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Community acquired bacterial meningitis in adults – mobile summary 

Bacterial meningitis in adults carries a significant morbidity and mortality. In many parts of the world 

the most common pathogen is Streptococcus pneumoniae, which tends to occur at an older age 

whereas Neisseria meningitidis generally occurs in younger adults. Staphylococcus aureus, the 

Enterobacteriaceae, Streptococcus suis and Listeria monocytogenes are also prominent pathogens in 

different parts of the world or specific populations. Widespread use of conjugate vaccines against 

Haemophilus influenzae type B, certain serotypes of Streptococcus pneumoniae and Neisseria 

meningitidis has reduced the incidence of bacterial meningitis although mostly in children. Herd 

immunity has provided some benefits for adults but serotype replacement may undermine any 

benefits seen in older populations.  In meningococcal disease, different serogroups are also 

emerging in areas where they had been previously unrecorded.  

The mortality from bacterial meningitis is high and significant for pneumococcal disease, in part due 

to the uncontrolled host inflammatory response. Although much is still unknown, new discoveries in 

pathogenesis give an improved understanding of colonisation and invasion into the blood stream 

and central nervous system, as well as factors responsible for immune system evasion. This in turn 

allows new targets for vaccines and therapeutics to be developed.  

Clinical diagnosis, based on symptoms and signs, is difficult and cerebrospinal fluid analysis is 

essential both to confirm the aetiology and to perform antimicrobial susceptibility testing of any 

organism isolated. Newer molecular techniques are useful for diagnosis if culture is negative.  The 

role of neuroimaging before lumbar puncture is controversial, and is only recommended in cases 

where clinical features suggest there may be brain shift.  

Early antibiotic treatment saves lives and empirical antibiotics should be tailored to local resistance 

patterns. In general, beta-lactams should be a component of empirical therapy where possible. 

Adjunctive corticosteroids should be given in some circumstances. Further research should focus on 

epidemiological surveillance, developing new vaccines and new adjunctive therapies.  
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Abstract 

Over the last several decades, there has been a reduction in the incidence of bacterial meningitis in 

children but there remains a significant burden of disease in adults, carrying a mortality of up to 

30%. Although the pathogenesis of bacterial meningitis is not completely understood, our 

knowledge of bacterial invasion and entry into the central nervous system is improving. Clinical 

features alone cannot determine whether meningitis is present and cerebrospinal fluid analysis is 

essential for diagnosis. Newer technologies, such as multiplex polymerase chain reaction, and novel 

diagnostic platforms that incorporate proteomics and genetic sequencing, may help provide a 

quicker and more accurate diagnosis. Even with appropriate antimicrobial therapy, mortality is high 

and so attention has focused on adjunctive therapies; adjunctive corticosteroids are beneficial in 

certain circumstances. Any further improvements in outcome are likely to come from either 

modulation of the host response or novel approaches to therapy, rather than new antibiotics. 

Ultimately the best hope to reduce the disease burden is with broadly protective vaccines.  

 

Search Strategy 

We searched SCOPUS with the terms “Meningitis”,“meningo*”,“neurological infection” together 

with “Aetiology”,“epidemiology”,“treatment”,“management”,“antibiotic”, “antimicrobial”, 

“investigation”, “therapy”, “prevention”, “vaccin*”,“lumbar puncture” for articles published 

between 1st January 2010 and 31st Dec 2015. We also included any studies referenced within these 

articles if deemed relevant. In addition, any older references known to the authors were also 

included, as were abstracts of articles not written in English. Review articles are included to guide 

the reader to a more extensive reference list. 
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Burden of disease and epidemiology  

The incidence of bacterial meningitis varies throughout the world. In Western settings, the incidence 

is 1-2 cases per 100,000, whereas it can reach 1,000 cases per 100,000 in the Sahel region of Africa 

(Figure 1)1-3.   A huge reduction in incidence has been seen over the last few decades, largely 

secondary to the introduction and widespread use of conjugate vaccines1,3-6. Conjugate vaccines 

have a protein attached to purified bacterial capsular polysaccharide. This elicits a more robust and 

sustained immune response, especially in young children. Table 1 gives an overview of vaccines 

currently available to prevent bacterial meningitis. Much of the reduction in incidence has been in 

children under one year1,5.  Similarly the largest reductions in meningitis-associated mortality, 

globally, have been seen in children under five years of age, with a 43% decrease in neonates and a 

54% reduction in children aged between one and 59 months7.   For those over five years, the 

reported number of deaths globally only reduced by 2·7%, from 165,900 to 161,500 between 1990 

and 20137.  

Streptococcus pneumoniae  

Pneumococcus is the commonest cause of bacterial meningitis in adults in much of the world1,5,8,9. 

There are over 90 antigenically different serotypes of S. pneumoniae as determined by the 

polysaccharide capsule - the target for all currently licensed vaccines. 

Pneumococcal conjugate vaccines (PCV) have been used for the last 15 years.  PCV7 targeted seven 

pneumococcal serotypes and more recently PCV10 and PCV13 (covering ten and thirteen serotypes 

respectively) were licensed in the US and Europe.   The polysaccharide vaccine, PPV23, covers 23 

serotypes.  Until recently, conjugate vaccines were largely used only in children but a recent 

placebo-controlled trial in people 65 years of age and older has shown good efficacy of PCV13 in 

preventing vaccine-type pneumococcal pneumonia, non-bacteraemic pneumonia and invasive 

pneumococcal disease, with vaccine efficacies of 45·6%, 45%, and 75% respectively10. Although the 
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majority of studies on the immunogenicity of pneumococcal vaccines are non-comparative, there is 

some evidence that PCV is more immunogenic11. The conjugate vaccines also produce substantial 

herd immunity, when vaccination of part of the population provides protection for non-vaccinated 

individuals. . Recent large studies have shown dramatic reductions of disease caused by vaccine 

serotypes in both vaccinated and unvaccinated populations12-15. 

Since conjugate vaccines were first introduced serotype replacement has been observed. This is an 

increase in the incidence of disease and/or asymptomatic carriage caused by non-vaccine 

serotypes.16-19  Despite this the overall incidence of invasive pneumococcal disease has dropped.  A 

meta-analysis from Europe, the Americas and Australia  confirmed a sustained reduction in the 

incidence of pneumococcal meningitis in children seven years post-vaccination (risk ratio for 

meningitis was 0·40, (95% CI 0·25-0·64). There was a similar, but smaller, reduction in adults with a 

relative risk of meningitis in 18-49 year olds of 0·61, (95% CI 0·4-0·95) seven years after vaccination. 

For older adults aged 50-64 years, there was a decrease in meningitis caused by the vaccine 

serotypes but this was offset by a significant increase in non-vaccine serotype disease (RR 2·83 95% 

CI 1·46-5·47)20. Mathematical models have predicted a substantial reduction in disease following the 

introduction of PCV13, even taking serotype replacement into account 21,22.  Recent observational 

studies confirm this with a 32% reduction in invasive pneumococcal disease following the 

introduction of PCV13, but a 25% increase in non-PCV13 serotypes23. 

Neisseria meningitidis 

Meningococci are categorised into 13 serogroups; five (A, B, C, W135, and Y) are responsible for 

most cases of invasive disease. Serogroup B is the commonest strain across Europe, including 

England and Wales where it is responsible for the majority of cases24,25. Serogroup Y is predominant 

in the USA26 and the second most common in parts of Europe 27. Recently there has been a rise in 

serogroup W135  in the UK, which has been shown to be linked with a South American clone. 

Disease caused by this clone is associated with a higher mortality as they are part of the more deadly 
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ST11 clonal complex (or cc11)28.  The same clonal complex is responsible for recent outbreaks of 

meningococcal C disease amongst gay men29,30.  

Serogroup C was previously responsible for most meningococcal disease in Western countries, but 

incidence has markedly declined following the introduction of the meningococcal C conjugate 

vaccine. In the Netherlands, incidence has declined from 4·5/100,000 in 2001 to 0·6/100,000 in 

201227. Similar results have been seen in other countries5,14. In 2015, serogroup C disease appeared 

for the first time in the Sahel region of Africa31. Serogroup A has been responsible for large 

outbreaks in the meningitis belt of Africa; however, massive reductions have been seen in recent 

years following widespread vaccination 32,33. The Meningitis Vaccine Project – a collaboration 

between the World Health Organisation and PATH (the Programme for Applied Technology in 

Health) - set out to vaccinate 250 million people in Africa with the new serogroup A conjugate 

vaccine. This has been a massive public health triumph. In Burkina Faso there was a risk reduction of 

99.8%  and similar dramatic results were seen in Niger where serogroup A disease had virtually 

disappeared by 201133, 34. Meningococcal A is also responsible for epidemics in parts of Asia including 

India, Indonesia, Nepal, Mongolia, and Pakistan35.  

Other bacteria 

Haemophilus influenzae type B was a significant cause of meningitis, especially  in infants and young 

children, prior to widespread use of conjugate vaccines6 . As with meningococcal disease, H. 

influenzae type B has virtually disappeared in areas where immunisation has been implemented, but 

remains a problem where vaccination is not commonplace36. The incidence of invasive haemophilus 

disease due to non-type B strains has, however, increased in recent years.  The majority of these 

cases are due to non-typeable organisms but a number are due to other encapsulated forms of H. 

influenzae, in particular types e and f 37-39.   

Streptococcus suis is a major cause of meningitis in some parts of Asia, especially Thailand and 

Vietnam. It is a pathogen of pigs, and close contact with pigs or pork is a significant risk factor for 
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disease. Although the case fatality rate is only 4%, some degree of hearing loss occurred in more 

than 50% of survivors 40. It has also been reported from many other parts of the world41-43. Other 

causes of meningitis include the Enterobacteriaceae, Staphylococcus aureus1,5, and Listeria 

monocytogenes which  is normally seen in those with risk factors such as older adults, alcoholics, 

diabetics, patients with malignancies, and those on immunosuppressive drugs4,44-47.  

Pathogenesis  

Many aspects of the pathogenesis of bacterial meningitis have yet to be understood; however, there 

are four main processes: colonisation, invasion into the blood stream, survival in the bloodstream 

and, entry into the subarachnoid space. The subsequent inflammation and neurological damage is 

caused by a combination of bacterial and host factors.  Figure 2 schematically shows the 

pathogenesis of S. pneumoniae and N. meningitidis meningitis.  

Colonisation  

Many bacteria that cause meningitis initially colonise the mucous membranes of the upper 

respiratory tract. Colonisation involves a combination of the bacteria adhering to the cell surfaces 

and avoidance of the host’s defence mechanisms. Many organisms have fimbriae (a fringe) or pili 

(hair-like appendages) which assist in their attachment to the epithelium.  The main requirement for 

meningococcal adhesion is the type IV pili (tfp).  Tfp adhere via various receptors including the 

platelet activating factor receptor (PAFR), beta 2 adrenoceptor receptors and CD14764, 65. The 

meningococcal outer membrane proteins including lipopolysaccharide and the opacity proteins (OpC 

and OpA) have also been proposed to contribute to the maintenance of adhesion 48,49. Three main 

receptors have been proposed for pneumococcal adhesion to epithelial surfaces – PAFR, laminin 

receptors and the polyimmunoglobulin receptor (PIgR).  

Invasion  
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Invasion into the blood stream occurs either transcellularly (passing through the cells) or 

pericellularly (between cells) 85. Pneumococci utilise both of these methods via receptors such as the 

PAFR or the pneumococcal choline binding receptor50.  Meningococci are transported across the 

epithelial cells in phagocytic vacuoles51. Survival in the bloodstream requires evasion of the immune 

system. Meningococci utilise factor H binding protein (fHbp), a lipoprotein responsible for 

dysregulation of the complement pathway and Por A, an outer membrane protein, to evade 

complement52,53.  

Most cases of meningitis probably occur following bacteraemia but the high incidence of 

pneumococcal meningitis in patients with sinusitis and otitis media suggest direct spread to the 

central nervous system may also occur 8.  This possibility is supported by mouse models showing 

pneumococcal meningitis after respiratory infection without blood stream involvement 54.  Direct 

entry from the nose through dural defects is also possible. 

Entry into the central nervous system and inflammation 

Due to a lack of host defences in the subarachnoid space, bacteria multiply relatively unhindered. 

Bacterial components are recognised by pattern recognition receptors, present on microglia and 

other brain cells. A cascade of events is then triggered that ultimately leads to the release of pro-

inflammatory mediators such as TNF, IL-6 and IL-1β. Many of these are released in greater quantity 

in pneumococcal disease compared with other organisms and may account for the worse prognosis 

associated with pneumococcal meningitis55. Following the release of the  cytokines granulocytes 

cross the blood-brain barrier and it becomes more permeable.  Bacterial lysis occurs in response to 

antibiotics or, in the case of pneumococci, when the bacteria reach the stationary growth phase 

(autolysis). Lysis leads to the release of pro-inflammatory agents, such as lipopolysaccharide, 

lipotechoic acid and peptidoglycans, from the cell wall of the bacterium and augments the 

inflammatory process56.   
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Neutrophils have been implicated in much of the neurological damage found in meningitis and MRP-

14, a protein expressed in myeloid cells, has been found in the CSF of patients with pneumococcal 

meningitis; inhibition of MRP-14 led to reduced sequelae in a mouse model57. Matrix 

metalloproteinases (MMPs) are released by white cells in the CSF. They are seen very early in 

infection and aid the release and activation of pro-inflammatory cytokines, the degradation of 

extracellular matrix components, and the recruitment of further leukocytes into the subarachnoid 

space. As with other inflammatory mediators, the levels of MMP-9 are especially high in 

pneumococcal meningitis55.  

Genetic predisposition 

 

Several studies have suggested a genetic predisposition to bacterial meningitis, with most related to 

deficiencies that affect the complement system. In particular, C2 deficiency was found in 58% of 

patients with pneumococcal meningitis, factor D deficiency predisposed to meningococcal disease, 

and susceptibility to meningococcal serogroups W135 and Y arose in those with properdin 

deficiency. Case-control studies revealed that polymorphisms in mannose binding lectin and 

complement factor h (cfh) were associated with susceptibility to pneumococcal and meningococcal 

disease, respectively. Approximately one fifth of patients with meningococcal disease were defined 

as having meningitis. Due to variations in definitions no analysis could be performed excluding 

patients who did not have meningitis58.  More recently genome wide association studies have 

confirmed that a polymorphism in cfh predisposes to meningococcal disease, just over one third had 

meningitis,  and a polymorphism in the C3 gene predisposes to pneumococcal meningitis59,60.  

Diagnosis 
Clinical diagnosis 

Diagnosing bacterial meningitis clinically can be difficult as many illnesses present with similar 

symptoms. The classical triad of neck stiffness, fever and altered consciousness is seen in less than 

50% of patients with acute bacterial meningitis8. However, any two of headache, fever, neck 
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stiffness and altered consciousness are seen much more commonly, in up to 95%8. Kernig’s and 

Brudzinski’s signs have been used in the clinical assessment of meningitis for many years, but their 

usefulness is doubtful. They have been reported to have high specificity (up to 95%), although this is 

very clinician dependent, but the sensitivity can be as low as 5%61. They should not be relied upon to 

exclude, or establish, a diagnosis of bacterial meningitis.  Differential diagnoses include viral 

meningitis and other forms of infective meningitis, non-infectious causes of meningitis such as 

autoimmune conditions, medications such as trimethoprim and non-steroidal anti-inflammatories 

and malignancy, as well as non-meningitic illnesses such as sub-arachnoid haemorrhage, migraine 

and other ‘simple’ viral illnesses.  

Laboratory diagnosis 

The gold standard for diagnosing meningitis is examination of the cerebrospinal fluid (CSF); typical 

findings are shown in table 2. Measuring the opening pressure at the time of lumbar puncture (LP) is 

very useful and is often high in bacterial meningitis. A raised white blood count in the CSF is taken as 

an indication of inflammation of the meninges, although some patients may have bacteria in their 

CSF without an elevated white blood count. These patients have a poor prognosis. 

CSF protein and glucose should also be measured. Patients with bacterial meningitis typically have a 

raised protein and low glucose. CSF glucose is influenced by the serum glucose concentration and, 

therefore, a concurrent serum sample must also be taken. CSF lactate may have advantages over 

CSF glucose in that it is unaffected by the serum concentration. CSF lactate, if taken prior to 

antibiotics, has a sensitivity of 0·93 (95% CI 0·89-0·96) and specificity of 0·96 (CI 0·93-0·98) in 

differentiating bacterial from viral meningitis62. Serum and CSF procalcitonin concentrations have 

also been suggested as useful tests to indicate a likely bacterial cause but well-designed diagnostic 

accuracy studies, including cost-effectiveness analyses, are required before recommending the 

routine use of procalcitonin in the diagnostic workup of bacterial meningitis. 
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Gram stain and culture of the CSF allow both the identification of the causative pathogen and 

assessment of antimicrobial susceptibilities.  If the LP is delayed until after antibiotics have been 

given, the likelihood of identifying an organism may be reduced by up to 44%63,64. Molecular 

methods are, therefore, becoming increasingly important for diagnosis. The most common of these 

is the polymerase chain reaction (PCR) which can detect organisms in blood or CSF for several days 

after antibiotics have been given 65,66. It  has high sensitivity (87-100%) and specificity (98-100%) 67-70.  

Dried spot CSF PCR tests, which could be useful In the absence of a laboratory, have shown a 90% 

sensitivity in diagnosing bacterial meningitis caused by S. pneumoniae, S. suis, and N. meningitidis 71.  

In addition to CSF analysis, blood cultures may identify the cause and should be taken before 

antibiotics are given.  

There has been recent interest in the ability to detect multiple pathogens with one platform such as 

multiplex PCR, 16S PCR, MALDI-TOF (matrix associated laser dissociation and ionisation-time of 

flight), and whole genome sequencing72 73. The 16S rRNA gene is present in almost all bacteria; one 

meta-analysis showed 16S rRNA PCR to be both sensitive and specific for the diagnosis of bacterial 

meningitis compared with standard culture (pooled sensitivity of 92% and specificity of 94%)74. The 

commonest method for species identification was sequencing. MALDI-TOF is now commonplace in 

many clinical laboratories. It utilises the protein mass of the organism to identify the bacteria. This 

has revolutionised clinical microbiology by reducing the time to identification of an organism; it 

normally requires a cultured organism but there are reports of success direct from CSF 75. Whole 

genome sequencing has been used in the investigation of outbreaks, but as it becomes faster and 

cheaper, it may be incorporated into routine surveillance and diagnosis76,77.   

Loop-mediated isothermal amplification (LAMP) is another method of DNA amplification and 

detection. The LAMP method is quick, with results in less than 2 hours, and a positive result can be 

seen with the naked eye.  This technique has recently shown good sensitivity for detection of N. 

meningitidis, S. pneumoniae, H. influenzae and Mycobacterium tuberculosis 78-81 . It has also recently 
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been evaluated as a bedside test in the UK where it had a PPV of 100% and a NPV of 97%82. The 

speed and ease of diagnosis makes this a very attractive diagnostic tool, especially within resource 

poor settings. 

The role of neuroimaging   

The use of neuroimaging before LP has generated considerable debate with some recommending 

cerebral imaging is performed before LP for all patients. However this has been associated with 

delays in antibiotic administration, reduced likelihood of identifying a pathogen and an increase in 

mortality64,83-85.  The reason for neuroimaging is to detect cerebral herniation syndromes, or shift of 

brain compartments. If these are present and an LP is performed, there is the theoretical concern 

that a reduction in pressure caused by the LP can precipitate a further brain shift which may lead to 

fatal herniation. Neuroimaging should therefore be performed on patients who have clinical signs 

which may suggest brain shift and, if shift of brain compartments or herniation is found, LP should 

be delayed. Indications that brain shift might be present include focal neurological signs and reduced 

level of consciousness. The exact level of consciousness at which an LP is safe is debated and 

different authorities recommend different cut-off points ranging between 8 and 13 on the Glasgow 

coma scale 86-88. 

No study has identified features associated with an increased risk of herniation post-LP. One study 

found certain features (age over 60 years, immunocompromise, history of neurological disease, 

recent seizure, and  certain abnormal neurological examination findings) were associated with 

abnormalities on imaging, but the risk of herniation or brain shift was not assessed84.   A recent 

retrospective study found that removing impaired mental status as a contraindication for LP was 

associated with significantly earlier treatment and a favourable outcome however there are several 

limitations to this study and cause and effect cannot be attributed89. Every patient with suspected 

bacterial meningitis must be carefully assessed to ascertain whether they have signs or symptoms 

consistent with brain shift. If they do not, LP should be carried out as soon as possible without prior 
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neuroimaging The supplementary table  outlines the situations when neuroimaging should be 

performed before LP. 

Treatment 

Antibiotics should be given as soon as possible to patients with suspected bacterial meningitis, 

ideally after both blood and CSF have been obtained for culture. Early antibiotic treatment is 

associated with a lower mortality83. If there are delays in sampling, the priority is for treatment to be 

given. Many antibiotic regimens are based on data from animal models or clinical experience rather 

than randomised trials. The choice of antibiotic depends on the likely pathogen, local patterns of 

antibiotic resistance and the CSF penetration of the drug. Penicillin and other beta-lactams are 

effective against the  commonest pathogens and the CSF concentration (even with uninflamed 

meninges) tends to be close to the minimum inhibitory concentrations for moderately susceptible 

bacteria90. The worldwide emergence of antimicrobial resistance, especially against S. pneumoniae, 

affects the choice of empirical treatment in many countries. This is especially important in the 

poorer regions of the world where newer antibiotics may not be available or affordable. Table 3 

gives recommendations for empirical antibiotics. 

Antimicrobial resistance 

Penicillin-resistant pneumococci have been reported from all parts of the world91 and have been 

associated with an increase in mortality92. Vancomycin is widely recommended when penicillin-

resistant pneumococci are possible, but due to the fact that it crosses the blood brain barrier poorly 

it should be used in conjunction with another antimicrobial, often a cephalosporin.  .  

Fluoroquinolones may be good alternatives in the era of penicillin-resistant pneumococci. 

Experimental mouse models have shown moxifloxacin to be equivalent to cephalosporins93. Caution 

should be exercised in using fluoroquinolones as single agents as organisms may rapidly develop 

resistance and clinical data are lacking. There are several case reports and case series showing the 
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efficacy of other antibiotics in meningitis, such as ceftaroline94,  linezolid95,96, daptomycin97-99, and  

doripenem100. Without evidence from comparative therapeutic trials, these agents should be used 

with caution and only when other better tested agents cannot be used either because of resistance, 

patient intolerance or allergy.  

Efforts should be made to identify local patterns of antibiotic resistance to determine the optimal 

empirical treatment for each geographic area. In the UK, where there is a low prevalence of 

penicillin-resistance, third-generation cephalosporins (cefotaxime or ceftriaxone) remain the 

empirical choice. However, many parts of the world have penicillin-resistant pneumococci (MIC 

≥0·12µg/ml) with rates of approximately 25% in  the United States and parts of Europe (e.g. Spain, 

Croatia, Romania) and over 50% in Asia; 100% of isolates were found to be penicillin resistant in 

Vietnam and Thailand but numbers were small (n=6 and 1 respectively)101-103. In these areas 

vancomycin (with or without rifampicin) should be given in addition to a third-generation 

cephalosporin 104. Alternatives are listed in table 3. 

Antibiotic resistance in meningococci is rare27 although decreased susceptibility to penicillin has 

been particularly associated with some serogroups, especially C and W135105-108.  

Duration of therapy 

There is limited trial evidence to guide how long to treat adults with bacterial meningitis. Using 

shorter courses of antibiotics can reduce hospital stay and costs and may also reduce the risk of 

adverse events such as nosocomial infections. Paediatric studies have shown that shorter courses 

are safe and effective 109,110. A meta-analysis, looking at all causes of bacterial meningitis in children, 

found a short (4-7 days) course to be as efficacious as a long (7-14 days) course of antibiotics; 

unfortunately, no adult studies could be identified for inclusion111. Three days of intravenous 

benzylpenicillin has been shown to be sufficient for adults with meningococcal disease112;  there was 

no control group in this study, but the mortality of 9% is in keeping with other studies8,25,113. During 

meningococcal epidemics, a single dose of ceftriaxone or chloramphenicol is effective109.  
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Although there are no randomised trials, current guidance in many richer nations is to give relatively 

short courses of antibiotics for meningococcal disease ( 5 to 7 days ), and a slightly longer duration in 

pneumococcal meningitis (10-14 days)114 115. Listeria meningitis should be treated for a minimum of 

21 days.  

Adjunctive therapies 

Even in the presence of a susceptible organism and appropriate antibiotics, mortality in bacterial 

meningitis is high, around 10-30% in industrialised nations 4,8,113,116-119 and nearer 50% in many 

poorer nations 120-122  .The high number of deaths, despite apparently appropriate treatment,  is 

thought to be due to the inflammatory processes described earlier. Efforts have, therefore, focused 

on identifying useful adjunctive therapies which might reduce inflammation and brain oedema.   

Corticosteroids 

Following several paediatric studies123 , a large multi-centre European randomised controlled trial in 

adults showed a significant reduction of both an unfavourable outcome and death in patients who 

were treated with dexamethasone compared to placebo (RR 0·59 and 0·48 for unfavourable 

outcome and death respectively), most striking for the subgroup of patients with pneumococcal 

meningitis124. Subsequent studies carried out in adults in Malawi and Vietnam failed to reproduce 

the European findings122,125, although there was a better outcome (significant reduction in the risk of 

death at 1 month and risk for death or disability at 6 months) for patients in Vietnam with confirmed 

bacterial meningitis. A meta-analysis of individual patient data (n=2029) suggested the differences 

were not due to the high rates of HIV and tuberculosis in these countries126. This meta-analysis 

concluded that there were no subgroups that might benefit from adjunctive dexamethasone, 

although post-hoc analyses did suggest there might be some benefit in HIV negative adults and a 

lower rate of hearing loss amongst all survivors.  
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Another meta-analysis  of 25 studies, in both adults and children, showed a small reduction in 

hearing loss in adults treated with corticosteroids compared with placebo (16% versus 22% RR 0·74, 

95%CI 0·56-0·98) but no difference in mortality152. A subgroup analysis demonstrated a slight decline 

in mortality in all patients with pneumococcal meningitis (RR 0·84 95% CI 0·72-0·98) with no effect 

on H. influenzae or meningococcal meningitis (although numbers in these groups were very small).  

It should be noted that this benefit did not remain when a random-effects model was used (which 

may have been more appropriate given the heterogeneity of the studies (I2 47%))123. 

Both these meta-analyses compared very diverse studies and populations including children and 

adults, high and low socio-economic status and differences in co-morbidities. This is reflected in the 

heterogeneity of the analyses and possibly accounts for the conflicting conclusions. However, there 

needs to be a balance between the risks and potential benefits of corticosteroid use. Overall, it 

seems that corticosteroids may offer a small benefit in adults with regard to reducing hearing loss 

and may have a slightly lower mortality in pneumococcal meningitis. In most studies there is no 

increase in side-effects when corticosteroids were given in comparison to placebo. It is, therefore, 

recommended to give steroids to all adults with suspected bacterial meningitis in resource rich 

countries. Although the meta-analyses did not demonstrate a difference between countries of high 

and low income, there was considerable heterogeneity and in lower income countries the benefits 

are probably less pronounced; therefore, corticosteroids are not recommended in this group.  

The dose of corticosteroids differs between trials, but the one that was used in the large Dutch trial 

is 10 mg of dexamethasone given four times a day124. The Cochrane review and expert guidelines 

recommend administration with or just prior to the first antimicrobial dose150. Sub-group analyses in 

both meta-analyses showed no statistical differences in terms of mortality when corticosteroids 

were given before or with antibiotics compared with when they were given afterwards123,126. There 

were differences when hearing loss was the outcome of interest and indeed the effect size was 

bigger in the group who received corticosteroids after antibiotics compared with the group who 
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received corticosteroids before or concurrently (RR 0.62 (95% CI 0.43-0.89) versus RR 0.8 (95% CI 

0.7-0.92))123.  

Other adjunctive therapies  

Glycerol and hypothermia have been trialled as potential adjunctive therapies in bacterial 

meningitis. Theoretically osmotic substances such as glycerol can draw extravascular fluid from the 

brain into the vascular space and reduce intracranial pressure. One clinical study in adults, 

conducted in a resource limited setting with a high HIV prevalence,  failed to show any benefit120. 

Induced hypothermia is used as a treatment for cerebral hypoxaemia following cardiac arrest and 

animal models have shown it to reduce intracranial hypertension in meningitis. Observational clinical 

studies also suggested it might be beneficial 127,128. However, a recent randomised controlled trial 

was stopped early due to an increased risk of death in patients in the intervention arm 129. It is 

unlikely that hypothermia or glycerol will be widely implemented without adaptation and further 

controlled trials. 

Prognosis and sequelae 

 

Features associated with a poor prognosis include older age, reduced conscious level, tachycardia, a 

CSF leukocyte count of less than 1000 x 109 cells/ml, reduced platelet count8. Prognosis may be 

improved by instigating both antibiotic and steroid treatment early3. Sequelae are more common in 

pneumococcal meningitis than meningococcal meningitis. Hearing loss is a one of the most common 

problems after meningitis, particularly pneumococcal meningitis, and a prompt hearing assessment 

with cochlear implants can be incredibly beneficial for the patient.  Other sequelae include limb loss, 

especially if meningococcal sepsis is present, subdural empyema, hydrocephalus and seizures. Other 

less life threatening sequelae include neurocognitive dysfunction including sleep disorders.  

The Future  
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New vaccines 

Many of the pneumococcal vaccines in development are focussing on protein-based strategies 

(rather than being based on the capsular polysaccharide), to be given either in addition or as a 

replacement to conjugate vaccines. This may allow pan-serotype protection and eliminate the 

problem of serotype replacement. Several early phase studies have been conducted, one of which 

(combining pneumolysin toxoid and histidine triad protein D, a pneumococcal surface protein 

thought to be involved in complement inhibition) has recently reported good evidence of 

immunogenicity with an acceptable safety profile in both younger and older adult cohorts130-132.  

The search for a widely effective vaccine against meningococcal serogroup B has been difficult 

because of the poorly immunogenic capsule. Vaccines were developed that targeted sub-capsular 

proteins (see figure 3) and were used with some success in epidemics in Norway, Cuba, Brazil, New 

Zealand, and France133-135. However, they were poorly immunogenic in young children and strain 

specific, and so could not be rolled out on a larger scale. Using a novel genome sequencing method, 

a multicomponent serogroup B meningococcal vaccine has been produced. It contains four 

immunogenic components: 3 proteins – neisserial adhesion A (NadA) which is involved in the 

adhesion of Neisseria to the nasal epithelium, neisserial heparin binding antigen (NHBA) thought to 

be involved in serum resistance, and fHbp - in combination with outer membrane vesicles from the 

New Zealand vaccine strain. The vaccine has been shown to be immunogenic in young infants136,137 

and older children138 . It may also reduce carriage rates of other meningococcal serogroups (as some 

of the sub-capsular antigens in the vaccine are also present in non-B serogroups)139, indicating that it 

could affect transmission once fully implemented and have a significant impact on disease in adults 

as well as children. The vaccine has been estimated  to provide coverage against 88% of circulating 

serogroup B strains in England and Wales140, and was permitted for investigational use in the US in 

late 2013 and early 2014 in two outbreaks.   In September 2015 the UK Department of Health 

incorporated it into their childhood immunisation schedule. The US Food and Drugs Administration 
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have also recently approved another serogroup B vaccine for adolescents and young adults. This 

vaccine is a bivalent vaccine that utilises two families of fHbp.  

Other research priorities for the future 

New treatments to improve outcome are needed.  Research is focussed on adjunctive therapy 

targeting the host inflammatory response. Some areas of interest include matrix metalloproteinase 

(MMP) inhibitors and MRP-14 inhibitors such as paquinimod which has anti-inflammatory effects 

without affecting bacterial killing57. Inhibitors of complement and other neurotoxic mediators are 

also being investigated as well as compounds that can modulate the leukocyte response (e.g. G-

CSF)141.  

Finally, surveillance around the world remains important. The global epidemiology of bacterial 

meningitis is continually changing, especially with the introduction of new vaccines, and surveillance 

is needed to determine the breadth of coverage, monitor for serotype replacement and follow the 

emergence of new meningococcal serogroups.   Robust epidemiological studies must document 

clearly the causative agents in lower-resourced settings, especially Asia, to determine what 

vaccination strategies are necessary. Surveillance for antimicrobial resistance is also of utmost 

importance. Epidemiological research into risk factors for disease in adults and preventative 

strategies will also be important.  

Ultimately we are still some way off from the effective control of bacterial meningitis and the 

combination of a rare and deadly disease requires vigilance of the clinician, to identify and treat it in 

a timely manner, and the continued support of research partners to develop new vaccines and 

treatments. 
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