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Abstract. We present new exact expressions for a class of moments of the geometric Brownian motion in
terms of determinants, obtained using a recurrence relation and combinatorial arguments for the case of a
Itô’s Wiener process. We then apply the obtained exact formulas to computing averages of the solution of
the logistic stochastic differential equation via a series expansion, and compare the results to the solution
obtained via Monte Carlo.

1 Introduction

The geometric Brownian motion is the stochastic process described by the differential equation,

df = μfdt + σfdWt, (1)

where Wt is a Wiener process and μ, σ are constants describing the drift and the variance of the noise, respectively.
The solution can be written as

f(Wt, t) = exp
{(

μ − σ2

2

)
t + σWt

}
. (2)

Geometric Brownian motion is used for modelling many phenomena in a variety of contexts [1]. A prominent role is
played in financial applications, where the distribution of returns can be approximated by a log-normal distribution [1,
2], at least in specific regimes. The model is time-reversal asymmetric and implements the multiplicative noise typical
of several models and physical systems, both in finance [3] and in biology [4].

For the computation of certain properties, it is however very often necessary to evaluate the integral of f(W, t)
over a time interval,

F [W, t] =
∫ t

0

f(Ws, s)ds. (3)

The evaluation of this functional is also involved in the solution of the geometric Brownian motion with logistic
corrections as we will see in sect. 3. In general, averages of the form

〈G(F [W, t])〉 =
∞∑

k=0

ak〈F [W, t]k〉 ≡
∞∑

k=0

akrk (4)

are quite common, and thus detailed results are already available in the applied probability [5, 6] and the statistical
physics literature [7–9].

In this paper, we will derive new exact formulas for the evaluation of these integrals, under the assumption of
the Itô formulation for the Wiener process. Similar results have been given in [2, 10]. Motivated by obtaining exact
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formulas for Asian options, in [10] Yor obtained an exact formula in terms of polynomials for the following moments:

Yn =

〈
eσWt

(∫ t

0

dt̃ eWt̃

)n
〉

. (5)

Using Girsanov’s theorem [11], one can derive a series of identities, in which the last is Bougerol’s formula
〈

eσWt

(∫ t

0

eWt̃dt̃

)n
〉

=
〈
Pn

(
e2Wt

)〉
= 4n

〈
sinh(Wt)2n

〈W 2n
1 〉

〉
, (6)

where

Pn(z) = Γ (n)
n∑

j=0

cjz
j (7)

and
cj =

∏
k �=j0≤k≤n

2
(μ + j)2 − (μ + k)2

. (8)

Such integrals emerge, for instance, in the description of financial markets when one includes the effect of transaction
costs [12–14], i.e. the effect of the trader position on the price. These type of integrals were also studied more recently
in [15] using the technique of finite differences [16], in which exact results were derived and provided an application of
the Hermite-Genocchi formula.

In this work, we take a different route for evaluating these integrals using combinatorics. Specifically, we provide
a new exact formula in terms of a determinant for evaluating these moments. We prove a recurrence relation for the
integrals involved at the k-th order in terms of integrals at the (k − 1)-th order, and after resummation, we get an
identity in terms of a determinant. We then use these results in the evaluation of the averages for the archetypical
logistic stochastic differential equation employed to describe the effect of transaction costs in perturbation theory. The
paper is organized as follows. In sect. 2 we derive the main theorems, which are based upon three lemmas. In sect. 3 we
apply our formulae to the case of a logistic stochastic different equation solution as a direct application. Conclusions
follow.

2 Calculation of moments

The central quantity of interest in the present paper is given by the average over the Wiener process Ws:

rk(μ, σ, t) ≡ 〈F [W, t]k〉. (9)

If we expand eq. (9), we obtain

〈F [W, t]k〉 =
∫ t

0

dt̃k . . .

∫ t

0

dt̃1

〈
e
Pk

i=1[(μ−σ2
2 )t̃i+σWt̃i

]

〉
. (10)

We will use the following formula due to the properties of integrals with Gaussian measure [1, 17], and in which we
assume that 〈WtWt′〉 is of the Itô type. This implies

〈
eσ
Pk

i=1 Wt̃i

〉
= e

σ2
2

Pk
i,j=1

D

Wt̃i
Wt̃j

E

= e
σ2
2

Pk
i,j=1 min(t̃i,t̃j). (11)

By using this property, we can now prove the following fact:

Lemma 1. For the average over the Wiener process Ws of Itô type, the following formula holds true:

rk(μ, σ, t) = Γ (k + 1)
∫ t

0

eμt̃k

∫ t̃k−1

0

e(μ+σ2)t̃k−2 . . .

. . .

∫ t̃3

0

e(μ+(k−2)σ2)t̃2

∫ t̃2

0

e(μ+(k−1)σ2)t̃1dt̃1 . . . dt̃k. (12)
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Proof. By a direct application of eq. (11)

rk(μ, σ, t) =

〈∫ t

0

. . .

∫ t

0︸ ︷︷ ︸
k

e
Pk

i=1[(μ−σ2
2 )t̃i+σWt̃i

]dt̃1 . . . dt̃k

〉

=
∫ t

0

. . .

∫ t

0

e
Pk

i=1[(μ−σ2
2 )t̃i+

σ2
2

P

j min(t̃i,t̃j)]dt̃1 . . . dt̃k. (13)

Due to symmetry of integrand, we can order the integration variables as t̃i < t̃i+1, obtaining

rk(μ, σ, t) = Γ (k + 1)
∫ t

0

∫ t̃k−1

0

. . .

∫ t̃2

0

e
Pk

i=1 μt̃i+
σ2
2

Pk
i�=j;i,j=1 min(t̃i,t̃j)dt̃1 . . . dt̃k, (14)

whence

rk(μ, σ, t) = Γ (k + 1)
∫ t

0

∫ t̃k−1

0

. . .

∫ t̃2

0

e
Pk

i=1 μt̃i+σ2Pn
i<j min(t̃i,t̃j)dt̃1 . . . dt̃k

= Γ (k + 1)
∫ t

0

∫ t̃k−1

0

. . .

∫ t̃2

0

e
Pk

i=1 μt̃i+σ2Pk
i=1(k−i)t̃idt̃1 . . . dt̃k. (15)

After rearranging carefully the terms, we arrive at the final result:

rk(μ, σ, t) = Γ (k + 1)
∫ t

0

eμt̃k

∫ t̃k−1

0

e(μ+σ2)t̃k−2 . . .

. . .

∫ t̃3

0

e(μ+(k−2)σ2)t̃2

∫ t̃2

0

e(μ+(k−1)σ2)t̃1dt̃1 . . . dt̃k. (16)

Let us now expand further on eq. (16). It is convenient to first perform the rescaling ti = tui. Then, by defining
λj = t(μ + (k − j)σ2), we obtain

rk(λ, t) = tkΓ (k + 1)
∫ 1

0

duk

∫ uk

0

duk−1 . . .

∫ u2

0

du1e
Pk

i=1 λiui (17)

≡ tkΓ (k + 1)sk(λ1, . . . , λk). (18)

Therefore, the computation of (9) reduces to the computation of

sk(λ1, . . . , λk) =
∫ 1

0

duk

∫ uk

0

duk−1 . . .

∫ u2

0

du1e
Pk

i=1 λiui , (19)

a very similar formula had been obtained in [10]. Such relationship was also considered for the case of multiplicative
noise diffusion processes [18–21], obtaining an analog recursion relationship. Given the importance of this result, we
provide its proof. Such recursion relation has been observed in a variety of other works [15,18]. Given the importance
of such recursion relation for our final result, we provide another proof of the recursion relationship in the following
Lemma:

Lemma 2. For the quantity sk(λ1, . . . , λk), we have

sk(λ1, . . . , λk) =
eλksk−1(λ1, . . . , λk−1) − sk−1(λ1, . . . λk−2, λk−1 + λk)

λk
, (20)

with s0 = 1.

Proof. Let us write

sk(λ1, . . . , λk) =
∫ 1

0

duk

∫ uk

0

duk−1 . . .

∫ u2

0

du1e
Pk

i=1 λiui

=
∫ 1

0

dukeλkukf(uk), (21)
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Fig. 1. Application of the graphical method for evaluating k-th moments of the exponential integrated Gaussian process to the
case k = 3.

with f(uk) =
∫ uk

0
duk−1 . . .

∫ u2

0
du1e

Pk−1
i=1 λiui . Integrating by parts,

sk(λ1, . . . , λk) =
eλkuk

λk
f(uk)

∣∣∣∣
1

0

−
∫ 1

0

duk
eλkuk

λk
f ′(uk), (22)

where

f ′(uk) =
∫ uk−1

0

. . .

∫ u2

0

du1e
Pk−2

i=1 λiui+λk−1uk

= eλk−1uk

∫ uk−1

0

. . .

∫ u2

0

du1e
Pk−2

i=1 λiui . (23)

Finally, the identity f(0) = 0 gives the desired result.

Equation (20) suggests the evaluation of the averages by means of combinatorial considerations. A similar picture
was shown in [18]. Indeed, the evaluation of the integral can proceed graphically, for any fixed order of the moment
k, as in fig. 1. Starting from the top and using the properties of the recurrence relation, at each order k, we organize
the recurrence on a binary tree. In fig. 1, each left branch will pull out a factor eλ/λ, where λ is the λ obtained from
the previous order. One has to consider the fact that however, in each right branch one pulls out a factor −1/λ, and
sums the two factors of λ’s. To obtain the final formula, once the empty set has been reached, one multiplies the final
term by all the factors in the branch.

We now give exact formulas for all the terms obtained from the recurrence. To lighten the notation, we define
μk,j =�j + . . . + �k and sk = sk(�1, . . . ,�k). By iterating the second term of the recurrence, we obtain

sk =
eμk,k

μk,k
sk−1 −

eμk,k−1

μk,kμk,k−1
sk−2 +

1
μk,kμk,k−1

sk−2(�1, . . . ,�k−3, μk,k−2)

=
eμk,k

μk,k
sk−1 −

eμk,k−1

μk,kμk,k−1
sk−2 +

eμk,k−2

μk,kμk,k−1μk,k−2
sk−3

− 1
μk,kμk,k−1μk,k−2

sk−3(�1, . . . ,�k−4, μk,k−3)

= . . .

=
k∑

j=1

(−1)k−j eμk,j

μk,jμk,j+1 . . . μk,k
sj−1 + (−1)k 1

μk,1 . . . μk,k
.

Therefore,

sk(�1, . . . ,�k) =
k∑

j=1

(−1)k−j e�j+...+�k∏k
i=j(�i + . . . + �k)

sj−1(�1, . . . ,�j−1) +
(−1)k∏k

i=1(�i + . . . + �k)
, (24)

which is a further improvement upon the recursion relation described before. In fact, now we have expanded the term
which contained the “memory” part of the recursion.

The next Lemma is now an intermediate step towards evaluating the full recursion relationship.
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Lemma 3. Let fk =
∑k

j=0 ek
j fj−1 with f−1 = 1. Then

fk =
k∑

m=0

∑
0=i0<i1<...<im<k+1=im+1

e
im+1−1
im

eim−1
im−1

. . . ei1−1
i0

.

Proof. We proceed the proof by induction on k. We have fk = e0
0, which holds for k = 0. We assume that the claim

holds for k and let us prove it for k + 1. By the recurrence relation, we have

fk+1 = ek+1
0 +

k+1∑
j=1

ek+1
j fj−1.

If we now use the induction hypothesis, we find

fk+1 = ek+1
0 +

k+1∑
j=1

ek+1
j

⎛
⎝ j−1∑

m=0

∑
0=i0<i1<...<im<j=im+1

ej−1
im

eim−1
im−1

. . . ei1−1
i0

⎞
⎠

= ek+1
0 +

k+1∑
j=1

⎛
⎝ j−1∑

m=0

∑
0=i0<i1<...<im<j=im+1<im+2=k+2

e
im+2−1
im+1

ej−1
im

eim−1
im−1

. . . ei1−1
i0

⎞
⎠

= ek+1
0 +

k+1∑
m=1

⎛
⎝k+1∑

j=m

∑
0=i0<i1<...<im−1<j=im<im+1=k+2

e
im+1−1
im

eim−1
im−1

. . . ei1−1
i0

⎞
⎠

= ek+1
0 +

k+1∑
m=1

∑
0=i0<i1<...<im<im+1=k+2

e
im+1−1
im

eim−1
im−1

. . . ei1−1
i0

=
k+1∑
m=0

∑
0=i0<i1<...<im<im+1=k+2

e
im+1−1
im

eim−1
im−1

. . . ei1−1
i0

,

which completes the induction step.

If ek
j = (−1)k−j e�j+...+�k

Qk
i=j(�i+...+�k)

and ek
0 = (−1)k

Qk
i=1(�i+...+�k)

, then eq. (24) can be written as

sk(�1, . . . ,�k) =
k∑

j=1

ek
j sj−1(�1, . . . ,�j−1) + ek

0 , (25)

which allows us now to perform the full combinatorial expansion. If we now apply Lemma 3, we obtain

sk(�1, . . . ,�k) =
k∑

m=0

∑
0=i0<i1<...<im<k+1=im+1

e
im+1−1
im

eim−1
im−1

. . . ei1−1
i0

=
k∑

m=0

∑
0=i0<i1<...<im<k+1=im+1

(−1)i1−1∏i1−1
j=1 (�j + . . . + �i1−1)

m∏
�=1

(−1)i�+1−i�−1e�i�
+...+�i�+1−1∏i�+1−1

j=i�
(�j + . . . + �i�+1−1)

=
k∑

m=0

∑
0=i0<i1<...<im<k+1=im+1

(−1)k−me�i1+...+�k∏i1−1
j=1 (�j + . . . + �i1−1)

∏m
�=1

∏i�+1−1
j=i�

(�j + . . . + �i�+1−1)
,

which is one of the key results of our work, as this is in fact the solution of the recursion relation. We are now in the
position of stating the first of the two main results of our paper, summarizing the expansion above into the following:

Theorem 1. For all k ≥ 0, sk(�1, . . . ,�k) is given by

k∑
m=0

∑
0=i0<i1<...<im<k+1=im+1

(−1)k−me�i1+...+�k∏i1−1
j=1 (�j + . . . + �i1−1)

∏m
�=1

∏i�+1−1
j=i�

(�j + . . . + �i�+1−1)
.
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It is often useful to understand what is the leading order in expansions of the form above. This is easily obtained
from the theorem above. Let us consider the following expansion:

sk(t �1, . . . , t �k) =
k∑

m=0

∑
0=i0<i1<...<im<k+1=im+1

(−1)k−met(�i1+...+�k)

tk−1
∏i1−1

j=1 (�j + . . . + �i1−1)
∏m

�=1

∏i�+1−1
j=i�

(�j + . . . + �i�+1−1)
.

Hence, the coefficient of tn in sk(t �1, . . . , t �k) is given by

1
(n + k − 1)!

k∑
m=0

∑
0=i0<i1<...<im<k+1=im+1

(−1)k−m(�i1 + . . . + �k)n+k−1∏i1−1
j=1 (�j + . . . + �i1−1)

∏m
�=1

∏i�+1−1
j=i�

(�j + . . . + �i�+1−1)
.

The next result of our paper is merely the observation that the structure of the solution can be recast as a de-
terminant equation. In fact, if we define sk = sk(�1, . . . ,�k) for all k ≥ 0, where we define s0 = s−1 = 1. If
ek

j = (−1)k−j e�j+...+�k
Qk

i=j(�i+...+�k)
and ek

0 = (−1)k

Qk
i=1(�i+...+�k)

, then eq. (24) can be written as

sk =
k∑

j=0

ek
j sj−1.

We are in place of stating the main result of this paper. A cleaner formula can be in fact obtained in terms of
determinants. Using Theorem 4.20 in [22] (see also [23]), we obtain the following result:

Theorem 2. For all k ≥ 0, sk = sk(�1, . . . ,�k) is given by

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ek
k ek

k−1 ek
k−2 . . . ek

2 ek
1 ek

0

−1 ek−1
k−1 ek−1

k−2 . . . ek−1
2 ek−1

1 ek−1
0

0 −1 ek−2
k−2 . . . ek−2

2 ek−2
1 ek−2

0

...
...

...
...

...
...

0 0 0 −1 e1
1 e1

0

0 0 0 0 −1 e0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

where ek
j = (−1)k−j e�j+...+�k

Qk
i=j(�i+...+�k)

and ek
0 = (−1)k

Qk
i=1(�i+...+�k)

.

Equation (26) is a new, determinantal representation for the moments of the integrated geometric Brownian motion.
The emergence of a final expression in terms of a determinant is not surprising, a posteriori, if we consider the fact that
these are common in the context of finite differences [16]. However, in order to convince ourselves that this equation
reduces to well know expressions, let us elucidate the properties of eq. (26) by means of an example. Let us consider the
case n = 3 and σ = 0, for which the stochastic differential equation reduces to ordinary logistic differential equation.
In this case, we have an exact formula for λj = μ t:

n = 3: Det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eμ t

μ t
−1/2

e2 μ t

μ2t2
1/6

e3 μ t

μ3t3
−1/6

1
μ3t3

−1
eμ t

μ t
−1/2

e2 μ t

μ2t2
1/2

1
μ2t2

0 −1
eμ t

μ t
− 1

μ t

0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1/6
(eμ t − 1)3

μ3t3
,

which provides the exact value obtained from the deterministic logistic equation.
The previous results are general enough to hold also for averages of the form

r̃n(μ, σ, t) =
〈
e(μ−σ2

2 )t+σWtF [W, t]n
〉

= e(μ−σ2
2 )t
〈
eσWtF [W, t]n

〉
. (27)
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Fig. 2. Plot of the functions sn(μ, σ, t) and s̃n(μ, σ, t) provided in appendix A as a function of t for μ = 3, σ = 1 for n = 1, 2, 3, 4.

It is easy to see that eq. (26) applies to this case as well. In fact, we just need to substitute λ̃k = λk + tσ2 and multiply
by a factor:

r̃n(μ, σ, t) = e(μ−σ2
2 )ttne

σ2
2 tΓ (n + 1)sn(λ̃1, . . . , λ̃n)

= eμttnΓ (n + 1)sn(λ̃1, . . . , λ̃n). (28)

The above expression will be used in the following section as an application to averages in the logistic stochastic
differential equation. For completeness, the appendix contains the analytical values of the functions sk(λ1, . . . , λk) and
sk(λ̃1, . . . , λ̃k) for the cases n ≤ 4. It is immediate that, when t ≈ 0, we have

sn(tμ, t(μ + σ2), . . . , t(μ + (n − 1)σ2)) ≈ 1
tn

. (29)

This fact implies that eq. (28) is analytic in t = 0. Figure 2 is a plot of sn(t) for μ = 1, σ = 0.1.

3 Averages of Logistic SDE in perturbation theory

As an application of the formula (28), we focus on the solution of the logistic stochastic differential equation,

dx = x
[
μ
(
1 − x

x̃

)
dt + σdW

]
, (30)

given by (we follow [14,24])

x(t) = x0 e(μ−σ2
2 )t+σWt

(
1 +

μx0

x̃

∫ t

0

e(μ−σ2
2 )s+σWsds

)−1

= x0 e(μ−σ2
2 )t+σWt

∞∑
n=0

(−1)n

(
μx0

x̃

∫ t

0

e(μ−σ2
2 )s+σWsds

)n

. (31)

We evaluate the average of the solution x(t),

〈x(t)〉 =

〈
x0 e(μ−σ2

2 )t+σWt

∞∑
n=0

(−1)n

(
μx0

x̃

∫ t

0

e(μ−σ2
2 )s+σWsds

)n
〉

= x0

∞∑
n=0

(−1)n
(μx0

x̃

)n
〈

e(μ−σ2
2 )t+σWt

(∫ t

0

e(μ−σ2
2 )s+σWsds

)n
〉

= x0 eμt
∞∑

n=0

(−1)n
(
t
μx0

x̃

)n

Γ (n)sn(λ̃1, . . . , λ̃n), (32)
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Fig. 3. Plot of the mean of solution of the logistic stochastic differential equations for μ = 1, σ = 0.1, x̃ = 100, and with
dt = 10−3, solved numerically using a stochastic Euler method and averaged over 1000 simulations (solid red), versus the
analytical solution obtained at k-th order, considering ξ = x0

x̃
the perturbative parameter. We can observe that at higher order

we obtain a solution closer to the one simulated.

and observe that it involves the moments of (28). In the limit x̃ → ∞, eq. (32) reduces to the average of
the geometric Brownian motion. We consider now truncations of the mean of x(t) at k-th order, 〈x(t)〉k =
x0 eμt

∑k
n=0(−1)n(tμx0

x̃ )nΓ (n)sn(λ̃1, . . . , λ̃n), and compare the truncated solution to the one obtained numerically. In
fig. 3, we plot 〈x(t)〉k for k = 0, 1, . . . , 4 obtained for μ = 1, σ = 0.1, x̃ = 100 by means of a stochastic Euler method
with dt = 10−3, and the averages obtained using Monte Carlo over 1000 samples. We observe that the higher the order
of the approximation, the closer we are to the solution obtained by Monte Carlo1.

4 Conclusions

In this paper, we have presented new exact formulas for the moments of the integrated exponential Brownian motion in
terms of sums and determinants, and based on recent results obtained in [23]. We described a simple graphical method
to evaluate them, based on a recurrence relation. In this paper however, we have taken an alternative route based
on combinatorics. Exact formulas were proved in [10] in terms of polynomials, and in [18] using the same recursion
relation we use in this work. After realizing that the mean can be evaluated exactly using the properties of Gaussian
integrals, and after observing that these moments feature a recurrence relation, we have shown that exact expressions
can be obtained via a combinatorial argument. These new exact expressions were then observed to be equivalent to
evaluating the determinant of a specific linear operator which depends on the order of the moment to be evaluated.

Our result is in line with work currently done by several authors in order to elucidate the importance of market
microstructure, and in particular of a carrying capacity, which can be seen as a transaction cost proportional to the
bid volume. For instance, transaction costs are well known in the literature [25]. For the case of market impact, studies
have been put forward in [26], and more precise statements based on data were made more recently in [12, 13, 27].
Our results are relevant in particular in light of the recent interest concerning the importance of ergodicity breaking
in financial time series, for instance in the case of the Geometric Brownian Motion in [28], and for optimal trading
strategies using the Kelly criterion in [29]. These results were recently generalized to the case in which one has linear
transaction costs in [14]. There, in particular, it has been shown that in order to obtain optimal trading strategies,
due to the time asymmetry of the process, each investor has to optimize along his own trading strategy, obtaining a
closed form solution for the optimal leverage. Obtaining these optimal solutions involves evaluating perturbatively the
average of solutions of logistic stochastic differential equation, and it is clear that the application of our exact moment
equations is of extreme relevance.

In order to convince further the reader of our formula in terms of the determinant, we have applied the obtained
formulas to the exact solution of the logistic stochastic differential equation. There, the evaluation of the ensemble

1 The numerical integration of the differential equation is performed by a stochastic Euler method.
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expectation values of certain observables can be carried out with our method, via Taylor expansion. In particular,
the comparison of the mean solution obtained by means of Monte Carlo simulations with our method shows that
our formula allows to approximate to a higher precision some ensemble averages of properties of the solution of the
stochastic differential equation.

To conclude, in this we work we observed that the recursion relation can be casted into the framework of graph
reductions, and if applied on a chain graph provides insights for the solution of the logistic stochastic differential
equation. This property was observed to be a special case of a more general mathematical structure in [30], a generalized
Tutte polynomial. The Tutte polynomial is a graph invariant which has several applications in statistical physics being
connected to the partition function of the q-Potts model; this is in fact an active area of research also in quantum field
theory, since generalized and non-commutative Tutte polynomials are connected to scattering amplitudes. Further
work is necessary to understand whether such accidental mapping can turn to be a fruitful line of research.

SS is supported by the Royal Society and EPSRC.

Appendix A. Exact formulas for n ≤ 4

Below we report the functions sk(μ, σ, t) ≡ sk(λ1, . . . , λk) and s̃k(μ, σ, t) ≡ sk(λ̃1, . . . , λ̃k) up to k = 4:

s1(μ, σ, t) =
eμt − 1

μt
; s2(μ, σ, t) =

et(2μ+σ2)−1
2μ+σ2 + 1−eμt

μ

t2(μ + σ2)
;

s3(μ, σ, t) =
2μ2(e3t(μ+σ2) − 3et(2μ+σ2) + 3eμt − 1) + 6σ4(eμt − 1) + μσ2(e3t(μ+σ2) − 9et(2μ+σ2) + 15eμt − 7)

3μt3(μ + σ2)(2μ + σ2)(μ + 2σ2)(2μ + 3σ2)
;

s4(μ, σ, t) =
3μ2σ2(−8e3t(μ+σ2) + 18et(2μ+σ2) + e4μt+6σ2t − 16eμt + 5) − 30σ6(eμt − 1)

6μt4(μ + σ2)(2μ + σ2)(μ + 2σ2)(μ + 3σ2)(2μ + 3σ2)(2μ + 5σ2)

+
2μ3(−4e3t(μ+σ2) + 6et(2μ+σ2) + e4μt+6σ2t − 4eμt + 1)

6μt4(μ + σ2)(2μ + σ2)(μ + 2σ2)(μ + 3σ2)(2μ + 3σ2)(2μ + 5σ2)

+
μσ4(−10e3t(μ+σ2) + 54et(2μ+σ2) + e4μt+6σ2t − 82eμt + 37)

6μt4(μ + σ2)(2μ + σ2)(μ + 2σ2)(μ + 3σ2)(2μ + 3σ2)(2μ + 5σ2)
;

s̃1(μ, σ, t) =
et(μ+σ2) − 1
t(μ + σ2)

; s̃2(μ, σ, t) =
e2μt+3σ2t−1

2μ+3σ2 − et(μ+σ2)−1
μ+σ2

t2(μ + 2σ2)
;

s̃3(μ, σ, t) =
− μ+3σ2

2μ2+5μσ2+3σ4 + ( 2
μ+σ2 + 1

−2μ−5σ2 )et(μ+σ2) − 3e2μt+3σ2t

2μ+3σ2 + e3t(μ+2σ2)

2μ+5σ2

3t3(μ + 2σ2)(μ + 3σ2)
;

s̃4(μ, σ, t) =
2

2μ2+9μσ2+10σ4 − 1
4μ2+24μσ2+35σ4 − 6(μ+4σ2)

4μ3+28μ2σ2+61μσ4+42σ6 + 2(μ+4σ2)
(μ+σ2)(μ+2σ2)(2μ+5σ2)

6t4(μ + 3σ2)(μ + 4σ2)

+
et(μ+σ2)

(
− 2(μ+4σ2)

(μ+σ2)(μ+2σ2)(2μ+5σ2) −
2et(2μ+5σ2)

2μ2+9μσ2+10σ4 + e3t(μ+3σ2)

4μ2+24μσ2+35σ4 + 6(μ+4σ2)et(μ+2σ2)

(μ+2σ2)(2μ+3σ2)(2μ+7σ2)

)
6t4(μ + 3σ2)(μ + 4σ2)

.
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