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Abstract 

Background: Language change can be a valuable biological marker of overall cognitive change in 

Alzheimer’s Disease (AD) and other forms of dementia. Previous reports have described increased use 

of language formulas in AD, i.e. combinations likely processed in a holistic manner. Words that 

commonly occur together are more likely to become a formula. Objective: To determine if frequency 

of co-occurrence as one indicator for formulaic language can distinguish people with probable AD 

from controls and if variables are sensitive to time post-symptom onset. Methods: We developed the 

Frequency in Language Analysis Tool (FLAT) which indicates degrees of formulaicity in an individual 
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language sample. The FLAT accomplishes this by comparing individual language samples to co-

occurrence data from the British National Corpus (BNC). Our analysis also contained more 

conventional language variables in order to assess novel contributions of the FLAT. We analysed data 

from the Pitt Corpus which is part of DementiaBank. Results: Both conventional and co-occurrence 

variables were able to distinguish AD and control groups. According to co-occurrence data people with 

probable AD produced more formulaic language than controls. Only co-occurrence variables 

correlated with disease progression. Discussion: Frequency of word co-occurrences is one indicator 

for formulaicity and a valuable contribution to characterizing language change in AD. 

Keywords: Alzheimer’s Disease; Language; Verbal behaviour; Disease progression 

1. Introduction 

There are two ways to produce sentences. One makes use of a combinatorial system that generates 

them out of words and affixes which are each retrieved as a separate unit (e.g., {I, do, not, know}). For 

this reason, the process has been labelled “atomic” [1]. Atomic descriptions of language processing 

have dominated the language sciences, especially since the ascent of generative “words and rules” 

models in the mid-20th century [2–4]. “Holistic” approaches on the other hand suggest that some word 

combinations, be they sentence fragments or even entire utterances, are accessed as a whole. These 

representations are commonly referred to as formulas [5–7]. Some formulas can contain gaps to be 

filled (e.g., What’s X?), while others may be completely specified (e.g., I don’t know). As a result, 

sentences may be produced with little or no combinatorial effort. Proponents of holistic models have 

suggested two criteria for formulaicity: first, idiomatic utterances, such as “X kicked the bucket” are 

said to be formulaic to a certain degree because the correct interpretation (in this example “X died”) 

cannot be derived by combining the meaning of the individual words “kick” and “bucket”. Second, 

formulas result from frequency of co-occurrence in everyday language use. Words that occur together 

regularly may become holistic [8–11] and high-frequency utterances such as I don’t know [12] are 

prime examples. In this report we use frequency data to investigate how changes in the degree of 
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formulaicity in speech output may be a marker of cognitive change resulting from Alzheimer’s Disease 

(AD). 

AD leads to changes in behavior across a range of language domains, from word-retrieval to the 

richness and cohesion of narrative [13]. Linguistic behavior may provide sensitive markers of disease 

progression and as a result, research into the language of dementia can inform diagnosis, tracking of 

change, and measuring the effects of intervention. Language data are abundant, easily acquired, and 

are of high functional value as they reflect a person’s ability to interact with family and peers, consume 

media and engage in work. Approaches to language in dementia have often looked at the pragmatics 

of discourse and narrative [14–18] and at lexical processing [19–21], with word frequency predicting 

lexical production and recognition [22,23]. 

Grammatical change in AD is subtle, at least in early stages, and contrary to aphasias, language in AD 

contains only a small (but significant) increase in syntactic errors [24]. By contrast, word-finding 

difficulty and lexical errors are more evident, leading to the claim that early stage AD affects semantic 

processing, but not grammatical capacity [25]. The claim of lexical-semantic deterioration in the face 

of preserved grammatical processing is largely consistent with atomic views of language. In particular, 

rule-based mechanisms of grammar continue to generate well-structured output, although planned 

structures are sometimes aborted due to failures of word retrieval from semantic memory. There is, 

however, a marked reduction of grammatical complexity in AD, and typical features include reduced 

sentence length, fewer conjunctions, simpler verb phrase structure, and less frequent use of passives, 

relative clauses and other complex constructions [26–28]. Ahmed, Haigh, Jager and Gerrard [29] 

examined language samples from people with a diagnosis of AD which was subsequently  confirmed 

at autopsy. They found that the distribution of word classes in language production as well as  

“syntactic complexity”, (a compound variable including mean length of utterance, proportion of words 

in sentences, number of embedded clauses, syntactic errors, nouns preceded by determiners and 
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verbs with inflections) distinguished individuals with AD from controls, as well as from speakers with 

mild cognitive impairment. 

Bates et al. [26], in their work on the underlying source of language deviation in AD, discuss the notion 

of automaticity. They argue that simpler sentence structures are overlearned and can be retained 

despite linguistic-cognitive impairment, while more complex structures require more explicit 

processing and inhibition of automatic production. However, while Bates et al. [26] focused on 

structure type, we extend the notion of overlearned structures to word combinations in general, 

regardless of the sentence type in which they appear. I don’t know and I can’t reach are of the same 

structural type, but the former is easier to produce because of properties of the specific sequence of 

words. The former effectively communicates uncertainty and is very useful in everyday 

communication, in particular for speakers with communication difficulties. I don’t know is also the 

more frequent sentence, and its individual words are more strongly associated with each other. Both 

frequency of co-occurrence and function can predict why one sentence is more formulaic, and 

therefore cognitively entrenched, than another. In many cases, we can expect these factors to be 

related. Many words frequently co-occur because, as a combination, they serve an important function, 

be it pragmatic or grammatical.  

While we are considering formulaicity as a disease marker, note that there is nothing pathological 

about using formulas per se. They are considered part of typical language use, and it has been 

estimated that one third to one half of healthy discourse is formulaic [7]. Formulas are thought to be 

crucial for language acquisition, and influential accounts propose that children first learn a range of 

formulas before being able to  manipulate individual words and affixes [30,31]. Advantages in the 

processing of formulas extend to adulthood, where high-frequency word combinations are recognized 

and produced more rapidly than low-frequency combinations [8,32–34]. At the same time, individual 

words can be harder to recognize if they appear within high-frequency combinations [9], supporting 

the view that they prioritize processing at holistic and not atomic levels. 
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Formulas are useful in that they reduce cognitive demand: their meaning is accessed holistically and 

they require less structural computation. Due to the reduced processing demands of understanding 

and producing formulas, an increase in their use may be a subtle marker of neurocognitive 

impairment. Residual formulas are often apparent in severe aphasia [35–37]. Zimmerer, Cowell and 

Varley [38] describe residual formula use in severe aphasia, where speakers continue to employ 

phrases such as I don’t know; and then, in the absence of ability to modify these combinations to 

produce, for example, I know, You don’t know or I don’t think. An increase in “common phrases” has 

also been observed in AD [39]. Wray [40] argued that overly formulaic language in AD is a considerable 

barrier between patient and conversation partner, locking both into repeating patterns of behavior. 

An increase in formulaicity comes with a decrease of combinatorial, creative power and the ability to 

communicate a wider range of opinions, ideas and needs. 

One methodological approach has been applied consistently in a series of studies on formulaic 

language in pathology. Developed by Lancker-Sidtis and Rallon [41], the methods involve determining 

the proportion of words which independent raters consider part of a formulaic expression. Formulas 

are defined as familiar word selections and combinations with stereotyped intonation. Using this 

method, van Lancker-Sidtis and Postman [42] investigated formulaicity in speakers with aphasia 

following left-hemisphere damage, speakers with right hemisphere damage, and neurotypical 

controls. People with aphasia were more formulaic than controls, while people with right hemisphere 

damage appeared less formulaic. In a later study, people with subcortical damage were also found to 

produce fewer formulas [43]. The same methods revealed increased formulaicity in people diagnosed 

with AD, not only compared to healthy controls [44], but also to people with Parkinson’s Disease. The 

latter group also displayed reduced formulaicity as the result of the disease [45]. The methods 

developed by van Lancker Sidtis and colleagues allowed new insights into the language of dementia, 

and suggest that evaluation of formulaic language allows identification and differentiation between 

pathologies.  
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However, systematic research on formulacity is still in its infancy. We explore a new approach which 

differs from the above in a number of aspects. Methods were designed for language research, but also 

to support future clinical practice in differential diagnosis or tracking change, for instance in the 

context of intervention research. With regards to cost effectiveness, the development of automated 

tools to support clinical assessment yields benefits in terms of speed of data processing, advantages 

of blinded evaluation and no, or little, need for specialist linguistic training. Our approach addresses 

these needs. 

The most important difference is our focus on frequency of co-occurrence. While frequency, as we 

laid out, is not all there is to formulaic language, frequency values can be extracted automatically to 

achieve an estimate of the degree of formulaicity in individual speakers and groups. Further, we 

abandon a binary classification, where a given utterance is either rated as a formula or not. Language 

exposure and use differs from individual to individual, and in addition we cannot suggest a specific 

threshold beyond which a word combination should be considered a formula. Within our approach it 

is therefore difficult to label with certainty a particular combination in a particular speaker as a 

formula. Instead, we adopt the view that frequency of co-occurrence in a word combination indicates 

a degree of formulaicity which indicates how strongly words are associated with each other. As a final 

innovation, our study evaluates the power of frequency measures by comparing it to a range of other 

language variables.  

Our methods are a variation of the computerized “Traceback” method [31,46,47] which divides large 

speech samples from individuals (about 30 hours per speaker) into a reference corpus and a smaller 

test corpus, and determines the extent to which utterances from the test corpus can be derived either 

verbatim or with small replacements (such as a new noun phrase) from the reference corpus. The 

results indicate how much a speaker “recycles” utterances, and therefore can provide measures of 

formulaicity. To our knowledge, Traceback has to date not been applied in a pathological context and 
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the recording and transcription times needed to acquire sufficient sample sizes make it problematic 

for clinical use. 

For use with smaller samples more typically available from patients, we present the Frequency in 

Language Analysis Tool (FLAT) [48]. Instead of using the speaker’s own production as a reference 

corpus in order to establish the recycling-rate, the FLAT calculates the degree to which the speaker 

produces word combinations that are common in typical language use. For reference, it uses the BNC, 

a 100-million-word-corpus containing written and transcribed spoken text from different contexts. 

The spoken BNC corpus forms a subset of ca. 10 million words. While the BNC cannot account for 

individual language experience and the resulting differences in formulaic language representation, it 

is a sizeable resource can be used as a reference corpus for smaller test corpora. Word combinations 

with high co-occurrence values can be seen as common and therefore more likely to be processed as 

a formula. The FLAT produces raw frequencies (e.g., the most frequent full finite verb phrase is I don’t 

know, occurring 117 times in every million words), but also t-scores which indicate how strongly words 

are associated with each other considering their individual frequency. Differences in average t-scores 

are more likely to be the result of how speakers combine words, and not of which words they retrieve 

(see 2.2.2).  

Input to the FLAT is any orthographical text, such as transcribed speech. From each text, the FLAT 

extracts all words, combinations of two words (bigrams), and combinations of three words (trigrams), 

and retrieves  their occurrences in the spoken portion of the BNC. It extracts overall frequencies and 

uses them to compute co-occurrence values. Means for each language sample indicate the “degree of 

formulaicity”. The generation of these variables is automated. This step is therefore blind to any 

potential researcher bias. The FLAT is also fast, processing hundreds of data points per minute. 

For the current study, we used the FLAT to investigate language output in people with probable AD 

and neurotypical controls. We analyzed participant data from the Pitt Corpus, which is part of the 

DementiaBank section of the TalkBank project [49]. Participants visited the University of Pittsburgh’s 
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School of Medicine several times over a period of years as part of a dementia study. First visits took 

place between 1983 and 1988. We analyzed data from the Boston Cookie Theft picture description 

task [50], which is commonly used to elicit connected speech samples. In this task, participants 

describe a drawing showing a complex kitchen scene. In contrast to spontaneous production or 

interviews, the Cookie Theft task allows control for content as well as talk situation. We analyzed the 

earliest Cookie Theft description available for each speaker to avoid effects of repeated testing. 

Samples were heterogeneous enough to investigate the relationship between co-occurrence variables 

and age, education, estimated onset of AD and performance in the Mini Mental State Examination 

[51]. We focused our analysis on grammatical word combinations, i.e. syntactically “successful” word 

combinations in English. Based on previous reports, we hypothesized these combinations would be 

more formulaic in the AD group. We also expected positive correlations between co-occurrence values 

and estimated time post-onset, and negative correlations between the former and MMSE scores. 

In order to determine the value of co-occurrence variables in examining language in neuropathology, 

we also investigated their relationship with other language measures. We chose variables that we 

predicted would correlate with co-occurrence variables. We calculated the number of words produced 

during descriptions, rates of grammatical and semantic errors, the rates of closed-class words and 

weakly inflected words in each sample, and a measure of connected speech, i.e., how many words are 

parts of word combinations (see Box 1 for a summary of the variables). Within “words and rules” 

approaches these measures can be seen as indicating the efficiency of retrieving appropriate lexical 

items and applying grammatical knowledge or rules. We therefore set up these variables to compete 

with our frequency-based values to investigate the latter’s contribution. Note however that variables 

like number of words and rate of closed-class words cannot be disentangled from holistic frameworks. 

Access to formulas may influence verbosity, and it has been noted that many formulaic utterances 

consist of clusters of closed-class words [52]. We elaborate on these relationships in the discussion. 
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2. Materials and Methods 

2.1 Participants 

The Pitt Corpus lists 510 speakers, who either had a diagnosis of AD or were neurotypical controls. For 

our study we excluded: 1) Participants for whom Cookie Theft data from the first visit were not 

available. 2) People with an AD diagnosis who had other pathological diagnoses at the first or 

subsequent visits (e.g., anxiety, depression, cerebrovascular disease, or other types of 

neurodegeneration). 3) Controls with a pathological diagnosis at the first or subsequent visits. We 

excluded samples on the basis of later diagnoses due to the possibility of language change in 

prodromal states. After applying the selection criteria, we further excluded one sample (087-0) which 

was allocated the wrong media file and transcript in the database (the issue has been confirmed by a 

member of the TalkBank project; Davida Fromm, personal communication). 

The final sample included data from 48 people with a diagnosis of AD (36 female; mean age = 71.5, SD 

= 9, range 56-88; mean number of years of formal education = 11.6, SD = 2.6, range 6-17; and 38 

healthy controls (23 female; mean age = 62.3, SD = 8.6, range 47-80; mean number of years of formal 

education = 14.1, SD = 2.2; range 11-20). Mean MMSE score for the AD group was 18.7, SD = 4.3, range 

10-27, while the mean score for the controls was 29.2, SD = .8, range 27-30. For the AD group the 

mean number of estimated years post-onset was 4, SD = 2.45, range 0-12, with a mean estimated age 

of onset of 67.5, SD = 8.5, range 53-85. Both time post-onset and age of onset were estimated on the 

basis of the individual’s clinical history. Groups differed significantly across several variables. People 

with probable AD were older, t(84) = 4.753, p < .001, d = 1.07, r = .47, had fewer years of formal 

education, U = 1377.5, p < .001, r = .45, and had lower MMSE scores, U = 1823, p < .001, r = .86. 

Differences in education may reflect a general tendency of neurotypical people with more years of 

education to volunteer for research studies. In order to maximize sample size, we decided not to 

match groups on age and education. To account for these differences, we entered both variables into 

our models as covariates and examined whether other differences survive residualization. We used a 
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ranked analysis of covariance [53] to account for non-parametric distributions. We residualized ranked 

dependent variables over the ranked covariates (in this case age and years of education) and used 

independent samples t-tests to compare the unstandardized residuals. Differences in MMSE scores 

were still significant and strong after residualization, t(84) = 15.836, p < .001; d = 4.15, r = .9. 

2.2 Procedure 

2.2.1 Preparation of transcripts 

Cookie Theft transcripts were formatted for analysis with the FLAT. In the first step, we excluded the 

CHILDES annotation layer and selected only the orthographic transcription and speaker ID 

information. We then excluded every line spoken by the interviewer, and every line in which the 

participant did not describe the picture. Such lines could be questions about the task (e.g., “Am I going 

too fast?”), reactions to the task (e.g., “Oh great.”), or the participant declaring that he or she finished 

the task (e.g., “That’s all I can see.”). The reason for this exclusion is that such statements tend to be 

more formulaic. Because participants differed in the degree to which they made them, we regarded 

them as a potential confound. We then deleted any word repetitions which were likely the result of 

word-form retrieval or phonological problems. While these problems are an important aspect of 

clinical language research, repetitions of this sort do not reflect sentence representations which were 

our main concern. 

Word combinations that crossed main clause boundaries were also excluded, unless they were 

connected lexically (e.g., “and”, “or”, “that”). For example, in the utterance “The mother’s drawing 

the dishes, frowning but not turning off the faucet” the combinations “dishes, frowning”, “the dishes, 

frowning” and “dishes, frowning but” were excluded. We also excluded word combinations that 

spanned across false starts. For example, in analyzing the utterance “The boy’s in the cookie jar giving 

his … going in the cookie jar” we excluded “his … going”, “giving his … going” and “his … going in”. We 

further excluded word combinations which were ungrammatical. In most cases, these were the result 

of false starts and self-corrections. Word combinations were excluded by manually inserting a tag (a 
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period in angle brackets) where we saw a crucial boundary. The FLAT notes these “separator tags” and 

treats them like sentence final punctuation, meaning that word combinations crossing this boundary 

are not considered in the analysis. 

The following is a transcript formatted for FLAT analysis. It is from a speaker with probable AD (264-

1v-0). There are two syntactic errors (“reaching up in the cupboard”, missing verb in “the boy on the 

stand or on that stool and…”), two semantic errors (“on the stand”, “it rolled over on the floor”) and 

ten weak inflections: 

C: kid's climbing up on the stool and reaching up in the cupboard . 

C: they aren't going to knock things off .  

C: and the mother <.> oh boy <.> the water's all spilling out of the sink .  

C: she's just looking at it like .  

C: oh <.> for goodness sakes .  

C: well as I say that <.> you know <.> the boy on the stand or on that stool and it's tilting . 

C: that's a good way to break his neck . 

C: break his back <.> I should have said . 

C: woman left her faucet running and it rolled over the floor . 

2.2.2 Language analysis 

The FLAT provides word, bigram and trigram counts. To measure connectivity in speech based on FLAT 

values, we divided the number of trigrams by the number of words. Higher outcomes indicate that 

more words are part of word combinations, therefore indicating more connected speech. Using an 

automated script written by Zimmerer in R [54] we further determined the rate of closed-class words 

within each sample. The script counts each word which matches a list comprising all English 

determiners, pronouns, number words, auxiliary verbs and adverbs other than manner adverbs [55]. 

Finally, we manually counted the number of weakly inflected words (verb inflections, plural 

inflections) as a measure of grammatical affixation, and semantic as well as grammatical errors to 
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calculate respective rates. If an error was considered part of the dialect (e.g., lack of verb inflection 

for third person singular) it was not counted. A second rater checked 60% of the samples. Interrater 

class coefficients showed moderate agreement for both syntactic (.565) and semantic (.5) errors. In 

the first stage of our analysis we investigated these variables (“general production measurements”) 

at between- and within-group levels. 

In the second stage, we focused on frequency and frequency-based variables. Observed frequencies 

relate to the occurrence of a word or n-gram in the spoken BNC (~10 million words). The FLAT uses 

additive smoothing, adding one to each frequency value, to avoid division by zero when computing 

variables based on observed frequencies. 

N-gram frequency effects may be driven by the frequency of individual words: low frequency words 

tend to appear in low frequency n-grams. To address this issue and make sure that frequency effects 

occur at the level of combinations and therefore address questions about formulaic production, other 

statistics make use of the “expected frequency”. Expected frequency is the number of occurrences 

one would expect based on the frequency of individual words if word order in the corpus was random. 

For a bigram ab and a trigram abc expected frequency is calculated as (with the approximate number 

of words in the spoken BNC 10,000,000): 

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑎𝑏 =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑎 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑏

10,000,000
  

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑎𝑏𝑐 =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑎  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑏 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑐

10,000,0002 
 

 

The difference between expected and observed frequencies suggests how much individual words are 

drawn to each other not by their individual frequencies, but by the patterns of normal language. It is 

indicative of formulaicity. We determined this difference using t-scores, which is one of the most 

commonly used collocation variables [56]. We selected t-scores over, for example, Mutual Information 
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since an analysis of all word combinations in our samples results in a high number of low frequency 

units, and t-scores are less likely to be confounded by the resulting distribution [57]. A t-score for a 

given n-gram x was calculated as: 

𝑡𝑥 =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑥 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑥

√𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑥
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Table 1. Statistical values extracted using the Frequency in Language Analysis Tool (FLAT). Example 

values are provided for the sentence “I don’t know”, which the BNC segments into four words (and 

consequently, three bigrams and two trigrams). 

 I do n’t know 

Word (observed) frequency 30956 9956 12628 5743 

Bigram (observed) frequency - 2157 4222 1065 

Bigram t-score - 125.9 199.3 96 

Trigram (observed) frequency - - 1866 904 

Trigram t-score - - 136.3 95 

 

In the third stage, we employed logistic and linear regression models to investigate the contribution 

of adding frequency-based variables to a model of language in AD. Table 1 contains FLAT values for 

the sentence I don’t know. Box 1 provides a summary of all variables used in this study. 
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Box 1. Overview of language variables 

Number of words: A measure of verbal responsiveness. Word counts exclude immediate repetitions as the 

result of production failure. Since the FLAT interfaces with BNC data structure, we applied the word 

segmentation from the BNC, meaning that contractions such as don’t were counted as two words. Plural 

suffixes were also counted as individual words. Word count (and all other measures) included only utterances 

which were produced as part of the picture descriptions. 

Connectivity: A measure of connected language, the proportion of words which appeared in grammatical 

trigrams. Higher values indicate that language was more connected, i.e., that there were fewer utterances 

one or two words in length. Connectivity was calculated as follows: 

(number of trigrams / number of words) x 100% 

Rate of closed-class words: Closed-class words (determiners, pronouns, number words, auxiliary verbs and 

adverbs other than manner adverbs) were automatically counted. Closed-class words are closely integrated 

with grammatical processing and may be easier to retrieve for speakers with lexical impairment. Rate of 

closed-class words was calculated as: 

(number of closed-class words / number of words) x 100% 

Inflection rate: Number of inflected words (verb inflections, plural inflections) was counted manually. 

Inflection rate was calculated as: 

(number of inflected words / number of words) x 100% 

Syntactic error rate: Syntactic errors were errors of inflection, agreement, argument structure or word order 

regardless of semantic content. Syntactic error rate was calculated as: 

(number of syntactic errors / number of words) x 100% 

Semantic error rate: Semantic errors represented incongruent lexical items resulting in descriptions that did 

not match the picture material. Semantic error rate was calculated as: 

(number of semantic errors / number of words) x 100% 

Average word frequency: Average frequency with which words appear in the BNC, in number of occurrences 

per million. 

Average bigram/trigram frequency: Average frequency with which bigrams/trigrams appear in the BNC, in 

number of occurrences per million. Only n-grams which occur in the BNC were included. 

Average bigram/trigram t-score: Average difference between the number of expected occurrences of the n-

gram on the basis of frequency of its individual words, and the actual frequency with which it appears in the 

BNC (see 2.2.2 for formulas). Positive values indicate that n-gram appears more often than the expected 

frequency, and increasing distance from zero indicates increasing difference. Only n-grams which occur in 

the BNC were included. 

BiBNC/TriBNC rate: Proportion of bigrams/trigrams which occur in the BNC, calculated as: 

(number of BiBNC / number of bigrams) x 100%; (number of TriBNC / number of trigrams) 
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3. Results 

3.1 Distributions, multiple comparisons and one- vs. two-tailed testing 

Shapiro-Wilk tests were used for each sample to determine whether distributions were parametric. 

Dependent on the outcome, Independent Sample t-tests or Mann-Whitney U tests were applied for 

group comparisons. For effect size, we calculated r for comparisons between non-parametric samples. 

For parametric samples we provide Cohen’s d, but also convert the value to r to allow better 

comparison. For within-group relationships between language and other outcomes Pearson’s r was 

calculated for parametric and Kendall’s tau rank for non-parametric samples. 

In cases in which multiple comparisons were used to test one hypothesis, we provide Bonferroni 

corrected significance thresholds. However, t-scores are calculated using frequency, and the two 

variables are therefore strongly related (please see Appendix A for correlations). In this case 

Bonferroni corrections should be interpreted with caution since they may represent too strict a 

criterion and lead to Type II errors. 

Based on our review of the literature and proposals of strong associations between AD and an increase 

in formulaicity, we predicted a negative correlation between co-occurrence variables and MMSE 

scores, and a positive correlation between co-occurrence variables and time post-onset. For this 

reason we report one-tailed tests (p values need to be doubled to determine the two-tailed statistic). 

3.2 General production measurements (word count, connectivity, closed-class words, inflections, 

errors) 

3.2.1 Between-group comparisons 

The mean word count was 95.2 (SD = 39.8) for controls and 90.6 (SD = 39.6) for people with AD 

diagnosis. The difference was not significant, U = 971.5, p = .605; r = .06. The proportion of words 
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appearing in trigrams was 75% (SD = .07) for controls and 69% (SD = .07) for the AD group. That 

difference was significant, U = 1376, p < .001; r = .44. 

The mean rate of closed-class words was 60% (SD = 5.9) for controls and 64% (SD = 6.6) for the AD 

group. The difference was significant, U = 612.5, p = .009; r = -.28. The inflection rate was 15.1%  

(SD = 4.4) for controls and 14.4% (SD = 10.7) for the AD group. The difference was at the threshold for 

statistical significance, U = 1137, p = .05; r = .21. The syntactic error rate (n of errors / words) was .009 

for controls (SD = .0231) and .0141 (SD = .0179) for the AD group. The difference was significant,  

U = 636, p = .012; r = -.27. Semantic error proportion was .003 for controls (SD = .0233) and .005  

(SD = .0081) for the AD group. The difference was significant, U = 652.5, p = .001; r = -.35. 

After residualization over age and education, we found the following differences to be significant at  

p < .05: semantic error rate, t(65.464) = 2.443, p = 0.17; d = .94, r = .43, proportion of words within 

bigrams, t(84) = -3.258, p = .002, d = .64, r = .3, proportion of words within trigrams,  

t(84) = -2.893, p = .005. The difference in rate of closed-class words approached significance,  

t(83.996) = 1.87, p = .065; d = .46, r = .22. 

3.2.2 Within-group analysis: Controls 

We next looked at relationships between general production measurements in controls, starting with 

the non-linguistic measures of age, MMSE score and years of formal education. There was a significant 

relationship between age and MMSE scores, as older speakers tended to have lower scores, τ = -.269, 

p = .039. A positive correlation between MMSE scores and years of formal education showed a trend 

towards significance, τ = .232, p = .091. 

We then investigated word count, the rate of closed-class words, the inflection rate, semantic errors, 

syntactic errors, and the proportion of words in trigrams as a measure of connected speech. An 

increase in number of words produced was associated with a higher rate of closed-class words,  

τ = .426, p < .001, a smaller inflection rate, τ = -.51, p < .001, and more connected speech, τ = .319,  
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p = .005. Speakers with more connected speech produced more closed-class words, τ = .367, p = .001, 

and fewer inflections, τ = -.341, p=.003. Speakers who produced a higher rate of closed-class words 

also had a lower inflection rate, τ = -.324, p = .004. Neither the proportion of syntactic nor of semantic 

errors correlated with other measures. 

Only the number of words produced correlated with non-linguistic scores. Participants who produced 

more words tended to have higher MMSE scores, τ = .262, p = .043, and more years of formal 

education, τ = .252, p = .038. 

3.2.3 Within-group analysis: People with probable AD 

We followed the same analysis procedure as with the control group. However, we replaced age by the 

clinically more relevant variables onset age and time post-onset. Participants with more years of 

formal education tended to have a lower onset age, τ = -.246, p = .022. MMSE scores correlated with 

none of these values. 

We then correlated the numbers of words produced, proportions of closed-class words and inflected 

words, and degree of connected speech. Speakers who produced more words produced more 

connected speech, τ = .294, p = .003, a higher rate of closed-class words, τ = .369, p < .001 and a 

smaller inflection rate, τ = -.36, p < .001. Rate of closed-class words was negatively correlated with 

inflection rate, τ = -.224, p = .025. Speakers who produced proportionally more syntactic errors 

produced more semantic errors, τ = .29, p = .012 and less connected speech, τ = -.21, p = .044. Of all 

these variables, only the syntactic error rate correlated with MMSE scores, as speakers with lower 

scores produced more errors, τ = -.256, p = .008. Syntactic errors also correlated positively with onset 

age, τ = .278, p = .008, and negatively with education, τ = -.238, p = .045. 

3.2.4 Interim discussion 

General production measurements can distinguish AD and control groups. Starting with the strongest 

variable, people with AD have less connected speech, make more semantic errors, use more closed-
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class words, make more syntactic errors and produce fewer inflected word forms. The data show 

strong correlations between variables. Some of these relationships are conceptual: Since verbs and 

nouns are usually modified by inflections, the negative correlation between inflection and rate of 

closed-class words is expected. Similarly, higher verbal responsiveness is associated with increased 

connectivity in speech. In controls, poorer cognitive capacity as measured by the MMSE was 

associated with a lower verbal responsiveness. In the AD group, poorer cognitive capacity was 

associated with a higher number of syntactic errors. Speakers with later symptom-onset made more 

syntactic errors. This may suggest that syntactic errors are a marker for onset age. However, onset 

age was also negatively correlated with education, which is consistent with findings that suggest 

earlier onset and faster decline in people of higher educational status [58,59], but at odds with 

“cognitive reserve” hypotheses which predict later onset as the result of increased education [e.g., 

60]. Strikingly, none of the general production measures correlated with time post-onset. 

3.3 Frequency-based measurements 

3.3.1 Floor effects in n-gram frequency distributions 

We found that a proportion of bigrams and trigrams produced during Cookie Theft descriptions do 

not occur in the spoken BNC. The FLAT assigns these n-grams a frequency of 1 (due to additive 

smoothing, see above). This floor effect has consequences for the analysis. N-grams which do not 

appear in the spoken BNC can still differ substantially in how often they occur in natural language use, 

and our analysis would not be able to capture these differences. Further, t-scores as an indicator of 

formulaicity of word combinations are confounded if n-grams do not occur in the BNC, since in such 

cases they are solely determined by the frequency of individual words within the n-gram. Of two n-

grams which do not occur in the reference corpus, the one that contains words with lower frequency 

has a higher t-score. 

Of 7963 words analyzed in this study, 7940 occur in the spoken BNC (99.7%). Of the 6837 bigrams 

included, 6261 occur in the BNC (91.6%). Of 5807 trigrams included, 3400 occur in the BNC (58.6%). 
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As a consequence, we used a cutoff and included only n-grams which occur in the BNC. At the same 

time, we used the size of the floor effect in each individual as an additional indicator of formulaicity. 

Samples which contain more grammatical combinations that occur in the BNC can be considered more 

formulaic. We therefore calculated the proportion of bigrams and trigrams that occur in the BNC 

(“biBNC rate; “triBNC rate”). The variables capture the size of the floor effect for each individual 

sample. We associated a higher proportion of n-grams that occur in the BNC with a higher degree of 

formulaicity. 

3.3.2 Between-group comparisons 

Mean word frequency was 10850 (SD = 1557) for controls and 11003 (SD = 1493) for the AD group. 

The difference was not significant, U = 930, p = .876; r = .02. Of all bigrams produced by controls, 90% 

(SD = 6) occur in the spoken BNC. For the AD group, the proportion was 92% (SD = 4). This difference 

approached significance, U = 715.5, p = .087, r = -.18. The average bigram frequency was 324 (SD = 89) 

for the control group and 375 (SD = 131) for the AD group. The difference was significant,  

t(82.22) = 2.144, p = .035; d = .57, r = .27. Average bigram t-score was 22.01 (SD = 5.03) for controls 

and 25.92 (SD = 6.59) for the AD group. The difference was significant, t(84) = 3.02, p = .003; d = .78, 

r = .36. 

Of the trigrams produced by controls, 52% (SD = 9) occur in the spoken BNC. That proportion was 60% 

(SD = 10) for the AD group. The difference was significant, U = 517.5, p = .001, r = -.37. The average 

trigram frequency was 30 (SD = 32) for the control group, and 34 (SD = 32) for the AD group. The 

difference was not significant, U = 782, p = .258; r = -.12. The average trigram t-score was 7.76 for the 

control group (SD = 3.19) and 9.08 (SD = 3.6) for the AD group. The difference approached significance, 

U = 700.5, p = .066; r = -.2. 

After residualizating over age and education, differences in proportions of biBNC, t(83.689) = 2.382,  

p = .02; d = .6, r = .29, and proportions of triBNC, t(84) = 3.367, p = .001;  d = .79, r = .37 were significant. 
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The difference between mean bigram t-scores approached significance, t(84) = 1.934, p = .056;  

d = .44, r = .21. 

3.3.3 Within-group analysis: Controls 

We compared frequency-based variables, namely word frequency, n-gram frequencies and t-scores, 

with other language related variables. We assumed that comparisons with bigram and trigram 

variables test hypotheses regarding the relationship between co-occurrence values and other areas. 

Since we chose six variables for these comparisons, a Bonferroni adjusted significance threshold would 

be p=.008 (however, see above for our reservations because of the close relationship between 

variables). 

 Controls who produced more words had higher co-occurrence values. Number of words 

correlated with bigram t-scores, τ = .290, p = .011, and triBNC rate, τ = .415, p < .001. 

 Higher rate of closed-class words also correlated positively with co-occurrence values, namely 

trigram frequency, τ = 25, p = .028, trigram t-scores, τ = .286, p = .012, and triBNC rate,  

τ = .286, p = .012. 

 Inflection rate correlated negatively with co-occurrence values, in particular bigram 

frequency, τ = -.309, p = .006, bigram t-scores, τ = -.255, p = .024, biBNC rate, τ = -.253, 

p = .026, and triBNC rate, τ = -.345, p = .002. 

 Speakers whose speech was more connected had higher co-occurrence values. Connected 

speech correlated with triBNC rate, τ = .325, p = .004. 

 Proportion of syntactic and semantic errors correlated with none of the co-occurrence values 

variables. 

We finally correlated corpus-based variables with age, years of formal education and MMSE scores. 

For MMSE scores, previous research suggests a negative correlation with co-occurrence values, and 
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we therefore calculated one-tailed correlations. However, there were no strong or significant 

correlations in neurotypical controls. 

3.3.4 Within-group analysis: People with probable AD 

We started by examining the relationship between frequency-based variables and other language 

variables. 

 Speakers who produced more words had higher co-occurrence values, in particular trigram 

frequency, τ = .238, p = .017, trigram t-scores, τ = .251, p = .012, and triBNC proportion,  

τ = .249, p = .013. 

 Rate of closed-class words was also associated with higher co-occurrence values, namely 

bigram frequency, r = .541, p < .001, bigram t-scores, r = .579, p < .001, trigram frequency, τ = 

.388, p < .001, trigram t-scores, r = .589, p < .001, biBNC rate, r = .389, p = .006, and triBNC 

rate, τ = .357, p < .001. 

 Inflection rate was lower in speakers with higher co-occurrence values. Inflected words 

correlated with bigram frequency, τ = -.219, p = .028, bigram t-scores, τ = -.209, p = .036, 

trigram frequency, τ = -.271, p = .007, trigram t-scores, τ = -.272, p = .006, and triBNC rate, τ = 

-.234, p = .019. 

 Connected speech and proportion of errors did not correlate with co-occurrence values. 

We then correlated frequency-based variables with years of formal education, onset age, MMSE 

scores and time post-onset. Note that based on the literature we hypothesized negative correlations 

between co-occurrence and MMSE measures, and positive correlations between co-occurrence values 

and time post-onset, and we therefore used one-tailed correlations for these comparisons. Years of 

formal education correlated with one variable, biBNC rate, τ = .244, p = .021. Onset age correlated 

with none of the variables. Speakers with lower MMSE scores displayed higher co-occurrence values. 

MMSE scores correlated with bigram frequency, τ = -.225, p = .014, and trigram frequency, τ = -.194, 
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p = .03. The relationship with trigram t-scores was at the significance threshold, τ = -.168, p = .051. 

Time post-onset correlated with bigram frequency, r = .254, p = .04, and bigram t-scores, r = .384,  

p = .003 (Figure 1.). 

 

Figure 1. Correlation between bigram t-scores and estimated years post symptom-onset in people 

diagnosed with AD. Control mean and SD displayed for comparison. 
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3.3.5 Interim discussion 

 

Frequency-based variables could also distinguish between controls and AD groups. Compared to 

general production measurements, the predictive power of these variables was not as strong as that 

of speech connectivity, but similar to the rate of semantic errors. Higher co-occurrence values were 

associated with higher verbal responsiveness, a higher rate of closed-class words, a lower rate of 

inflected words, and only in the control group, more connected output. In the AD group, lower MMSE 

scores were associated with higher co-occurrence values. Of all language variables used in this study, 

co-occurrence variables were the only that correlated with time post-onset. 

 

3.4 Models of language in AD 

The final step in our analysis was to determine the degree to which language output, as elicited via 

Cookie Theft descriptions, could predict categorization into AD and control groups, as well as MMSE 

scores, onset age and time post-onset within the AD group. Given the high intercorrelational 

relationships between variables, we were particularly interested in whether frequency-based 

variables add predictive power if used together with the other variables. We chose all non-frequency-

based variables (word count, connectivity, rate of closed-class words, inflection rate, proportion of 

semantic and syntactic errors) as a baseline for comparison against models which added the variables 

extracted from the BNC. For frequency-based variables, we selected word frequency, and for bi- and 

trigrams, t-scores over raw frequencies given the greater independence of t-scores from word 

frequency. We therefore generated five variable sets: 

A. Word count, Connectivity, Rate of closed-class words, Inflection rate, Semantic error rate and 

Syntactic error rate 

B. Set A, Word frequency, bigram t-scores and BiBNC rate 
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C. Set A, Word frequency, trigram t-scores and TriBNC rate 

We ranked the values across both groups for between-group comparisons, and within the AD group 

for investigating MMSE, onset age and time post-onset. Educational status correlated with onset age. 

To avoid potential confound we residualized onset age over years of formal education and used the 

residuals in our models.  

We used logistic regressions to see how the variable sets predict categorization into the two speaker 

groups. When all variables were entered, variables of Set A distinguished between people with 

probable AD and controls, ꭓ2 = 45.896, p < .001, df = 6. Nagelkerke’s R2 of .554 indicated a moderately 

strong relationship between predictors and grouping. Three of the variables in the set contributed to 

the model at significant levels (starting with the strongest predictor): Connectivity, Wald = 12.337,  

p < .001, Rate of closed-class words, Wald = 9.329, p = .002, and Semantic error rate, Wald = 4.563,  

p = .033. A forward conditional model, which starts with the strongest predictor and only adds new 

predictors if they significantly improve the model, included only these three variables. This reduced 

model predicted grouping with very similar strength, ꭓ2 = 42.713, p < .001, df = 3,  

Nagelkerke’s R2 = .524. 

In Set B, frequency variables made no contribution, and conditional models selected the same three 

variables as in Set A. Set C however showed a small, but significant contribution of TriBNC rate. The 

full model showed a strong relationship between predictors and grouping, ꭓ2 = 55.102, p < .001,  

df = 8, Nagelkerke’s R2 = .634. Two variables significantly contributed to the model: Connectivity, Wald 

= 11.661, p < .001, and TriBNC rate, Wald = 7.51, p = .006. Semantic error rate approached significance, 

Wald = 3.534, p = .06, as did Rate of closed-class words, Wald = 3.265, p = .071. A forward conditional 

model selected these four variables and showed a strong relationship between predictors and 

grouping, ꭓ2 = 51.851, p < .001, df = 4, Nagelkerke’s R2 = .606. 



27 
 

None of the variable sets predicted MMSE at significant levels. In linear regression models, only Set C 

showed a trend, F(8, 39) = 1.828, p = .095, R2 = .302. Trigram t-scores made a contribution approaching 

significance, β = -.032, p = .082. All stepwise models selected a single variable, Syntactic error rate. 

The model made a weak, but significant prediction, F(1, 46) = 6.45, p = .015, R2 = .123. 

Equally, Onset age (residualized over education) was predicted best by Syntactic error rate. Set A was 

the best combined model, but did not reach significance, F(6, 41) = 2.182, p = .064, R2 = .242. Syntactic 

error rate made the only significant contribution, β = .404, p = .011, while the contribution of Inflection 

rate approached significance, β = .314, p = .063. For all sets, stepwise models selected Syntactic error 

rate only, F(1, 46) = 5.282, p = .026, R2 = .103. 

With regards to years post-onset, co-occurrence values variables made moderate and significant 

contributions when predicting estimated years post-onset for the AD group. Set A was weak, F(6, 41) 

= 1.445, p = .22, R2 = .175. The contribution of Rate of closed-class words approached significance, β 

= .306, p = .078. The stepwise model selected none of the variables. Set B significantly predicted time 

post-onset, F(8, 39) = 2.305, p = 0.35, R2 = .353. Bigram t-scores was the only variable which made a 

significant contribution, β = .416, p = .021. A stepwise model made significant predictions,  

F(3, 44) = 6.066, p = .002, R2 = .293, and selected three variables: Bigram t-scores, β = .456, p = .001, 

Syntactic error rate, β = -.288, p = .03, and BiBNC rate, β=-.276, p = .036. Trigram data were weaker. 

Set C was not significant, F(8, 39) = 1.352, p = .244, R2 = .244. Only the contribution of Trigram t-scores 

approached significance, β = .331, p = .083. For the latter two sets, stepwise regressions selected none 

of the variables. 

 

Discussion 

This study presents a first foray into investigating language in AD using variables based on frequency 

of use. Previous reports suggest that people with AD show increased use of formulas [40,44]. We 
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aimed to establish whether frequency and collocation strength of word combinations can help 

distinguish healthy speakers from speakers with a diagnosis of AD, and track disease progression in 

pathological groups. We applied the FLAT, an automated tool which determines frequency and related 

variables for word bigrams and trigrams by data mining the spoken portion of the BNC. It is an 

approach which is fast, blind, but solely focuses on frequency, not function. Using correlations and 

regression models, we explored the relationship between co-occurrence variables and other language 

variables and the contribution of adding the former to a language model of AD. 

Our investigation of data from DementiaBank’s Pitt Corpus, comprising Cookie Theft picture 

descriptions, showed that a range of usage-based variables can distinguish between AD and healthy 

language, after accounting for differences in age and educational status. These variables also 

correlated with MMSE scores in the patient group. Notably, only co-occurrence values were correlated 

with estimated time post-symptom onset. Word frequency, on the other hand, showed no predictive 

strength in our data set. It may be a limitation of the Cookie Theft elicitation task that it narrows lexical 

breadth by requiring description of one particular picture. Of the closely related frequency-based 

variables we tested, bigram t-scores in particular seemed to offer the most sensitivity. However, there 

is some evidence that determining the proportion of trigrams that were below our cutoff can add 

predictive power. 

It would seem plausible that data from larger word combinations (e.g., tetragrams) would be more 

powerful. However, increasing n-gram length comes with a decrease in raw frequency, contributing 

to a floor effect in which a proportion of n-grams do not occur in the BNC at all. This results in a loss 

of information that becomes apparent when comparing bigram to trigram data in our study. Trigram 

data was generally a weaker predictor, likely because of the bigger floor effect. 

In relation even to the most effective co-occurrence values variables, other language variables can be 

better predictors for some comparisons. In group distinctions, connectivity of output and semantic 

errors showed greater effect sizes. Lower connectivity can be related to difficulties in word retrieval, 
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resulting in false starts and unfinished utterances, or structural simplification of output. However, the 

biggest predictor for AD diagnosis was not a language variable, but MMSE scores. This is no surprise 

since MMSE or similar tests are a crucial diagnostic measure, and our study contrasted heterogeneous 

MMSE performances in the AD group with data from healthy controls who typically score at ceiling. 

However, MMSE performance showed no sensitivity to disease progression as measured by time post-

onset. 

In regression models distinguishing AD and controls, connectivity, closed-class words and semantic 

errors were clearly the best predictors. Trigram data made a smaller, but significant contribution by 

additionally explaining about 8% of the distribution. As predictors for MMSE, syntactic error rate was 

the only, but only weak, predictor. Similarly, syntactic errors were the sole, and weak, predictor for 

onset-age (with educational status accounted for). For time post-onset, bigram data were the best 

predictor. A model which contained them and syntactic error rate displayed a moderate relationship. 

A cautious conclusion on the basis of this first exploration would be that errors and connectivity are 

more clearly mapped to the large cognitive differences that distinguish the two groups, or the 

substantial changes that are associated with decreasing MMSE scores. Co-occurrence values variables, 

on the other hand, represent a more fine-grained scale with potential to track subtle language change, 

and may be best suited to track the often slow cognitive changes that occur during the prodromal 

period, with increasing time post-onset or through intervention. 

To test the power of these variables, we allowed the models to directly compete with the other 

language variables. As stated in the introduction, this competition can be unjustified if one adopts 

holistic language models. Closed-class words in particular are often part of formulas or formulaic 

frames [52]. For instance, the sentence “I don’t know” consists mostly of function words. The strong 

relationship between frequency-based variables and rate of closed-class words is likely a result of this 

relationship. 



30 
 

The FLAT is work in progress and we are exploring ways to improve it. The issue of longer n-grams 

being less effective may be resolved by either increasing the size of individual samples or of the 

reference corpus. Using the complete BNC with 100 million words instead of the spoken subcorpus 

with 10 million may be an improvement despite the resulting dominance of written text. However, 

this tenfold increase would overload computational resources, and analysis would become much 

slower. This would act against our aim of turning the FLAT into an easily used resource (although 

computational power will increase with time as technology improves). 

FLAT analyses are solely based on frequency, and not on function. Including parts-of-speech 

information (i.e., grammatical classes) and sentence types may start to close the gap between our 

current work and traditional analyses, but ultimately, a full account of formulaicity in language has to 

include an analysis of meaning. At the same time we recommend excluding some variables in the 

future in order to simplify the model. Based on our data, inflection rate may be irrelevant at least for 

investigations of language in AD. 

Our results strongly support the view that formulaicity increases as the result of AD. Classic 

generativist models [61,62] do not take usage variables such as frequency into account and therefore 

cannot integrate our results without postulating additional systems. Formulaicity fits to connectionist 

frameworks [63] which regard grammatical processing as connections between lexical “nodes” which 

can excite and inhibit each other. These models are very dynamic and change their weights with every 

exposure to language, strengthening connections if they are more frequently needed. Connectionist 

models predict that more strongly collocated combinations become easier to process, even if they are 

of the same structural category (e.g., transitive actives). 

However, connectionist models are only weakly holistic since they commonly have, at their basis, a 

layer in which every morpheme is represented as a single unit. Another usage-based approach,  

construction grammar, has been proposed most prominently by Goldberg [64,65] and Tomasello [30]. 

Construction grammar predicts that word combinations can be completely lexicalized and treated like 
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a single word. This can be the result of early exposure during acquisition, or frequent use over the 

lifespan. Phonetic data, especially on contractions (e.g., “wanna”, “gonna”, “I dunno”), support this 

notion [11]. Lexicalized (or “fossilized”) expressions may not involve any combinatorial processes. 

These two phenomena – overlearned combinations vs. complete lexicalizations – are fundamentally 

different, but not exclusive. It is possible that some formulas are the result of strengthened 

connections, and others are represented as single lexical unit. It is also possible that some formulas 

can be processed as both simultaneously: “I don’t know” may be fully lexicalized, but our language 

system can still analyze its constituents. On this issue there is only little empirical work [see 66, for a 

review]. 

Similarly, the nature of formulaicity in AD remains to be explained. According to Ullman’s [67,68] 

declarative/procedural model of language, stored elements such as words and functional morphemes 

fall under declarative memory, while word combinations (grammar) are procedural. AD is commonly 

described as a breakdown of declarative memory, and Bridges and van Lancker Sidtis [44] see formulas 

as procedural, habitual combinations. They liken the preservation of formulas in AD to the retained 

ability to play a musical instrument or card game. We note however that the declarative/procedural 

model of language was created to accommodate a words and rules approach. Combinatorial processes 

do not only require procedural memory, but also demand integration with declarative memory, since 

each word and morpheme needs to be retrieved from the mental lexicon. 

A solution may be to focus on the declarative aspect of word combinations as well as on possible 

lexicalization. Ullman [68] speculates that phrases and sentences are stored in the lexicon. If more 

frequent combinations are more strongly anchored within declarative memory than less frequent 

combinations, impairment of declarative memory would result in production of more frequent 

utterances. At the same time, production of novel utterances would be constrained by difficulties 

accessing multiple words and functional morphemes. Generally, work on holistic language processing 

in other areas such as language acquisition has challenged the words vs. rules dichotomy. Instead, 
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some see language as involving a lexicon-syntax continuum [1,64] that may ultimately  challenge a 

strict binary notion of declarative vs. procedural processing  for explaining pathologies. 

Our research program sees considerable potential in automatic, or semi-automated language analysis 

in diagnosis and classification, and such analyses, using very different approaches, are being 

implemented in dementias [27,69], schizophrenia [70], and language acquisition [71]. Our study 

demonstrates how formulaic language can be analyzed quickly and blindly using frequency and 

frequency-based variables, and suggests that addition of these variables can aid identification and 

tracking of dementia even on the basis of small individual samples. Like other approaches to automatic 

analysis and classification, our results are in need of replication. In particular, we are interested in 

looking at longitudinal samples instead of making use of within-group differences in cross-sectional 

samples. Such validation is crucial especially given that the variables of estimated onset age and 

symptom onset may be confounded by individual’s abilities to detect change in behavior, and their 

willingness to seek medical advice. While the Pitt Corpus contains follow-up measurements, drop-out 

rates are high and a follow-up based on our initial selection criteria lacks sufficient power. Groups 

could be expanded by adding participants with additional diagnoses (such as depression). Such a step 

would approach the complexity of clinical reality, but also complicate statistical models beyond what 

we considered useful for the current study. However, on the basis of our results we believe that with 

increasing understanding of formulaicity variables, research into language formulas can make a 

substantial contribution to diagnosis and monitoring of dementia. 
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Appendix A. Correlations between BNC-extracted frequency variables. 
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p = .743 
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