
1	
	

Antibody-Targeted	Nanoparticles	for	Cancer	Treatment		
	
Thomas	Carter1,	Paul	Mulholland1,2,	Kerry	Chester1	
	
	
	
Abstract	
	
Nanoparticles	are	diverse	and	versatile	with	physical	properties	that	can	be	

employed	for	use	in	cancer	medicine.	Targeting	nanoparticles	using	antibodies	

and	antibody	fragments	could	overcome	some	of	the	limitations	seen	with	

current	targeted	therapies.	This	review	will	discuss	the	role	of	antibody-targeted	

nanoparticles	in	the	treatment	of	cancer:	as	delivery	vehicles,	targeted	

theranostic	agents	and	in	the	evolving	field	of	cancer	hyperthermia.	

	
Keywords:	Antibodies,	nanoparticles,	targeting,	cancer	treatment,	clinical	
translation,	theranostics,	hyperthermia	
	
1.0	Introduction	
	
As	our	understanding	of	cancer	biology	has	evolved,	so	too	has	the	appreciation	

that	antibody	targeted	cancer	treatment	offers	significant	advantages	over	

conventional	therapy.	A	number	of	strategies	have	been	successful	in	the	clinic:	

most	notably	the	use	of	monoclonal	antibodies	(mAbs)	to	target	cancer-specific	

antigens	[1],	deliver	cytotoxic	chemotherapy	in	the	form	of	antibody-drug	

conjugates	(ADCs)	[2],	release	brakes	on	the	immune	system	[3]	and	to	recruit	

cytotoxic	T	cells	[4].	However,	the	successes	of	these	targeted	therapies	are	not	

without	drawbacks,	including	dose-limiting	toxicities.	

	

Advances	in	nanotechnology	have	enabled	the	creation	of	a	vast	array	of	devices,	

collectively	referred	to	as	nanoparticles	(NPs),	which	possess	unique	physical,	

chemical	and	biological	properties.	The	use	of	antibodies	to	target	these	nano-

sized	drug	delivery	vehicles	offers	new	potential	that	can	be	harnessed	for	use	in	

cancer	medicine	[5].	Indeed,	a	small	number	of	targeted	NPs	have	been	already	

been	successfully	translated	into	early	phase	clinical	trials	using	targeting	

ligands	[6-8].	Antibodies	(Abs)	have	become	the	most	widely	studied	of	these	

targeting	ligands	[9],	due	to	their	high	specificity	and	the	vital	role	they	play	in	

modern	cancer	therapeutics.		
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The	main	challenge	for	Ab-targeted	NPs	is	ensuring	that	as	well	as	

demonstrating	efficacy	the	NP	has	an	adequate	plasma	half-life	and	can	

specifically	target	cancer	cells	with	a	tolerable	side	effect	profile.	There	are	

controversies	over	which	NP	platforms	can	best	offer	these	properties,	with	

unanswered	questions	concerning	cellular	interaction	and	uptake,	potential	

toxicities	and	how	NP	properties	affect	behaviour	both	in-vitro	and	in-vivo	[10].	A	

robust	understanding	of	the	physical	properties	of	NPs	is	required	to	guide	

research	into	the	cellular	and	physiological	interactions	of	NPs,	generating	

clinical-grade	products	that	could	become	the	next	generation	of	cancer	

treatments.	

	

This	review	aims	to	define	and	outline	the	different	NP	platforms	that	are	

currently	used	in	pre-clinical	and	translational	cancer	medicine	and	the	

challenges	faced	in	the	Ab-functionalisation	of	NPs.	Research	regarding	the	

various	approaches	and	advantages	offered	by	Ab-targeted	NPs	in	cancer	

therapy	will	also	be	discussed.		

	
1.1.	Nanoparticles	
	
NPs	are	defined	by	the	Commission	of	the	European	Union	as	any	naturally	

occurring	or	manufactured	particulate	material	either	unbound,	as	an	aggregate	

or	agglomerate,	where	at	least	half	of	the	particles	have	one	or	more	external	

dimensions	between	1	and	100nm	in	size	[11].	However,	there	remains	no	

formal	consensus	on	the	definition	[12]	and	whilst	NPs	are	often	defined	by	their	

size	it	is	generally	considered	important	to	also	define	them	by	properties	not	

shared	with	other	particles	with	the	same	chemical	composition	[13].	For	

example	high	mobility	in	the	free	state,	large	surface	area	to	volume	ratio	and,	in	

some	cases,	the	nanosize-dependent	exhibition	of	quantum	effects	which	control	

physical	properties	and	NP	behaviour	[14].	

	

This	wide	and	diverse	range	of	functional	properties	is	facilitated	by	the	variety	

of	materials	available	to	synthesise	NPs.	The	resulting	versatility	offers	attractive	

translational	potential	for	a	number	of	biomedical	applications	such	as	targeted	
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delivery	of	treatment,	innovative	imaging	techniques	and	novel	therapeutics	for	

hyperthermia.	Table	1	shows	the	favourable	physical	characteristics	of	the	NP	

treatment	platforms	discussed	in	this	review.	Given	these	characteristics,	it	is	not	

surprising	that	over	the	last	decade	nanoparticles	have	received	increasing	

attention	for	their	exciting	potential	in	both	the	diagnosis	and	treatment	of	

cancer.	
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Nanoparticle	 Size	 Favourable	Physical	Characteristics	

NATURAL	POLYMERS*	(Albumin)	
[15]	 50-300nm	

	

Biocompatible,	biodegradable,	non-toxic	and	non-immunogenic.	
Straightforward	to	cross-link	and	chemically	modify,	drugs	
readily	incorporated	into	albumin	polymer	matrix.	

SYNTHETIC	POLYMERS*	(Poly-lacticoglycolic	acid	(PLGA)	
[16]	 50-300	nm	

	

FDA	approved	synthetic	material	that	is	non-toxic	and	undergoes	
hydrolysis	in-vivo	to	produce	biodegradable	metabolites.	Drugs	
easily	incorporated	into	the	matrix.	

LIPOSOMES*	
[17]	 20	–	1000	nm	

	

Well	established	as	cancer	therapeutics,	can	encapsulate	
hydrophilic	and	lipophillic	drugs,	soluble,	low	uptake	by	
macrophages,	favourable	stability	in-vivo,	and	as	colloids,	protect	
drugs	from	breakdown.	

MICELLES*	
[18]	 10-100	nm	

	

Unique	core-shell	architecture,	hydrophobic	core	acts	as	natural	
carrier	environment,	hydrophilic	shell	enables	stability	in	
aqueous	solution,	structural	modifications	can	further	augment	
tumour	cell	uptake	

DENDRIMERS*	
[19,	20]	 5	–	20	nm	

	

Symmetrical	branched	polymeric	macromolecules	with	a	central	
core	allow	either	encapsulation	or	conjugation	of	therapeutic	
agent.	Self-assembling,	polyvalent,	chemically	stable,	non-toxic	
and	soluble.	

IRON-OXIDE	NANOPARTICLES*	(Superparamagnetic	iron-oxide	nanoparticles	(SPIONs))	
[21]	 10-100	nm	

	

Biocompatible	and	biodegradable,	established	clinical	use	as	
magnetic	resonance	imaging	(MRI)	contrast	agents,	controllable	
by	an	externally	applied	magnetic	field,	diverse	formulations	
allow	fine-tuning	of	physicochemical	properties	

SILICA	(Porous	Silica	Nanoparticles	(pSiNPs))	
[22]	 50-1000	nm	

	

Good	chemical	and	thermal	stability,	large	surface	area	and	pore	
volume.	Can	encapsulate	large	amounts	of	bioactive	molecule	and	
promote	controlled	drug	release.	Also	offers	simple	surface	
functionalisation	

GOLD	NANOPARTICLES*	(Gold	nanoparticles	(AuNPs),	Gold	nanorods)	
[23]	 1-100	nm	

										 	

Intense	light	absorption	and	high	photothermal	conversion	rate,	
and	ease	of	synthesis	in	a	variety	of	shapes	and	sizes.	Good	
biocompatibility,	colloidal	stability	and	simple	ligand	conjugation	
chemistry.	

CARBON	NANOPARTICLES	(Carbon	nanotubes	(CNTs))	
[24]	 1-10nm	

	

High	carrying	capacity,	and	high	propensity	to	traverse	cell	
membranes	
Easily	chemically	modified	or	functionalized	through	formation	
of	stable	covalent	bonds.	

QUANTUM	DOTS	(QDs)	
[25]	 2-10	nm	

	

Broad	absorption	spectra	and	high	fluorescence	quantum	yield,	
high	photostability.	Possibility	of	multiplexing	(different	colours	
of	QDs	used	within	one	assay	with	a	single	excitation	source).	Can	
be	combined	with	other	NP	platforms	for	cancer	theranostics.	
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Table	1.	Physical	characteristics	of	the	commonly	used	NP	platforms	exploited	
for	clinical	applications.	NPs	labelled	with	an	asterix	(*)	have	been	used	in	the	
clinic	for	the	diagnosis	or	treatment	of	cancer	[26].	
	
1.2.	Targeting	Nanoparticles	for	Cancer	Treatment	
	
The	abnormal	hyperpermeable	vasculature	and	impaired	lymphatic	drainage	

found	within	tumours	[27]	can	lead	to	passive	accumulation	of	NPs	within	

malignant	tissues.	This	process	is	known	as	enhanced	permeability	and	retention	

(EPR).	EPR	has	been	demonstrated	extensively	in	pre-clinical	research	and	in	the	

clinical	setting	using	liposomal	drugs	such	as	pegylated	liposomal	doxorubicin	

(PLD).	The	success	of	PLD	lies	in	encapsulating	the	toxic	anthracycline	

doxorubicin	within	100nm	liposomes	to	limit	drug	uptake	into	sensitive	healthy	

tissues	such	as	the	myocardium	thereby	avoiding	the	severe	dose-limiting	

cardiotoxicity	commonly	seen	with	free	doxorubicin	[28].	Once	localised	within	

the	tumour,	liposome	breakdown	releases	the	doxorubicin,	causing	local	tumour	

cell	death.		

	

Whilst	EPR	can	increase	overall	tumour	uptake	of	NPs,	specific	targeting	of	NPs	

to	cancer	cells	can	be	best	achieved	through	the	addition	of	a	targeting	moiety	

[29],	a	number	of	which	have	shown	promise	including	proteins,	nucleic	acids	

and	small	molecules	(Figure	1).		
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Figure	1.	Schematic	showing	the	most	commonly	used	ligands	to	actively	target	
NPs	including	DNA	aptamers	(A),	antibodies;	as	both	whole	immunoglobulin	G	
molecules	(IgGs)	(B)	and	fragments	such	as	single	chain	variable	fragments	
(scFv)	(C),	non-immunoglobulin	proteins	such	as	transferrin	(D)	and	small	
molecules	such	as	folic	acid	(E).	Figure	adapted	from	[30].	
	
Antibodies,	the	most	widely	used	ligands	for	NP	targeting,	recognise	a	vast	array	

of	antigens,	due	to	their	unique	specificity	conferred	by	the	complementarity	

determining	regions	(CDRs)	(Figure	2).	Antibodies	can	be	readily	generated	as	

intact	IgGs	or	as	fragments	such	as	single	chain	variable	fragments	(scFvs)	

(Figure	2)	in	defined,	recombinant	form	[31,	32].	Antibody	targeting	appears	to	

be	complementary	to	passive	intratumoural	accumulation	mediated	by	EPR	[33-

35].	Ab-NPs	also	show	improved	efficacy	and	cytotoxicity	compared	with	non-

targeted	NPs	[36].	
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Figure	2.	Immunoglobulin	G	(IgG)	Structure:	The	heavy	chain	(blue)	is	made	up	
of	one	variable	region	(VH)	and	three	constant	regions	(CH1,	CH2,	CH3).	The	
light	chain	(green)	has	one	variable	(VL)	and	one	constant	(CL)	region.	On	each	
variable	chain	there	are	three	complementarity	determining	regions	(CDRs),	
which	bestow	the	vast	variability	in	specific	antigen	binding	capacity.	VH	and	VL	
together	with	CH1	and	CL	are	known	as	the	Fab	(fragment,	antigen	binding),	and	
the	remainder	of	the	molecule	is	known	as	the	Fc	region	(fragment,	
crystallisable),	which	confers	biological	activity	and	half-life.	Recombinant	
antibody	fragments	include	single	chain	variable	fragments	(scFvs),	which	are	
made	up	of	the	VH	and	VL	segments	joined	using	a	peptide	linker.	
	
2.0	Antibody-Nanoparticle	bio-conjugation	
	
The	challenges	in	establishing	conjugation	strategies	that	preserve	the	

functionality	of	both	the	antibody	and	NP	during	the	conjugation	process	can	be	

broadly	divided	into	three	main	categories;	controllability,	stability	and	

reliability.	Controllability	relates	to	the	number	of	antibodies	conjugated	to	each	

NP	and	the	orientation	of	this	interaction,	both	of	which	can	greatly	affect	the	

subsequent	functional	ability	of	an	Ab-NP	conjugate	[37].	Whilst	it	remains	

difficult	to	pre-determine	the	number	of	Abs	conjugated	to	each	NP,	it	is	possible	

to	fractionate	functionalised	NPs	based	on	the	number	of	linker	molecules	on	the	

NP	surface	[38].	Sophisticated	techniques	have	also	been	developed	to	control	

antibody	orientation	[39,	40],	resulting	in	preservation	of	Ab	bioactivity	[41].	

These	new	techniques	have	been	reported	to	achieve	Ab	bioactivity	as	high	as	

88%	of	the	naked	antibody	[41,	42].	
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It	is	crucially	important	to	maintain	stability	of	the	NP	and	Ab	throughout	the	

conjugation	process	and	to	ensure	that	the	final	conjugate	has	acceptable	

stability	in-vitro	and	in-vivo.	Harsh	reaction	conditions	should	be	avoided,	as	

these	can	trigger	antibody	unfolding	which	impairs	antigen	binding	[43].	It	is	

also	necessary	that	the	attachment	of	Ab	to	NP	surface	does	not	lead	to	unfolding	

from	unfavourable	interactions	of	the	protein	side	chains	with	the	NP	surface	

[44].	The	choice	of	conjugation	strategy	has	also	been	shown	to	affect	long-term	

stability.	For	example,	whilst	the	highly	specific	interaction	between	streptavidin	

and	biotin	adaptor	molecules	(engineered	onto	the	nanoparticle	surface	and	

antibody	respectively)	successfully	generate	Ab-NP	conjugates	capable	of	

targeting	tumour	cells	in-vitro	[45],	these	conjugates	did	not	demonstrate	

acceptable	long-term	colloidal	stability.	However,	by	adding	a	reactive	thiol	

group	to	the	Ab	and	covalently	cross-linking	it	via	a	bifunctional	linker	molecule	

to	the	nanoparticle	surface	higher	binding	efficiency	and	improved	stability	was	

achieved	with	equal	in-vitro	targeting	efficacy	[46].	

	

Reliable,	reproducible	and	well	validated	conjugation	procedures	are	essential	to	

enable	upscale	development	for	use	in	clinical	applications	[47]	and	to	date,	this	

has	been	most	successfully	achieved	by	direct	covalent	conjugation	via	linker	

molecules.	Established	covalent	conjugation	methods	include	carbodiimide	

coupling,	maleimide	coupling	and	click	chemistry	(copper	catalysed	alkyne-azide	

cycloaddition	reactions)	[48],	as	shown	in	figure	3.	In	the	case	of	AuNPs	gold-

sulphur	linkage	can	be	exploited,	utilising	the	high	affinity	with	which	thiol	

modified	ligands	bind	to	gold	surfaces	[49].	The	advantages	and	disadvantages	of	

conjugation	strategies	are	summarised	in	table	2,	and	have	been	reviewed	in	

depth	by	Montenegro	et.	al.	[50].	
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Figure	3.	Established	methods	for	the	covalent	conjugation	of	antibodies	to	

nanoparticles:	(A)	carbodiimide	coupling,	(B)	maleimide	coupling	and	(C)	

Copper	catalysed	‘click’	cycloaddition	reaction	[48].		

	

Conjugation	
Strategy	

Advantages	 Disadvantages	

Physical	Adsorption	
(ionic,	electrostatic,	
van-der-Waals)	
	

• Simple	and	straightforward	
• Unnecessary	to	modify	either	the	
Ab	or	the	NP	

• Electrostatic	attraction	can	
orientate	the	antibodies	‘end	on’	
preserving	binding	ability	

• Reversible	
• Hydrophobic	interaction	can	cause	
denaturation	of	Ab	

• Electrostatic	attraction	is	weak	and	
pH	dependent	

• Competitive	displacement	by	serum	
proteins	can	occur	

Covalent	
Conjugation	
(including	via	linker	
molecules)	
	

• Higher	stability	and	improved	
reproducibility	

• Modifications	to	Ab	usually	not	
required	

• Oriented	binding	possible	
• Use	of	linker-molecule	can	avoid	
hostile	reaction	conditions	

• Possible	to	control	valency	

• Reaction	conditions	may	lead	to	
protein	unfolding/reduction	

• Conditions	can	affect	antigen	binding	
capacity	

• Choice	of	binding	moieties	or	linker	
can	significantly	affect	function	

Use	of	adaptor	
molecules	
(biotin/streptavidin)	

• Usually	orientated	binding	
• Can	resist	harsh	reaction	
conditions	

• Difficult	to	control	valency	
• Expensive	technique	
• Reversible	attachment	

Bispecific	Antibody	
Conjugation	
[51]	

• No	need	for	disruptive	chemical	
conjugation	

• Minimal	impact	upon	NP	stability	

• Long	term	stability	unknown	
• Only	one	antigen	binding	site	
available	

	
Table	2.	Some	advantages	and	disadvantages	of	Ab-NP	bio-conjugation	
strategies.	Table	adapted	from	[50,	51].	
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3.0	Clinical	Applications	of	Nanoparticles	for	Cancer	Therapy	
	
A	number	of	untargeted	NPs	have	entered	in	early	phase	clinical	cancer	trials	

[26].	These	include	cyclodextrin-polymer	camptothecin-containing	NPs	for	

advanced	ovarian	cancer	[52],	micelles	delivering	paclitaxel	to	patients	with	

advanced	gastric	cancer	[53]	and	AuNPs	delivering	recombinant	human	TNF-

alpha	to	patients	with	advanced	solid	tumours	[54].	Superparamagnetic	Iron-

oxide	NPs	(SPIONs)	have	found	clinical	approval	for	use	as	contrast	agents	in	

cancer	imaging	[55,	56]	and	have	also	been	successful	in	early	phase	trials	in	

cancer	hyperthermia	[57,	58].	Some	untargeted	NPs	have	been	fully	approved	for	

clinical	use	as	cancer	therapeutics	[26]	including	the	liposomal	drug	PLD	[59],	

and	nanoparticle	albumin-bound	paclitaxel	(nab-paclitaxel)	[60].	

	

Ab-targeted	NPs	in	the	clinic	are	showing	early	promise	but	have	been	so	far	

been	restricted	to	liposomes.	In	one	trial,	a	scFv	against	transferrin	receptor	was	

used	to	target	liposomes	bearing	p53	DNA	in	patients	with	a	variety	of	advanced	

solid	tumours	[61].	Dose	related	accumulation	of	the	transgene	was	observed	in	

tumours	but	not	in	normal	skin	tissue.	Furthermore,	7	out	of	11	patients	had	

stable	disease	after	6	weeks	of	treatment	with	tolerable	side	effects	[61].	PLD	has	

also	been	targeted	to	the	FDA-approved	chimeric	anti-epidermal	growth	factor	

receptor	(EGFR)	mAb	cetuximab	in	a	phase	I	clinical	trial	with	some	evidence	of	

clinical	efficacy.	Furthermore,	the	side	effects	seen	were	less	severe	than	would	

be	expected	with	either	free	doxorubicin	or	cetuximab	[6]	.	The	most	common	

dose-limiting	toxicity	was	myelosuppression,	which	could	be	managed	

prophylactically	with	granulocyte-colony	stimulating	factor	(G-CSF)	[6].	

Targeted	PLD	has	also	been	investigated	in	the	clinic	using	an	anti-human	

epidermal	growth	factor	receptor	2	(HER-2)	scFv	[7].	These	early	clinical	trials	

are	encouraging	and	further	translation	of	Ab-targeted	NPs	is	underpinned	by	a	

number	of	exciting	preclinical	studies.	The	ongoing	pre-clinical	development	of	

Ab-targeted	NPs	for	delivery	of	cytotoxic	drugs,	radiotherapy	and	nucleic	acids	

and	their	role	in	cancer	theranostics	and	cancer	hyperthermia	is	discussed	

below.	
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4.0	Preclinical	Development	of	antibody-targeted	nanoparticles	for	cancer	therapy	
	
4.1	Delivery	of	cytotoxic	agents	
	
Ab	targeted	NP	drug	delivery	offers	a	number	of	benefits	over	systemic	

administration	of	free	drugs.	These	include	improved	intratumoural	drug	

distribution,	controlled	release	of	drugs	within	the	tumour	microenvironment,	

superior	efficacy	and	more	tolerable	side	effects.	Although	antibody-targeted	

liposomes	(immunoliposomes)	remain	in	the	lead	for	delivery	of	cytotoxic	agents	

[62],	other	innovative	approaches	are	close	behind	using	whole	Abs	as	well	as	Ab	

fragments.	This	is	illustrated	by	the	variety	of	drug-loaded	NPs	in	preclinical	

development	(Table	3).		
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Nanoparticle	 Antibody/	
Fragment	

Molecular	
Target	

Cytotoxic	
Agent	

Stage	 Cancer	 Reference	

PEGylated	PLGA	
Polymer	

mAb	 DR-5	 Camptothecin	 In-vivo	 Colorectal	 [63]	

Liposome	 mAb	 GD2	 Etoposide	 In-vitro	 Mixed	(GD2	
expressing)	

[64]	

Lipid-Polymer	
Hybrid	

mAb	 EGFR	 Adriamycin	 In-vivo	 Hepatocellular	
Carcinoma	(HCC)	

[65,	66]	

PLGA	Polymer	 mAb	 EGFR	 Paclitaxel	 In-vivo	 Lung	 [36,	67]	
Porous	Silica	NPs	
(pSiNPs)	

mAb	 p75(NTR),	
EGFR,	CD20	

Camptothecin	 In-vitro	 Glioblastoma,	
Neuroblastoma,	
B-cell	lymphoma	

[68]	

Polymeric	nano-
micelles	

mAb	 HIF-1α	 Paclitaxel	 In-vitro	 Gastric	 [69]	

Carbon	Nanotube	
(CNT)	

mAb	 CEA	 Doxorubicin	 In-vitro	 Colon	 [70]	

AuNPs	 mAb	 EGFR	 Gemcitabine	 In-vitro	 Pancreatic	 [71]	
PLGA/MMT	
Polymer	

mAb	 HER2	 Paclitaxel	 In-vitro	 Breast	 [72]	

SPIONs	 mAb	 HER2	 Paclitaxel/	
Rapamicin	

In-vitro	 Breast	 [73]	

Liposome	 mAb	 2C5	 Doxorubicin	 In-vivo	 Glioma,	Lung	 [74,	75]	
PLA	Polymer	 mAb	 SM5-1	

binding	
protein	

5-FU	 In-vivo	 HCC	 [76]	

Lipid-Polymer	
Hybrid	(PLGA)	

Half-Ab	
(hAb)	

CEA	 Paclitaxel	 In-vitro	 Pancreatic	 [77]	

Iron-Oxide	(SPION)	 ScFv	 Endoglin	 Docetaxel	 In-vitro	 Ovarian	 [66]	
PEGylated	Polymer	 ScFv	 CD44v6	 Arsenic	

trioxide	
In-vivo	 Pancreatic	 [67]	

PLGA	Polymer	 ScFv	 SM5-1	
binding	
protein	

Paclitaxel	 In-vitro	 HCC	 [78]	

Liposome	 ScFv	 HER-2	 Doxorubicin	 Phase	I	
Clinical	
Trial	

Breast	 [7]	

Liposome	 ScFv	 c-Met	 Doxorubicin	 In-vivo	 Lung	 [79]	
PLGA	 Fab	 HER2	 Pseudomonas	

Exotoxin	A	
(PE38KDEL)	

In-vivo	 Breast	 [80]	

Liposome	 Fab	 EGFR	 Doxorubicin	 Phase	I	
Clinical	
Trial	

Mixed	(EGFR	
expressing)	
Tumour	Types	

[6,	71]	

	
Table	3.	Drug-loaded	NPs	targeted	using	antibodies	or	antibody	fragments.	
	
Whole	Abs:	The	majority	of	whole	Ab	targeted	NPs	have	been	directed	to	EGFR	or	

HER2;	both	of	which	have	illustrated	the	prospect	of	NP-mediated	intracellular	

drug	delivery	through	receptor	mediated	internalisation.	One	example	used	

cetuximab	to	target	gemcitabine-loaded	AuNPs	[71].	In	these	experiments,	the	

authors	demonstrated	specific	targeting	of	the	NPs	to	EGFR	expressing	

pancreatic	cell	lines	in-vitro	and	additional	antibody-mediated	cytotoxicity	
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compared	to	non-targeted	counterparts	[71].	Targeting	EGFR	has	also	shown	in-

vivo	efficacy	in	a	range	of	models.	For	example,	in	delivery	of	paclitaxel-loaded	

polymeric	NPs	to	lung	tumours	[36],	camptothecin	loaded	porous	silica	NPs	to	a	

range	of	EGFR	over-expressing	tumours	including	glioblastoma	[68]	and	

adriamycin	encapsulated	polymer-lipid	NPs	to	hepatocellular	carcinoma	[65].	In	

this	final	example,	there	was	also	evidence	suggesting	that	both	the	antibody	and	

adriamycin	were	contributing	to	the	observed	cytotoxicity	[65].	HER2	targeting	

using	trastuzumab	has	been	shown	to	be	effective	using	paclitaxel	and	rapamicin	

partitioned	within	polymer	coated	SPIONs;	In-vitro	efficacy	was	over	7	times	

higher	than	the	non-targeted	counterparts	[73].	In	another	study,	HER2-targeted	

polymeric	NPs	delivering	paclitaxel	showed	sustained	drug	release	in-vitro	[72].		

	

Polymeric	NPs	have	also	been	successfully	targeted	to	the	pro-apoptotic	cell	

surface	death-receptor,	DR5	[63].	In	these	experiments,	the	DR5-targeted	

polymeric	NPs	were	shown	to	initiate	apoptosis	in-vitro	and,	when	captothecin	

was	encapsulated,	the	NP	was	able	to	overcome	the	resistance	commonly	seen	

with	single	agent	anti-DR5	therapy	in-vivo.	In	another	example,	hypoxia	

inducible	factor	1	α	(HIF-1α),	an	extracellular	protein	overexpressed	in	a	

number	of	human	cancers	in	response	to	local	hypoxia,	was	successfully	targeted	

with	anti-HIF-1α	Ab	functionalised	paclitaxel	loaded	polymeric	NPs	[69].	The	

NPs	were	shown	to	selectively	internalise	in	cells	overexpressing	HIF-1α	and	

paclitaxel	mediated	cytotoxicity	was	shown	to	be	specific	towards	HIF-1α	

expressing	cells.Other	targets	investigated	for	controlled	delivery	of	drug-loaded	

NPs	include	the	cell	surface	glycoprotein	and	tumour	marker	carcinoembryonic	

antigen	(CEA)	and	the	p75	neurotrophin	receptor	(NTR)	[68].NTR	is	a	member	

of	the	tumour	necrosis	factor	(TNF)	superfamily,	which	has	a	role	in	cell	death	

and	is	overexpressed	in	a	number	of	malignancies	including	sarcoma	and	

malignant	melanoma	[81].	Drug-loaded	NPs	have	also	been	targeted	using	SM5-

1,	a	mouse-human	chimeric	antibody	which	is	highly	specific	to	the	SM5-1	

binding	protein,	a	target	known	to	be	overexpressed	in	a	number	of	cancers	

including	hepatocellular	carcinoma	(HCC),	melanoma	and	breast	cancer.	Binding	

of	the	SM5-1	Ab	to	its	target	protein	inhibits	cell	growth	and	induces	apoptosis	in	

cancer	cells	in	a	caspase	dependent	manner	[82].	Polymeric	NPs	loaded	with	5-
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Flurouracil	(5-FU)	have	been	successfully	targeted	using	humanised	SM5-1	in	its	

whole	Ab	form,	demonstrating	sustained	drug	release	and	favourable	anti-

tumour	activity	against	subcutaneous	and	orthotopic	HCC	xenografts	[76].	

	

PLD	has	been	shown	to	exhibit	enhanced	tumour	retention,	Ab	dependent	

endocytosis	and	increased	cytotoxicity	when	targeted	using	the	anti-nucleosome	

mAb	2C5	in	orthotopic	glioma	tumours	in-vivo	[74].	The	2C5	Ab	specifically	

recognises	extracellular	and	tumour-cell	bound	nucleosomes	that	arise	from	

apoptotic	tumour	cells	in-vivo	[75].	Even	when	used	at	subtherapeutic	quantities,	

2C5	is	an	effective	tumour	targeting	moiety	for	PLD,	also	showing	efficacy	

against	primary	and	metastatic	lung	tumours	in	mice	[75].	Central	nervous	

system	(CNS)	tumours	present	a	unique	challenge	to	treatment	due	to	the	

presence	of	the	blood	brain	barrier	(BBB);	a	unique	physiological	barrier	which	

functions	to	protect	the	brain	but	also	limits	drug	delivery	to	the	CNS	[83].	To	

facilitate	movement	past	the	BBB,	polymeric,	2C5-targeted	NPs	have	also	been	

co-targeted	using	an	anti-transferrin	receptor	(TfR)	Ab.	In-vivo	intratumoural	

localisation	was	found	to	be	significantly	higher	for	the	dual	targeted	NP	than	

that	seen	for	NPs	targeted	with	each	antibody	alone	[84].	More	recently,	

transferrin	receptor	bispecific	antibody	platforms	have	been	shown	to	

successfully	cross	and	target	past	the	BBB	[85],	and	these	bispecific	Abs	could	

equip	drug	loaded	NPs	to	more	effectively	target	CNS	tumours.	These	

experiments	suggest	that	Ab	targeted	NPs	could	offer	a	novel	solution	to	deliver	

treatment	past	the	BBB.	

	
Ab	Fragments:	Ab	fragments	are	considered	to	make	attractive	targeting	agents	

thanks	to	a	smaller	size	and	potentially	reduced	immunogenicity	compared	with	

whole	Abs	[86].	The	most	commonly	used	fragments,	scFvs,	are	readily	

generated	using	recombinant	antibody	technology	and	have	been	successfully	

applied	in	the	following	examples.	ScFvs	have	been	successfully	exploited	to	

target	arsenic	loaded	polymeric	nanoparticles	targeted	to	CD44v6,	a	

transmembrane	glycoprotein	overexpressed	on	pancreatic	adenocarcinoma	

cells.	Accumulation	and	retention	within	the	tumour	was	significantly	higher	for	

CD44v6-targeted	NPs	than	for	the	non-targeted	controls.	Furthermore,	the	

targeted	NPs	inhibited	tumour	growth	significantly	more	than	the	non-targeted	
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NPs	or	free	arsenic	[67].	In	another	example,	phage	display	technology	was	used	

to	obtain	a	cell-internalising	scFv	to	target	c-Met;	a	tyrosine	kinase	receptor	

expressed	on	both	tumour	and	endothelial	cells	[79].	When	this	anti-c-Met	scFv	

was	used	to	target	PLD	to	lung	tumours,	significant	disruption	of	the	tumour	

vasculature	was	observed	in	addition	to	direct	tumour	cell	cytotoxicity	[79].		

	
Due	to	their	magnetic	properties,	it	has	long	been	proposed	that	SPIONs	could	be	

targeted	using	an	externally	applied	magnetic	field	[87].	However,	following	

successful	initial	in-vivo	studies,	problems	with	blood	vessel	embolisation	led	to	

the	development	of	alternative	methods	of	targeting,	including	Abs	[88].	More	

recently,	the	possibility	of	magnetic	targeting	has	been	revisited	in	combination	

with	an	scFv	targeted	to	endoglin,	a	cell	surface	glycoprotein	overexpressed	on	

ovarian	cancer	endothelial	cells	[66].The	scFvs	were	conjugated	to	the	surface	of	

iron	oxide	nanoparticles	pre-loaded	with	β-cyclodextrin	encapsulated	docetaxel	

to	create	drug-loaded,	endoglin	targeted	SPIONs.	In-vitro	studies	showed	that	the	

scFv	directed	specific	binding	onto	endoglin	positive	cells	and	also	that	the	

majority	of	the	SPIONs	were	localised	within	the	magnetic	field	[66].		

	
Progress	has	also	been	made	using	Fab-targeted	NPs.	For	example,	Fab	

fragments	derived	from	a	humanised	anti-HER2	mAb	have	been	successfully	

used	to	target	pseudomonas	exotoxin	A	(PE)	encapsulated	within	PLGA	NPs	[80].	

PE	is	a	potent	immunotoxin	with	significant	toxicity,	which	has	so	far	limited	its	

use	as	an	anti-cancer	drug	despite	evidence	of	impressive	anti-tumour	activity	

[89].	The	results	from	these	experiments	demonstrated	improved	anti-tumour	

activity	and	reduced	systemic	toxicity	when	compared	to	the	non-encapsulated	

anti-HER2-PE	Ab-drug	conjugate	(ADC).	

	
	
4.2	Delivery	of	radiation	treatment	
	
Radiation	is	the	primary	treatment	modality	in	the	management	of	many	

cancers.	The	main	challenge	in	radiotherapy	is	how	to	achieve	adequate	

radiation	exposure	to	the	tumour	whilst	avoiding	damage	to	surrounding	

healthy	areas,	especially	in	sensitive	tissues	such	as	the	brain.	Ab-targeted	NPs	

have	shown	promise	in	addressing	this	challenge	for	example	by	facilitating	
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neutron	capture	therapy	(NCT);	a	technique	which	relies	on	the	intratumoural	

injection	of	a	non-radioactive	isotope,	most	commonly	Boron-10	(10B),	which	

acts	as	a	capture	agent	and	releases	localised	ionising	radiation	[90].	In-vitro	

studies	have	targeted	10B-loaded	liposomes	to	EGFR-expressing	glioma	cells	in-

vitro	[91],	raising	the	possibility	that	Ab-targeted	NPs	could	overcome	the	

barrier	of	direct	intratumoural	injection	of	capture	agents.	In	a	second	example,	

cetuximab-conjugated	SPIONs	were	found	to	sensitise	radioresistant	gliomas	to	

the	effects	of	radiation,	possibly	through	production	of	reactive	oxygen	species	

and	the	inhibition	of	DNA	damage	repair	[92].	

	

4.3.	Delivery	of	nucleic	acids	

	

Ab-targeted	NP	delivery	vectors	such	as	polymeric	NPs	[93],	AuNPs	[94]	and	

liposomes	are	also	beginning	to	find	a	role	in	delivery	of	nucleic	acids	for	cancer	

therapy.	This	provides	opportunity	for	the	delivery	of	DNA	to	induce	expression	

of	therapeutic	tumour	suppressor	genes,	or	delivery	of	small	interfering	RNA	

(siRNA)	or	anti-sense	DNA	sequences	which	can	disrupt	the	translation	of	

oncogenes	[95].	Encapsulation	of	nucleic	acid	in	NPs	aims	to	overcome	barriers	

such	as	physiological	instability,	poor	intracellular	delivery	and	off-target	effects	

[96].	For	example,	in	one	study,	polyethylenimine	was	used	to	condense	and	

compact	DNA	encoding	the	p53	gene	[97]	generating	polymer-DNA	NPs	which	

were	then	targeted	using	J591,an	anti-PSMA	mAb.	The	resultant	J591	targeted	

NPs	showed	efficient	transfection	in	various	prostate	cancer	cell	lines	in-vitro	

and	effective	PSMA	specific	targeting	when	tested	in-vivo	in	prostate	cancer	

xenografts	[97].	J591	is	particularly	favourable	for	clinical	translation	due	to	its	

previous	use	in	a	phase	II	clinical	trial	[98].	

	

For	delivery	of	anti-sense	DNA,	AuNPs	have	been	coated	with	a	highly	organised	

anti-sense	nucleic	acid	layer	designed	to	bind	HER2	mRNA.	Corresponding	sense	

DNA	sequences	were	functionalised	via	click	chemistry	to	anti-HER2	Abs	and	

hybridised	to	the	anti-sense	DNA	on	the	NP	surface.	These	NPs	had	superior	

uptake	into	HER2	positive	cells	in-vitro	compared	to	non-targeted	counterparts.	

In	addition,	a	concentration	of	1nM	anti-HER2	NPs	was	sufficient	to	completely	
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block	expression	of	HER2	in	target	cells	whilst	control	NPs	either	containing	

scrambled	anti-sense	nucleic	acids	or	functionalised	using	an	off-target	Ab	

control	were	unable	to	inhibit	any	expression	[99].	A	similar	approach	was	

undertaken	using	click	chemistry	to	conjugate	chemically	stabilised	antisense	

nucleic	acids	and	trastuzumab	to	the	surface	of	polymeric	micelles.	These	dual	

functionalised	polymeric	NPs	demonstrated	HER2	targeted	delivery	and	efficient	

gene	knockdown	in	HER2	positive	cells	in-vitro	when	compared	with	non-

targeted,	non-stabilised	controls	[100].	

	

Another	example	of	efficient	nucleic	acid	delivery	utilised	a	liposomal	

formulation	of	antisense	nucleic	acids	against	BCL2,	an	antiapoptotic	gene	

overexpressed	in	the	majority	of	acute	leukaemias.	In	this	study,	the	liposome	

was	targeted	using	the	anti-CD20	mAb	rituximab	[101].	The	targeted	liposomes	

demonstrated	effective	reductions	of	Bcl-2	protein	within	cancer	cells.	Further	

in-vivo	studies	using	human	Burkitt’s	lymphoma	xenografts	showed	significant	

reductions	in	tumour	growth.	Further	to	this,	the	liposomes	were	found	to	be	

stable	for	over	1	year	in	storage	whether	as	a	suspension	or	lyophilised	powder,	

highlighting	feasibility	for	clinical	translation	[101].	

	

4.4.	Antibody-conjugated	nanoparticles	as	theranostic	agents:		

	

NPs	offer	an	attractive	platform	for	development	of	so-called	theranostic	agents,	

which	combine	therapy	and	diagnosis	with	the	aim	of	reducing	the	need	for	

multi-step	procedures	and	avoiding	treatment	delays	[102].	Antibody	targeting	

has	a	major	role	to	play	in	this	field	(Figure	4),	and	SPIONs	have	become	the	

most	advanced	theranostic	NPs	using	a	range	of	innovative	approaches.	One	

successful	example	of	Ab-SPION	theranosis	used	the	commercial	anti-EGFR	mAb	

cetuximab,	conjugated	to	PEG-polymer	coated	SPIONs	through	carbodiimide	

chemistry,	to	target	EGFR	and	the	mutant	variant	EGFRvIII	expressing	orthotopic	

glioma	tumours.	The	mAb-functionalised	SPIONs	triggered	apoptosis	in	human	

glioma	cells	in-vitro	and	conferred	a	significant	survival	advantage	over	both	

cetuximab	and	SPIONs	alone	when	infused	into	orthotopic	human	GBM	models	

[103].	In	these	innovative	studies,	the	challenge	of	crossing	the	BBB	to	achieve	
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adequate	intratumoural	distribution	was	addressed	using	convection-enhanced	

delivery	(CED).	Potent	inhibition	of	EGFR	phosphorylation	and	increased	levels	

of	caspase	cleavage	were	observed	along	with	consistent	contrast	enhancement	

of	the	SPIONs	on	T2-weighted	MR.	In	addition	to	this	promising	experimental	

data,	toxicity	experiments	in	healthy	mice	showed	no	evidence	of	damage	to	

normal	brain	tissues	[103].		

	

Targeting	chemotherapy	in	combination	with	imaging	agents	demonstrates	

another	theranostic	approach	that	has	been	exemplified	using	hybrid	

superparamagnetic	iron-platinum	NPs	(SIPPs)	targeted	to	the	prostate	cancer	

target	PMSA.The	SIPPs	were	encapsulated	with	paclitaxel	inside	phospholipid	

micelles	and	then	conjugated	using	streptavidin/biotin	adaptor	molecules	to	

anti-PMSA	Abs.	The	resulting	hybrid-NPs	were	shown	to	target	PMSA	positive	

prostate	cells,	induce	cytotoxicity	similar	to	free	paclitaxel	in-vitro	and	function	

as	MRI	contrast	agents	in-vivo	[104].		

	

Iron-oxide	magnetic	nano-crystals	(MNCs)	have	also	been	investigated	for	

theranostic	potential.	These	particles	retain	the	imaging	abilities	of	SPIONs	but	

are	smaller	and	do	not	have	surface	coatings.	As	such,	they	have	the	advantage	of	

being	readily	incorporated	into	the	structure	of	organic	polymeric	NPs	to	

generate	multifunctional	NPs.	In	one	example,	doxorubicin	and	MNC	loaded	

PLGA	polymer	nanoparticles	were	conjugated	via	carbodiimide	coupling	to	the	

anti-HER2	mAb	trastuzumab	forming	NPs	with	the	potential	to	both	detect	and	

treat	malignant	breast	cancer	cells.	In-vitro	results	with	these	NPs	demonstrated	

excellent	efficacy	as	MR	probes	with	specificity	for	HER2	positive	cells.	As	well	as	

this,	the	NPs	showed	sustained	release	of	doxorubicin	[105].	Iron	oxide	MNCs	

have	also	been	successfully	employed	as	the	imaging	component	of	docetaxel	

loaded	PLGA	NPs	targeted	using	a	scFv	against	prostate	stem	cell	antigen	(PSCA).	

PSCA	positive	cells	incubated	with	the	targeted	NPs	appeared	darker	on	T2-

weighted	MR	imaging	compared	with	non-targeted	equivalents	[106].	Unusually	

in	this	study,	drug	release	showed	initial	rapid	desorption	of	drug	from	the	

particle	surface,	followed	by	more	sustained	release	during	degradation	of	the	

polymer	matrix.	In-vitro	efficacy	studies	indicated	that	the	docetaxel-loaded	NPs	
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were	effective	at	a	lower	dose	than	free	docetaxel.	Polymeric	PLGA	nanoparticles	

have	also	been	used	to	provide	a	vehicle	for	theranosis	by	combining	

doxorubicin	with	indocyanine	green	(ICG);	a	heat-generating	near-infrared	(NIR)	

dye	[107].	When	conjugated	to	anti-HER-2	Abs	using	carbodiimide	chemistry,	

the	NPs	demonstrated	targeted	cell	uptake.	Furthermore,	NIR	laser	excitation	of	

the	ICG	released	cytotoxic	heat	in-vitro.	These	results	showcase	a	single	

theranostic	NP	with	triple	functions	in	(i)	imaging,	(ii)	delivery	of	chemotherapy,	

and	(iii)	induction	of	local	hyperthermia	[107].	

	

Theranostic	Ab-targeted	lipid	based	NPs	have	also	been	created	using	quantum	

dots	(QDs)	as	the	imaging	component,	rapamycin	for	therapy	and	trastuzumab	

for	targeting.	The	resulting	NPs	targeted	and	imaged	HER2	positive	cells	in-vitro,	

shown	in	both	2D	and	3D	models	using	confocal	microscopy.	In	this	study,	lipid-

encapsulation	alone	appeared	to	impart	a	2	fold	increase	in	effectiveness	over	

free	rapamycin,	whilst	the	addition	of	a	HER2	targeting	Ab	imparted	a	further	5	

fold	increase	in	efficacy	in	HER2	positive	cells	[108].		

	

Multi-walled	carbon	nanotubes	(CNTs)	offer	new	potential	as	cancer	

theranostics,	due	to	their	high	carrying	capacity	and	hyperechogenicity	

(increased	ultrasound	contrast).	Preliminary	results	investigating	the	

theranostic	application	of	CNTs	conjugated	with	Ab	against	PSCA	have	been	

encouraging.	When	functionalised	with	Abs,	the	CNTs	showed	efficacy	as	

contrast	agents	and	enhanced	uptake	into	PSCA-expressing	cells.	Moreover,	after	

loading	with	doxorubicin,	the	Ab-functionalised	CNTs	accumulated	within	

tumour	tissues	and	inhibited	tumour	growth	in-vivo	[109].		
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Figure	4.	Schematic	illustrating	the	4	major	components	of	an	Ab-targeted	
theranostic	NP:	(1)	Delivery	vehicle,	(2)	Imaging	agent,	(3)	Therapeutic	
component	and	(4)	Targeting	Ab.	Figure	adapted	from	[110].	
	
4.5.	Cancer	hyperthermia	
	
Almost	50	years	ago	it	was	shown	that	temperatures	of	just	42°C	could	induce	

cancer	cell	damage	within	a	relatively	short	time	frame	whilst	non-malignant	

cells	were	able	to	withstand	this	rise	in	temperature	[111].	More	recent	work	

has	shown	that	the	hypoxic	tumour	microenvironment	and	the	increased	mitotic	

rate	of	malignant	cells	predispose	malignant	cells	to	temperature	sensitivity	

[112],	and	that	hyperthermia	treatment	shows	synergism	with	conventional	

therapies	[113].	Whilst	potentially	an	effective	treatment,	the	major	challenge	

for	therapeutic	application	of	hyperthermia	is	restricting	treatment	to	diseased	

areas	and	avoiding	damage	to	healthy	tissues.Heat-generating	NPs	offer	an	

elegant	solution	to	this	problem,	particularly	if	the	NPs	can	be	localised	within	

tumours	prior	to	heat	induction.	Localisation	has	been	achieved	by	direct	

injection	into	tumour	tissue,	but	increasingly	antibody	functionalisation	is	being	

utilised	to	target	NPs	to	the	tissue	of	interest	(Table	5),	as	illustrated	with	the	

examples	below.	
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Nanoparticle	 External	
activating	field	

Antibody	
target	

Setting	 Cancer	
Treated	

Reference	

Superparamagnetic	
Iron-oxide	

nanoparticles	
(SPIONs)	

Alternating	
magnetic	field	
(AMF)	

Membrane	
Protein	

In-vivo	 Breast	 [114,	115]	

Gold	Nanoparticles	
(AuNPs)	

Laser	light	 EGFR	 In-vitro	 Oral	Squamous	
Cell	carcinoma	

[116]	

Mucin-7	 In-vitro	 Urothelial	Cells	 [117]	
Near-Infrared	
(NIR)	light	

TROP-2	 In-vitro	 Cervical	Cancer	 [118]	
EGFR	 In-vitro	 Oral	Squamous	

Cell	carcinoma	
[119]	

Short-wave	
radio	frequency	
(RF)	energy	

EGFR	 In-vivo	 Pancreatic	 [120,	121]	

Carbon	Nanotubes	
(CNTs)	

NIR	light	 CD133	 In-vitro	 Glioblastoma	 [122]		
HER-2	&	
IGF1R	

In-vitro	 Breast	 [123]	

CD22/CD25	 In-vitro	 Burkitts	
Lymphoma	

[124]	

	

Table	4.	Ab-targeted	NPs	employed	for	cancer	hyperthermia.	

	

SPIONs:	Are	the	most	clinically	advanced	NPs	for	heat	treatment	due	to	their	

history	of	use	as	approved	MRI	contrast	agents	[55]	and	in	pioneering	clinical	

trials	(untargeted)	for	heat	treatment	of	glioblastoma	[57].	When	exposed	to	an	

alternating	magnetic	field	(AMF)	SPIONs	convert	magnetic	energy	to	thermal	

energy	through	Brownian	and	Neel	relaxation.	Superparamagnetic	NPs,	unlike	

larger	ferri-	or	ferromagnetic	NPs,	do	not	retain	magnetism	when	the	field	is	

removed	and	can	generate	heat	at	lower	magnetic	field	amplitudes,	making	them	

more	attractive	for	biomedical	applications	[125,	126].	

	

Antibody	targeting	of	SPIONs	for	hyperthermia	was	first	achieved	by	conjugating	

an	111In	radiolabelled	mAb	against	an	integral	membrane	glycoprotein	(highly	

expressed	on	a	number	of	human	cancers)	to	20nm	dextran-coated	iron-oxide	

nanoparticles	[115].	Following	intravenous	injection	of	the	NPs	into	in	athymic	

mice	bearing	HBT	3477	(breast)	xenograft	tumours,	mice	were	exposed	to	

various	levels	of	external	AMF.Electron	micrographs	taken	two	days	following	

AMF	therapy	showed	tumour	cell	necrosis	at	all	strengths	of	AMF	applied.	
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Tumours	did	not	respond	to	either	SPIONs	or	AMF	alone,	and	toxicity	was	only	

seen	at	the	highest	strength	of	AMF	applied.	Subsequent	statistically	validated	

results	showed	that	therapeutic	responses	were	generated	without	normal	

tissue	toxicity	and	that	the	heating	dose	correlated	well	with	response	[114].	

Despite	in-vivo	success,	subsequent	studies	have	met	with	challenges	due	to	the	

rapid	clearance	of	SPIONs	from	circulation	via	the	reticuloendothelial	system	

(RES)	when	injected	intravenously	[127].	Whilst	this	characteristic	lends	itself	

well	to	SPION	use	as	contrast	agents,	it	is	detrimental	to	achieving	sufficient	

intratumoural	SPION	concentrations	to	generate	therapeutic	heating.	A	number	

of	solutions	have	been	proposed	to	overcome	this,	including	the	use	of	blocking	

agents	to	prolong	SPION	circulatory	time	[128],	tailoring	the	NP	surface	

chemistries	or	the	targeting	moieties	to	optimise	cellular	interactions	of	SPIONs	

[41,	129]	or	direct	intratumoural	injection	with	targeting	antibodies	functioning	

to	retain	SPIONs	at	the	injection	site.		

	

AuNPs:	Ab-targeted	AuNPs	have	also	been	exploited	as	vectors	for	photothermal	

therapy	(PTT).	This	process	relies	upon	the	generation	of	vibrational	heat	energy	

following	the	excitation	of	photosensitisers	through	the	absorption	of	specific	

wavelengths	of	light;	most	commonly	in	the	near-infrared	(NIR)	range.	AuNPs	

strongly	absorb	and	scatter	light;	this	absorption	can	be	tuned	by	modifications	

in	the	size	and	shape	of	the	NPs	in	addition	to	the	incorporation	of	other	

materials	such	as	silica	[116,	119].	The	light	absorbed	by	AuNPs	converts	readily	

and	rapidly	into	heat	and	this,	along	with	the	established	biocompatibility	make	

AuNPs	attractive	photothermal	agents	[116].	To	avoid	accumulation	of	AuNPs	in	

healthy	tissues,	a	number	of	passive	and	active	targeting	strategies	have	been	

tested	to	target	them	to	tumour	cells.	These	strategies	include	PEGylation,	

liposome	encapsulation	and	antibody	conjugation	[130].	Thiol-terminated	PEG	

derivatives	are	commonly	used	to	coat	the	surface	of	AuNPs	acting	to	improve	

colloidal	stability,	avoid	the	RES	uptake	of	AuNPs	and	provide	a	‘linker’	to	

conjugate	AuNPs	to	biomolecules	such	as	antibodies	[131].	Recent	Ab-targets	

investigated	include	trophoblast	cell	surface	antigen	2	(TROP2),	a	

transmembrane	glycoprotein	overexpressed	in	a	number	of	epithelial	cancers	

and	associated	with	poor	prognosis	in	cervical	cancer	[118].	In	this	study,	hollow	
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gold	nanospheres	were	conjugated	to	anti-TROP2	mAbs	using	a	thiol-terminated	

PEG	linker,	generating	functionalised	NPs	able	to	reduce	cell	viability	

significantly	more	than	non-targeted	controls	following	exposure	to	NIR	laser	

[118].	In	another	study,	gold	nanospheres	were	targeted	to	urothelial	cancer	

cells	using	antibodies	against	Mucin-7;	a	commonly	used	target	in	bladder	cancer	

[117],	and	activated	using	green	laser	light.		

	

As	well	as	absorbing	NIR	or	visible	light,	Ab-targeted	AuNPs	also	release	heat	

following	absorption	of	short-wave	radio	frequency	(RF)	energy;	behaving	as	

targeted	radio	frequency	ablation	(RFA)	agents.	Short-wave	RF	fields	have	the	

advantage	of	penetrating	deeper	into	tissues	than	NIR	light.	When	the	anti-EGFR	

antibody	cetuximab	was	conjugated	to	20nm	gold	nanorods,	selective	targeting	

was	seen	in-vitro	and,	following	exposure	to	short-wave	RF	fields,	necrotic	

cellular	injury	was	achieved;	similar	to	the	effects	of	invasive	RFA	in	the	clinic	

[120].	When	the	same	NPs	were	tested	in-vivo,	significant	cell	death	was	

observed	36	hours	following	treatment	of	EGFR	amplified	pancreatic	xenograft	

tumours,	with	no	damage	in	selected	healthy	tissues	including	the	liver	[121].	

	

CNTs:	NIR	activated	Ab-targeted	CNTs	have	also	been	employed	to	induce	PTT	

in-vitro	[132].	Examples	of	targets	investigated	include	HER2	and	IGF1R,	to	

target	CNTs	to	breast	cancer	cells	[123],	CD22	and	CD25	to	target	Burkitts	

lymphoma	[124]	and	CD133	to	target	glioma-like	stem	cells	in	the	treatment	of	

glioblastoma	[122].	Whilst	these	early	studies	show	promise,	CNTs	accumulate	

in	the	liver,	are	non-biodegradable,	and	show	poor	solubility	with	a	tendency	to	

aggregate.	These	challenges	of	toxicity	limit	the	current	clinical	translation	of	

CNTs,	and	are	being	addressed	[133].	

	

5.0	Conclusions	

	

This	review	has	illustrated	the	ways	in	which	the	diversity	and	versatility	of	NPs	

can	be	further	exploited	by	Ab	targeting.	A	wide	range	of	pre-clinical	research	

has	demonstrated	that	Ab-targeted	NPs	can	be	used	to	delivery	cytotoxic	

chemotherapy	directly	to	cancer	cells,	resulting	in	efficacious	treatment	with	
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reduced	side	effects	profiles	compared	to	free	drugs.	Breakthroughs	have	also	

been	made	in	utilising	Ab-NPs	to	augment	radiotherapy	and	aid	in	cancer	gene	

therapy.	Cancer	theranostics	has	evolved	in	parallel	to	NPs,	and	a	number	of	

innovative	approaches	have	showcased	single	agents,	which	can	combine	cancer	

imaging	and	therapy.	Finally,	the	use	of	hyperthermia	in	the	treatment	of	cancers	

has	been	made	possible	thanks	to	the	inherent	physical	properties	of	SPIONs,	

AuNPs	and	CNTs.		

	

Targeted	therapy	remains	at	the	forefront	of	translational	cancer	research	and	

significant	progress	has	been	made	in	the	clinical	translation	of	antibody-

targeted	NP	based	cancer	treatment,	including	phase	I	clinical	trials	using	

antibody	targeted	drug-loaded	liposomes.	These	pioneering	studies	have	built	

upon	previous	successes	developing	NPs,	refining	bio-conjugation	strategies	and	

optimising	the	biocompatibility	and	bioavailability	of	these	products.	

	
6.0	Future	Perspectives	
	
Future	research	on	Ab-NPs	will	depend	upon	reliable	and	reproducible	bio-

conjugation	strategies	that	can	be	scaled	up	to	good	manufacturing	practice	

(GMP)	standard	for	clinical	translation	[129].	Other	NPs	such	as	mesoporous	

silica	NPs	(MSNs)	(Table	1)	could	be	utilised	which	offer	impressive	drug	

carrying	capacity,	and	can	be	equipped	with	targeting	ligands	[134].	In	addition,	

multifunctional	hybrid	NPs	can	be	generated	for	use	in	combination	therapy	

and/or	theranostics.	

	
	
The	role	of	immunotherapy	in	the	treatment	of	cancer	continues	to	evolve.	

Whilst	the	use	of	Ab-targeted	NPs	in	cancer	immunotherapy	is	early	in	

development	[135],	recent	breakthroughs	include	the	use	of	PLGA	NPs	

conjugated	to	both	protein-MHC	complexes	and	anti-CD28	mAbs	to	act	as	

synthetic	antigen	presenting	vehicles	when	administered	in-vitro	[136].	In	the	

future,	Ab-targeted	NPs	could	be	used	to	prime	the	immune	system	not	only	to	

recognise	tumour	antigens	but	also	to	stimulate	anti-tumour	immunity.	Whilst	

Ab-targeted	NPs	are	only	just	reaching	the	clinical	setting,	their	diverse	potential	
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for	use	in	cancer	diagnostics	and	therapeutics	predicts	an	important	role	in	the	

future	of	cancer	treatment.	

	
6.0	Executive	Summary	
	
Introduction	

• Targeted	cancer	treatment	offers	significant	advantages	over	conventional	therapy	but	
current	targeted	treatments	are	often	limited	by	systemic	toxicity	

• Nanoparticles	(NPs)	possess	unique	physical,	chemical	and	biological	properties	that	
could	overcome	these	limitations	and	be	harnessed	for	use	in	cancer	medicine	

Nanoparticles	
• NPs	are	naturally	occurring	or	manufactured	particulate	material	either	unbound,	as	an	

aggregate	or	agglomerate	with	one	dimension	between	1	and	100nm	in	size.	
• NPs	possess	interrelated	properties;	high	mobility	in	the	free	state,	large	surface	area	to	

volume	ratios,	and	sometimes	the	exhibition	of	quantum	effects.	
• The	wide	and	diverse	range	of	functional	properties	exhibited	by	NPs	is	possible	thanks	

to	the	utility	of	a	variety	of	materials	to	synthesise	them.	
Targeting	nanoparticles	for	cancer	treatment	

• Passive	accumulation	of	NPs	occurs	within	malignant	tissues	in	a	process	known	as	
enhanced	permeability	and	retention	(EPR).	

• Specific	targeting	of	NPs	to	cancer	cells	can	be	achieved	through	the	addition	of	a	
targeting	moiety,	including	proteins,	small	molecules	and	aptamers.	

• Antibodies	(Abs)	are	the	most	promising	targeting	ligands	and	can	be	readily	generated	
as	intact	IgG	molecules	or	as	fragments	(ScFvs)	in	defined,	recombinant	form.	

• Antibody	targeting	is	complementary	to	EPR	and	enables	specific	receptor	mediated	
internalization	of	the	NP.	

Antibody-Nanoparticle	bio-conjugation	strategies	
• Challenges	in	bio-conjugation	can	be	broadly	divided	into	three	main	categories;	(i)	

controllability,	(ii)	stability,	and	(iii)	reliability.	
• Sophisticated	conjugation	techniques	enable	the	control	of	antibody	orientations	to	

ensure	target	binding	and	preserve	Ab	bioactivity	
• Whilst	both	bifunctional	linker	molecules	and	adaptor	molecules	can	generate	functional	

conjugates,	covalent	linker	molecules	demonstrate	superior	long	term	stability.	
• Established	covalent	conjugation	strategies	include	carbodiimide	coupling,	maleimide	

coupling	and	click	chemistry	(copper	catalyzed	alkyne-azide	cycloaddition	reactions).	
Clinical	Applications	of	Nanoparticles	for	Cancer	Therapy	

• NP	based	drug-delivery	systems	successfully	translated	into	early	phase	clinical	trials	
include	liposomes,	polymeric	NPs,	dendrimers,	micelles	and	gold	NPs	(AuNPs).	

• Superparamagnetic	Iron-oxide	NPs	(SPIONs)	have	been	clinically	approved	for	use	as	
contrast	agents	in	cancer	imaging	and	have	been	successful	in	early	phase	trials	for	
cancer	hyperthermia	

• Antibody-targeted	liposomes	(immunoliposomes)	have	been	used	in	three	early	phase	
clinical	trials.	

Preclinical	Development	of	antibody-targeted	nanoparticles	for	cancer	therapy		
• Chemotherapy	loaded	Ab-NPs	can	offer	improved	intratumoural	drug	delivery,	superior	

efficacy	compared	with	free	drugs,	and	controlled	release	of	drugs	within	tumour	cells.	
• Targeting	past	the	blood	brain	barrier	(BBB)	to	target	central	nervous	system	(CNS)	

tumours	may	be	possible	through	dual	targeting	of	transferrin	receptor	and	cancer	
specific	targets.	

• Ab-targeted	polymeric	NPs,	AuNPs	and	liposomes	can	be	used	to	stabilise	nucleic	acids	
and	deliver	them	directly	to	cancer	cells	for	gene	therapy.	

• SPIONs	be	combined	with	other	NPs	including	polymers	and	quantum	dots	to	produce	
multi-functional	theranostic	NPs	that	can	image	tumours	and	delivery	cytotoxic	drugs	in	
combination	

• SPIONs,	AuNPs	and	CNTs	are	able	to	generate	heat	from	within	the	tissue	of	interest	
when	activated	by	externally	applied	alternating	magnetic	fields	(SPIONs)	or	near-
infrared	fields	(AuNPs/CNTs).	
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• SPIONs	have	been	targeted	using	Abs	in	the	pre-clinical	setting	with	success	limited	by	
rapid	uptake	by	the	reticuloendothelial	system	and	clearance	in-vivo.	Strategies	are	
being	investigated	to	reduce	this	uptake.	

Conclusions	
• Ab-targeted	NPs	offer	a	versatile	platform	for	the	development	of	the	next	generation	of	

cancer	therapeutics	
• Progress	has	been	made	in	the	clinical	translation	of	antibody-targeted	NP	based	cancer	

treatments	
Future	Perspectives	

• Reliable	and	reproducible	bio-conjugation	strategies	that	can	be	scaled	up	to	good	
manufacturing	practice	(GMP)	standard	will	facilitate	clinical	translation	of	Ab-targeted	
NPs.	

• Ab-targeted	NPs	may	have	a	future	role	in	cancer	immunotherapy,	including	in	the	
development	of	synthetic	antigen-presenting	vehicles.	
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