

possible to measure the time contributions of the US reception mechanisms at work.

Response latency in such studies also varies by an order of magnitude (approximately

20-200 ms [Kim et al., 2012, Tufail et al, 2011, Tyler et al, 2008, Yoo et al, 2011a]),

possibly depending on the level of anaesthesia. Very little information can therefore

be gained from the measurements and the involvement of slow mechanisms of change

such as long cell signalling pathways cannot be ruled out, again highlighting the advan-

tage of experimenting with simpler biological systems such those used in the current

study.

2.1.2 Peripheral Nervous System

US stimulation attempts made on the PNS have been shown to be successful primarily

when targeting the specifically mechanosensitive structures in the skin [Gavrilov and

Tsirulnikov, 2012, Lee et al., 2014, Legon et al., 2012, Muratore et al., 2009]. Whereas

attempts at inducing de novo action potentials by targeting the nerve trunk have hitherto
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been mostly unsuccessful except for one recent study [Kim et al., 2012], instead result-

ing in inhibition only [Juan et al., 2014, Lele, 1963]. Modulation of Action Potentials

(APs) stimulated electrically though, is easily observed [Mihran et al., 1990, Tsui et al.,

2005, Young and Henneman, 1961].

The existence of mechanosensitive receptor structures means the mechanism of

US stimulation in the skin is likely to be very different from stimulation of a nerve

axon or of areas within the brain. Many of these sensitive receptors may be stimulated

in a straight-forward manner by the forces in US that they were adapted to detect, for

example, the radiation force of US is likely to be detected by Meissner’s corpuscles

just like any physical pressure exerted on the skin [Dickey et al., 2011]. Some of these

receptors, however, may be stimulated by non-conventional aspects of the US-tissue in-

teraction. The most recent study targeting human skin found patients reporting a cool-

ing sensation, opposed to the small amount of heating that would have occurred [Lee

et al., 2014], which they put down to activation of mechanosensitive sodium channels.

Though the stimulation of skin in vivo with US demonstrates a useful tool for

assessing peripheral nerve function, the complex tissue structures and uncontrolled

acoustic environment make it a poor model to investigate the US mode of action.

Experiments on excised amphibious (frog) sciatic nerves [Mihran et al., 1990, Tsui

et al., 2005] are some of the closest biologically to the crab leg nerve model used in

the current study. The earliest of these investigated single 0.5 ms pulses of 2, 4 and

7 MHz US at 100-800 W/cm2 and noted enhancement and suppression of electrically

induced CAPs [Mihran et al., 1990]. Tsui’s work in contrast was on long exposures (5

minutes) of CW ultrasound with 1,2 and 3W driving powers, similar to Mihran’s work

[Mihran et al., 1990] or Fry’s even earlier [Fry et al., 1950], saw both enhancement and

suppression [Tsui et al., 2005]. The existence of an enhancement effect in these papers

provides support for the existence of a stimulatory interaction of US in peripheral nerve

trunks.

Even closer to the nerves used in the current work is the crayfish vertebral nerve

chord used by Fry et al [Fry et al., 1950]. They used a much lower intensity of 35

W/cm2 and 1 MHz CW ultrasound, also finding a slight enhancement of electrically

stimulated CAPs followed by inhibitory effect as the exposure went on longer. The

agreement of these findings despite vastly different protocols serves to strengthen the
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evidence for a robust US induced effect that is conserved across different models of ax-

onal tissue. However, despite that these studies were specifically aiming to investigate

the mechanism of action as well as just demonstrate an effect, again, US reflections in

the test environment were not accounted for.

The only study to report successful de-novo generation of CAPs by US in a pe-

ripheral nerve bundle did so using a live anaesthetised rat model, targeting the abducens

nerve [Kim et al., 2012]. Unsuccessful stimulation of neck and leg muscles was at-

tempted before successfully stimulating the abducens nerve (measured by abductive

movement of the eyeball) using the same US parameters (0.35 MHz, 8.6-20 W/cm2

ISPPA, 1.5 kHz PRF, 0.36 ms pulse duration, 54% DC and a TSD of 200 ms). 0.65

MHz was attempted but found ineffective. Although other parameters vary slightly the

intensity used is in the same range used by Yoo et al., for CNS stimulation (12.6W/cm2

ISPPA [Yoo et al, 2011a]). However, the pressure values stated were solely derived from

a characterisation of the focal point of the transducer in free water by a previous study

[Yoo et al, 2011a]. As with most in vivo studies, no attempt was made to stop reflec-

tions within the rat skull. This oversight is particularly important in this study as the

abducens nerve target is located very close to the skin, which is an air-tissue interface

and will cause strong reflection and associated radiation forces. Combining these points

with the fact that the US was focused onto the abducens nerve through brain tissue and

that no direct measurement of abducens nerve activity was made, leads the author to

question the claimed specificity of stimulation.

Technically demonstrating US stimulation of peripheral nerves is a recent paper

studying the effects of US and cavitation on the behaviour or nematodes with sensory

neurons engineered to express TRP-4, a specifically mechanosensitive ion channel [Ib-

sen et al., 2015]. As well as genetically sensitising the neurons of the animals, mi-

crobubbles were introduced in the vicinity of the animals which were necessary for

successful neurostimulation. With these added factors, it is unclear whether the mech-

anism of neurostimulation will be the same as in other US neurostimulation studies but

it does demonstrate the principal of US mechanical forces, sensed by mechanosensitive

ion channels, eliciting neurostimulation in a biologically controlled environment. Only

once investigations are undertaken to quantify the exact mechanical forces acting to

achieve each observation of neuromodulation such as this, will a combined mechanis-
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tic understanding be possible.

2.1.3 Overview of the Literature

A consistent problem with the literature so far remains the patchy reporting of acoustic

parameters, making it difficult to make direct comparisons between reported pressures,

intensities or input voltages. Acoustic intensity is most usually quoted as the spatial

peak time average (ISPTA), however, as the effect of the US is considered to be mechan-

ical, the important intensity value will be the pulse average (ISPPA) or the equivalent

RMS or peak negative pressure.

On top of the often inconsistent reporting, many studies have been guilty of poor

control of the US environment itself in both in vivo and in vitro experiments, on CNS

and PNS structures. The primary problem is that US is not given any path to dissipate

or absorbent material put in place, meaning that the target (animal head or test chamber)

will be flooded with reflections or even standing waves, making the resulting ultrasound

field highly unpredictable. This problem is almost universally ignored in studies inves-

tigating US neurostimulation with one exception [Colucci, 2009] even after the problem

was highlighted by Younan et al., in 2013 [Younan et al., 2013]. Progress is being made

in the right direction though. A recent study has demonstrated the possibility of using

a high carrier frequency, modulated at 0.3-1 MHz to achieve neurostimulation in small

animal models with much higher spatial resolution [Mehic et al., 2014]. Improving

control of ultrasound through measurement, modelling or better experimental design,

throughout the field of US neurostimulation will be an essential step towards consensus

on successful stimulation thresholds and understanding the mechanisms at play.

Added to this, the sporadic use of different animal models and US parameters

in the literature has led to many results which are difficult to compare and are often

in disagreement. The mixed findings in the literature have even on occasion called

into question the existence of the stimulatory effect itself [Colucci, 2009]. For example

Gavrilov wrote in his 2012 review that his group were unable to stimulate local impulse

activity or propagating excitation in any brain material in several separate vertebrate

animal studies (frog, rat, rabbit, and cat) by the use of focused ultrasound [Gavrilov and

Tsirulnikov, 2012]. More recently, Chu et al. reported no neuromodulation when using

a higher mechanical index exposure in the somatosensory cortex than studies by dr
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Yoo’s group [Chu et al., 2015], only finding successful short and long term suppression

when microbubbles were introduced. Even the studies which do observe successful

neurostimulation find the response to be unreliable [Kamimura et al., 2015, King et al.,

2013, Younan et al., 2013] which raises the possibility that there is a lot more negative

response data that remains unreported.

For a full understanding of how US interacts with biological tissues, there is a wide

range of other observed US induced bio-effects that should be considered because, if

they are not caused by neurostimulation which seems possible in many cases, they

may share underlying mechanisms. Much like the US-nerve interaction, most of these

findings are very new and as yet have very poorly understood mechanisms. For exam-

ple, in humans alone when applied to the tongue US can produce sensations similar to

weak current [Gavrilov et al., 1977], it can aid in bone and tendon repair and re-growth

[Della Rocca, 2009, El-Bialy, 2007], can alter stem cell differentiation [Ebisawa et al.,

2004], and can induce foetal movement, even at diagnostic intensities [Fatemi et al.,

2001].

If non-human studies are included the list goes on, improving nerve regeneration

through NGF expression in rats [Chen and Grinnell, 1995, Crisci and Ferreira, 2002],

enhancement of bone regeneration in rats [Jung et al., 2015], enhancing tooth repair

and formation of new dental tissue [El-Bialy, 2007, Patel et al., 2015, Scheven et al.,

2009] and electroreceptor stimulation in sea skates [Broun et al., 1980]. US even has

non-thermal effects at molecular levels, altering gene expression and enzyme activity

[Johns, 2002]. This wide range of effects has prompted the search for a unified theory

such as proposed by Krasovitski et al., in 2011 [Krasovitski et al., 2011] where a single

mechanism may account for all of the observed bio-effects of US, not just neurostimu-

lation.

It is clear from the literature that US can, in certain circumstance modulate action

potentials or activate motor functions. However it is not clear what all the steps or

mechanisms are between the US energy being absorbed and the action potential firing.

The key information that should unlock this black box is determining the point in the

chain of events where the non-biological, mechanical forces are transferred into, and

alter the state of a key biological process. This will hopefully involve a dominant effect

on a single identifiable structure that senses or is altered by the direct US force that
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begins events leading towards action potential firing. Towards finding such a structure,

in section 2.2 the author will discuss the evidence for and against the involvement of

different cellular components.

2.2 Biological Target Structure
The preference in recent US stimulation literature for in vivo models and Central Ner-

vous System (CNS) tissue targets leaves little way of knowing which neuronal cell

types or which parts of those cells are responding to ultrasound, if indeed the effect is

region specific. This wide variety of potential structures makes it difficult to predict

exactly how the ultrasound energy is being transduced into a cellular response. What

follows is a section on the evidence and reasoning behind several hypotheses on the

cellular effect of US, focusing on the candidate structures that may be directly affected

by US induced mechanical forces.

2.2.1 Transmembrane Ion Channels

As the direct effector of a nerve depolarisation response, ion channels are expressed

ubiquitously in the membranes of neuronal cells, with different species and subtypes

performing different functions in different cells or cell-regions. Opening or closing of

ion channels involves a change in the protein conformation which alters their radius

or hydrophobic thickness, meaning that all of them will be to some extent sensitive to

mechanical forces through the surrounding membrane or other sources [Morris and Ju-

ranka, 2007, Ursell et al., 2007]. The simplest theory for US neurostimulation therefore

is that ion channels are both the only structure sensitive to the mechanical US force and

the only biological effectors involved in the AP initiation. Given the variety of chan-

nel types, functions, distributions and force thresholds, this explanation is sufficient

account for the wide range of US bio-effects reported in past literature, mentioned in

section 2.1.3.

There are several ion channel types that could initiate action potentials, or pro-

mote/enhance existing activity in response to US such as sodium, calcium and potas-

sium channels which have all been implicated [Dinno et al., 1989, Hu et al., 2011,

Mortimer and Dyson, 1988, Tyler et al, 2008], though the evidence for their relative

importance in the response to US is thin. This is most likely due to the difficulty in



2.2. Biological Target Structure 51

separating the US induced ionic flux from the action potential ionic flux that follows,

the electrical or chemical characteristics of any pre-threshold depolarisation is easily

obscured by subsequent AP events.

Calcium channels are used to propagate potential in the dendrites of neurons (Fig-

ure 1.1(a)) and trigger synaptic vesicle fusion and NT release into the synapse between

nerves (Figure 1.1(c)), whereas sodium and potassium channels are the main driver for

axonal action potential propagation. This means that if the effect is ion channel specific

it may also be location specific.

Effects on calcium ion flux in response to US has some support from several dif-

ferent sources including fibroblasts in vitro [Dinno et al., 1989, Mortimer and Dyson,

1988, Otter and Salmon, 1985], during neuritic growth [Hu et al., 2011], calcium influx

induced apoptosis in HIFU exposures [Dai et al., 2014, Lee et al., 2013], calcium tran-

sients in rat cardiomyoblasts [Fan et al., 2010] , although it remains unclear whether

this is through the direct action of the US on calcium ion channels or via some up-

stream mediator. It could also be speculated that the increased importance of calcium

signalling for dendritic APs and in synapses is a reason for lower intensity thresholds

for US stimulation in the CNS (Figure 2.2).

The sensitivity of these channel types to US forces may vary on sub-type as well as

the surrounding mechanical environment, meaning that a calcium, or other ion channel

in the synaptic terminal will have very different properties to one located in the den-

drites of a nerve for example. The result of the cellular response to the ion in question

will also vary depending on the cell or tissue type. Indeed this tissue/cell region speci-

ficity of response is observed in the literature [Bachtold et al., 1998, Yoo et al, 2011a],

as is the force windowing of effects that different sensitivity channels would predict

[Fry et al., 1950, Muratore et al., 2009, Tsui et al., 2005, Velling and Shklyaruk, 1988].

This makes determining the affected channels very difficult in any experiments with

multiple exposed cell regions or tissue types and illustrates why less complex models

such as in the current study will be essential for determining the key biological sensors

of the US. Even in simple tissue models with multiple channel types, if force window-

ing like this occurs with US then it will add to the complexity of observations and the

difficulty of eliciting specific effects.

Figure 2.3 demonstrates this variability of force thresholds in channel types found
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within a single neuron. These types of differential force detection mechanisms are

known to be important in many areas of the body, for example in epithelial cells of

arterioles it is known that several stretch sensitive ion channels respond to membrane

tension with opposing effects at different force amplitudes[Lansman et al., 2011, Ole-

sen et al., 1988]. Channels described as mechanosensitive will likely have much lower

mechanical force thresholds for opening than the sodium, potassium and calcium chan-

nels directly involved in AP transmission.

2.2.2 Mechanosensitive Ion Channels

There exists a subset of ion channels that are specifically mechanosensitive, that have a

structure particularly sensitive to certain mechanical forces. It is the direct influence of

US on MS ion channels that is the basis for one of the most prevalent theories on how

US neuromodulation is brought about.

Exactly how these channels detect mechanical forces is not well established and

varies between individual examples, even some TRP channels usually cited as archety-

pal MS ion channels are still in question as to whether they sense the force directly

or indirectly, i.e. they could be part of the immediate downstream signalling from the

actual force sensor [Christensen and Corey, 2007, Lin and Corey, 2005].

It is thought that MS channels are present in all cell and tissue types as some of

their functions are universal such as regulation of cell volume [Hua et al., 2010] or cell

motility and growth [Sukharev and Anishkin, 2004]. Interestingly US has recently been

shown to have an effect on neurite growth in the brain which required the presence of

stretch sensitive ion channels [Hu et al., 2011], suggesting that some MS ion channels

may only be present in juvenile stages of cell growth. Similarly, a recent paper has

demonstrated a direct US neurostimulatory effect in C.Elegans which was greatly en-

hanced by the presence of transfected mechanosensitive pore-forming TRP-4 channel

subunits [Ibsen et al., 2015].

Potentially explained by MS ion channels’ universal presence, several studies have

discovered that low intensity US, even at imaging levels, can cause alteration of ionic

membrane permeance in non-neuronal structures [Chapman et al., 1980, Dinno et al.,

1989, Mortimer and Dyson, 1988, Velling and Shklyaruk, 1988]. Of course MS chan-

nels will have other, non-universal functions in the body and their distribution and type
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will vary between tissues, defining or at least contributing to any tissue specific effects

of US.

One persuasive argument for MS ion channel density being the determining factor

in nerve sensitivity comes from observations made by clinicians and researchers that

neuropathic tissues or damaged nerve fibres, which recruit MS ion channels as part

of the inflammation process, have a much higher mechanical and chemical sensitivity

[Rivera et al., 2000] which corresponds to a higher sensitivity to US stimulation [Chen

et al., 2010, Tych et al., 2013]. This work was furthering Gavrilov’s initial idea to apply

US to diagnose and locate neuropathies in peripheral nerves [Gavrilov and Tsirulnikov,

2012].

Differences in MS ion channel types and concentrations can also explain the much

lower US sensitivity of the PNS compared to the CNS. Evolutionarily, PNS neu-

rons would encounter significantly more outside mechanical forces and therefore are

adapted to be mechanically insensitive, whereas CNS neurons would not require this

insensitivity to mechanical forces. This of course excludes sensory nerve endings in

the PNS, which have a high concentration of MS ion channels and are easily stimulated

with US [Dalecki et al., 1995, Dickey et al., 2011, Lee et al., 2014, Legon et al., 2012].

Figure 2.3: Two separate MS channel types identified in dorsal root ganglion neurons
cultured from a neonatal rat measured using a whole cell patch clamp technique show-
ing increased conductances as pressure is increased. A) Low threshold MS channel B)
High threshold MS channel [Cho et al., 2002]
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Ion channels shown to exhibit sensitivity to mechanical stimulation include

non-selective cation superfamily, two pore domain potassium channel superfam-

ily, amiloride sensitive sodium channel superfamily and voltage gated ion channels

[Hamill, 2011, Morris and Juranka, 2007], though all ion channels will be to some ex-

tent mechanosensitive. Of these, the peripheral axon models used in this study contain

two pore potassium leak channels that help maintain resting potential and are constitu-

tively active, as well as voltage gated sodium and potassium channels.

Given the evidence, it seems highly likely that MS ion channels have an important

role to play in sensing and responding to the stimulatory US forces, though this role

may be alongside other potential mechanisms which must be considered.

2.2.3 Direct Membrane Effects

It is possible that ultrasound forces could be stimulating neuronal tissue through mech-

anisms that just involve the lipid membrane itself. For example, if US generates suffi-

cient localised forces to cause small ruptures/pores in a cell membrane, the general ion

flux would cause depolarisation and an action potential in nerves. This is a well docu-

mented phenomenon called sonoporation which requires cavitation [Zhou et al., 2008]

and is often used for DNA or therapeutic compound delivery [Carugo et al., 2015]. Uni-

versally, sonoporation protocols use microbubbles which have not been employed for

neurostimulation with one exception [Ibsen et al., 2015] and generation of cavitation

in soft tissues without these nuclei would require significantly higher intensities than

are used in neurostimulation studies [Gateau et al., 2011]. Sonoporation should there-

fore be considered where cavitation is implicated, but is unlikely to be involved in low

pressure protocols. Even if cavitation effects involving nanobubbles are involved as is

discussed in section 2.3.4, collapse and jetting of these bubbles requires shock waves

[Choubey et al., 2011] which are not produced in any example of US neurostimulation.

Altering the charge distribution on the membrane as its thickness increases in one

location or as the membrane flexes is known as a flexo-electric current. This has been

demonstrated as an effective driving force for ion transport through membrane chan-

nels [Petrov et al., 1993, Plaksin et al., 2014], and could subsequently initiate action

potentials. Minor capacitive currents have been demonstrated in synthetic membrane

without proteins in response to US [Prieto et al., 2013] radiation force which is prob-
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ably a flexo-electric effect. However, although this study represents a step in the right

direction for control of the biological environment, their acoustic environment included

water surface reflections that, although later accounted for, contributed most of the ob-

served membrane flexure. Artificial vibrations would also have been introduced to the

membrane through the highly impeding structures that held the bilayer in place, which

is not accounted for. Thirdly, flexure would only be created in this scenario because of

movement relative to the fixed membrane holding apparatus, which does not reflect the

in vivo tissue environment where cells are not held at fixed points and will be moving

simultaneously with those around them. Combining these concerns with two similar

previous studies that found no effect of US on bilayer electrical properties [Pohl et al.,

1993, Rohr and Rooney, 1978], either the flexo-electric or capacitive current effects are

considered an unlikely mechanism.

2.2.4 Vesicular Fusion

Other than direct action on sensitive ion channels, there are other possible ways that US

could be eliciting a direct stimulatory response, some of which have had support in the

literature, and some less so. In the CNS, one possibility is the direct induction of vesicle

fusion with the pre-synaptic membrane. There is a pool of NT containing vesicles that

are held very close to the surface of the pre-synaptic membrane (Figure 1.1d), where

it is conceivable that the US might induce premature fusion of these primed vesicles,

though this or other effects within the synapse have not been directly investigated yet.

Vesicle fusion induced by ultrasound is a documented phenomenon although in the

studies that have successfully demonstrated it, the vesicles were orders of magnitude

larger (50 µm polymer vesicles), and the US was continuous wave US of a higher power

and lower frequency than reported stimulatory parameters [Zhou and Yan, 2005]. As

the mechanisms behind this observation were not investigated it is also not known if

or how the effect would scale to relevant sizes (10-50 nm) [Alberts et al., 2002]. As

there is not yet any data on the mechanical properties or sensitivity of these ”kissing”

vesicles, a quantified idea of mechanistic feasibility is difficult to come by.

Although this theory and other synapse specific interactions have merit for inves-

tigation, they cannot account for all the recent battery of data in the literature since

neuromodulation has been observed in tissue samples involving no synapses whatso-



2.2. Biological Target Structure 56

ever in peripheral nerve studies [Foley et al., 2008, Gavrilov et al., 1977, Young and

Henneman, 1961] or unconnected cells in culture [Muratore et al., 2009]. Also Menz

et.al.’s work on retinal stimulation seemed to demonstrate that if any synaptic effect

occurred in their study, it was at or before the ca2+ influx step (Figure 1.1d) [Menz

et al., 2013].

Although US may not cause immediate stimulation in this way, it seems likely

that it will at least induce more subtle effects at the synapse which could alter function

over the medium to long term and needs to be investigated for a full understanding of

US-nerve interaction. For example it has been shown that mechanical forces such as

presynaptic membrane stretch can increase synaptic vesicle clustering and exocytosis

probability [Chen and Grinnell, 1995, Siechen et al., 2009]. However, as the current

study is concerned only with the direct induction of potentials, longer timescale effects

won’t be discussed further.

2.2.5 Less Prevalent Theories

In addition to membrane stretch effects it has also been suggested recently that intra-

neuronal microtubules could be resonating at specific US frequencies to elicit varied

neurological effects [Hameroff et al., 2012]. These structures regulate spine, synapse

and neuron morphology as well as being used as tracks for transport within the cell.

While this has no obvious way of causing rapid excitatory responses in neurons, it

could play a role in the slow inhibitory or other neuromodulatory effects.

Other aspects of the cytoskeleton could also have a significant effect on both im-

mediate and downstream effects of the US. Actin filaments for example are thought

to act as tension sensors, playing an active role in signal transduction [Galkin et al.,

2012]. They could also serve as membrane anchoring points, inhibiting the free move-

ment of one or both leaflets of the membrane at specific points thereby possibly in-

creasing membrane tension. Deformation of cells in culture by amounts up to 2 µm

and membrane contraction resulting in cell volume decrease have even been observed

in responses to low power levels of ultrasound [Hu et al., 2014, Muratore et al., 2009],

although the simple metrology of stimulus intensities and resultant forces of the Mu-

ratore study has been disputed as it is surprising that such low intensities are able to

generate large effects [Gavrilov and Tsirulnikov, 2012].
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A new theory based around differential impedances of organelles has been pro-

posed where the difference in forces acting on different parts of the cell may be setting

up resonant effects in the 10-100kHz range that could be having impact on cell func-

tion through repetitive strain and fatigue-like effects [Or and Kimmel, 2009]. From

the current perspective though this theory seems unlikely as the authors only predicted

strains of 0.5% at frequencies much lower than those typically used in successful US

neurostimulation.

One way to explain the mechanosensitivity of nerve axons generally and in re-

sponse to ultrasound could be the Soliton model. This is an alternate to the standard

Hodgkin-Huxley model of axonal signal conduction where instead of a propagating

electrical potential and voltage gated ion channels, the signal is conveyed by a com-

pression wave along the axonal membrane, much like a sound wave [Andersen et al.,

2009]. In fact mechanical waves in the axon are well established to travel along with

the propagating action potential [El Hady and Machta, 2015, Tasaki et al., 1989], caus-

ing local changes in volume, pressure [Barry, 1970] and optical properties [Tasaki and

Byrne, 1993]. Though the Soliton model alone cannot explain many observations of

nervous conduction (such as collisions [Tasaki, 1949]), it is clear that there is a me-

chanical component to axonal transmission which is usually ignored in the literature

and as such, is still poorly understood. More research into this area will have to be per-

formed before it is clear if and how the mechanical component is connected to signal

transmission and how ultrasound might interact with it.

As well as axonal transmission, there are several other mechanical processes and

events that occur in neurons where US’s effect have never been assessed such as spine

twitch [Crick, 1982] or actin mediated conformation changes [Star et al., 2002] either or

both of which may be affected by US stimulus [Tyler, 2012] and which are inter-linked

with each other and other cellular processes and structures such as ion channels. This

builds the idea that US may be producing many simultaneous, combinatorial effects in

any one cell that will need to be dis-entangled at some stage to fully understand and

utilise the individual phenomena. The hope is that there will be one dominant effect

of the US that can be understood and manipulated easily such as immediate axonal

depolarisation.
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2.3 Energy Transduction Mechanism
Understanding how the US wave generates the key causative forces required for neu-

rostimulation is essential for a full comprehension of the US-nerve interaction and is

very closely tied in with determining the affected biological structure, as answering one

question will certainly contribute to our understanding of the other.

The 5 influences of US propagation through living tissue are outlined by Wulff

et.al. in 1951 as: ”(1) heating caused by absorption of acoustic energy;’ (2) periodic

pressure changes; (3) radiation pressure; (4) streaming or flow in viscous media; and,

(5) inertial and stable cavitation”. These serve as a complete list of the possible, broad

mechanisms through which US elicits neurostimulation. In this section, the logic of,

and evidence for the involvement of each in US neurostimulation will be discussed.

The first point mentioned, heating, is discounted as a stimulation mechanism in the

literature and in this study due to the low average intensities or short pulse durations

making the predicted heating negligible (<0.1◦C) in most examples of neurostimula-

tion [Kim et al., 2012, Lee et al., 2015, Tyler et al, 2008, Yoo et al, 2011b].

Despite the passage of more than 60 years it has still not been determined which of

the remaining mechanisms is the primary source of bio-effects in nerves. Of course all

of them may be occurring to some extent but the importance of each will change based

upon the parameters of the US stimulus being applied and the structure of the tissue.

Hence the community must focus on a tight set of parameters which are optimum for

eliciting certain desired effects so that its effect in different tissues can be determined,

or vice versa. In the case of neurostimulation no ”optimum” or desirable characteristics

of the US stimulus have been arrived at by any consensus in the past literature which

leaves the conjecture about the mode of action and method of energy transduction very

open.

It is likely that there are multiple ways of bringing about an excitatory effect using

US. By using sonication parameters or a particular tissue environment that maximises

compression due to radiation force (e.g. nerves against bone) or by causing cavitation

or even direct pressure effects on proteins, excitatory effects could be produced. This

multiplicity of different possible stimulation routes is largely ignored in the literature

but could go a long way towards explaining the wide range of successful parameters

as well as seemingly contradictory trends and proposed mechanisms, which highlights
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the need for a concerted effort aimed at isolating and characterising the full range of

possible US-tissue interactions at a fundamental level.

Radiation force, or the radiation force envelope has been widely implicated in past

studies, mainly based on observations of stimulation occurring at the beginning and

ends of pulses [Dalecki et al., 1995, Gavrilov et al., 1977, Gavrilov and Tsirulnikov,

2012, Menz et al., 2013] which is when tissue motion will occur. This may explain the

prevalence and success of rapid trains (PRF>1kHz) of very short US pulses, popular in

recent protocols for neurostimulation [Kim et al., 2014a,b, Legon et al., 2012, Moore

et al., 2015, Tyler et al, 2008, Yoo et al, 2011a, Younan et al., 2013] as they maximise

the tissue movement due to radiation force. Shorter pulses also create higher harmonics

with greater absorption and tighter beam paths from non-linear propagation [Rudenko

et al., 1996] which increases radiation forces and steepens force gradients and resultant

tissue sheer stresses. However, some recent studies have challenged the importance

of pulsing, reporting that pulse length does not have an effect when averaged power

is kept constant [Colucci, 2009, King et al., 2013, 2014, Menz et al., 2013, Vartanyan

et al., 1990] and it is the author’s opinion that radiation force cannot account for recent

studies in the CNS which will be discussed in the next section.

2.3.1 Radiation Force

Within soft tissue, radiation force will produce forward motion in the focal area until

the elastic tissue reaches an identical counter force or until the pulse ends, and the

reverse motion occurs when the force stops. This motion will be acting at the beginning

and ends of each US pulse and repeated at the PRF. When using a focused transducer,

tissue displacement will create static compression at the front, stretch at the rear and

shear stress around the focal area, the gradients of which will depend on the intensity

profile of the US focus.

It has long been known that mechanical pressure on nerves can either have stimula-

tory or inhibitory effects depending on the force applied [Julian and Goldman, 1962a].

It therefore may be possible that short pulses are applying a ”flick” to neural matter,

which could cause action potentials to fire in the ways discussed in section 2.2. If suf-

ficient radiation force can indeed be produced by US stimulation, it is most likely to

have been the dominant factor in early observations by Gavrilov’s group where much
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higher intensity exposures were used (up to 4000 W/cm2, [Gavrilov, 1984]), as well as

other groups showing effects in the skin [Dalecki et al., 1995, Gavrilov et al., 1996, Lee

et al., 2014, Wright et al., 2002], since it is known that skin structures (which repre-

sent a reflective phase change from the water transmission path) are sensitive to minute

pressures of less than 4 mN applied by Von Frey hairs [Garrison et al., 2012]. However

it is not clear if the same force is responsible for more recent neurostimulation studies

in the CNS as these tend to use much lower focal intensities on structures that are not

specifically mechanosensitive.

Of the US effects mentioned in section 2.3, radiation force is the easiest to model

and understand and therefore predict its influence on tissues. Estimates of forces gener-

ated in previous studies successfully demonstrating neurostimulation can even be made.

The acoustic radiation force acting in Tyler et.al’s paper (2008) can be calculated by

the equations [Duck, 1990, Nightingale et al., 2001]:

ISPPA =
P2

a√
2Z

, (2.1) Fabs =
2αISPPA

c
, (2.2)

where I is the spatial peak, pulse average intensity, Pa is the temporal peak US

pressure, Z is the characteristic acoustic impedance of brain tissue (1.6e6 Rayls), Fabs

is the radiation force due to the absorption of acoustic energy, α is the attenuation co-

efficient of neural tissue in nepers per meter calculated from equation 2.4 and c is the

speed of sound in soft tissue at room temperature (1562 m/s) [Roy, 1991]. These equa-

tions assume plane wave and linear propagation. Equation 2.2 is a linear approxima-

tion based on a derivation of the Navier-Stokes equation [Doherty et al., 2013, Nowicki

et al., 1996] which does not take into account the non-linear waveform, scattering or

boundary reflection effects.

Calculating the pulse averaged spatial peak force that should be present in Tyler’s

study using the values, α = 5.7 nepers/m measured at 1 MHz [Roy, 1991], c = 1562

m/s [Duck, 1990], I = 2.9 W/cm2 (ISPPA) [Tyler et al, 2008] yields a volume force of

0.19 mN/cm3.

Given that some mechanosensitive and voltage sensitive tissues have been iden-

tified with shear stress force thresholds at 0.01 mN/cm2 or lower [Cho et al., 2002,

Olesen et al., 1988] (Figure 2.3 (1 mmHg = 13 mN/cm2)) it is possible that sufficient
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membrane stretch or cellular deformation could be generated to affect them. How-

ever, these shear stress forces are not quantified in the literature and cannot be easily

modelled without more accurate quantification of the experimental ultrasonic field and

tissue properties.

A simpler more comparable measure to this calculated US radiation force would

be those collected by Rivera et al. [Rivera et al., 2000], measuring the bulk mechanical

force threshold for stimulation of a rat peripheral nerve neuroma by application of a

blunt glass rod (1.2 mm diameter). Though the inflammation associated with a neuroma

makes this model more sensitive than a natural peripheral axon, the threshold range

they found was 3.90-30 mN or 86-670 mN/cm2, significantly above the radiation force

estimates presented here but similar to the findings for skin [Garrison et al., 2012]

or tongue receptor sensitivity [Trulsson and Essick, 1997]. Though the nerve model

and test environment differ, with more than a factor of 10 difference between these

and Tyler’s estimated forces, radiation force is not expected to have been the source

of the excitation in their study but may be in studies using much higher intensities or

frequencies.

Though the membrane stretch forces or shear stresses produced in previous studies

cannot be modelled with any confidence, the shape of the tissue displacement profile

as a result of US exposure can be understood by modelling radiation force as a point

force in a fully elastic solid using the equation [Nightingale et al., 2001]:

PD =
Prad(1+ v)(4z2(v−1)+ r2(4v−3))

8Eπ(r2 + z2)
3
2 (v−1)

, (2.3)

where PD is the maximum particle displacement, z is the distance along the force

axis from the point force, r is the radial distance away from the axis (Figure 2.4), v is

Poisson’s ratio, E is the Young’s modulus of the material and Prad is the applied force

[Nightingale et al., 2001].

The point force assumption means that the maximum displacement at the location

of applied force is infinite but assuming a tightly focused ultrasound beam (ideally

sub millimetre diameter), the displacement field predictions are informative. Using

values from the literature of v = 0.469 [Soza et al., 2005] and E = 9 kPa [Soza et al.,

2005] and a radiation force of 10 mN, we can see from figure 2.5 that displacement
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Figure 2.4: Conceptual distribution of tissue displacement as a result of radiation force
from a focused ultrasound transducer. Geometry of r and z used in equation 2.3.

reduces exponentially away from the area of force application, dissipating to negligible

levels 0.2 mm away from the point force. Shear stress in soft tissues will therefore be

concentrated in very close proximity to the beam axis in the areas of steep US intensity

(radiation force) gradient, with the shear maximum forming a hollow cylinder shape

around the beam axis.

(a) (b)

Figure 2.5: Theoretical calculations using equation 2.3 for tissue displacement in the
direction of beam propagation (a) at radial distances away from the beam axis and (b)
at axial distances away from the point force.

Accurate analysis of the spatial geometry of US stimulation using focused trans-

ducers may therefore be an excellent way of characterising the key mechanism within

any radiation force neurostimulation. Current attempts to map the stimulated area [Kim

et al., 2014b, Yoo et al, 2011a] in the brain do not have high enough resolution to iden-

tify the geometry of activation around the focal region and no reports have yet suggested

particular distributions. A study by Kim et al., in 2014 in fact found that the area of
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stimulation was actually smaller than the focal area of the transducer (measured by Full

Width Half Maximum (FWHM)) [Kim et al., 2014b]. As the radiation force gradient

is still high at the half maximum amplitude, this result could indicate that shear stress

is not the cause. However, the group’s findings are likely to have been confounded by

the complex US field reflections and standing waves within the rat’s head which pro-

duce unpredictable intensity patterns, opposing radiation forces from reflections and

sub-wavelength peaks [Younan et al., 2013].

From this simple modelling of radiation force and displacement it seems unlikely

that the direct radiation force produced in recent low intensity (<10 W/cm2) nerve

stimulation protocols will reach thresholds known to affect or open mechanosensitive

ion channels through tissue compression, tension or shear forces. Though of these

possibilities, the effect of sheer stress warrants further investigation.

As mentioned at the start of this section, studies targeting peripheral nerves

more often use protocols that produce potentially stimulatory, super-threshold radia-

tion forces and have found response dynamics consistent with a radiation force mech-

anism [Dalecki et al., 1995, Gavrilov et al., 1977, Legon et al., 2012, Mihran et al.,

1990, Wright and Davies, 1989]. Gavrilov et al. in particular found tactile stimulation

force thresholds in a very similar range to the bulk force thresholds reported by Rivera

et al. (13-16 mN/cm3, estimated from reported intensity thresholds) [Gavrilov et al.,

1977]. There have also been a few studies on the CNS with sufficiently high inten-

sity thresholds to warrant further investigation into the importance of radiation force

in the observations of each study [Choi et al., 2013, Legon et al., 2014, Menz et al.,

2013], though these high intensity exposure protocols (>10 W/cm2) are certainly in

the minority.

Considering the bulk of the CNS stimulation literature, if radiation force was a

significant mechanism then shorter wavelengths would be more effective (as they gen-

erate greater absorption forces and therefore greater pressure gradients) whereas the

prevailing observation is that longer wavelengths (lower frequency) have a lower stim-

ulation threshold and higher success rates in both central and peripheral nervous studies

(Figure 2.6) [Gavrilov and Tsirulnikov, 2012, King et al., 2013, Lee et al., 2014, Mona,

2007, Muratore et al., 2009]. Although one study has shown success at the much higher

frequency of 43 MHz carrier signal modulated at 15 Hz to 1 MHz [Menz et al., 2013].
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Figure 2.6: Adapted from King et.al., 2013 [King et al., 2013] showing an extensive
study performed on 3 mice where the effect of frequency and intensity were tested on
the response reliability of US neurostimulation. All data points were averaged over
the 3 animals. Error bars represent the standard-error of the mean. Intensities were
measured using a hydrophone.

Though the modulation frequency was similar to fundamental frequencies used in the

neurostimulation literature, they found as long as the average power was kept the same

the modulation frequency actually had no effect. If the same calculations applied ear-

lier in this section to Tyler’s study are applied to the intensities and frequencies used

in Menz’s work, the resultant radiation force would be 0.88 N/cm−3, easily over the

bulk force thresholds expected to cause stimulation [Rivera et al., 2000]. This large

difference results from the attenuation coefficient (α) of soft tissue, which varies with

frequency according to a power law as shown by the equation:

α = α0 f y, (2.4)

where f is frequency and y is the frequency dependence exponent. A frequency

dependence exponent of 1.3 and α0 of 8.6 (Estimate for brain tissue for brain tissue

[Duck, 1990]) were used to model the attenuation at different frequencies and resultant

radiation forces in the current work.

The findings of Menz et al., together with earlier literature [Dalecki et al., 1995,

Gavrilov and Tsirulnikov, 2012, Lee et al., 2014, Mihran et al., 1990, Wright et al.,

2002] suggests that US radiation force is capable of reaching stimulatory thresholds

and may therefore be the dominant force mechanism when high frequency or high

acoustic intensities are implemented. These observations of radiation force stimuli are
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characterised by observations of activation on pulse onset and offset when tissue mo-

tion would occur [Dalecki et al., 1995, Gavrilov and Tsirulnikov, 2012, Mihran et al.,

1990]. However, in the main body of recent CNS studies, the nature of the observed

stimulation, the low intensities and low frequencies used, make primary radiation force

unlikely to be a dominant factor in these.

2.3.2 Acoustic Streaming

Typically acoustic streaming refers to bulk flow set up in viscous media by the time

averaged radiation force. This cannot occur in structured tissue such as in the brain but

could appear in in vitro experiments with larger free fluid volumes. However, regarding

its importance to stimulation observations in the literature, given the short stimulus

durations used in US neurostimulation and usually very short unrestricted fluid volumes

used in vitro, bulk fluid streaming is not a possible mechanism in vivo and unlikely to

contribute in vitro.

Acoustic streaming can also be referred to as micro-streaming, where higher lo-

calised forces and liquid flow on the micro-scale are created, usually from stable cavi-

tation. This can cause membrane deformation, shear stress in the extra-cellular matrix

or even perforation of a membrane. This mechanism was in fact a major part of Tyler’s

continuum mechanics hypothesis for ultrasonic neurostimulation [Tyler, 2010]. Others

claim that bubbles of a sufficiently large size to elicit micro-streaming are not expected

to be present within soft tissue under normal conditions [Leighton, 1994]. With the

absence of large microbubbles in tissue the author believes that this is not likely to con-

tribute to neurostimulation in the CNS but should be considered in experiments where

microbubbles may be present such as those performed in vitro. Further evidence for the

presence and involvement of bubbles and cavitation will be discussed in section 2.3.4.

2.3.3 Pressure Oscillation

As the US pressure wave travels, tissue will be subject to alternate positive and neg-

ative pressure cycles, compressions and expansions will be caused according to the

compressibility of the tissues in question. The compressibility of soft tissue is similar

to that of water [Cowin and Doty, 2007] and will therefore not change volume more

than 1% at the pressures involved. Oscillatory tissue motion or strain from compression

at PRF or fundamental frequencies are therefore deemed not to be a significant factor
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in neurostimulation.

2.3.3.1 Molecular Effects

Though bulk compressibility of soft tissue is low, individual proteins are often very

sensitive to pressure [Mozhaev et al., 1996]. Ultrasound can therefore interact with

individual molecules and cause conformational change, affect solvent interactions and

hydration [Caruso et al., 2009] or hydrophobic thickness.

The research field of static pressure effects on proteins [Mozhaev et al., 1996],

cells [Frey et al., 2008] and other biological systems or molecules is large and this

section is not intended to be a comprehensive review but should serve as an illustration

of the scope of the field.

Static pressure is known to have several effects on the kinetics of voltage gated

ion channels which is studied as an important factor in the effects of deep sea div-

ing and in the physiology of marine animals like the crabs used in the current study

[Macdonald, 2002]. For example, high pressure is specifically known to activate some

large conductance potassium channels which, alone, would hyperpolarise and inhibit

nerve firing given potassium’s Nernst (equilibrium) potential of approximately -90 mV

[Alberts et al., 2002]. More generally, all water soluble domains of proteins can be

affected by pressure as well as altering the ordering of hydrocarbon chains in a mem-

brane, changing the fluidity properties or causing phase transition [Kato et al., 2002].

Affecting lipid membranes in this way can also affect the membrane thickness, and

change the properties or state of the proteins (including ion channels) within them.

When sufficient non-linear acoustic propagation occurs during transmission

through a fluid, the compressional US peak pressure will be higher than the rarefac-

tional for a focused beam. This difference will increase in tissues with higher non-linear

propagation effects and for larger travel distances, resulting in a time-averaged positive

pressure which could have effects analogous to static pressure. However, studies on

lipid membrane phase transition tend to use much higher static pressures (>10 MPa)

and timescales in the range of seconds to demonstrate effects [Winter and Jeworrek,

2009], whereas peak pressures used in neurostimulation are usually far below this

(Table 4.2) and time averaged pressures even lower. Total stimulus durations are also

typically under a second. The effect should therefore be considered more closely in
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protocols with high intensity, longer exposure time or a high degree of non-linearity,

but is not expected to be a major factor in currently successful US neurostimulation

protocols.

It is possible that some known static pressure effects on channel conduction can

translate to a microsecond timescale, transiently affecting sensitive ion channels or

other structures periodically with the pressure waveform, thus altering the time aver-

aged conductance of the channels. Studies have shown that ion channels can indeed

change conformation within the timescale of a single compression or rarefaction phase

[Bjelkmar et al., 2009], and that many MS ion channels also have a negative pressure

threshold in the range of kPa [Hamill, 2011], well within the range of pressures that are

used in US neurostimulation protocols and later in this study. There is also a growing

area of research into the effects of ultrasound in DNA damage for intensities of 10-

42 W/cm2 [Chandran et al., 2015], or albeit at lower frequencies, on the structures of

proteins for food processing applications [Chandrapala et al., 2011, O’Sullivan et al.,

2016].

In terms of correlation with the literature, a direct pressure oscillation mecha-

nism does not fit with observations of stimulus occurring at beginning or end of pulses

[Dalecki et al., 1995, Gavrilov and Tsirulnikov, 2012, Mihran et al., 1990], the unreli-

able response dynamics [Kamimura et al., 2015, King et al., 2013, Younan et al., 2013],

or apparent usefulness of pulsing itself [Dalecki et al., 1995, Gavrilov et al., 1977, Lee

et al., 2015, 2014, Menz et al., 2013]. However, this mechanism does provide an alter-

nate explanation for the observed frequency dependence of the neurostimulatory effect

(Figure 2.6).

There is currently not enough information on the effects of US on the compress-

ibility of relevant biological proteins and the transient or permanent conformational

changes that it can cause. Therefore, given imperfect fit with current observations in

the literature, oscillating pressure effects on molecular conformation is not expected

to play a significant role in the immediate US stimulation effect but warrants further

investigation as the research progresses.
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2.3.4 Cavitation

Cavitation, as defined in section 1.1.5, is most often brushed aside as a potential mecha-

nism in the literature due to the low intensities used to elicit neurostimulation [Deffieux

et al., 2013b, Lee et al., 2015, Tufail et al, 2010, Yoo et al, 2011a], below the FDA rec-

ommended MI limits for soft tissue ultrasound [Duck, 2007]. The limitations with this

claim however are firstly that the MI limit is concerned only with preventing inertial

cavitation of sufficiently large bubbles to cause significant damage, and secondly, that

MI is only a guide and cannot be used to truly predict the occurrence of cavitation

as this will depend on the tissue type, bubble nuclei, dissolved gas content and other

factors. Though some studies have reported very high pressure thresholds for in vivo

cavitation in the brain [Gateau et al., 2011], others have found significant non-inertial

cavitation at much lower intensities (240 mW/cm2) [ter Haar et al., 1982, Ter Harr

et al., 1986]. Though these two studies had much longer duration exposures of over a

minute, the finding does indicate that bubble nuclei can be affected in some way by low

intensities over much shorter durations.

Several studies have failed to detect cavitation by light microscopy during US

exposure [Tyler et al, 2008], and afterwards to detect tissue damage [Tyler et al, 2008],

through MR imaging [Yoo et al, 2011a], or changes in animal behavioural tests after

7 days [Tufail et al, 2010]. Combined with the high pressure requirements it seems

reasonable to conclude that large scale tissue damage from inertial cavitation is not a

contributing factor in any study showing successful stimulation in the CNS, though this

is less certain for PNS studies. However, in these same studies, non-inertial or even

non-resonant stable cavitation could play a critical role. In the current study, for the

first time, a PCD is used to detect cavitation simultaneously with US neurostimulation

protocols. High sensitivity is achieved because acoustic emissions from bubbles are

unimpeded by overlaying tissue layers and a novel, sensitive method of analysing these

signals is employed to detect and characterise cavitation (Section 4.7.2).

The evidence thus far for cavitation as a mechanism comes entirely from the strong

preference in many studies towards low fundamental frequency [Gavrilov and Tsirul-

nikov, 2012, King et al., 2013, Lee et al., 2014, Muratore et al., 2009, Tych et al., 2013]

which also detracts from radiation force as a mechanism, leaving cavitation to be a

likely factor in these studies. However, the implication of cavitation is contravened
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by conventional bubble mechanics, which predicts that it should not occur without

pre-existing stable bubbles or bubble nuclei within the tissue, which are not present

in normal tissue at a suitable size [Leighton, 1994]. According to the Laplace-Young

equation:

∆Pb = 2γH, (2.5)

where ∆Pb is the pressure difference across the bubble surface, γ is the surface

tension and H is the mean curvature. At atmospheric external pressure a 10 nm bub-

ble would have to have an internal pressure of 144 atmospheres to sustain itself. This

simple mechanics predicts spherical bubbles in liquid media smaller than 1 µm will

dissolve into the liquid unless the media is super-saturated with gas. Despite this,

nanobubbles are observable in gelatin and distilled water [Yount et al., 1984] and nuclei

must be present in some form for observations of bubble growth in tissue under US [ter

Haar et al., 1982, Ter Harr et al., 1986] or static pressure (such as from Decompression

Sickness (DCS)) to occur. The questions of what these nuclei are, where they might

be located and how they might respond to US raise themselves. If pre-existing bubbles

do exist in tissues in vivo, then finding their location may be key to determining the

specific effects of US in the tissue.

One explanation for the existence of bubble nuclei within tissues is the Varying

Permeability (VP) model, the essence of which is that small bubbles (<1 µm) are able

to resist collapse through a skin of amphiaphilic molecules that provide compression

strength [Leighton, 1994, Yount, 1997]. These bubbles could potentially exist in solu-

tion both inside and outside cells. The model has been used to create diving tables for

humans to avoid DCS [Yount, 1982]. Bubbles may also be occurring in hydrophobic

crevices, though neither theory has been experimentally verified as yet [Papadopoulou

et al., 2013]. The random occurrence, number or size of these nuclei within the ul-

trasound focus may well explain the variable response reliability seen in the literature

[King et al., 2013, Younan et al., 2013], which is not satisfactorily accounted for by any

of the other proposed force mechanisms.

Though there is still much that conventional mechanics cannot explain about

nanobubble behaviour [Weijs et al., 2012] and what form in vivo cavitation nuclei take,
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much progress is being made in this field. Research using Atomic Force Microscopy

(AFM) measurements has shown that their stiffness is much lower than conventional

mechanics predicts, similar in fact to measurements from microbubbles [Walczyk and

Schönherr, 2014, Zhao et al., 2013], potentially due to charged particles or solutions on

their surface [Duval et al., 2012, Jin et al., 2007]. Nanobubbles have also been shown

to respond to transient pressures [Andersen and Mørch, 2015] and to be effective cavi-

tation nuclei [Belova et al., 2010]. Given these new nanobubble insights, low intensity

ultrasound may well be significantly interacting with them to elicit neurostimulation

through one of the above proposed mechanisms.

Another recent theory in the neurostimulation literature is that nanobubbles can

form in the intra-membrane space of a lipid bilayer [Krasovitski et al., 2011, Plaksin

et al., 2014, Rappaport et al., 2013] (Figure 2.7) which would apply a modified form

of the VP model. Despite the highly hydrophobic environment, usually ideal for gas

phase formation there is an entropic force as well as Van der Walls and charged ion

attraction and repulsion [Ohshima, 2010] that normally prevent any gas phase from

nucleating in the intra-membrane space and the leaflets from coming apart. If bubbles

are formed within a continuous bilayer the surfactant skin would not provide the same

compressive strength as in the standard VP model because the bubble formed would be

lens shaped [Rappaport et al., 2013], not spherical. However, tension between the two

leaflets may occur in specific places such as at cytoskeletal attachment points or in areas

where there is hydrophobic mismatch between the membrane and trans-membrane pro-

teins. Hydrophobic mismatch is where lipid bilayer thickness does not match with the

hydrophobic transmembrane region of a protein, such as an ion channel. This creates

an entropically unstable state. Some proteins are permanently in this mismatched state,

which may result in the membrane leaflets being held apart around the protein. The lat-

ter of these possibilities would place the bubbles in direct contact with the ion channels

themselves, possibly allowing the minute changes in bubble radii to have significant

effect on the channel kinetics.

Critical evidence for this theory comes from one of the long-range attractive forces

acting between the two hydrophobic surfaces at the scale of several hundred nanome-

ters. This was first suggested by Parker et.al. in 1994 [Parker et al., 1994] to be due

to the entropic attraction of bubbles that had formed on both hydrophobic surfaces [P.,
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2003]. This finding has been confirmed recently using AFM to directly observe flat

nanobubbles which have formed spontaneously on hydrophobic surfaces, going on to

propose that these may act as the nuclei for DCS bubble formation [Arieli and Marmur,

2011].

Figure 2.7: Schematic diagram of how

intra-membrane bubbles might exist as lens

shaped expansions of the bi-layer lipid

membrane between trans-membrane pro-

tein anchoring points.

Krasovitski et.al were the first to

make this potential link between intra-

membrane bubbles and neurostimula-

tion, using destructive intensities of US

to demonstrate generation of large, ob-

servable cavitation related damage pre-

dominantly associated with membranes

[Krasovitski et al., 2011]. They claimed

these were evidence that the nucleation

points for bubble formation must be asso-

ciated with the biological membrane, and

furthermore that bubble nucleation was occurring between the 2 leaflets of the mem-

branes. It was concluded that these bubbles were the primary site and mechanism of

action for many non-temperature US induced bioeffects, not just neurostimulation.

The reasoning for such a hypothesis is immediately apparent as even very small

bubbles forming intramembranously could result in forces acting on ion channels and

other structures sufficient to cause conformational changes. With different membrane

properties and tissue types and the huge variety of proteins that this mechanism might

be affecting it is easy to see how it might account for the range of different US in-

duced bioeffects described in section 2.1.3. One of the most likely forces that this

would cause on transmembrane proteins especially is hydrophobic mismatch, where

the altered membrane thickness would result in a hydrophobic membrane thickness

that did not match up with the fixed hydrophobic thickness of an adjacent protein (Fig-

ure 1.1(b)). This has been shown to change the free energy state of proteins, resulting in

an altered probability of being in an open state, even with very small thickness changes

[Marsh, 2008, Ursell et al., 2007, Yefimov et al., 2008].

An alternate theory on how these intra-membrane bubbles may cause stimulation

is through the flexo-electric current phenomena described in section 2.2.3. A capacitive
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current would also be generated as the membrane changes thickness.

Krasovitsky’s model and other bubble based mechanisms will increase their gen-

erated forces proportionally to the pressure amplitude and inversely proportional to the

square root of the frequency. This means higher pressure and lower frequency would

be desirable for creating strain on the membrane and therefore the ion channels which

is again largely consistent with observations (Figure 2.6) [Krasovitski et al., 2011, Lee

et al., 2014, Rappaport et al., 2013]. Further modelling in 2013 revealed that if intra-

membrane bubbles do exist, their behaviour and predicted US threshold parameters are

seemingly in good agreement with the literature [Plaksin et al., 2014]. However, the

main conceptual issue with this theory at the moment remains the nucleation of the

bubbles.

The models proposed by these studies also do not take into account the non-

spherical bubble shape or the tension in the membrane both of which will increase the

surface tension making bubbles of this nature less likely. Without a solution to this, nor

an explanation of how the initial conditions occur, the simple nanobubbles proposed in

the VP model seem closer to reality and have been observed by multiple sources. The

VP model therefore is considered by the author the more likely candidate for cavitation

nuclei that may be excited to elicit US neurostimulation.

A third hypothesis for US-bubble interactions affecting nerve excitability can be

drawn from a model for ion channel gating that involves bubbles within the channel

itself [Roth et al., 2008]. These bubbles are proposed to exist within the pores of spe-

cific channel types to explain universal but unexplained observations of ion channel

open state instability [Eisenberg, 2008]. The instability of these bubbles would make

it highly likely that the pressure differences induced by US would have an effect on

them and directly influence the channel open probability. This gating theory is a result

of predictions of ion channel behaviour by computational models and not yet linked

to any experimental data. Due to the minute physical and time scales in question, the

model’s predictions have proved so far impossible to test or prove experimentally. To

the author’s knowledge no further investigation into this channel gating model has been

made.
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2.3.4.1 Rectified Diffusion

Rectified diffusion is an averaging of the diffusion processes over the course of a bub-

ble’s oscillation towards expansion or shrinkage of the cavity, which may affect the size

distribution of a population of bubbles over the course of an US exposure. If tension

is considered in a bubble with a surfactant shell, such as proposed in the VP model,

then permeability during rarefaction increases as surfactant molecules are pulled fur-

ther apart, and decreases during compression thus allowing more gas to diffuse in dur-

ing rarefaction and less to diffuse out during compression [Yount, 1982]. VP skins can

even become impermeable to gas if exceeding just 0.8 MPa pressure [Yount, 1997],

below the peak positive pressures generated in the present study. Surface area will also

be higher during rarefaction, allowing more gas to diffuse in than out.

Modelling work on unbounded bubbles suggests that inertial cavitation thresholds

are below the thresholds for rectified diffusion in bubbles smaller than 400 nm [Church,

1988, Louisnard and Gomez, 2003]. This raises the possibility that the US is actually

causing collapse rather than growth of pre-existing nanobubbles to produce cellular

effects, though all bubbles in the VP model and intra-membrane bubbles are surfactant

bound. The smallest bubbles modelled by Church were 100 nm radius and these had

thresholds for positive rectified diffusion of 0.6-0.8 MPa which is within the range of

pressures used in US neurostimulation, and close to the predictions of the VP model.

Rectified diffusion has less of an effect with shorter timescale exposures and will

be reduced by using lower DC pulses, both of which are relatively small in successful

neurostimulation studies [Tyler et al, 2008, Yoo et al, 2011b]. The size distribution of

any population of bubbles is therefore not likely to be significantly affected by rectified

diffusion in most stimulation protocols but may change due to inertial collapse of some

fractions.

Though there are still many questions to be answered, from the fit with the suc-

cessful neurostimulation protocols in the literature, some form of in vivo cavitational

mechanism strikes the author as the most prominent mechanistic option.

2.4 Summary
In terms of the mechanism behind US neurostimulation, the weight of evidence cur-

rently implicates ion channels as the critical force sensor, although upstream mediators
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cannot be ruled out. How these channels are activated by the US is less clear, with

significant evidence both for radiation force in some cases and cavitation in others be-

ing the critical factor. It is the author’s opinion that neurostimulation will be possible

using protocols favouring either of these dominant forces to affect the same or similar

biological targets.

With this view, it seems likely that multiple modes of action are at play with

US exposure, the balance of which determines the overall short and long term ef-

fects on the cells. These will vary between different tissues due to the presence of

different biological structures being affected and different dynamics of US absorp-

tion/transmission/reflection. The combination of these variables is fully capable of

giving the wide variety of responses to US seen in different tissues as well as seem-

ingly contradictory results in some studies. With a better understanding of exactly how

the US interacts with tissue on a cellular and molecular scale, a much greater range

of successful stimulus options may become possible as the optimum pulse parameters

for different US force mechanisms could be determined for any given tissue composi-

tion and location, allowing adaptation of the technique to different roles with trade-offs

between specificity, tissue depth, reliability, safety and other factors.



Chapter 3

Rat Saphenous Nerve

Initial experiments were conducted to test for the existence of a directly stimulatory

effect of US exposure in mammalian nerves. The phenomenon identified in these ex-

periments and its mechanism of action was then investigated in a crab leg nerve model

in two separate experiments. The design and protocol of each experiment is described

in the section.

3.1 Experimental Protocol and Apparatus

3.1.1 Design and Justification

This experiment was developed to test for the presence of an US neurostimulatory effect

in mammalian peripheral nerves, using well known and tested electro-physiological

methods [Maurer et al., 2007]. Peripheral nerves were opted for over CNS neurons or

an artificial membrane model to provide the best tradeoff between simplicity and rele-

vance and the best capability for creation of a simple acoustic environment. Population

recordings were chosen over a single unit approach to give greater chance of detecting

low probability cellular level stimulation events.

In order to maintain a liquid US transmission path between the HIFU transducer

and the target, a solid coupling cone was designed that also allowed the transducer to

be submerged and turned over, ensuring the absence of bubbles on any surface. The

second function of the cone was to aid the targeting of the ultrasound beam.

3.1.2 Equipment Details

The equipment used in the current setup shown in figure 3.2 is detailed here. US stim-

ulus waveform was produced by an Agilent 33220A function generator amplified by
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Figure 3.1: 3D CAD image of the transducer holder and projected focal point. Image
taken in Rhino-ceros 3D NURBS modelling for windows.

Model Manufacturer
CF
(MHz)

Focal Length
(cm)

Aperture
(cm)

LFA
(cm)

WFA
(cm)

PA409 Precision Acoustics 0.67 7.2 6.0 4 0.5
H-101-MR Sonic Concepts 1.1 6.3 6.4 1 0.14
H-106 Sonic Concepts 2 6.3 6.4 0.6 0.08

Table 3.1: HIFU transducer reference table. CF = Centre Frequency, LFA = Length of
Focal Area, WFA = Width of Focal Area. Focal area dimensions are given according
to the FWHM.

an E&I 1020L 200 W class AB linear power amplifier with 55 dBm gain. The trans-

ducer used for 0.88 MHz ultrasound generation was a Sonic concepts HIFU transducer,

Model H-101-MR (Table 3.1.2) with an impedance matching network for fundamental

resonance, specifically tuned to 858 kHz and 1.180 MHz. Electrical recordings from

the nerve were taken using a Krohn-Hite 3945 - bandpass filter with upper limit of 2

kHz and lower of 2 Hz and a CED 1902, Cambridge Electronic Design isolated differ-

ential amplifier. Electrical data was plotted on a LeCroy 9304 oscilloscope and saved

on a PC. The coupling cone (Figure 3.1) was designed in Rhino-ceros 3D NURBS

modelling for windows and built by Selective Laser Sintering (SLS) out of PA2200, a

lightweight powder sintered polymer.

The ultrasound transmission path was modelled and the proportions of the cou-

pling cone designed so that the transducer’s focal point would lie exactly along the

cone axis, 1 cm from the truncated apex. Low targeting error (±0.1 mm) relative to the
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predicted focal point was expected as this was the resolution of the rapid prototyping

technique.

To keep the path of the ultrasound free of bubbles, the inside surface of the cou-

pling cone was smoothed. The ridge at the end of the truncated apex (Figure 3.1)

facilitated attachment of a latex bag (hanging length - 10 mm), providing an adjustable

focal height and completing the water path to any target. Both the cone and latex mem-

brane were found to have no effect on the amplitude or frequency spectrum (measured

by differential FFT, where an FFT of the US signal with and without the coupling cone

and latex bag was subtracted.) of the ultrasound at the focal point (Table 3.1.2) at two

different driving frequencies. The minor amplitude differences shown in table 3.1.2 are

thought to be due to minor shifts in the clamped transducer position as the sheath or

cone was removed.

Frequency (MHz) Transducer alone With cone With latex sheath

0.86 1 0.97 0.98
1.1 1 1.05 0.98

Table 3.2: Normalised amplitude values at the transducer focal point with and without
the transducer holder in place and with and without the latex sheath.

Acoustic intensities were measured in degassed and deionised water using a plane

tipped fibre optic hydrophone (Precision Acoustics) at smaller than -2 MPa pressures

and extrapolated to greater pressure amplitudes using KZK modelling. More informa-

tion on this technique can be found in section 4.6.

3.1.3 Nerve Preparation and US Stimulation Protocol

The skin and saphenous nerve were removed from the hind limb of a male adult

Sprague-Dawley rat. The skin and nerve were then mounted with the inside of the skin

facing up in a custom built nerve bath. This was filled with synthetic interstitial fluid

consisting of (in mmol): 108 NaCl, 3.48 KCl, 26 NaHCO3, 3.5 MgSO4, 1.5 CaCl2,

9.6 sodium gluconate, 5.55 glucose, 7.6 sucrose and 10 HEPES, titrated with NaOH

to a pH 7.40. This fluid was maintained at 32◦C and continuously cycled through the

chamber and gassed with oxygen. The proximal end of the nerve was placed in a sep-

arate chamber, isolated from the main chamber by liquid paraffin. The nerve end was

de-sheathed and attached to a gold wire electrode, the reference electrode was placed
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in the main chamber. A simplified diagram of this setup is shown in figure 3.2.

Figure 3.2: Schematic diagram of the experimental setup used to generate US stimuli
recordings in the rat saphenous setup.

The transducer and cone apparatus were clamped above the nerve bath, exactly

10 mm from the surface of the nerve bundle (measured by a physical spacer, 10 mm

in height, that was subsequently removed) and approximately 5 mm along the nerve

bundle from the distal terminus that innervates the skin, measured by eye.

The preparation was stimulated with single US pulses with a PRF of 0.5 Hz at

858 kHz. Pulse length was originally fixed at 1 ms to analyse the effect of changing

amplitude (Table 3.3) followed by an analysis of pulse length using a fixed amplitude

of 1216 W/cm2 (Table 3.4). For both the amplitude and pulse length experiments, 3

skin-nerve preparations in total were each exposed to the range of intensities or pulse

lengths, repeated 30 times. 1 minute of recording preceded the beginning of each set

of stimuli to act as a negative control to detect the rate of spontaneous Sensory Nerve

compound Action Potentials (SNAPs). Aβ and C-fibre SNAPs were recorded with an

isolated amplifier using a low pass filter of 2 kHz and a high pass filter of 2 Hz. After

the end of each minute stimulus regime, the nerve bundle was mechanically stimulated

with a blunt glass rod at the distal end where the fibres innervate onto the skin.

3.1.4 Data Analysis

The voltage traces were subject to ”spike2” CAP analysis software (Cambridge Elec-

tronic Design), for locating compound action potentials within the trace. SNAP tem-

plates were taken from responses to mechanical stimuli (blunt glass rod), administered
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to the distal portion of the nerve bundle after each set of exposures, and used to search

the rest of the data for similar patterns in each recording. Response reliability was quan-

tified through the counting of SNAPs that occurred during, or within 5 ms of the end

of the US stimuli pulses, out of the 30 stimuli per nerve experiment. SNAPs detected

within 5 ms of each other were regarded as one event. Significance of observations

compared to null hypotheses were calculated using a Pearson’s Chi Squared Test.

3.2 Results
In this ex vivo set up it was found that single US pulses can stimulate propagating action

potentials (Figure 3.3). Received stimulation responses were multi-unit when received

(involving the activation of many axons) but often entirely absent. These potentials

were low latency (<5 ms after US exposure), giving an average conduction velocity of

12.4 m/s measured from the peak of the SNAP assuming instantaneous stimulation, AP

initiation centrally within the US focus and no change in CAP waveform as it travels.

Modelling using a Bio-heat transfer equation (Section 4.6) found that heating was under

0.1◦C in all protocols.

3.2.1 Amplitude analysis

Examination of the effect of US intensity on response reliability (Table 3.3) shows a

strong positive correlation. Of the measures that intensity also affects (temperature, ra-

diation force and pressure), peak negative pressure values predicted by KZK modelling

were seen to display the same, almost linear trend, as SNAP response reliability. It

can be seen from these results that even at very high intensity values the response to

ultrasound stimuli is only 80% reliable (24/30 US pulses resulted in SNAPs), declining

to 40% at 1216 W/cm2 and 23% at 284 W/cm2 (Table 3.3).

3.2.2 Pulse Length Analysis

Pulse length was also found to have an effect on response reliability in the range of

lengths tested using the highest amplitude exposure from section 3.2.1 (Table 3.4, fig-

ure 3.4). A plateauing was rapidly observed, with lengths above 10 ms providing no

improvement to response reliability. Longer pulse lengths than 50 ms were not tested

to avoid exceeding a 0.1◦C temperature rise.

Spontaneous nerve activity was observed in every recording during the 1 minute
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Figure 3.3: Recorded voltage trace from ex vivo Saphenous nerve of adult Sprague-
Dawley rats stimulated with ultrasound. Recordings were taken for 1 minute without
US. Ultrasound stimulus was then applied every 2 seconds for 1 minute with 0.86
MHz, 1 ms, 1216 W/cm2 US pulses (indicated by vertical red lines), followed by a
mechanical stimulus. SNAP amplitudes, detected using Spike 2 analysis software, are
displayed above the voltage trace (indicated by the blue vertical lines). The start and
end of the stimulus regime are marked by vertical black lines.

h

Figure 3.4: Mean count of SNAPs resulting from US stimulation, recorded from the ex
vivo Saphenous nerve of adult Sprague-Dawley rats stimulated with ultrasound.
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Intensity
(ISPPA, W/cm2)

284 1216 6139

Peak negative
pressure (MPa) 2.7 5.1 9.0

Force
generated (mN) 3 11 56

Response
reliability (%) 23 40 80

Table 3.3: Reliability of the SNAP response to varying ultrasonic exposure intensities.
Reliability values are the mean of three separate nerve experiments. Calculated force
amplitudes and pulse average negative pressure values are also displayed.

pre-stimulus recording and in between US exposures (Table table 3.4). Activity due to

the US stimulus significantly exceeded this background rate at all pulse lengths tested

(P<0.005). The background firing rate (not due to US) during the period of US firing

was significantly reduced across all pulse lengths compared to the pre-stimulus rate

(P<0.005) (Table 3.4).

Pulse length (ms)
spikes
pre stimulus

spikes
due to stim

spikes
between stimulus

0.5 5 14 2
1 3 26 4
2 5 27 2
3 5 25 5
4 4 25 4
5 3 27 6
10 8 29 5
50 7 28 4

Table 3.4: Detailed mean count of SNAPs recorded from the ex vivo Saphenous nerves
of adult Sprague-Dawley rats occurring in the pre stimulus recording, in response to
US stimulus of different pulse lengths, and detected between the US stimului.



Chapter 4

Crab Walking Leg Nerve -

Experimental Protocol and Apparatus

4.1 Design and Justification
The switch to an excised crab walking leg nerve model from the experiments described

in section 3.1 was made primarily to cut out the potential involvement of the skin’s

mechanoreceptors in reception of the US stimulus. An unmyelinated axonal tissue

model was chosen to be as simple as possible, but also has direct comparability with

other unmyelinated nerves in humans such as noiceptive C-fibres and many central

nervous axons [Kandel et al., 2000]. Though there are differences in lipid and protein

composition of the crab leg nerve compared to mammalian unmyelinated neurons, ba-

sic nerve conduction principals are well conserved [Page, 1971, Sheltawy and Dawson,

1966].

To reduce the effect of reflections to the pressure field at the focal point and to

fulfil this study’s aim of a well controlled US field, the nerve bath was re-designed to

include an acoustic window with a water bath and US absorbers underneath shown in

figure 4.1. The nervous tissue was cooled via the bath underneath to slow down its rate

of conduction which separates the nerve responses from stimulation artefacts and keeps

the cells viable for longer. The water bath was cooled with ice which was held from the

US path by stainless steel meshing and monitored by a digital thermometer. The bath

was insulated with foam and had a stable temperature of between 1-4◦C for approxi-

mately 6 hours. If longer was required, the ice was replaced between experiments.

The water bath also allowed for the inclusion of a PCD to measure the acoustic



4.1. Design and Justification 83

Figure 4.1: Schematic diagram of the experimental setup used to generate alternate
electrical and US stimuli recordings. In the moving focal point experiments the nerve
bundle can be moved freely under the US focus while remaining in contact with the
recording and stimulating electrodes.

signals emitting from the cavitating bubbles, for meaningful modelling (Figure 4.6)

of the acoustic field [Soneson, 2009] and for hydrophone field measurements of the

stimulatory US to be made (Figure 4.12) in situ. The focused PCD was fixed in place

at an angle to overlap the foci of the two transducers on the nerve and avoid receiving

the direct signal from the driving transducer (Figure 4.1).

Using the free space acoustic field measurements, solid ultrasound coupling cones

similar to the one described in section 3.1.2 were designed for each transducer that both

sealed in degassed water for near field transmission and mechanically fixed the focal

point along the central axis, 5 mm beyond the end of the cone. A flat mylar film (12

µm thick) was used to replace the latex sheath in the previous design. This sealed the

truncated end of the cone, allowing mechanical interlocking with the nerve bath and

preventing the variable focal height possible with the previous design. Both the lateral

and axial targeting resolutions were found to be much more accurate than attempts to

use the water bag and laser targeting mechanisms used in the literature [Foley et al.,

2008, Min et al, 2011a] or the latex sheath used in the skin nerve experiments (Section

3.1). The seal around the transducer allowed it to be used in any orientation and meant
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that the volume of water used was kept to a minimum, making the coupling cones

lighter than the one used in the rat saphenous experiments. Clear polished perspex was

used to allow observation and elimination of bubbles on the transducer surface that may

occur during fitting.

Finally, the capability for electrical stimulation was included in the nerve bath to

provide positive control stimulation of the nerve bundle. Silver was used as the elec-

trode material to provide a low resistance connection to the nerve bundle and high re-

sistance to interference from the ionic ringers solution. Noise arises from the electrode-

electrolyte interface and is reduced by chloriding the surface of the silver, which forms

an AgCl layer. Ag/AgCl electrodes also possess the advantages of low polarization and

predictable junction potential [Hu et al., 2016].

The Moving Focal Point (MFP) experiments were designed to test different loca-

tions along the same nerve bundle, allowing investigation of location specific effects of

the stimulus.

The Fixed Focal Point (FFP) was designed to test the conditions necessary to stim-

ulate the same tissue location repeatedly. This also eliminated changes in the relative

distance between the focal area and the PCD, preventing absolute amplitude levels from

varying between US exposures and therefore allowing comparison of cavitation signals

between experiments. This also allowed a much smaller nerve bath design for ease

of handling separate, electrically isolated sections and a more accurate focal location

that was locked in all dimensions. The fixed nerve position also allowed analysis of

the decline in CAP amplitude over time and its association with US exposure (Section

4.8.1).

4.1.1 Moving Focal Point

In these experiments, the PA 409 transducer (0.67 MHz, table 3.1.2) was used exclu-

sively. The nerve bath used was designed with a slot cut into the acrylic wider than the

beam profile of the transducer at the focal point (Figure 4.6(a)) to allow ultrasound to

pass through, preventing reflection or absorption by the chamber that might amplify or

change the effects on the nerve. This slot interlocked with a spacer that in turn fitted

the end of the US coupling cone, ensuring a fixed lateral focal location while allow-

ing longitudinal movement of the the nerve bundle to expose different points along the
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bundle. Only 0.67 MHz ultrasound was used in this experiment.

Figure 4.2: Photo of the nerve bath with a nerve in place, marked by the red thread
tied to each end of the nerve. Attached to the numbered electrodes are: 1) Stimulation
reference 2) Stimulation active 3) Earth 4) Recording A 5) Recording B 6) Earth.

Mylar film was used to cover the slot, providing a 2 mm deep trench to hold the

nerve bundle, isolated from the water bath. The downward curvature of the thin film

ensured that the nerve bundle was located centrally in the channel by gravity. Plan

photographs of the nerve bundle in situ were taken and processed after three experi-

ments to test lateral deviation from the central axis of the nerve chamber, which was

measured to be less than 1 mm at all points (mean = 0.56 mm σ = 0.32). Chlorided

silver foil (0.15 mm thickness) strips were placed at intervals over the mylar film and

fixed into the bath acrylic to be used as stimulation and recording electrodes (Figure

4.2). Electrode thickness was chosen to be less than one tenth the wavelength at 0.67

MHz in water (2.3 mm).

Once constructed the bath was tested for interference with the US field through

measurement of the focal intensity directly behind the mylar film (within 1 mm) in

three separate locations no significant difference was found with unobstructed mea-

surements (<0.1% reduction). However, measurements made behind three different

foil electrodes showed a significant reduction in acoustic intensity of approximately

25%.

This result led to a further investigation of ultrasound impedance by thin silver

foil (Figure 4.3) at several different amplitudes of single 0.67 MHz ultrasound pulses.

Sheets of foil were placed in the focal region of the ultrasound, between the hydrophone

and transducer. To avoid this unwanted absorption/reflection by the silver, the US was



4.1. Design and Justification 86

Figure 4.3: Measurements of absolute acoustic pressure taken 10 mm beyond the focal
maximum by a Precision Acoustics plane tipped fibre-optic hydrophone. Measure-
ments were made in degassed pure water at 22.6◦C at 5 different acoustic amplitudes
and three different grades of silver electrode thickness.

targeted only in the spaces between electrodes.

To reduce short circuiting between the different electrodes, white mineral oil was

used to fill the nerve bath, acting as US transmission media that was electrically insu-

lating (sterile filtered,0.85 g/ml, Z = 1.26 MRayls). Only a thin sheath of ringers was

left around the nerve to keep it alive for the duration of the experiment. The oil was

chosen as it has a similar acoustic impedance to water resulting in very little defocusing

and energy lost due to reflection (8%, calculated using equation 4.2). Its slightly lower

density than water also meant that the nerve bundle would sink and remain in contact

with the electrodes.

The PCD shown in figure 4.1 was only included in a subset of these experiments

with fixed intensities to allow comparison between the acoustic response of exposure

sets. Acoustic data was analysed as per the method described in section 4.7.

4.1.2 Fixed Focal Point

The nerve bath (Figure 4.5) was designed to interlock with the coupling cones, holding

the transducer’s focal point in a fully fixed position relative to the location of the nerve

bundle. To analyse the lateral targeting error of each transducer and coupling cone,

three thermo-chromatic gels were exposed with CW ultrasound until a white colour

change occurred in the focal region (Figure 4.4). Photos were taken in plan view of

the chamber and analysed using MATLAB to determine the centre point of the colour
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change and its lateral deviation from the centre line of the chamber. Deviation was

found to be a maximum of 160 (σ = 67), 84 (σ = 11) and 89 µm (σ = 40 µm) for

0.67, 1.1 and 2 MHz respectively. This corresponds to an uncertainty in acoustic peak

pressure at a target point of 5, 15 and 70% respectively. But as the nerve is 1 mm wide

at least, some part of it will be exposed to the focal maximum despite lateral targeting

error.

The nerve bath itself was separated into three electrically isolated sections, allow-

ing efficient electrical stimulation and recording from the nerve. To aid this, the two

ends of the nerve bath performing the electrical stimulation and recording were filled

with mineral oil. Crab ringers solution was used in the central, earthed chamber. The

use of ringers solution as the acoustic coupling media has the advantage of reducing the

US reflection off the bath and nerve surface and increasing the longevity of the nerve

bundle when compared to the MFP experiments.

All electrodes were made from thinner (0.025 mm) silver chloride coated silver

electrodes than those used in section 4.1.1. Thin mylar film was used as an acoustic

window, separating the water in the cone from the nerve bath and the ringers in the

nerve bath from the water bath underneath (Figure 4.1). The width of the acoustic win-

dow in the nerve bath was 10 mm, allowing the primary focus and at least one side lobe

to pass unobstructed with every transducer used (Figure 4.6). To reduce atmospheric

electrical noise, the entire setup was contained within a copper mesh Faraday cage.

Though the sections of the bath containing oil and water were physically separated

except for the nerve gates, droplets of oil were occasionally seen in the water compart-

ment. At 0.84 g/ml the mineral oil does produce reflections in the US path which

were considered to be a source of error. Therefore given the characteristic acoustic

impedance of 1.26 compared to 1.48 MRayls of water [Casarotto et al., 2004] and the

equation for normal pressure reflection at a boundary (Equation 4.2), the reflection co-

efficient can be calculated at 0.08, or 8% reflection.

4.2 Equipment Details
The equipment used in the current setup shown in figure 4.1 is detailed here. US stimu-

lus waveform was produced by two Agilent 33220A function generators, one gated by

the other to produce the pulsed protocol which was then amplified by an E&I 1020L
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(a) (b) (c)

Figure 4.4: Visualisation of the size and position of of the focal points produced by
each ultrasound transducer within the nerve bath (a) 0.67 MHz (b) 1.1 MHz (c) 2 MHz.
Temperature induced colour changes were produced in an polyacrylamide gel. 10 s
continuous wave exposures with different focal intensities were used with each trans-
ducer to achieve a good visualisation of the focal area.

200 W class AB linear power amplifier with 55 dBm gain. Details of the US transducers

used are shown in table 3.1.2. Electrical stimulus was produced using a Digitimer DS3

constant current isolated stimulator. Electrical recordings from the nerve were taken

using a WPI DAM50 differential amplifier at 100× Direct current gain. A simple high

pass filter RC circuit (1.6 kΩ resistor, 10 µF capacitor) was built and inserted between

the oscilloscope and bio-amplifier. Recording of the scattered acoustic signal was per-

formed using an Ultran XL50 5.8 MHz focused ultrasound transducer as a PCD, the

signal of which was amplified by a SRS inc. Model 445A, four channel voltage ampli-

fier providing a 5 times gain (max 25 times). Electrical and acoustic data was plotted

on a Lecroy HDO6054 500 MHz oscilloscope and saved on a PC. Synchronisation of

US stimulation, electrical stimulation, and signal acquisition was performed using a

National Instruments 9402 4 channel I/O module and 9171 cDAQ chassis.

Electrical transducer input power measurements were made using a Sonic Con-

cepts 22A RF wattmeter. Foam used to absorb US and prevent reflections from the

tank walls or bottom was Precision Acoustics AptFlex F48 PU foam.

Ringers solution was kept kept no longer than 3 weeks without replacement and

was an aqueous solution of 525 mM/l NaCl, 13.3 mM/l KCl, 12.4 mM/l CaCl2, 24.8

mM/l MgCl2 and 5 mM/l dextrose. A spray bottle was kept cool for the extraction

procedure using an ice bucket.
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(a) (b)

Figure 4.5: (a) Photo of the nerve bath with a nerve bundle in place. The red thread
visible at either end of the chamber ligates each end of the bundle. Attached to the
numbered electrodes are: (1) Stimulation reference (2) Stimulation active (3) Earth (4)
Earth (5) Recording A (6) Recording B. (b) Schematic diagram of the nerve bath with
electrodes and important features labelled.

4.3 Nerve Bundle Characterisation
Five extracted crab nerve bundles were fixed in 3% glutaraldehyde (0.05 M sodium

cacodylate buffer pH 7.2-7.4) directly after extraction. The bundle was then sectioned

and fixed in araldite resin using a methylene blue/azure II/ basic fuchsin stain for light

microscopy examination. Axon fibre density was estimated using a digitally applied,

randomly positioned 50 µm square, counting only the axons with more than 50% of

their area within the square. This was repeated three times for each of the 5 nerve

bundles. neuron density was calculated to be 136/100 µm2 (σ = 27) and mean axon

diameter was 8.6 µm (σ = 6.5). Total number of axons per bundle was calculated to be

1017 (σ = 202)(Figure 4.7), using the product of the cross-sectional area of each nerve

bundle and the cell density.

By stimulating three nerve bundles electrically only (without US), the mean base-

line rate of decline in CAP amplitude was determined for both the oil submerged

MFP experiments (Figure 4.8(b)) and the ringers submerged FFP experiments (Fig-

ure 4.8(c)). As expected, the nerves submerged in ringers solution took much longer to

decline to undetectable CAP amplitude levels (>60 minutes).
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(a) (b) (c)

Figure 4.6: KZK models of the radial peak positive pressure profiles generated by the
0.67 (a), 1.1 (b) and 2 MHz (c) transducers respectively. Modelling technique described
in section 4.6. Driving power was set to the maximum input used to generate the forces
in table 4.2. Dark blue, green, red, light blue and purple traces show the 1st to 5th
harmonic respectively. [Soneson, 2009]

4.3.1 Light Microscopy

Observation of the nerve bundles in situ was also performed by light microscopy to

characterise the average dimensions of the bundle (diameter = 1.34 mm, σ = 0.21 mm)

and of the microbubbles that were introduced on the surface of the nerve bundle during

submersion in acoustic coupling media (Figure 4.9). 10 nerves were examined in this

way and in the 0-1 minute period post nerve submersion in the bath, a mean of 11 bub-

bles (σ=8.8) with a mean diameter of 78 µm (σ = 54) were seen over 2 cm of nerve.

Assuming even distribution, a mean of 2 bubbles will be located within the US focus on

every nerve bundle (3.5 mm FWHM) at the start of each experiment. However, due to

the high standard deviation in observed bubble numbers, 33% of extracted nerve bun-

dles will not have bubbles present in the US focus. These microbubbles are introduced

by the extraction process as the bundle is submerged into the ringers solution/mineral

oil bath.

Three nerves were also observed by microscopy in between ultrasound stimula-

tion protocols. Larger (>100µm) bubbles were observed to rise to the surface after

ultrasound exposure and smaller ones (<100µm) dissolved rapidly into the surround-

ing ringers solution (Figure 4.9(a)). Therefore neither were observed past the first two

US exposures in 10 examined nerve experiments with a fixed US focal point. The

dissolution of gas into the surrounding media altering the size of bubbles means that

there was an unknowable exact size distribution in the population of bubbles attached

to the nerve surface upon US exposure in the MFP experiments and in the first 2 FFP
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(a) (b)

Figure 4.7: Extracted nerve bundles were fixed in situ in 3% glutaraldehyde (0.05 M
sodium cacodylate buffer pH 7.2-7.4) without any exposure to US. The exposed sec-
tions were then extracted and fixed in araldite resin using a methylene blue/azure II/
basic fuchsin stain and sectioned for light microscopy. (a) 160× magnification (b)
1280× magnification. Both photos are digitally scaled by a factor of 0.32.

exposures.

4.4 Nerve Preparation Procedure
All nerves were taken from live crabs (Cancer pagurus) sourced on the day of use

from London markets. Nerves were extracted from the crab leg by stripping away each

joint section, removing the shell and muscle from around the nerve bundle. During

extraction the nerve was regularly sprayed with chilled ringers solution. The nerve was

then ligated at both the proximal and distal ends with red cotton thread. Cutting above

the distal ligation, the nerve was detached from the claw, transferred into the nerve bath

and wetted with chilled ringers.

In the case of the MFP experiments an extracted nerve of at least 55 mm was laid

in the nerve bath with spare nerve length resting past electrode 6, (Figure 4.2) and a

small volume of chilled ringers poured over it. Less dense, electrically insulating white

mineral oil was then poured over the top of this. The nerve was more dense than the

oil and therefore sank and was centralised in the acoustic window by the downward

curvature of the mylar film, ensuring good electrode contact.

In the case of the FFP experiments, the nerve was handled by the string attach-

ments and passed through the two blocking gates (Figure 4.5), then pulled straight be-

tween them, avoiding causing undue tension in the tissue. This ensured that the nerve
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(a) (b) (c)

Figure 4.8: (a): Overlayed time series of electrically induced CAPs (2 mA, 200 µs
stimulus). The nerve was stimulated as soon as possible after extraction and every 2
minutes in the experimental setup described in section 4.1.1. (b) and (c): Average peak
positive amplitudes over three repeats were recorded using the MFP (b) and FFP (c)
apparatus, normalised to the first peak and plotted against time. Error bars represent
the standard deviation for each time point.

(a)

(b)

Figure 4.9: (a) Observed number of bubbles attached on the surface of a 20 mm section
of crab leg nerve bundle prepared as per the protocol in section 4.4 observed over a
period of 40 minutes without exposure to any stimulus protocols. Displayed is the
mean numbers for 10 observed nerve bundles. (b) A 150× magnified light microscopy
image of a large bubble attached to the surface of the nerve bundle.

was located directly under the ultrasonic focus (within ± 0.1 mm) and in contact with

both the recording and stimulation electrode pairs. Oil was then added to the two side

channels which kept the nerve cool, prevented dehydration and insulating the inter-

electrode path. Ringers solution was added to the central chamber. Surface tension

in the small aperture of the blocking gates (most of which was occluded by the nerve

diameter) prevented the oil and ringers from mixing between the chambers. This factor

led to the preferential selection of larger crab specimens with thicker nerves to reduce

the electrical short and prevent oil-water mixing.

Stress to an animal can alter nervous conduction properties. Efforts were therefore
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made to try and keep stress during transit and storage to a minimum although some

is no doubt unavoidable. Susceptibility of nervous tissue to mechanical stimulation

may depend on many factors in the living crabs prior to extraction which could not be

controlled such as levels of muscular activity or general health of the animal.

The nerve bath was transferred to a holder on the surface of the water bath and

the US cone fitted on top, ensuring that no bubbles were trapped in the US propagation

path using a small endoscopic camera. The nerve bath and all implements were cleaned

and sterilised with ethanol before use.

4.5 Electrical and Ultrasound Stimulation Parameters
Based on precedent in the literature for pulsing in successful neurostimulation protocols

[Kim et al., 2014a, King et al., 2013, Tufail et al, 2010] and optimisation of the stimulus

parameters described in section 3.1.3, a new stimulation protocol was tested for the crab

leg nerve experiments.

The primary stimulus protocol used in this study was 80 pulses of the driving

frequency at 10 kHz PRF, over an 8 ms TSD (50% DC). Short, 8 ms TSD stimuli

were initially chosen to limit the variety of acoustic events that might occur during

each stimulus, so that the signal could be processed as a whole, making it easier to link

acoustic signatures to responses from the nerve. Short latency also reduced electrical

interference from US generation on CAP recordings as the CAP transmission time

along the nerve bundle to the electrodes was longer than the pulse duration.

Electrical and US stimulation were paired in these experiments so that every US

stimulus was preceded by an electrical stimulus, three seconds apart.

4.5.1 Moving Focal Point

For the MFP experiments, electrical/US stimulation pairs were repeated 5 times in the

same location with 3 seconds between stimulus of either modality and separated from

the next set of 5 pairs by 60 seconds (Figure 4.10). The pulse average intensity of each

set was varied between 3 and 138 W/cm2 (ISPPA) (Table 4.5.1) and the US nerve bundle

moved by 5 mm, away from the recording electrodes during the rest time between each

set. Orders of intensities being tested on a single nerve were randomised to prevent

systematic error from nerve inhibition or other effects. Each nerve bundle was exposed
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a total of seven times (in sets of 5) to cover the full range of intensities.

Intensity was kept constant at 138 W/cm2 in four nerve experiments where the

PCD was used to analyse the acoustic response. For these, stimuli continued in new

sections of the nerve bundle until the whole length had been exposed or till the nerve

electrical response declined below detection threshold.

Figure 4.10: Stimulation protocol used in the MFP experiments. Electrical stimulation
is marked by vertical black lines, US stimulation by vertical blue lines. Each US stimu-
lus shown on the top timeline is comprised of 80 0.05 ms pulses at 50% DC. The entire
stimulus protocol is repeated every 90 s. Pulse train (middle) and single pulse (bottom)
were recorded using a plane tipped fibre optic hydrophone placed in the focal region of
a 0.67 MHz PA407 HIFU transducer. The ramping up and trailing off of the pulse is
due to the transducer’s damping properties.

Electrical stimulation was applied via electrode 3 (Figure 4.2) using a 0.2 ms fixed

current electrical stimulus. Stimulation amplitude was adjusted before each experiment

to achieve saturation. The use of electrically insulating mineral oil as the US coupling

media allowed saturation with relatively small current stimulus.

The influence of recovery time on a single stimulation site, with no nerve move-

ment was tested. After a successful US response was observed, the same location was

stimulated repeatedly with varying time intervals between sets of 5 stimuli (1, 5, 10 and

20 minutes). The nerve was then moved again by 5 mm and exposed to another set of

5 stimuli.
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0.67 MHz

Radiation Force (mN/cm2) Pressure (MPa) ISPPA (W/cm2)

0.4 -0.3 0.3 3
2 -0.6 0.6 11
4 -0.8 0.9 25
7 -1.1 1.2 44
11 -1.4 1.5 70
17 -1.6 1.8 101
23 -1.9 2.2 138

Table 4.1: Intensity, pressure and radiation force values of the exposures used in the
MFP experiments at 0.67 MHz. Spatial peak negative and positive pressure values
were measured using a plane tipped fibre-optic hydrophone. Radiation force values are
a summation of numerically modelled absorption and reflective forces (Section 4.6.1).

4.5.2 Fixed Focal Point

The timing between electrical/US stimulation pairs was alternated between 27 and 87

seconds causing the whole pattern to repeat every 120 seconds with an average of one

pair per minute as shown in figure 4.11. Each nerve bundle was exposed to 22 of these

electrical/US stimulation pairs resulting in a total experimental time of 22 minutes.

This paired pulse protocol was designed to reduce possible heating effects and test the

effect of recovery time on the acoustic signal and stimulation success.

Electrical stimulation was applied via electrode 2 using a 0.2 ms 20 mA electrical

stimulus pulse (Figure 4.5(a)). Stimulation amplitude was adjusted before each exper-

iment to achieve saturation. Full saturation may not have been achieved every time

due to varying levels of ringers solution short circuiting between electrode 2 and the

earthed central bath. Larger crabs with generally thicker nerve bundles were preferen-

tially selected to reduce this effect, as their nerve bundles better occluded the holes in

Figure 4.11: Stimulation protocol used in the FFP experiments. Electrical stimulation
is marked by vertical black lines, US stimulation by vertical blue lines. Each US stim-
ulus is comprised of a pulse train of 0.05 ms pulses at 50% DC as shown in figure
4.10. The entire stimulus protocol is repeated every 2 minutes 11 times for every nerve
experiment.



4.5. Electrical and Ultrasound Stimulation Parameters 96

the blocking gates.

Focal intensity was varied between the values shown in table 4.2. Orders of inten-

sities being tested on a single nerve were randomised to prevent systematic error from

nerve inhibition or other effects. The 1.1 and 2 MHz exposure parameters shown in the

table were designed to match the radiation forces produced by the 0.67 MHz exposures

using the methods described in the section 4.6.1.

0.67 MHz 1.1 MHz 2 MHz

Radiation
force (mN/cm2)

Pressure
(MPa)

ISPPA
(W/cm2)

Pressure
(MPa)

ISPPA
(W/cm2)

Pressure
(MPa)

ISPPA
(W/cm2)

1 -0.8 0.8 20 -0.7 0.7 17 -0.7 0.5 12
5 -1.4 1.6 76
6 -1.6 1.8 100 -1.5 1.7 84 -1.4 1.3 61
9 -1.9 2.2 140
11 -2.1 2.4 169 -1.9 2.2 143 -1.7 1.8 103
15 -2.4 2.9 230
18 -2.6 3.2 274 -2.4 2.8 232 -2.1 2.4 167
23 -2.8 3.6 352
27 -3.1 4.0 419 -2.9 3.6 353 -2.5 3.0 255
31 -3.3 4.3 485
36 -3.5 4.7 562 -3.3 4.2 475 -2.8 3.6 343

Table 4.2: Intensities, negative and positive peak pressures and radiation forces at three
frequencies. Intensities and pressures were chosen to create equal radiation forces
across the frequencies used.

Beyond the intensities for the two higher frequencies shown in table 4.2, a range

of higher intensities (up to 0.86 kW/cm2 at 1.1 MHz and 6.7 kW/cm2 ISPPA at 2 MHz)

were investigated using the same protocol to determine if a threshold for stimulation

could be found for each driving frequency. Focal intensity was increased by 100 W/cm2

ISPPA until a response was found or in the case of 1.1 MHz, until input levels were

reached that may damage the transducer.

To test the effect of longer exposure durations on the nerve response dynamics at

0.67 MHz, a second set of stimulus experiments, with the same pulse parameters, were

performed using 100 ms instead of 8 ms stimulus durations (1000 pulses).

Parameters found in a recent study by Lee et al. (250 kHz fundamental, 500 Hz

PRF, 50% DC for 300 ms, with three seconds between each stimulus [Lee et al., 2015])

were also tested at the higher frequency of 0.67 MHz in the current setup to determine if
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the observed low sensitivity of the peripheral nerves compared to previous CNS studies

was due to the pulsing protocol. These parameters were used initially at 0.7 W/cm2,

shown to be effective in Lee’s study, and then incrementally increased in the same steps

seen in table 4.2 until a response threshold was found. As with all exposure protocols,

each stimulus intensity was repeated 22 times on a new nerve bundle.

4.6 Acoustic Modelling and Measurement

Figure 4.12: 20 × 20 mm scan of the transverse plane of the 0.67 MHz ultrasound
field in steps of 0.5 mm at the focal maximum (73 mm from transducer surface). The
transducer was driven with 0.4 W input power in continuous wave mode in a degassed
and deionised water tank at 23◦C. Reflections from tank walls was prevented with
ultrasound absorbent foam

At low negative pressure amplitudes (0-2 MPa), intensity was measured by three

separate plane tipped fibre-optic hydrophones, taking the mean positive and negative

peak pressures for each transducer at different input powers and calculating ISPT P via

equation 1.1. These measurements were made in situ with the whole experimental

setup (Figure 4.1) and the hydrophone tip at the US spatial maximum, aligned with the

beam axis and facing the transducer. Higher amplitudes were not directly measured

due to the risk of damage to the hydrophones. For each transducer, these low pressure

measurements were then used to calibrate acoustic field modelling software [Soneson,

2009] based on the Khokhlov-Zabolotskaya-Kuznetzov (KZK) equation [Hamilton and

Blackstock, 1998]:
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where Pa is the acoustic pressure, z is the axial coordinate, τ is the retarded time

defined by t− z
c0

, β is the nonlinearity coefficient, ρ0 and c0 are density and wave speed

at equilibrium condition respectively. Parameter δ is the diffusivity of sound which is

a quantity that reflects the total effect of viscosity and heat conduction.

The output efficiency parameter within this software was changed till predictions

matched the outputs measured at lower pressures to within 1% error. This model takes

into account non-linear effects by modelling the propagation of the first 50 harmonics

around the fundamental frequency. The model was then used to predict peak pressures

of exposures above 2 MPa used in the current study (Table 4.2).

The KZK model has assumptions that limit it’s theoretical accuracy to within 20◦

of the axis [Lee, 1986]. Transducers with f-numbers lower than 1.74 will therefore

suffer from lower accuracy using this modelling technique. Though the transducers

used in this study do fall into this catagory, validation of the model has been carried

out using low f-number transducers [Canney et al., 2008] and the effect is thought to be

minor [Lee, 1986]. This validation was carried out at 2 MHz and up to 24,000 W/cm2

ISPPA [Canney et al., 2008]. Power input measurements to the transducer used in the

KZK modelling were calculated given the known input power from the signal generator

and fixed 55 Decibels (dB) amplifier gain. These measurements were confirmed using

a power meter.

Hydrophone measurements and KZK modelling determined that there was signif-

icant non-linear propagation of ultrasound at the power levels used in the current study,

increasing at higher amplitudes at all frequencies (Table 4.2). This results in higher

positive pressures compared to the peak negative values. To facilitate easy comparison

with other papers in the literature, ISPPA will be used throughout the rest of the paper

but it should be noted that these are linear approximations and the positive and nega-

tives pressure peaks will be the most accurate metrics, especially at higher amplitudes.

These peak pressures are displayed along side peak and pulse average intensity values

at all frequencies and driving powers for the crab leg nerve experiments (Table 4.2).

The 1.1 and 2 MHz exposure parameters used in the FFP experiments were designed

to match the radiation forces produced by the 0.67 MHz exposures using the methods

described in section 4.6.1.

Using the same HIFU simulator software, to ensure temperature was a negligible
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factor a Bio-heat transfer equation was used to determine the temperature rise at the

focal maximum at the highest intensities used in this study. The predicted rise was less

than 0.1◦C in all cases.

Reflections within the water bath were measured to affect the peak focal pressure

by less than 5% at any of the amplitudes used in this study, measured by a fibre optic

hydrophone positioned in situ within the experimental setup shown in figure 4.1.

4.6.1 Radiation Force Calculations

Radiation forces produced by the 0.67 MHz stimulation protocol shown in table 4.2

and 4.5.1 were predicted using equations 2.1 and 2.2.

Adding to this, the radiation forces due to the reflection at the water- or oil-tissue

interface were calculated using the equations [Leighton, 1994]:

R =
Z2−Z1

Z2 +Z1
, (4.2) Fre f =

2ISPPAR
c

, (4.3)

where R is the pressure reflection coefficient, Z1 and Z2 are the specific acoustic

impedances for the US transmission media and tissue respectively, Fre f is the radiation

force acting on the boundary due to reflection assuming a linear plane wave, perpendic-

ular angle of incidence and a reflecting surface area much larger than the wavelength.

The radiation force due to reflection was then added to Fabs. The reflective forces were

predicted to be relatively stronger for the MFP experiments due to the larger impedance

mismatch between oil and soft tissue as a pose to the ringers solution used in the FFP

experiments.

Once the radiation forces produced by the 0.67 MHz FFP protocol had been cal-

culated, the process was reversed to find the focal intensities required at 1.1 and 2 MHz

that would reproduce the same radiation forces. This resulted in a target intensity range

of 17-475 W/cm2 at 1.1 MHz and 12-343 W/cm2 at 2 MHz (Table 4.2). Error caused

by plane wave and reflective surface assumptions in radiation force calculation will not

affect the desired equality of the radiation forces across the frequencies as the errors

will be cancelled in the reverse calculations. However, the degree of non-linearity in

the field will change with pressure, leading to underestimation of the radiation forces

produced by highly non-linear exposures.
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The radiation force acting on the liquid path before the nerve was also calculated

using equation 2.2 to investigate the potential significance of acoustic streaming effects.

Using the highest intensity (ISPPA) in either of the crab nerve experiments and an α0

value for water of 0.26e−3 [Duck, 1990] in nepers per meter, the maximum streaming

force produced was 1 µN/cm3 at the focal peak. Given the small scale of this force, the

short exposure times (8-300 ms) for which this force is applied and mylar film barriers

restricting the free axial distance above the nerve to 4-5 mm, acoustic streaming effects

were not considered further.

4.6.2 Bubble Radiation Forces

Total radiation force on the nerve bundle will also be added to by forward forces created

by US reflecting and scattering off microbubbles that are introduced onto the nerve

surface during submersion in the transmission media. Though these bubbles are loosely

attached to the bundle and are therefore not likely to transfer force efficiently to it

before dissociating (As observed by light microscopy in section 4.3.1), to determine

the maximum possible significance of this effect, the case of a variable initial radius

bubble positioned at the US focal maximum that transfers force efficiently to the nerve

bundle is considered.

The primary radiation force at the driving frequency of each transducer on a range

of bubble sizes can be calculated the equation [Tortoli et al., 2002]:

Fbub =
πP2

a 2R0

ρcω

δtotω0/ω

[(ω0
ω
)2−1]2 +(δtotω0

ω
)2
, (4.4)

where Fbub is the primary radiation force on a bubble, Pa is the local ultrasound

pressure, R0 is the bubble radius, δtot is the total damping constant (Including dissipa-

tion due to radiation viscoelastic and thermal losses), ω is the US driving frequency,ρ is

the fluid density and ω0 is the resonant frequency of the bubble. A damping constant for

soft tissue of 0.27 was used [Leighton, 1994]. This equation assumes that the spherical

bubbles are much smaller than the acoustic wavelength. Drag force is not considered

due to the assumed immediate transference of force to the nerve bundle. Secondary

radiation forces are not considered as these are short range, inter-bubble forces that are

not expected to increase the forward radiation pressure regularly [Leighton, 1994].

The resonant frequency of a bubble (ω0) with radius R0 can be determined by
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Figure 4.13: Primary radiation forces calculated using equation 4.4 for a range of bub-
ble sizes using the driving frequencies and highest intensities used in the FFP experi-
ments shown in table 4.2. The legend shows the driving frequencies in MHz.

equation 4.5 [Neppiras, 1980]:

ω
2
0 =

1
ρL R2

0

[
3κ (P0 − Pv +

2γ

R0
) − 2γ

R0
+ Pv −

4µ2

R2
0ρL

]
(4.5)

where P0 is hydrostatic pressure, Pv is the vapour pressure, κ is the heat capacity

ratio, γ is the surface tension of the bubble (approximated as constant for air water

interfaces) and µ is the dynamic viscosity.

Using these equations to model the primary radiation forces with the ISPPA values

used in the FFP experiments (Table 4.2) for a range of bubble radii results in the patterns

shown in figure 4.13. The maximum potential radiation force generated by the 0.67

and 1.1 MHz exposures on bubbles are larger than those produced by reflection and

absorption in the nerve bundle (9.8 and 2.3 mN respectively, compared to 2.2 mN

calculated for the approximate dimensions of a nerve bundle (1×1×6 mm) under the

US focus).

Given the continuous size range and sporadic location of the bubbles, their in-

fluence will vary greatly between exposures. This simple modelling is therefore in-

tended only to explore the range of forces that may be produced and to determine their

significance as a potential contributing stimulation mechanism when interpreting the

experimental results.
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4.7 Passive Cavitation Detection
Acoustic signal data was recorded from the PCD for an identical duration as the elec-

trical nerve recordings. The time section containing the US stimulus was then detected

by a 5σ threshold. If the resultant duration deviated from the expected TSD by more

than 10%, the threshold was adjusted recursively until a signal with the correct length

and time position was found. This accounted for very low amplitude signals. If a signal

was not detected, all associated data was ignored during analysis. This data filtering

process is described further in section 4.9.

The spectral content of the signal was corrected for the PCD’s frequency sensi-

tivity bias using its voltage spike emission spectra to deconvolve the recorded signal,

before being analysed by FFT and wavelet decomposition techniques. Aliasing of fre-

quencies above the Nyquist (6.25 MHz) was not expected to have a significant influence

on recorded acoustic signals. This is because the signal to noise ratio of cavitation sig-

nals are high, meaning that any higher than Nyquist noise should be insignificant and

any higher than Nyquist cavitation signals still contribute to the detection of cavitation

via the methods described below.

In the case of the 100 and 300 ms exposures, the key 10 ms section of the US

stimulus likely to have caused any resultant CAP, was determined by subtracting the

expected CAP transmission lag time from the point when the CAP peak was received.

A 10 ms section of PCD signal data was analysed around the resulting time point, illus-

trated by the vertical red lines in (Figure 4.14). In cases where no US stimulated CAP

was detected, a random 10 ms time section of PCD data was analysed for comparison.

Figure 4.14: Example of a nerve CAP response (red, left axis) to the 0.67 MHz, 100 ms
stimulation protocol at 562 W/cm2, recorded simultaneously with acoustic PCD data
(blue, right axis) Vertical red lines show the region of the stimulus pulse expected to
have initiated the US CAP.
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4.7.1 Frequency Domain Analysis

Cavitation signal in both the MFP and FFP experiments were analysed using techniques

similar to those first described by Larry Crum’s group in 2002 [Chen et al., 2003, Tu

et al., 2006]. The 8 ms PCD signal was extracted and the frequency domain analysed

by an FFT. To investigate stable cavitation, narrow frequency bands (0.1 MHz width)

over the 2nd to 8th harmonic (Figure 4.15) were integrated and summed with the other

inter-harmonics to give the Stable Cavitation Dose (SCD). Before summing, each har-

monic was normalized to the mean amplitude of that harmonic across all stimuli on

that nerve. Though this method reduces the ability to detect signals that are present

throughout all stimuli in an experiment, it increases the ability to detect changes in

harmonic amplitudes between stimuli and weights all the harmonics equally, making it

well suited to detecting stochastic events anywhere in the frequency spectra.

Inertial Cavitation Dose (ICD) was calculated via the same method but using fre-

quency bands at five half harmonic intervals around the centre receiving frequency of

the PCD transducer (5.8 MHz). This avoided interference from the harmonic peaks

as much as possible and was used to detect the broadband inertial cavitation signature

(4.15).

In the calculations and measurements earlier in this chapter (Table 4.2), it was

found that for the exposures used in the FFP experiments, non-linear propagation was

much more significant than in the MFP experiments. Since this creates higher har-

monics, its contribution to the received acoustic signal can be interpreted incorrectly as

stable bubble cavitation. However, sub- and ultra-harmonics can be used to differentiate

this from bubble oscillation as they aren’t produced by non-linear propagation through

the media [Hamilton and Blackstock, 1998]. These signatures are examined when more

detailed analysis is required. Also the variability of scattered signal between stimulus

attempts will allow differentiation from harmonics produced just through non-linear

propagation.

4.7.2 Wavelet Analysis and Statistical Data Handling

Improving upon, and used along side with the FFT methods described above, a new

analysis method was developed for the FFP experiments, the theory and advantages of

which are described in section 1.1.6.
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Figure 4.15: FFT of the 8 ms US exposure section taken from PCD recording. Blue
arrows point to integer harmonics of the driving frequency that are analysed to deter-
mine the SCD. Red arrows indicate the inter-harmonic sections that are analysed to
determine the ICD

This technique can be viewed as a bank of filters which decompose the acoustic

emission signal into several components in the time domain where each component

spans over a specific frequency band. The frequency bands are determined by the

Nyquist frequency and the desired number of levels of decomposition. This is imple-

mented by the wavelet transformation where the wavelet function specifies the transfer

function of filters in the set. The Nyquist frequency was fN = 6.25 MHz with M = 5

levels of decomposition. This gives the decomposed frequency bands the following

frequency ranges: fN
2n+1 − fN

2n ,n = 0, . . . ,M− 2. The wavelet function we chose is the

Daubechies wavelet of order 10 (db10) as it has the right time characteristics for de-

tecting inertial cavitation events and it has been shown to be effective for cavitation

analysis in a previous study [Haqshenas and Saffari, 2015]. After performing the dis-

crete wavelet transformation, short Fourier transform (STFT) and statistical analysis of

each component of the signal are carried out to identify and characterise different cav-

itation regimes. Further explanation of the technique and its effectiveness at picking

up multiple types of cavitation signals can be found in a previous study by this group

[Haqshenas and Saffari, 2015].

In PCD recordings there is a baseline noise amplitude distribution that is added to
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both by direct signal from the driving transducer and signals from cavitation activity

within the focal area. Cavitation adds large amplitude values to the right hand tail of the

amplitude probability distribution. This modifies all the moments of the distribution:

(Mean, Variance, Skewness, crest factor and Kurtosis). We briefly examined kurtosis,

skewness and crest factor as quantifiers of cavitation activity and found that kurtosis

was the best predictor of inertial cavitation activity with the highest signal to noise

ratio. Kurtosis identifies the proportion of the signal variance due to infrequent ex-

treme deviations such as the short duration high amplitude acoustic signals that inertial

cavitation is characterised by. It is described mathematically below [Vaseghi, 2008]:

K =
E(x−µ)4

σ4 , (4.6)

where E is the expectation operator, x is the time series and µ and σ are the mean

value and standard deviation of x respectively. A high kurtosis value will be produced

if the probability mass is concentrated around the tails of the distribution, Gaussian

noise will give a kurtosis value of approximately 3. Data was analysed in this way

to measure cavitation activity (in each frequency band) in a way that could be scaled

to large datasets. Signal variance in the time domain was used as a measure of total

acoustic energy content within each frequency band and which includes signals from

both stable and inertial cavitation.

The standard deviation of the kurtosis of a PCD noise recording (no acoustic emis-

sion signal), 0.02 at the highest frequency band and 0.07 at the lowest, was initially used

to determine a threshold for detection of inertial events (> 5σ ). It was subsequently

found that the signal variation from reflections, pulsing and changing stable oscillation

behaviours were sufficient to be reliably above this threshold. The kurtosis threshold

was therefore increased until no signals in the lowest amplitude exposures used in the

FFP experiments, where no inertial cavitation is expected to occur, were above this

level (Figure 5.9).

4.8 Electrical Signal Analysis

Due to the volume of data being processed it was necessary early on to automate de-

tection and quantification of nerve CAPs. This section will detail the data processing
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applied to the differentially amplified nerve activity recordings from the detection elec-

trodes.

To detect CAPs, the electrical signal was split into 10 ms windows with no overlap

and an FFT performed on each. As the extracellular population recording of a CAP is

characterised by a slow summation of many signals, a low frequency component (0-

5kHz) was used for detection. An amplitude threshold for CAP detection was set at 5

times the standard deviation (σ ) of the 0-5 kHz background activity in the frequency

domain or 5σ of the total background noise in the time domain. Once a CAP had

been detected, a local amplitude maximum was found. The integrated area under the

curve of a CAP, 5 ms each side of the peak voltage amplitude was used to measure the

response amplitudes for both electrical and US stimulated CAPs.

In the MFP experiments, a boolean presence/absence value was used to replace the

CAP amplitude measurement for the purposes of correlation testing as amplitude was

primarily linked to the quality of connection between the nerve bundle and recording

electrodes, which changed every time the bundle was moved.

The saturated, electrically stimulated CAP response, recorded 3 seconds before

each US stimulation, was used as a reference point to normalise the absolute amplitudes

recorded from US stimulation. This allowed comparison between nerve experiments

and corrected for the decline in CAP amplitude seen over the 20 minute course of an

experiment (Figure 4.8).

In cases where it was suspected that nerve responses to US were present but un-

detected due to less synchronous activation of nerve fibres such as by the 100 ms stim-

ulation protocol, wavelet decomposition techniques described in section 4.7 were also

used to process the nerve recording. The recording from the US stimulated nerve was

decomposed into 20 levels using the Coiflet5 wavelet function and checked for cor-

relation at each level to the same decomposition of the electrically stimulated nerve

recording. The Coiflet5 type of wavelet function was selected following [Sherwood

and Derakhshani, 2009]. This was not applied en masse to detect responses as it was

not required to detect the large synchronous classical CAPs and was an intensive and

time consuming analysis. This method was primarily used in the 100 ms exposure set

for the reason mentioned above and because it allowed identification of weak nerve

activity in the presence of electrical noise from US generation.
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Response latency was measured from the onset of the ultrasound or electrical stim-

ulus to the peak of the resultant CAP and is therefore the median latency of all the

fibres in the bundle. This measure includes US travel time, nerve response time and

CAP transmission time. Since nerve response time is of interest to the US stimulation

mechanism, the other two factors were estimated and subtracted. The US travel time

was constant and calculated to be 47 µs and 40 µs for the 0.67 and 1.1/2 MHz trans-

ducers respectively. The CAP transmission time along the nerve was estimated on a

nerve by nerve basis using the preceding CAP transmission time from the interleaved

electrical stimuli and the known relative distances between the electrodes. Subtracting

these from the total lag time, an estimate for the nerve response time was calculated

for each US induced CAP (Figure 5.7). This method assumes that the stimulation oc-

curs in the centre of the US focal point every time, uniform conduction velocity along

the length of the nerve and that the relative position of the CAP peak amplitude does

not change with time or different stimulation modalities. These assumptions introduce

non-systematic (pseudo-systematic within each nerve experiment) errors which, with

a large enough dataset, will not affect the mean but will introduce significant error to

individual latency estimations.

Any CAP detected more than 30 ms past the expected time window was excluded.

These were used to estimate the probability of false positive results within the expected

time window and occurred in less than 1% of the total recordings across all amplitudes.

4.8.1 Damage Analysis

Sensitive analysis of damage to the nerve bundle could not be performed during the

MFP experiments as moving the nerve bundle altered the stimulation and reception

of CAPs, meaning any decline in CAP amplitude could not be attributed to damage.

However, experiments were performed using the MFP setup in three extracted nerves

without movement to measure the mean normalised rate of decline when exposed to

the maximum intensity US protocol (138 W/cm2, 0.67 MHz, 10 kHz PRF, 8 ms TSD)

compared against the mean rate of decline for three nerve bundles not exposed to US

(all other conditions remaining constant). The nerve bundle was also macroscopically

examined for signs of damage such as cavitated or thermal lesions after all experiments.

In the FFP experiments, damage to the nerve bundle was detected by two means.
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The primary method was to measure proportional reductions in electrical stimulation

amplitude from one stimulation to the next. A significant damage event detected by

these means was defined as more than a 20% reduction caused by a single US stimulus.

This threshold was defined by 1.5 times the maximum point to point decline detected

in nerves not exposed to US (Section 4.3).

Smaller scale damage that may have been caused by US stimulation over a longer

period was tested for by determining the correlation coefficient of the decline in CAP

amplitude with acoustic kurtosis and signal energy at all frequency bands in each nerve

experiment. Correlation was also tested for between the same variables, irrespective

of US frequency or individual nerve experiments, across all data for each stimulation

protocol.

The second method used to detect significant damage events was through identifi-

cation of after-discharge (repetitive nerve activation) after a successful US stimulation

event (Figure 5.18c). After-discharge is known as a sign of poration in the nerve mem-

brane as the charged ions equilibrate causing the membrane to regularly depolarise

[Lee et al., 1995]. After-discharge was identified when the standard deviation of the

raw electrical signal (100-150 ms after the CAP peak) was more than 1.5 times greater

than the background σ measured before CAP initiation.

4.9 Artefacts and Data Filtering
In both the MFP and FFP experiments, artefacts were present in both the electrical and

acoustic data sets that were filtered out before statistical analysis or measurements of

response reliability were performed. When any artefact described below was detected,

electrical and acoustic recordings, and corresponding recordings from the paired elec-

trical or US stimulation, were excluded.

Due to the spiky noise produced by inertial cavitation, the acoustic signals some-

times exceeded the captured voltage range of the oscilloscope, causing peaks to become

clipped (flat on top). These signals caused anomalies in the frequency spectrum analy-

sis of the signal which were easily detected.

Sometimes during the course of an experiment a nerve would degenerate until the

electrically stimulated CAP was no longer detected. As this would guarantee failure to

detect any successful US stimulus, only US stimuli attempts with successful preceding



4.10. Correlation Analysis 109

electrical stimulation were included in the analysis. Similarly, if no ultrasound signal

was detected by the PCD, the associated data was ignored.

If the US driving signal was detected by the PCD with anomalies, such as a TSD

outside the expected range (0.1 times smaller or larger than the expected value), the

associated data was excluded. Another such anomaly is DC drift which, despite the

high pass filter RC circuit between the amplifier and oscilloscope, was observed very

infrequently in both acoustic and electrical recordings.

Depending on the efficiency of the transducer in question, a weak oscillating elec-

trical field potential was generated by the US transducer which generated noise at

the driving frequency through induction in the recording electrodes, interfering with

recordings from the nerve. Though the noise was greatly reduced by using an earthed

ringers bath (Figure 4.1), a temporal and spectral filtering algorithm was designed to

prevent such noise being mistaken for CAP responses. Poor earthing of the ringers

bath solution in the MFP experiments occasionally caused the driving frequency of the

US to be picked up very strongly by the recording electrodes. This was detected as an

increased mean absolute electrical signal amplitude lasting for the expected acoustic

stimulus duration (8 or 100 or 300 ms) and the associated data excluded.

4.10 Correlation Analysis
Statistical correlation was tested for between many measured parameters such as radi-

ation force and stimulation success to test potential causative links. This analysis was

performed using a Pearson Correlation Coefficient function in MATLAB after exclud-

ing all the anomalies mentioned in section 4.9.

4.11 Control Experiments
A sham experiment with no air gap and a wet bundle of cotton threads in place of the

nerve, replicating the tissue’s impedance for the differential voltage amplifier, was used

to determine the amplitude of the raw electrical noise from US generation within the

transducer. This induction noise was found to be between 0.1-0.5 mv.

Direct stimulation of the nerve via a weak oscillating electric field [Francis et al.,

2003] was ruled out by a sham experiment where the US cone was raised, creating a

reflecting air gap between the cone and the ringers bath and the primary US stimulation
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protocol repeated at high intensity. No direct stimulation was observed in this manner

across 3 electrically responsive nerves and 66 individual stimuli (8 ms TSD, 0.67 MHz,

10 kHz PRF, 50% DC, 30/90s repetition period).



Chapter 5

Crab Walking Leg Nerve - Results

5.1 Moving Focal point
Out of 19 nerves that were confirmed viable by electrical stimulation post extraction,

10 responded to some level of US stimulation (53%). Of the 19 nerve bundles, across

all amplitudes tested including repeat stimuli, only 6% of US stimuli (n = 580) resulted

in any observable CAP (Table 5.1.1). It was quickly noticed that predominantly the first

US burst of any series of repeats resulted in successful neurostimulation (Figure 5.1),

not the subsequent 4 repeats in the same location. If only these first pulses are counted

the success rate of US neurostimulation increases dramatically to 28% (n = 116) or

69% at the highest amplitude tested. The lowest US amplitude that resulted in CAP

generation was 25 W/cm2 ISPPA. The Electrical and US stimulated CAPs appear at

different times due to the different physical stimulus locations along the nerve bundle,

the US focal point being located much closer to the recording electrodes (Figure 4.2)

5.1.1 Recovery Times

In one nerve extraction experiment after a successful US response was observed, with-

out moving the US focus, times between sets of 5 stimuli were varied to 1, 5, 10 and

20 minutes. All subsequent stimuli beyond the first failed to result in an US induced

CAP over the whole 37 minutes. US stimulus was immediately successful again upon

subsequent movement of the nerve bundle by 5 mm.

5.1.2 Analysis of Acoustic Emission

In the four nerve experiments exposed with a constant 138 W/cm2 (96 total exposures,

18 successful stimuli), acoustic data was recorded and analysed using the methods
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ISPPA
(W/cm2)

Total
Exposures

Exposures on
Responsive Nerves

Successful
US Responses

3 95 85 0
11 95 75 0
25 95 75 1
44 95 90 4
70 95 85 9
101 95 90 7
138 95 80 11

Table 5.1: Total Ultrasound Exposures, exposures on electrically responsive nerves and
successful responses to US stimuli in 19 nerves.

(a) (b)

Figure 5.1: Recorded voltage amplitude profiles involving large CAP activity from a
crab leg nerve bundle using alternating electrical and ultrasonic stimulation as per the
protocol in section 4.5.1. Five electrical stimulation recordings are grouped in (a) and
five US stimulation recordings in (b). All recordings were taken over a 30 s period.

described in section 4.7.1. Higher amplitude harmonics were found to be positively and

significantly correlated with US stimulus success compared to unsuccessful stimuli.

The degree of correlation in a single nerve experiment between the binary observation

of a CAP and the amplitude of the different harmonics can be seen in figure 5.2. The

aggregate of this across all recordings with harmonic amplitudes normalised to mean

PCD signal amplitude for each nerve is shown in figure 5.3. the amplitude of the half

and second harmonic are most significantly correlated to successful CAP generation.

No significant correlation was found between ICD and nerve response in any of

the four nerve experiments tested.
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(a) (b)

Figure 5.2: Analysis of harmonic amplitudes from 18 US stimulation events In a single
nerve. (a) Peak harmonic amplitudes of the acoustic emission. The 6 successful stimuli
(that produced a CAP response) are coloured red. (b) Correlation statistics of the binary
presence/absence of a CAP and harmonic amplitudes with P-values displayed above the
bars.

Figure 5.3: Correlation statistics of the binary presence/absence of a CAP and harmonic
amplitudes across all acoustic data with P-values displayed above the bars (n=96, 18
successful stimuli).

5.1.3 Damage

No macroscopic damage to the nerve tissue was observed after any experiment. The

mean rate of electrically stimulated SNAP response decline of a nerve bundle with

and without US exposure (138 W/cm2 ISPPA) over 30 minutes was not found to be

significantly different, as shown in figure 5.4.
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(a)

Figure 5.4: Mean peak positive voltages of electrically stimulated CAPs, with (red),
and without interleaved US stimulation (blue). Background nerve decline (without
US), also shown in figure 4.8. The highest intensity US exposure protocol used in
the moving focal point experiments (138 W/cm2 ISPPA) was used interleaved with 80
electrical stimuli in 30 minutes.

5.2 Fixed Focal Point
142 nerves responsive to electrical stimulation were exposed to a range of ultrasound

parameters which, similar to the MFP experiments, were shown to be capable of elic-

iting large and synchronous CAP events from the unmyelinated crab leg nerve bun-

dle (Figure 5.5). Responsive nerve bundles could be stimulated multiple times with

stimulus reliability varying between 5 and 80%, strongly depending on fundamental

frequency and pulse average intensity of stimulation. The lowest threshold for any ob-

servation was at 100 W/cm2 ISPPA for the 8 ms, 0.67 MHz stimulus. Inertial cavitation

signals were detected in all successful stimuli. The results from each stimulus protocol

variant are presented in this section.

5.2.1 8 ms 0.67 MHz Stimuli

61 electrically responsive nerves across 26 crabs were tested using a range of 11 differ-

ent US stimulation intensities (Table 4.2). Using the stimulation protocol described in

section 4.5.2, overall response reliability was less than 25 % at all intensities (Figure 5.6

a). Responses occur at sporadic times throughout the 22 minutes of an experiment with

an increased response probability for the first stimuli, similar to findings described in

section 5.1(15% of all experiments responded on the first attempt compared to a mean

of 7% for any other time point).

The intensity threshold for the neurostimulation effect was at 100 W/cm2. Cor-
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Figure 5.5: Example of a nerve CAP response (red, left axis) to the 0.67 MHz, 8 ms
stimulation protocol at 562 W/cm2, recorded simultaneously with acoustic PCD data
(blue, right axis).

relation coefficients between the amplitude of the CAP response and both PCD signal

energy and kurtosis, find significant (P<0.05, n=22) correlation in two nerve experi-

ments at 485 and 562 W/cm2 across all frequency bands.

(a) (b)

Figure 5.6: Response success statistics for the 8 ms, 0.67 MHz stimulation protocol.
Numbers of successful stimuli at each intensity are displayed above each bar. (a) Total
response reliability for all nerves tested at each intensity level. Two nerve experiments
with over 50% reliability were excluded as outliers. (b) Mean amplitude of US induced
CAPs as a proportion of the electrically induced CAP amplitude.

Mean response lag time was 3.16 ms (n=106) once estimated CAP transmission

time for each response had been subtracted. The combined effect of the assumptions

in this estimation (Section 4.8) resulted in significant error, with a number of responses

occurring before the beginning of the stimulus (Figure 5.7(b)). This resulted in a high

latency standard deviation of 4.28 ms. A closer estimate of the true response latency

variability was determined by the mean intra-nerve standard deviation, calculated at

2.87 ms, as the errors due to prior assumptions were consistent within the same nerve.
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Latency did not vary significantly with US stimulation intensity.

(a) (b)

Figure 5.7: Heatmaps of US CAP responses resulting from the 0.67 MHz, 8 ms stim-
ulation protocol, colour and corresponding legends note the intensity of stimulation in
W/cm2. (a & b) Latency of ultrasound responses, measured from the onset of ultra-
sound stimulus to the peak of the CAP response, estimated CAP conduction time has
been subtracted. Colour and corresponding legends note the intensity of stimulation in
W/cm2. (a - 8 ms TSD, b - 100 ms TSD).

(a) (b)

Figure 5.8: Mean and standard deviation error bars of (a) signal energy and (b) time
domain kurtosis in four frequency bands decomposed from PCD recordings of the 8
ms, 0.67 MHz US stimulation protocols. The frequency band containing the US driving
frequency is highlighted in red.

The majority of the signal energy for the 0.67 MHz protocol lies in 0.39-0.78 MHz

band, covering the primary driving frequency. This signal component will primarily be

generated by refraction of the driving signal from the nerve bundle in the focal area

and by scattering by bubbles. Amplitude variation of this component, shown by high

error bars in figure 5.8 (a), therefore indicates a change in refraction or re-radiation of

the driving signal from the focal region by impeding or resonating structures such as

bubbles.
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Inertial cavitation was found to be ubiquitous at pulse average intensities past 100

W/cm2, with broad frequency band (1.56-6.25 MHz) inertial events (kurtosis>6) oc-

curring in more than 70% of US stimuli (Figure 5.9). This matches with the threshold

for successful US stimulation also seen at 100 W/cm2. These broadband events are not

as prevalent in the lower bands (0.39-1.56 MHz) (Figures 5.9 and 5.8(b)) because of the

greater influence of continuous signals such as the primary and secondary harmonics

on the spikedess of the temporal signal. The majority of inertial cavitation events are

not associated with any resultant nerve activity, which is discussed further in section

6.2.1.1.

(a)

Figure 5.9: Percentage of US stimuli (8 ms,0.67 MHz protocol) showing above thresh-
old kurtosis (>6) in four frequency bands at each stimulus intensity. The colour-map
on the right is in units of W/cm2

5.2.2 100 ms, 0.67 MHz Stimuli

19 electrically responsive nerves across 6 crabs were tested using the same range of US

stimulation intensities (Table 4.2) as used in the 8 ms protocol. The threshold intensity

for CAP generation (first detected response at 169 W/cm2) as well as the response

reliability profile are close to findings in the 8 ms experiments (Figures 5.6 and 5.10(a)

and (b)). The pattern of inertial cavitation activity measured by kurtosis and its standard

deviation matches well with the response threshold and more generally with the pattern

of response reliability and response amplitude (Figure 5.10). In particular, the threshold

intensity level for US responses, 169 W/cm2 is also the first to show significant standard
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deviation of kurtosis in either of the lower frequency bands, shown by the error bars in

figure 5.10(c). This is an indicator of signal variation between exposures as would be

found with cavitation with variable initial nuclei.

(a) (b)

(c)

Figure 5.10: (a and b) Response success statistics for the 100 ms, 0.67 MHz stimulation
protocol. Nerves that did not respond to electrical stimuli were excluded. Numbers of
successful stimuli at each intensity are displayed above each bar (a) Mean response re-
liability for all nerves tested at each intensity level. (b) Mean Amplitude of US induced
CAPs as a proportion of saturated electrical stimulus recording taken before each US
stimulus. (c) Mean acoustic signal kurtosis of four frequency bands across all intensi-
ties. Error bars show standard deviation.

This apparent coherence was tested by correlation coefficients within each nerve

experiment. Significant positive correlation between cavitation measures (kurtosis and

signal energy) in key PCD time sections and nerve response amplitude was found in

5 individual nerve experiments (56% of US responsive nerve experiments) across all

frequency bands. All 100 ms exposures were then aggregated to determine the corre-
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lation between cavitation and response amplitude, irrespective of US driving intensity

and separate nerve experiments. Significant positive correlation was found between

kurtosis of acoustic signals and nerve response amplitude across all frequency bands

as shown in figure 5.11. This strongly implicates the involvement of inertial cavitation,

typified by temporally short, broad frequency band signals, in the successful stimula-

tion events.

Figure 5.11: Correlation between acoustic signal kurtosis in four frequency bands and
nerve response amplitude across all experiments in the 100 ms exposures. P values are
displayed above each bar (N=304).

Similar to the 8 ms exposures, ubiquitous cavitation activity detectable in all fre-

quency bands was found over 169 W/cm2 shown in figure 5.10(c). However, Analysis

of the kurtosis of separate time sections showed that the majority of the inertial activ-

ity was restricted to the first 10 ms time bin (Figure 5.12). Sporadic events did occur

after the initial burst of cavitation such as shown in figure 4.14, at a much lower event

frequency, demonstrated by the much lower mean kurtosis values seen in figure 5.10(c)

compared to 5.8(b).

5.2.3 300 ms 0.67 MHz Stimuli

Reproductions of the intensities and pulse parameters found in CNS stimulation liter-

ature [Lee et al., 2015] at 0.67 MHz were unable to generate CAP responses in the

crab nerve bundle. Incrementally increasing the intensity of stimulation resulted in a

threshold for CAP generation at 169 W/cm2.
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(a)

Figure 5.12: Mean values of PCD signal kurtosis of the lowest frequency band over
100 ms, split into 10 ms divisions and a range of stimulation intensities (ISPPA).

5.2.4 1.1 and 2 MHz Stimuli

58 electrically responsive nerves across 11 crabs were tested using a range of 5 dif-

ferent US stimulation intensities (Table 4.2). US stimulus intensity levels for these

frequencies were chosen to reproduce the radiation forces due to tissue absorption and

reflection (Table 4.2). At these intensity values no nerve responses were observed.

(a) (b)

Figure 5.13: Mean values and standard deviation error bars of time domain kurtosis in
four frequency bands decomposed from PCD recordings of the 8 ms, 1.1 MHz (left)
and 2 MHz (right) US stimulation protocols. The frequency band containing the US
driving frequency is highlighted in red.

Occasional high kurtosis events were seen with 1.1 and 2 MHz exposures (Fig-

ure 5.2.4), though, as expected, the acoustic signal energy in frequency bands other

than driving was near zero (<0.1% of total signal energy at all points) with very low

standard deviation between experiments. Therefore the cavitation activity present was

considered negligible.

At higher amplitudes, no CAPs were measured for stimulation at 1.1 MHz (up to

0.86 kW/cm2). At 2 MHz the threshold for stimulation was found at 6.7 kW/cm2 where
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responses were again associated with inertial acoustic events as shown in figure 5.14.

Figure 5.14: Example of a nerve CAP response (red, left axis) to the 2 MHz, 8 ms
stimulation protocol at 6.7 kW/cm2, recorded simultaneously with acoustic PCD data
(blue, right axis).

5.2.5 Individual Case Analysis

Though correlation coefficients show a strong association between inertial cavitation

and nerve activation, they could mask individual cases where stimulation occurs with-

out cavitation. To test for this possibility, individual nerve experiments with weak or

negative correlation between US stimulated CAP amplitude and acoustic kurtosis or

signal energy were investigated in more depth. The ubiquitous cavitation activity that

dominated throughout the 8 ms recordings meant that inertial cavitation was always

found preceding a stimulus even in experiments showing poor correlation. In the 100

ms exposures, several stimuli were identified that were poorly correlated to kurtosis or

signal energy values. Two of these are shown in figure 5.15.

In most cases such as the example in figure 5.15(d), standard spectrographic anal-

ysis of the entire signal was sufficient to detect signature broadband cavitation events

within the anticipated region. Poor correlation in these cases was due to particularly

high amplitude acoustic events throughout the rest of the experiment (22 US expo-

sures). The lowest intensity example of successful stimulation with 100 ms exposures

did not have any obvious signs of cavitation using standard spectrographic analysis

(Figure 5.15(a) and (b)). However, using wavelet decomposition and windowed kurto-

sis, inertial events were found in the 195-391 kHz signal component within the expected

time section (Figure 5.16). Sub-harmonic emission is generated by non-linear bubble

pulsation [Leighton, 1994] and could arise from large bubbles (that have a lower reso-
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(a) (b)

(c) (d)

Figure 5.15: Two examples of US stimulation with the 0.67 MHz, 100 ms protocol
((a & b) 169 W/cm2 (c & d) 485 W/cm2) that had poor correlation with cavitation
activity. Left - PCD recordings (blue trace, right axis) and electrical nerve responses
(red trace, left axis). Vertical red lines show the region of the stimulus pulse expected
to have initiated the US CAP. Right - Spectrographic analysis of the raw 100 ms PCD
recording of the US stimulus.

nant frequency than the driving US) oscillating at their resonant frequency [Neppiras,

1980, Wijngaarden, 2012], such as those introduced by the extraction process (Figure

4.9). The faintness of these low frequency events is due to the very low sensitivity of

the PCD at such frequencies.
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Figure 5.16: Spectrographic and kurtosis analysis of the 0.2-0.39 MHz component of a
100 ms, 0.67 MHz protocol stimulus at 169 W/cm2, shown in figure 5.15 (a) & (b). The
signal was decomposed into frequency bands via the wavelet analysis method. Vertical
black lines indicate the estimated window when the CAP was initiated.

5.2.6 Hypersensitive Examples

Two nerves exposed using the 8ms, 0.67 MHz protocol were found to be hyper-

responsive, showing response reliabilities of between 65-80% (n=22), occurring at 352

and 230 W/cm2 respectively. Considering the mean response reliability of this protocol

across all intensities was 11.6%, these nerve experiments were treated as outliers and

investigated separately.

Though the mean signal energy content of PCD data from either hypersensitive

experiment was not significantly different from other experiments at the same inten-

sity, the time domain kurtosis was on average 0.8 and 0.63 times the mean value of

the different frequency bands at 230 and 352 W/cm2 respectively across all frequency

bands. The variance of kurtosis between different exposures in each experiment was

also found to be low compared to three other experiments at the same intensities (0.46

and 0.68 times the mean signal energy variance and 0.48 and 0.55 the mean kurtosis

variance across all energy levels respectively). The same was also found for the vari-

ance of the (frequency domain) harmonic amplitudes within each 8ms stimuli measured

by spectrographic analysis (0.72 and 0.66 times mean variance of signal amplitude of

the 2nd, 3rd and 4th fundamental harmonics compared to three other experiments at

the same intensities) (Figure 5.17).

Compared to harmonic emissions measured for other experiments at the same

intensity, the two hyper-responsive nerve experiments showed approximately 50%
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(a) (b)

Figure 5.17: Mean frequency domain amplitude (n=22) of 1 sub harmonic (f0/2) and 8
harmonics (f-f8) of the hypersensitive nerve experiments normalised by the sum of all
the harmonic amplitudes excluding f0 as a proportion of the mean harmonic amplitude
of three other experiments (n=66) at each intensity (a) 230 W/cm2 (b) 352 W/cm2.

greater sub-harmonic content as a proportion of the total signal (Figure 5.17). This

which can indicate the oscillation of large bubbles [Neppiras, 1980, Wijngaarden,

2012]. Given the likelihood of large micro-bubbles being introduced by submersion

of the nerve, described in section 4.3.1, and the consistency of the harmonic emis-

sion in these two studies, the source of the harmonic emission pattern is thought to be

persistent large bubbles under the US focus. Bubbles in these cases could have been

trapped in close proximity or inside the nerve bundle in these two experiments, thereby

repeatedly stimulating the nerve bundle through a stable oscillation mechanism.

5.2.7 Damage

US was found to damage the exposed nerve bundles sporadically. The lowest intensity

example of after-discharge in the 0.67 MHz 8 ms protocol, at 230 W/cm2, is shown in

figure 5.18(c). Two other after-discharge events in separate nerve experiments were ob-

served above this intensity threshold (at 485 and 562 W/cm2), all three were concurrent

with reduced electrically stimulated CAP amplitude.

Each of the damage events causing after-discharge were examined spectrograph-

ically. Large broadband noise signatures marking inertial cavitation events (Figure

5.18(d)) were seen preceding all these instances of significant damage (proportional

decline of >20%). The cause was therefore deemed likely to be inertial cavitation

induced membrane rupture.

Significant positive correlation (P<0.05, n=22) between decline of the electrically
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(a) (b)

(c) (d)

Figure 5.18: (a) Example of electrically stimulated CAP amplitude (line) and US stim-
uli (+) over 22 stimuli on a single nerve. This example was exposed using the 0.67
MHz, 8 ms stimulation protocol at 562 W/cm2. (b) Mean decline over time of the elec-
trically stimulated CAP amplitude of the 0.67 MHz, 8 ms stimulated nerves, normalised
to the amplitude of the first stimulus with standard deviation error bars. (c) Example of
after-discharge due to nerve damage using the 0.67 MHz, 8 ms stimulation protocol at
230 W/cm2. (d) spectrographic analysis of the PCD signal of the first damage causing
ultrasound event in (a)

stimulated CAP and acoustic kurtosis & signal energy was seen in two of the three after-

discharge occurrences mentioned above and in three more nerve experiments shown in

figure (5.19(a)). Positive correlation is also found in 3/19 nerve experiments in the 100

ms exposures (Figure 5.19(b)). Occurrence of damage by any of these measures was

observed in 4% of total nerve experiments at any intensity or frequency. No significant

damage as a result of US exposure occurred at either 1.1 or 2 MHz.

Degradation of the electrically stimulated CAPs in nerves not exposed to US (Sec-

tion 4.3) across 22 minutes (Mean normalised decline per minute = 0.009, σ=0.013)

was not significantly different from mean decline of US exposed nerve bundles where
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(a) (b)

Figure 5.19: Significant (P<0.05) correlation coefficients between damage (proportion
of amplitude reduction from one electrical stimulation to the next) and acoustic kur-
tosis from (a) 8 ms and (b) 100 ms US stimulation irrespective of frequency band in
which correlation occurred. Bars represent individual nerve experiments. In cases with
correlation present across multiple frequency bands, the highest correlation coefficient
is displayed.

signs of major damage events as above were not seen at any intensity. The rate of de-

cline in CAP amplitude over the 22 minutes also did not significantly change between

exposure intensities (Figure 5.18(b)). No significant correlation between damage and

either signal energy or kurtosis was found when measured across all data for each stim-

ulation protocol, irrespective of US frequency or individual nerve experiments.



Chapter 6

Discussion

Our results demonstrate that US stimulation can elicit de-novo action potentials in both

mamalian and crustacian peripheral nerves. Unmyelinated axonal tissue alone is found

to be sufficient to generate action potentials in response to ultrasound stimulation. Ex-

amining the nature of this response allows several insights into the underlying mecha-

nisms, which, in the present case, the author demonstrates to be cavitational.

The lowest threshold at which responses were seen in any of the experiments con-

ducted here, was an order of magnitude greater than pulse average intensities used in

some studies achieving successful stimulation in rat brain tissue [Kim et al., 2014a,b,

2012, Tufail et al, 2010, Yoo et al, 2011a]. These studies use lower frequency ul-

trasound (300-350 kHz) which has indeed been shown to be a critical factor by the

current study and others [Gavrilov et al., 1977, Kim et al., 2014a, King et al., 2013, Lee

et al., 2014, Muratore et al., 2009] and may acount even for this large discrepancy in

the pulse average intensity threshold. From investigations repeating the pulsing param-

eters of an applied study in the human brain (Section 5.2.3) [Lee et al., 2015], pulse

protocol does not appear to play a role. The potential for the mechanism observed

here to be the same as in many in vivo brain studies cannot be ruled out, though until

further research tests this link, the mechanisms should be treated as distinct. Subse-

quent discussion will therefore focus on the characterisation of the currently observed

stimulation phenomenon.

The intensity thresholds found in this study are much closer to those reported by

Gavrilov’s group and others targeting peripheral nerve structures [Gavrilov et al., 1996,

Legon et al., 2012, Mihran et al., 1990, Tych et al., 2013, Wright and Davies, 1989],

re-enforcing the apparent divide in threshold US amplitude between neuromodulation
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of the CNS and the Peripheral Nervous System (PNS) (Figure 2.2). The extent of the

separation in required intensities between these two paradigms demonstrate the impor-

tance of identifying in different tissue types, the specific US effects and their thresholds.

This could then be used to develop a fuller understanding of the US-tissue interaction

and targeted ultrasound therapies, including but not limited to neurostimulation.

6.1 Rat Saphenous
These preliminary experiments demonstrated several important mechanistic features of

the US-nerve interaction which were used to drive the design of the crab leg nerve

experiments but also represent several distinct findings.

The first of these is that direct US neurostimulation can be observed in mammalian

peripheral nerves. the second is that observed stimulation cannot function through

synapse or cell body related mechanisms such as vesicular fusion as these structures

are not present in the preparation. The stimulus effect is therefore acting directly on

the axons in the nerve bundle or on the nerve endings in the skin, directly underneath

the bundle. There are several different populations of sensory neurons that innervate

onto the skin through the Saphenous nerve, many of which have high concentrations of

MS ion channels in their terminals. During these experiments it was noted that relia-

bility and amplitude of SNAP responses varied greatly between stimulus location. This

same observation was made by Gavrilov’s group and others in several different studies

eliciting different sensations in the skin [Dickey et al., 2011, Gavrilov and Tsirulnikov,

2012]. In the case of skin stimulation Dickey et al., found that the success of the effect

was directly correlated to the density of mechanoreceptors. It is therefore possible that

MS ion channels contained in sensory nerve endings in the skin are the mode for US

induced stimulation in these experiments.

Though all of the US forces increase with increasing power, only the peak pres-

sure varies in the same linear fashion as the observed response reliability (Table 3.3).

This suggests that response success is dependant on peak pressure directly, or on a sec-

ondary pressure dependant effect instead of intensity dependant forces such as heating

or radiation force. In relation to the potential mechanisms proposed in section 2.3,

the candidates are direct pressure effects (Section 2.3.3) or cavitation effects (Section

2.3.4).
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The unreliability of the observed response even at very high amplitudes or pulse

lengths indicates that there is some stochastic process either in the propagation and

absorption of the ultrasound within the tissue or in the effects that it elicits on the cell.

One possibility to explain this could be cavitation resulting from the presence of small

gas bubbles or other cavitation nuclei in the tissue which may move and change between

stimuli. The synthetic interstitial fluid that filled the bath was in fact constantly gassed

with oxygen for the health of the sample, the gas saturation of which would make

cavitation likely.

Although inertial cavitation appears not to be necessary for a stimulatory effect

[Tufail et al, 2011, Tyler et al, 2008, Yoo et al, 2011a], it is possible that it was respon-

sible for stimulation in these experiments due to higher peak pressures than used for

in vivo studies. A similar cavitation hypothesis was proposed by Dinno et al. [Dinno

et al., 1989] and supported by others [King et al., 2013, Lee et al., 2014, Muratore et al.,

2009, Tych et al., 2013]. Dinno’s group showed that entirely degassing the tissue bath

media eliminated an electrophysiological effect of US similar to the one observed in

the present study.

Given the stochasticity of the proposed mechanism, pulse length was expected to

be a strong determinant of response success, but in fact had a low saturation point. In a

similar result to a previous parametric study [Kim et al., 2014a], sub 1 ms pulse lengths

were shown to have a strong effect on response reliability, with a much lesser effect at

lengths over 1 ms (Figure 3.4), in keeping with the prevailing opinion in the literature

[Gavrilov and Tsirulnikov, 2012, Tyler et al, 2008, Yoo et al, 2010]. As only one data

point was taken below 1 ms, more data is required to reliably identify the importance

and cause of this pulse length dependence.

Though the discoveries made in these experiments fit with a cavitational mecha-

nism, they are limited in their conclusive power due to the multiple tissue types under

the US focus and uncontrolled, reflective acoustic environment. The next section will

detail the results of the crab nerve experiments, designed to address these issues and

test the predictions made here.
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6.2 Crab Leg Nerve

6.2.1 Ultrasound Force Mechanism

In the moving focal point experiments, US responses were seen at much lower in-

tensities compared to results from the rat saphenous, but were observed to primarily

stimulate only on the first pulse train fired. The application of repeat stimuli often only

succeeded to generate a CAP when the nerve was moved so that a new section was

under the US focus (success rate increases to 67% from 29% when considering only

US stimulus on fresh nerve sections). Recovery times of up to 20 minutes also seemed

to have no effect in creating a new CAP, which indicates that the conditions within the

nerve bundle required for US stimulus are permanently changed upon US application,

or take a longer time than tested to regenerate. Given that inhibition of electrically

induced CAPs from a US exposed bundle was not seen compared to base rate (Fig-

ure 5.4), the lack of further US induced CAPs is not thought to be due to mechanical

damage or any condition of the nerve which is involved in normal CAP conduction.

It is possible in both the MFP and FFP experiments that analysis of damage

through changes in the electrically induced CAP could fail to detect damaging events

if they affected a population that was not effectively electrically stimulated or recorded

from within the bundle. However, this is deemed unlikely and therefore would not

significantly affect datasets with large numbers of repeats such as these.

Without mechanical damage as a source of this inhibition the author proposes that

the mechanism of the observed stimulation in this experiment involves the bubbles that

were observed on the nerve bundle described in section 4.9, which are knocked off or

destroyed/dissolved during the first US stimulation. As well as explaining the loca-

tion specific inhibition seen in the MFP experiments, it could also explain the location

specific sensitivity changes observed in the skin-nerve preparation. Though the first

stimulation was also preferred in the FFP experiments (15% compared to 7% for any

other time point in the 8 ms dataset), the effect is smaller, thought to be due to the in-

fluence of saline versus oil transmission media on the attachment of the bubbles to the

bundle. The two nerve experiments that displayed particularly high response reliability

in the FFP experiments described in section 5.2.6 were thought to be due to one of these

introduced microbubbles that was stabilised within the nerve bundle.
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Cavitation involving these large introduced bubbles cannot be the only mechanism

however, as occasional responses were seen at a lower rate from repeats in the same

location on the nerve in the MFP experiments, and at a more comparable rate in the

FFP experiments. This difference of stimulation success rates in the same location

between MFP and FFP experiments is expected with a cavitational mechanism due to

the higher negative pressures used in the FFP experiments. This makes cavitation in

absence of the introduced bubble nuclei more likely as smaller, less effective nuclei can

be affected.

This probabilistic response is seen throughout the experiments, where large events

that involved many axons in the bundle occur infrequently. This points to a corre-

spondingly probabilistic cause that occurs on a scale affecting a large proportion of the

fibres in the bundle or not at all, consistent with a large cavitating bubble occurring

outside of nerve fibres. If the mechanism of stimulation was on a small scale such as

the intra-membrane bubble model [Krasovitski et al., 2011], the many isolated events

that act at the individual cell level would be expected to produce a reliable response

when aggregated to the level of the entire bundle.

The same argument against cellular scale probabilistic effects can be applied to

discount other consistent forces as a mechanism, such as the radiation force. In a sys-

tem where nothing is being changed between US exposures, radiation force as a result

of tissue absorption and reflection should remain constant as well as any effects on the

nerve it elicits, but this is not what was observed. Second to this, the radiation forces

produced in the 0.67 MHz exposures were calculated and reproduced at 1.1 and 2 MHz

(Table 4.2) and found to be ineffective at generating responses from the nerve. Indeed

these modelled forces are lower than compressional experiments in the literature shown

to generate mechanical stimulation of axons [Rivera et al., 2000], though conductance

changes from weak compression may contribute to the overall effect [Julian and Gold-

man, 1962b, Olesen et al., 1988]. Even when the intensity of the 2 MHz stimulus

was increased to produce intensities up to 6.7 kW/cm2 (703 mN/cm2), responses were

only found at this highest intensity and the pattern remained as occasional activations

of large numbers of fibres which were associated with inertial acoustic events (Figure

5.14).

Also consistent with a cavitational mechanism given random initial nuclei sizes,
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in the FFP experiments it was found that any part of the pulse train had an equal chance

to stimulate the nerve bundle. In the proposed cavitational mechanism, the random

response delay would be caused by the time required to grow bubbles from particular

nuclei up to resonant sizes. This is supported by the 3.16 ms mean latency value, well

within 1 standard deviation of the expected 4 ms value (Centre of the TSD) assuming

instantaneous activation upon a cavitation event. The dynamics of the current observed

phenomena also does not match with studies that find only the onset or offset of US

stimuli to be effective [Dalecki et al., 1995, Gavrilov et al., 1977, King et al., 2013,

Krasovitski et al., 2011, Menz et al., 2013, Plaksin et al., 2014] which would be con-

sistent with radiation force or intra-membrane bubble mechanisms. This high variance

in stimulation latency is also seen in the 100 ms exposures (Figure 5.7(b)), where it is

again clear that responses are not significantly associated with the start or end of the

stimulus. This cavitation hypothesis is also fully supported by the PCD data.

6.2.1.1 PCD Data

In the MFP experiments PCD recordings showed strong evidence for the occurrence

of stable but not inertial cavitation through correlation to the harmonics of the driving

frequency. Furthermore, higher amplitude sub harmonics (Figure 5.3) rules out non-

linear propagation through the media as only higher harmonics are produced by this

phenomenon. Broadband acoustic events as measured by the ICD, though detected,

were not significantly correlated to successful stimulation in any of the MFP nerve ex-

periments. A similar pattern of acoustic data to this was also found in a limited set

of two nerve preparations in the FFP experiments that show greater response reliabil-

ities (>50%). In these, signs of inertial cavitation were much lower and the relative

amplitude of half harmonic emissions were much greater than other nerve preparations

exposed at the same intensities. The lack of correlation of responses and SCD in these

two experiments is thought to be due to the highly consistent signal that does not show

much variance even when no response is seen. It is not known what caused the unre-

liability in these cases, though it could be determined by small changes in the relative

position of the bubble and nerve, or more complex differences in oscillatory behaviour

where the received harmonic signal amplitude stays the same. Both in these and the

MFP experiments therefore, stable oscillation of bubbles in the vicinity of the nerve
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bundle are thought to be responsible, rather than the inertial cavitation mechanism that

is preferred through the rest of the FFP stimulation data. Although these micro-bubbles

were probably introduced as an artefact of the extraction process (Figure 4.9), it demon-

strates that the introduction of commercial micro-bubble nuclei could greatly increase

the efficacy and potentially reduce the threshold of US neurostimulation as recently

shown in a c.elegans model [Ibsen et al., 2015].

In the FFP experiments, both the 8 ms and 100 ms datasets saw a plateauing of

kurtosis and signal energy after 230 W/cm2 (Figures 5.8 and 5.10). This is likely to be

caused both by the non-linear scaling of peak negative pressures with intensity (Table

4.2) and resulting saturation in the occurrence, but not amplitude of cavitation events.

Concurrently with this observation, response reliability also saturates around this inten-

sity (Figure 5.6 and 5.10), further supporting the link between stimulation and inertial

cavitation in these experiments.

Across all US stimuli in the FFP experiments, inertial cavitation was most often

observed with no resultant nerve response. The reason for this is that the focal area

(6 × 3.5 mm FWHM) and potential volume in which cavitation is likely to occur,

was much larger than the volume occupied by the nerve bundle (1-2 mm diameter).

Cavitation therefore may not be occurring in close proximity to the nerve. Further

evidence for this theory is found in the pattern of cavitation activity in the 100 ms

exposures where inertial activity is much lower after the first 10 ms of any US stimulus

(Figure 5.12). This pattern implies that cavitation nuclei present before the start of the

stimulation are either destroyed or moved from focus by acoustic streaming or by direct

bubble radiation forces. This reduces the acoustic activity during the remainder of the

exposure, but then the nuclei regenerate or return before the beginning of the next pulse.

This implicates free floating nuclei rather than those statically associated with the nerve

bundle as these would not regenerate or re-attach to the bundle after submersion. The

majority of the cavitation nuclei in the FFP experiments are therefore likely to be free

floating in the nerve bath ringers solution or water bath underneath, the activation of

which will not affect nerve activity.

This affected the 8 ms much more than the longer exposures as the non-proximal

cavitation activity is found throughout the exposure, but only in the first 10 ms of longer

stimuli. Significant positive (P<0.05) correlation was seen in two individual 8 ms
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exposed nerve experiments despite this. In the 100 ms experiments, the lower average

background activity over the whole time period allowed the much smaller dataset to

find highly significant correlations between US stimulated CAP amplitude and PCD

signal kurtosis in individual nerve experiments (P<0.05) and across the whole dataset

(P<0.005) (Figure 5.11).

Correlation coefficients can mask infrequent stimulation events that may occur

without any sign of cavitation. A key finding of the FFP experiments therefore, is that,

through detailed individual PCD signal analysis, broad frequency band inertial cavita-

tion events were detected in the expected time section preceding 100% of successful US

neurostimulation events in both the 8 and 100 ms datasets. These arguments combined

leads the author to conclude that bubble activity is necessary to the stimulation effect

and that both inertially and stably cavitating bubbles can each elicit direct induction of

action potentials in axonal tissue under different circumstances.

6.2.1.2 Radiation Force Analysis

While the evidence for the involvement of cavitation in the stimulation effect is strong,

an alternate stimulatory force mechanism exists in the form of nerve compression re-

sulting from primary ultrasonic radiation force on the bubbles. The calculations in

section 4.6.2 give a peak radiation force of 9.8 mN acting on a resonant size bubble (20

µM for 0.67 MHz), well within the size range identified to be present in section 4.3.1.

This is much larger than the sum of attenuation and reflective forces (2.2 mN spatial

average over the focal area) and is concentrated with a much smaller contact area on the

nerve. When Fabs is calculated over an aproximate bubble contact area (half the bubble

surface area), it is found to be almost 1000 times smaller than Fbub (9 nN). Therefore,

in the ideal case of bubbles resting on the top surface of the nerve that transfer force

efficiently to the bundle, not only is the total force greater, it is also significantly more

concentrated, vastly increasing tissue compression and stretch associated with the dis-

placement gradient.

The author believes that this radiation force did not play a stimulating role where

inertial events were involved because the magnitude of the forces acting on the nerves

would be potentially much greater from a collapsing bubble. However it may still play

a critical role in pushing bubbles into close proximity to the nerve, or may contribute
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to stimulation where no inertial cavitation was seen such as in the MFP experiments.

Considering this as a cellular stimulation mechanism versus other stable and in-

ertial cavitation effects is speculative without significant modelling work to determine

the relative force strengths of different mechanisms or known membrane stretch thresh-

olds for poration or ion channel gating. The next step in this research will therefore be

to determine the exact role and behaviour of the bubbles responsible for stimulation,

which is discussed further in section 6.3.

6.2.2 Damage

In the FFP experiments, damage was found to occur as a result of US exposure in

several cases, strongly correlated to inertial cavitation at all intensities. The lowest

instance of damage occurred close to the threshold for stimulation (230 W/cm2), which

raises concerns as to the safety of US stimulation at these intensities. However, given

the lack of damage in the majority of exposures in both the FFP and MFP experiments

and the scope for optimisation and refinement of the stimulation parameters, it is hoped

that the risk of damage can be eliminated in future. It is also as yet unclear how a full,

in vivo situation will affect both the success of the stimulation effect and the occurrence

of damage but the latter should be examined in more depth in vitro before applying the

current technique to animal models.

Though the damage induced by extraction is likely to result in inflammation and

consequent mechanical sensitivity [Dilley et al., 2005, Tych et al., 2013], the short

timescale of the experiment should prevent cellular alteration of this kind from chang-

ing the response to US. however, the damaged ends of torn fibres, previously inervating

the crab muscle that surrounded the nerve bundle may have altered the bundle’s sen-

sitivity to US. As these open ended fibres represent a small proportion of the total at

the stimulation site, increased sensitivity of damage fibres cannot account for the very

large, approaching saturated responses that were observed. Both these possibilities are

therefore not thought to contribute to the current stimulation effect.

6.2.3 Biological Mechanism

Given the nature of the causative US forces discussed above and the presence of axonal

tissue alone, the biological mechanism involved in reaching threshold membrane depo-

larisation has been narrowed down to two options. The first option involves the opening
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of ion channels by membrane stretch induced by cavitational or bubble radiation forces.

The second is general ionic flux and resultant depolarisation through a microporation

effect caused by cavitation mechanisms [Wan et al., 2015].

Large scale perforation resulting from inertial cavitation is likely to have been

the cause of after-discharge (Figure 5.18(c)) and other occurrences of damage to ner-

vous function. Smaller scale, reversible micro-poration from jetting effects, such as

observed in sonoporation studies[Ohl et al., 2006, Zhou et al., 2008], may therefore be

the mechanism behind the inertially induced stimulation effect though more work will

be required to satisfactorily differentiate between this and membrane stretch effects.

6.3 Future Work
This research area is still in very early stages, with a lot of fundamental research still

needed to fully understand the US neuromodulation phenomenon. This section will

identify the research aims and experiments where the author perceives the greatest value

to advancing the current understanding of US neurostimulation. This section will begin

with plans for continued work using the current crab leg nerve model, followed by

arguments for other avenues of research.

6.3.1 Further Work Using the Current Model

The research group intends to continue work on the current crab leg nerve bundle af-

ter implementing several improvements to the protocol. Firstly, to address the issue

of weak sub harmonic detection, multiple transducers should be used with overlap-

ping frequency ranges to increase the range of sensitive acoustic signal detection. The

addition of multiple fixed position transducers would also allow location mapping of

cavitation events, making it much easier to determine the proximity of an event to the

nerve axon. Also, to decrease the probability of cavitation occurring away from the

nerve, the cold water bath should be fully degassed prior to each experiment. Lastly,

circulation and bubbling of ringers solution in the central chamber of the nerve bath

should be performed to maintain consistent cavitation probabilities and keep the nerve

alive for longer.

New techniques will also be employed to fully characterise the neurostimulation

effect observed in this study. One of the first additions to the current work should be
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an analysis of controlled cavitation nuclei to increase the reliability of the effect and

decrease its threshold. Blood brain barrier opening using microbubbles and 1.5 MHz

US for example can be achieved without any cellular damage at 0.3-0.45 MPa peak rar-

efactonal pressure [Tung et al., 2010]. This will also reduce the variability of different

cavitation events occurring both within and between stimuli, making stimulatory bub-

ble activity much easier to differentiate and control. Furthermore, the targeted delivery

of the nuclei would serve to accurately control the location of activity. Degassing of

the nerve bath ringers solution could also be performed as a negative control.

High speed imagery employed simultaneously with current electrical and acous-

tic recording will be used to characterise the range and location of stimulatory bubble

activity, linking specific modes of activity such as stable or inertial cavitation to suc-

cessful stimulus or to different CAP response waveforms. This technique will also be

combined with mathematical models of observed bubble activity to identify threshold

forces acting on the nerve membrane for stimulation effects. This understanding of

cellular level thresholds will truly open up this field and allow theoretical models to be

used to design and optimise stimulation and modulation protocols.

Recording potentials directly from single neurons can provide a lot of advantages

over population recordings. Some of these are more accurate analysis of changes in re-

sponse time, AP amplitude and response waveform. The latter of these could be used to

asses the variability in the action potential response with different modes of cavitation

to gain information on electrical response dynamics at the stimulation site and there-

fore the mechanism of AP initiation. Most importantly though, it will be essential for

analysis of single cell stimulation force thresholds when used in combination with high

frequency photography. Either micro-electrodes or whole cell patch clamping could be

used for this [Zhou et al., 2008].

The current study was only concerned with the observation of US stimulation of de

novo action potentials. This approach ignores effects of the US-nerve interaction that

are sub threshold or that only become apparent when interacting with existing nerve

activity. Attempts to study sub-threshold effects with the current in vitro model were

prevented by concerns about US interaction with the electrodes if they were placed un-

der the focus (Section 4.1.1). The thinnest grade of silver (8 µm) did not impede the

US at 0.67 MHz (Figure 4.3) but was made too brittle by the chloriding process to use.
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Improvements in the chloriding process therefore or different choice of electrode mate-

rial may make examination of sub-threshold electrical effects at the US focus possible.

This would also eliminate the effects of CAP conduction on the recorded waveform,

allowing much more accurate measurement of response latency and and waveform.

This electrode could also be used to stimulate for investigation of combined, same site

electrical and US stimulation. Same site stimulation is planned by the author to be

used with a threshold tracking technique [Bostock et al., 1998] to analyse the short

and long term changes to the electrical stimulation response, picking up effects on the

nerve which are potentially much more subtle and far below the US intensity threshold

for direct stimulation by US. Alternatively Transcranial Magnetic Stimulation could be

used to stimulate in conjunction with US exposure to analyse sub-threshold US effects,

though this introduces new problems to do with magnetic coil positioning.

To differentiate between the two current possibilities of the cellular response

(sonoporation or stretch effects on ion channels), a highly localised administration of

ion channel blockers could be performed under the US focus. Firstly, a general block

of all ion channels could be used to test if direct membrane effects such as sonopo-

ration are the cause. If ion channels instead are essential to the nerve’s sensitivity to

US, specific channel blockers could be employed to determine the relative thresholds

and importance of each in the stimulation effect. This block could be performed be-

fore adding ringers solution to stop the spread of the blocking toxins, and the blocking

solution withdrawn after a time before the addition of ringer’s solution. Tight block

localisation would be essential to allowing CAP conduction away from the depolarisa-

tion site. Alternatively, sensitive same-site electrical recording could be used to detect

local potential changes, bypassing the need for CAPs to detect depolarisation.

6.3.2 Cell Constructs

It is the research group’s intention to return to test the applicability of the current tech-

nique to mammalian peripheral nerves but with a controlled acoustic environment as

used with the crab nerve model. An ideal way to test on peripheral, central and poten-

tially any nerve model would be to use neuronal cell constructs such as demonstrated

in [Georgiou et al., 2013] as an in vitro analogue of nervous tissue which retains ap-

plicability to in vivo observations and allows a highly controlled acoustic environment.
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Such a setup has been recently described by Carugo et al. [Carugo et al., 2015]. The

constructs would also improve upon using ex vivo tissue by eliminating the variability

between experiments due to extraction quality and innate biological variability between

individual animals. The ability to grow different cell types within these constructs also

grants the potential to examine differential effects between cell types and investigate

real sensitivity differences that would advance both the understanding of the biological

effect and direct application of the technique.

This cellular model can be used as a basis for studying individual mechanosen-

sitive channels through transfection into cell lines which, as recently demonstrated in

nematode worms [Ibsen et al., 2015], can sensitise cells to US stimulation. by analysing

the US force threshold of a range channels in an in vitro analogue of brain tissue and

then tracking the expression of these channels within the brain, different brain areas

could be selectively stimulated with tailored ultrasound parameters and focusing pat-

terns.

6.3.3 Peripheral Neurostimulation

With further study and optimisation the technique used in the current study has potential

as a method of direct, non-invasive, targeted neurostimulation. Stimulation of periph-

eral nerve axons in this way could have a wide range of useful clinical applications

such as sacral nerve stimulation for incontinence, sensory feedback from prosthetics or

localisation of nerve damage as envisaged by Gavrilov et al. [Gavrilov, 1984].

Currently the outlook for clinical applications of the stimulus observed here is

complicated by the difficulty of causing caviation in soft tissue [Gateau et al., 2011],

low response reliability and potential for inertial caviation and the associated chance of

damage in soft tissue. As highly reliable stimulation resulting from stable cavitation has

also been identified (Figure 5.17), this mode could be utilised alongside microbubble

or other cavitation nuclei to elicit in vivo neurostimulation more reliably and with safer,

less chaotic force mechanisms. This method would however reduce the non-invasive

advantage that US neurostimulation promises, though focused US could also be in-

vestigated as a way of growing bubble nuclei before stimulating the grown population

[Ter Harr et al., 1986].
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Conclusions

It is hoped that future studies by this group and others will soon elucidate separate

mechanisms and thresholds of possible US neuromodulation effects. This will require

a shift in the focus of the literature towards achieving a cellular level mechanistic un-

derstanding of the various US bioeffects. A cornerstone of this progression will be

accurate and universally comparable US metrics, in the form of positive and negative

peak instantaneous pressures through either in situ measurement or modelling tech-

niques.

Reported here, in a step towards this goal, are successful parameters for ultra-

sonic neurostimulation in the peripheral crab leg nerve bundle, demonstrating that the

constituents of unmyelinated axonal tissue are sufficient to generate de-novo action po-

tentials in response to US stimulus. The threshold for this stimulation was much higher

than similar procedures performed on CNS models but in good agreement with other

PNS focused studies. Low intensity stimulation parameters shown to be successful in

vivo in the literature were unsuccessful at generating any response from the nerve bun-

dles. Given the difference in threshold intensities and physical environment, the current

observed stimulation phenomenon is assumed to have a distinct US force mechanism.

In characterising the observed stimulation phenomena, lower intensity (25-138

W/cm2) ultrasound was found to be able to stimulate nerves in the presence of large

microbubbles on the nerve surface through a stable cavitation or bubble dependant ra-

diation force mechanism. At higher intensities (100-562 W/cm2), inertial cavitation ac-

tivity was found to be highly correlated to successful US stimulation and was observed

preceding every example of stimulation. These intensities were able to stimulate the

same nerve location multiple times but resulted in occasional nerve damage over 230



141

W/cm2.

This work represents the first directly observed, ultrasound induced action poten-

tials within peripheral axons and provides the first clear evidence for the involvement

of cavitation in an ultrasound stimulation mechanism. With further work into protocol

refinement and control of cavitation nuclei, this US stimulation mechanism has poten-

tial for beneficial application to both clinical and research applications. Future work

by the group will aim to determine the exact cellular level forces required to generate

stimulation in this and other models.
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