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Abstract 
Background: Observational studies have reported a positive association between body mass index 

(BMI) and ovarian cancer risk. However, questions remain as to whether this represents a causal 

effect, or holds for all histologic subtypes. The lack of association observed for serous cancers may for 

instance be due to disease-associated weight loss. Mendelian randomization (MR) uses genetic 

markers as proxies for risk factors to overcome limitations of observational studies. We used MR to 

elucidate the relationship between BMI and ovarian cancer, hypothesising that genetically-predicted 

BMI would be associated with increased risk of non-high grade serous ovarian cancers (non-HGSC) 

but not HGSC. 

Methods: We pooled data from 39 studies (14 047 cases, 23 003 controls) in the Ovarian Cancer 

Association Consortium. We constructed a weighted genetic risk score (GRS, partial F-statistic=172) 

summing alleles at 87 single nucleotide polymorphisms previously associated with BMI, weighting by 

their published strength of association with BMI. Applying two-stage predictor-substitution MR, we 

used logistic regression to estimate study-specific odds ratios (OR) and 95% confidence intervals (CI) 

for the association between genetically-predicted BMI and risk, and pooled these using random-effects 

meta-analysis.  

Results: Higher genetically-predicted BMI was associated with increased risk of non-HGSC (pooled-

OR=1.29, 95%CI 1.03-1.61 per 5 units BMI) but not HGSC (pooled-OR=1.06, 95%CI 0.88-1.27). 

Secondary analyses stratified by behaviour/subtype suggested that, consistent with observational data, 

the association was strongest for low-grade/borderline serous cancers (OR=1.93, 95%CI 1.33-2.81). 

Conclusions: Our data suggest that higher BMI increases risk of non-HGSC, but not the more 

common and aggressive HGSC subtype, confirming the observational evidence. 

KEY WORDS (MEDICAL SUBJECT HEADINGS): Body mass index; Obesity; Ovarian 

neoplasms; Mendelian randomization analysis.  
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• Key Messages 
• Observational studies had reported a positive association between BMI and overall risk of ovarian 

cancer, but it was unclear whether the observed differences by subtype—no association for serous 

cancers but an association for the other subtypes—were meaningful, and whether the observed 

associations represent a causal effect. 

• We used Mendelian randomization to clarify the relationship between BMI and risk of ovarian 

cancer. 

• Our study provides the clearest evidence to date that obesity increases risk of non-high grade 

serous ovarian cancer (non-HGSC) for women of European ancestry. 

• Our results also support the absence of a relationship between BMI and risk of the more 

aggressive high-grade serous ovarian cancers (HGSC), confirming evidence from previous 

observational studies. 

• This study confirms the clinical relevance of elevated BMI to risk of some subtypes of ovarian 

cancer, thus interventions to reduce obesity may alleviate the worldwide burden from non-HGSC. 
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Introduction 
Observational studies including two recent large pooled analyses have reported a positive association 

between body mass index (BMI) and risk of ovarian cancer.1,2 In both, the association was observed 

only for non-serous cancers. However, although the subtype-specific estimates reported by the two 

pooled analyses were very similar,1,2 the authors reached different conclusions about whether the 

differences by subtype were meaningful. Potentially, the lack of association seen for invasive serous 

ovarian cancer, the most aggressive subtype accounting for 62% of adenocarcinomas,3 could result 

from reverse causality because of disease-associated weight loss before diagnosis. Furthermore, given 

the potential for biases and confounding in observational studies, the observed association with non-

serous ovarian cancer might not reflect a causal effect. Mendelian randomization (MR) has the 

potential to overcome these limitations by using genetic markers as proxies (instrumental variables 

[IVs]) for conventionally-measured traits in observational studies.4 We used MR to clarify the 

relationship between BMI and risk of ovarian cancer, using data from the international Ovarian Cancer 

Association Consortium (OCAC). Based on existing data and the current understanding that low- and 

high-grade serous ovarian cancers (HGSC) represent distinct entities,5 our a priori hypothesis was that 

genetically-predicted BMI would be associated with increased risk of non-HGSC but not HGSC.  

Methods 

Study population and data available 
We pooled data from 39 OCAC studies6 which included 14 047 cases and 23 003 controls, all of 

whom had >90% European ancestry and were genotyped via the Collaborative Oncological Gene-

Environment Study.7 Twenty-two studies were population-based and 17 were clinic- or family 

registry-based. Nine case-only studies were grouped with case-control studies in the same region 

(Table 1; Supplementary Table S1). Cases included women with primary ovarian, fallopian tube or 

peritoneal cancer. All studies provided demographic data and tumour characteristics (site, behaviour, 

grade, FIGO (Fédération Internationale de Gynécologie Obstétrique)/SEER (Surveillance, 

Epidemiology and End Results program) stage, and histology). A subset provided lifestyle data for 

>50% of their participants, including usual weight one or five years before diagnosis (cases) or 

interview (controls), adult height, parity, oral contraceptive (OC) use, family history of cancer, 

education, smoking, menopausal status, and hormone replacement therapy (HRT) use. 

(Table 1 here) 
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Outcome variables 
For primary analysis, we classified cases as invasive HGSC, invasive non-HGSC, and borderline (low 

malignant potential). The HGSC group (n=7933) included all invasive serous cancers except low-

grade (G1) (n=469). We classified invasive serous cancers of unknown grade (n=1452) and primary 

peritoneal cancers of unknown behaviour (n=44) as HGSC because in both instances the majority 

would be HGSC. The non-HGSC-group (n=4434) included G1 serous cancers and all invasive 

mucinous, endometrioid, and clear cell cancers. The third group included borderline tumours (n=1680) 

of any histology. 

For secondary analysis by cancer site, we subdivided HGSC into ovarian/fallopian tube and primary 

peritoneal cancers. Two studies (AUS, SRO), where <20% of women with peritoneal tumours were 

genotyped, were excluded from peritoneal analyses. For secondary analysis by histologic 

subtype/behaviour, we divided the non-HGSC and borderline groups into four sub-categories: invasive 

low-grade and borderline serous cancers; invasive and borderline mucinous cancers; invasive 

endometrioid cancers; and invasive clear cell carcinomas.  

Genetic risk score 
Samples were genotyped using a custom-designed Illumina genotyping array (iCOGS) comprising 

over 200 000 single nucleotide polymorphisms (SNPs).7 Genotyped SNPs that were not in Hardy-

Weinberg equilibrium, or with discordant duplicate samples or call rates <95 or 99% (depending on 

SNP minor allele frequencies [MAF]), were excluded.7 Approximately fifteen million additional SNPs 

were imputed from measured genotypes using 1000 Genome Project data.7,8 

We used 87 of 97 loci reported to be associated with BMI in a meta-analysis of genome-wide 

association studies conducted by the Genetic Investigation of ANthropometric Traits (GIANT) 

Consortium (Supplementary Table S2).9 We excluded three loci which were associated with BMI only 

among men in the GIANT analysis, and seven loci where the GIANT SNP was not genotyped on 

iCOGS, and was imputed with a quality score (estimated correlation between imputed and true 

genotype, r2) of <0.6 in our data. Overall, 12 selected SNPs were genotyped and 75 imputed. We used 

imputed genotype probabilities where genotyped values were missing (<0.7%, all genotyped SNPs). 

We constructed a weighted genetic risk score (GRS) for BMI by summing alleles associated with 

higher BMI across the 87 SNPs, assuming additive effects based on evidence from GIANT.9 We 

weighted alleles by β-coefficients for their association with BMI reported by GIANT investigators. All 

MAFs were >5% in controls (except for two SNPs with MAFs of 4.7% and 2.8%), and were consistent 

with GIANT data. 
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Statistical analysis 
We examined associations between the GRS and potential confounders of the BMI-ovarian cancer 

relationship using chi-square statistics or analysis of variance, stratified by study. In a two-stage 

predictor-substitution MR approach using individual-level data,10,11 we used multivariable logistic 

regression to model case-control status on BMI predicted by the GRS within each study. First, we 

predicted BMI from the GRS by using linear regression in 10 085 controls from 16 studies with BMI 

data available for >50% of women. The model regressed BMI on the GRS, adjusting for age and the 

first five principal components from a principal-components analysis in European-ancestry OCAC 

participants.7 We applied the results of this model to predict BMI from the GRS for the whole study 

population (14 047 cases and 23 003 controls). In the second stage, we used logistic regression to 

determine the association between case-control status and this genetically-predicted BMI, adjusted for 

age and the principal components. As MR is relatively new with multiple approaches proposed, we 

also tested alternative methods including the control function estimator (adjusting for residual 

variation in BMI not predicted by the GRS),10,12 the sub-sample estimator,13 and inverse-variance 

weighted and likelihood-based MR (combining summary data across SNPs).14 The resulting odds 

ratios (ORs) and 95% confidence intervals (CI) were very similar to those from our primary analysis, 

and so are not reported here. The robust standard errors obtained using seemingly unrelated regression 

and the delta method13 were identical to those estimated in our primary analysis. 

For the primary analyses, study-specific IV-estimates per 5-unit increase in genetically-predicted BMI 

were pooled to generate odds ratios (pOR) and 95%CI using random-effects meta-analysis.15,16 We 

also compared HGSC and non-HGSC directly in a single pooled model comparing HGSC vs. non-

HGSC cases, stratified by study. We examined inter-study heterogeneity of the association between 

the GRS and ovarian cancer risk by inspecting Cochran’s I2 and p-values for heterogeneity.17 

We conducted sensitivity analyses including: removing two studies where MAFs for 27 or more SNPs 

(>30%) exceeded two standard deviations from the mean; restricting the GRS to 56 SNPs with 

imputation quality scores ≥0.9; using a single-SNP instrument in the locus explaining most variation 

(FTO); and weighting the GRS using published β-coefficients for SNP associations with BMI in 

women.9 We also conducted MR-Egger regression18 to assess the robustness of our findings to 

pleiotropy. 

Secondary analyses by tumour site and behaviour/histology were conducted using single models 

stratified by study, to maximise power. Similarly, we explored whether menopausal status or HRT use 

modified the relationship by conducting stratified models (women grouped as: pre-/peri-menopausal; 

postmenopausal without HRT; postmenopausal with HRT). Information on menopausal status and 

HRT use was available for 21 938 women (59.2%) from 19 studies. Among 16 studies with BMI and 

confounder data, we conducted traditional epidemiologic analysis modelling case-control status on 
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BMI, adjusted for age, parity, OC use, HRT use, and family history of ovarian or breast cancer, 

stratified by study, for comparison with IV-estimates among the same women. 

Analyses were conducted using SAS9.2 (SAS Institute Inc., Cary, NC) and STATA13.0 (StataCorp 

LP, College Station, TX) software. This analysis and each contributing study received approval from 

the appropriate institutional review board or equivalent committee. All participants provided written 

informed consent. 

Results 

Population characteristics 
The 39 studies were conducted in Europe, North America, and Australia (Table 1) and included 

12 367 women with invasive cancer, 1680 with borderline tumours (from 20 studies), and 23 003 

control women. The median diagnosis year was 2003, with 74.4% of cases diagnosed after 2000. 

Participants were aged between 18 and 92 (median 57) years. Median BMI ranged from 23.6 to 27.4 

kg/m2 across 16 studies with these data, and was 25.0 (interquartile range 22.3-29.1) kg/m2 for 

controls and 25.4 (22.4-29.8) kg/m2 for cases (p<0.001). Mean age varied by histologic subtype: 

women with HGSC were older, and women with low-grade or borderline serous cancers younger, than 

controls (Supplementary Table S3). Compared with controls, a higher proportion of cases (all subtypes 

combined) was obese (BMI>30kg/m2, p<0.001). 

Characteristics of the genetic risk score 
The GRS was normally distributed among OCAC controls. GRS values ranged from 9.11 to 15.88 

(median 12.62; interquartile range 12.01-13.23). Alone, the GRS explained 1.6% of variance in BMI 

among OCAC controls. After adjusting for age and principal components, the GRS explained 3.0% 

(partial R2=1.7%) (first-stage regression partial F-statistic=172.0, p<0.001). A 1-unit increase in GRS 

was associated with a 0.8 kg/m2 increase in BMI. Average BMI was 1.9 kg/m2 higher in the highest 

GRS quartile than the lowest.  

There was no evidence of inter-study heterogeneity (I2=32%, p-heterogeneity=0.11) in the relationship 

between the 87-SNP GRS and BMI among controls, nor for the simplified 56-SNP (I2=28%, p-

heterogeneity=0.14) GRS, or FTO (I2=21%, p-heterogeneity=0.22) (Supplementary Figure S1). While 

BMI was associated with potential confounders of the BMI-ovarian cancer association (including 

parity, OC use, and menopausal status, all p<0.001), the GRS was not (all p>0.10) (Supplementary 

Table S4). We also saw no substantial variation in GRS values by levels of potential confounders 

within individual studies. 



FINAL VERSION ACCEPTED IJE 8 April, 2016 

10 
 

The ORs (95%CI) for ovarian cancer per 1-unit increase in the GRS were 1.04 (1.01-1.08) for non-

HGSC, 1.01 (0.98-1.04) for HGSC, and 1.05 (0.99-1.11) for borderline tumours. 

Association between genetically-predicted BMI and primary outcomes 
Higher genetically-predicted BMI was associated with increased risk of non-HGSC (pOR=1.29, 

95%CI 1.03-1.61 per 5-unit predicted-BMI increase) but not HGSC (pOR=1.06, 95%CI 0.88-1.27) 

(Figure 1A and B; Table 2). The same pattern was seen for the simplified GRS comprising 56 SNPs 

(pOR=1.33 vs. 1.10 for non-HGSC and HGSC, respectively), and for FTO (pOR=1.51 vs. 0.88). Tests 

for heterogeneity between HGSC and non-HGSC gave p=0.24 and p=0.23 using the 87- and 56-SNP 

GRSs, respectively, and p=0.046 when we predicted BMI from FTO alone. The pooled-OR for 

borderline tumours was 1.28 (95%CI 0.86-1.90) (Figure 1C; Table 2). 

(Table 2 here) 

There was little evidence of inter-study heterogeneity in the association between genetically-predicted 

BMI and ovarian cancer risk (Figure 1A, B, C). Results were similar when we used female-specific 

weights (β-coefficients) published by GIANT,9 when we removed two SNPs with MAF <5%, and 

when we excluded two studies (HMO, HOC) with extreme MAFs for ≥27 SNPs. The association 

between BMI and non-HGSC, but not HGSC, was seen when we excluded family registry-based 

studies or case-only studies. Excluding eight studies with tumour grade unknown for >50% of invasive 

serous cases made little difference to HGSC results (pOR=1.04, 95%CI 0.86-1.27). The results from 

an MR-Egger test suggested no bias from pleiotropy (p=0.9 and p=0.2 comparing traditional MR and 

MR-Egger results for HGSC and non-HGSC, respectively). 

For women with GRS, BMI, and confounder data, results of the conventional BMI analysis 

(Supplementary Table S5) and IV analysis (Table 2) were similar, although the association with non-

HGSC was weaker (adjusted-OR=1.18, 95%CI 1.13-1.23 per 5 kg/m2) in the former, suggesting the 

true association might be stronger than that seen in conventional epidemiologic analyses. 

Secondary outcomes 
Secondary analyses stratifying HGSC by cancer site and subtype suggested that the lack of association 

with BMI might hold only for HGSC of the ovary and fallopian tube (Table 2). The estimate for 

HGSC of the peritoneum was elevated, but the CI was wide and crossed null (OR=1.77, 95%CI 0.91-

3.43) (Table 2). For non-HGSC sub-categories, the strongest association was seen for invasive low-

grade and borderline serous cancers (OR=1.93, 95%CI 1.33-2.81) and the weakest for endometrioid 

(OR=1.17, 95%CI 0.87-1.59) and mucinous (OR=1.18, 95%CI 0.84-1.67) cancers (Table 2) but the 

relatively small numbers (in the MR context) led to wide and overlapping confidence intervals. 
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The associations with HGSC and non-HGSC did not vary substantially by menopausal status or 

combined menopausal status/HRT use. The association between genetically-predicted BMI and non-

HGSC was slightly stronger for premenopausal women (OR=1.62, 95%CI 0.88-3.01) compared to 

postmenopausal HRT users (OR=1.26, 95%CI 0.57-2.82) and non-users (OR=1.17, 95%CI 0.61-2.24). 

Discussion 
Having established the GRS as an appropriate instrument for BMI in our sample, we used this to 

assess the relationship between BMI and ovarian cancer risk for women of European ancestry. Our 

data suggest a likely causal effect of BMI on risk of non-HGSC, but do not support an association with 

the more common HGSC subtype. Secondary analyses had limited power so CI were wide, however 

they suggested that the association was strongest for low-grade/borderline serous cancers, that higher 

BMI might increase risk of HGSC of the peritoneum, and that the association with non-HGSC might 

be stronger for premenopausal women. 

Ovarian cancer is a heterogeneous disease: the separate histologic subtypes display distinct molecular 

profiles and have different risk factors.19,20 Our primary findings for genetically-predicted BMI are 

consistent with results of the two large pooled analyses (one including 11 OCAC studies)1,2 which 

investigated conventionally-measured BMI and ovarian cancer risk by histologic subtype, although 

our data suggest the association with non-HGSC may be somewhat stronger than previously reported. 

Overall, our results suggest that the previously-reported relationship with non-HGSC is probably not 

due to bias or confounding, and the lack of association with HGSC is unlikely to arise from reverse 

causality. We observed a positive association with BMI and risk of endometrioid tumours of the same 

magnitude (pOR=1.17 per 5 kg/m2) seen in the previous OCAC study,1 but the 95% CI around our 

estimate (0.87-1.59) is wide. Similarly, we observed odds ratios for borderline tumours and for low-

grade/borderline serous cancers which were comparable with findings from the previous OCAC 

study.1 Few studies have investigated an association between BMI and primary peritoneal cancers, but 

if a causal effect exists, rising obesity prevalence would result in increasing incidence of these cancers, 

which has been observed.21 

Obesity has been associated with increased cancer risk at multiple body sites.22 Mechanisms 

hypothesised to explain this involve lipid signalling, inflammatory and adipokine pathways, and 

insulin-like growth factor influencing cell proliferation.23 If adiposity affects ovarian cancer risk via a 

disrupted endocrine environment,23,24 then hormonal levels may modify this risk. Results by 

menopausal status and HRT use from previous studies have been inconsistent. In one pooled analysis, 

the BMI association was restricted to non-users of HRT,2 while another reported that the association 

for non-serous invasive cancers did not differ by menopausal status or HRT use.1 Our findings do not 

resolve this controversy. 
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The advantage of MR is that it allows non-causal explanations that might affect epidemiological 

studies (bias, confounding, and reverse causality) to be excluded, provided several underlying 

assumptions are met.25 We satisfied the first assumption by using SNPs most strongly associated with 

BMI in a large external study, and confirming the association between GRS and BMI in OCAC. The 

F-statistic also exceeded the threshold below which weak-instrument bias is likely.26 To support the 

second MR assumption25 we confirmed that the GRS was not associated with potential confounders of 

the BMI-ovarian cancer association. Our analysis has a number of other strengths. The variance in 

BMI explained by the GRS was consistent with GIANT results,9 and only modest inter-study 

heterogeneity was observed in the association between the GRS and BMI. Our primary results were 

consistent across multiple GRS versions, different sub-groups of the study population, various MR 

methods, and when using female-specific weights. The weaker association with non-HGSC risk for 

conventional BMI than genetically-predicted BMI may arise from measurement error or residual 

confounding in observational studies. 

The chief concerns regarding the validity of MR studies are: an absence of appropriate variants, 

including due to canalisation (developmental compensation for the effects of the SNPs); population 

structure influencing both SNP frequency and risk; and pleiotropy or linkage disequilibrium whereby 

the IV might influence risk via a non-BMI pathway.4,12,25 Canalisation can weaken the association 

between the IV and risk factor, but this effect, if present in our sample, did not prevent the GRS from 

being an adequate instrument for BMI. Population structure and/or pleiotropy may violate the third 

MR assumption (that the IV influences the outcome only via the risk factor).25 A limitation of MR 

studies is that this assumption cannot be tested directly. However, our IV estimates are likely to 

represent BMI-outcome effects for the following reasons. We restricted our analysis to an ethnically-

homogeneous analysis sample and adjusted models for principal components of population 

substructure. Using multiple independent variants can minimise potential bias from pleiotropy,27 and 

the biological effect of this IV is becoming more fully understood. The SNPs do not show much 

evidence of pleiotropy in genome-wide association studies, and none have been identified as, or are in 

linkage disequilibrium with, ovarian cancer susceptibility SNPs. In addition, MR-Egger regression 

results suggested a lack of bias from pleiotropy. 

The significance of this study lies in the clear evidence it provides that obesity increases risk of non-

HGSC for women of European ancestry. Our results do not support an association between obesity 

and risk of the more common and more aggressive HGSC subtype. This study also provides 

reassurance that the results of the large pooled epidemiological studies were not seriously biased. As 

the fifth most common cancer and the sixth most common cause of cancer death for women in more 

developed regions, ovarian cancer is responsible for a substantial health burden.28 The major risk 

factors identified to-date, low parity and non-use or short-duration use of OCs, have barriers to their 

modification, especially at older ages. Given the high and increasing prevalence of overweight and 
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obesity,29 our findings suggest that intervening on obesity may reduce the worldwide burden from 

these subtypes of ovarian cancer. This study adds to the body of evidence suggesting that maintaining 

healthy weight is important. Continued efforts should be made to develop effective interventions to 

reduce BMI, and to identify women who would benefit most from these. Our results also suggest that 

we should pursue other avenues for prevention of HGSC. Further work is required to replicate these 

findings, to investigate the effects of adipose tissue distribution and to explore the mechanisms 

underlying the different associations for non-HGSC and HGSC. 
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Supplementary data are available online. 
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Table 1. Characteristics of 39 OCAC studies and 37 050 participants of European ancestry included in the Mendelian randomisation analysis 

Type of study 
Study 
acronym a b c Country 

Diagnosis 
(years) 

Median (range) 
age at diagnosis 

Invasive 
HGSC (N) 

Invasive non-
HGSC (N) d 

Borderline 
cases (N) 

Median (interquartile 
range) BMI e 

Population-
based 

AUS Australia 2002-06 58 (19-80) 508 224 1 25.9 (22.7-29.7) 
DOV USA 2002-09 57 (35-74) 510 255 327 25.1 (22.2-29.5) 
GER Germany 1993-98 57 (21-75) 81 62 24 -- 
HAW  USA 1993-2008 56 (27-87) 36 22 20 24.4 (22.0-28.8) 
HOC Finland 1975-99 46 (18-86) 106 76 8 -- 
HOP USA 2003-09 58 (25-94) 338 167 71 27.4 (23.6-32.2) 
MAL Denmark 1994-99 57 (31-80) 197 204 138 23.6 (21.5-26.1) 
MCC Australia 1990-2008 65 (45-79) 31 23 0 26.6 (23.2-29.0) 
NCO USA 1999-2008 57 (20-75) 373 255 171 26.1 (22.8-30.5) 
NEC USA 1992-2003 52 (21-78) 367 243 232 24.7 (22.0-28.6) 
NJO USA 2002-09 60 (25-88) 92 62 0 25.9 (22.3-30.4) 
NOR Norway 2001-10 51 (18-86) 123 64 12 -- 
NTH Netherlands 1997-2008 55 (18-83) 94 139 3 24.5 (22.2-27.0) 
OVA Canada 2002-09  58 (19-80) 344 186 161 -- 
POL Poland 2000-04 56 (24-74) 101 69 0 23.8 (22.0-26.4) 
SEA UK 1998-2011 57 (19-78) 643 599 76 -- 
SOC UK 1993-98 62 (22-92) 91 116 20 -- 
SRO Scotland 1999-2001 59 (34-84) 89 31 0 -- 
STA USA 1997-2002 50 (20-64) 141 81 10 -- 
TOR Canada 1995-2007 58 (26-85) 339 205 0 25.7 (23.1-29.1) 
UCI USA 1993-2005 56 (18-86) 154 102 141 24.9 (21.9-29.1) 
USC USA 1992-2010 57 (22-82) 418 187 152 24.2 (21.7-28.1) 

Clinic-based BAV Germany 2002-08 58 (24-83) 42 41 5 25.4 (22.7-28.7) 
BEL Belgium 2007-10 46 (19-87) 188 74 0 -- 
HJO Germany 2007-11 54 (18-88) 136 43 13 -- 
HMO Belarus 2006-11 45 (22-76) 50 20 0 -- 
HSK Germany 2000-07 58 (18-81) 103 21 9 -- 
LAX USA 1989-2008 58 (31-88) 213 43 0 -- 
MAY USA 2000-2010 61 (20-93) 516 154 79 26.1 (23.0-30.3) 
MDA USA 1997-2009 62 (23-88) 190 59 0 -- 
MSK USA 1997-2010 57 (18-89) 354 50 0 -- 
ORE USA 2007-11 58 (22-86) 40 11 9 -- 
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Type of study 
Study 
acronym a b c Country 

Diagnosis 
(years) 

Median (range) 
age at diagnosis 

Invasive 
HGSC (N) 

Invasive non-
HGSC (N) d 

Borderline 
cases (N) 

Median (interquartile 
range) BMI e 

POC Poland 1998-2008 55 (23-82) 200 81 0 -- 
PVD Denmark 2004-09 63 (30-88) 121 39 0 -- 
RMH UK 1993-96 52 (26-73) 49 60 7 -- 
UKO UK 2006-10 63 (19-89) 329 277 0 -- 
WOC Poland 1997-2010 44 (20-81) 131 45 2 -- 

Familial 
registry 

GRR USA 1981-2012 48 (21-83) 72 33 0 -- 
UKR UK 1991-2009 54 (24-77) 23 11 0 -- 

BMI, body mass index; HGSC, high-grade serous ovarian cancer; OCAC, Ovarian Cancer Association Consortium. 

a. See Supplementary Table S1 for study names and references. 
b. For analysis, we combined case-only with case-control sites: HSK combined with GER; GRR with HOP; PVD with MAL; RMH, SOC, SRO, UKR 

with SEA and UKO; ORE with DOV; LAX with UCI. 
c. Nineteen studies (AUS, BAV, DOV, GER, HAW, HOP, MAL, MAY, NEC, NJO, NTH, POL, PVD, SEA, STA, TOR, UCI, UKO, USC) were used 

in menopausal/hormonal replacement therapy analyses as they provided these data for >50% of participants. 
d. Histologic subtypes other than serous, mucinous, endometrioid, and clear cell carcinoma are not included. 
e. Recent BMI (1-5 years prior to diagnosis). BMI is summarised for 16 studies where >50% participants had data available. These 16 studies were also 

used in conventional BMI analyses, as they provided data on potential confounders (parity, use of oral contraceptives and hormone replacement 
therapy, and family history of ovarian or breast cancer) for >50% of participants. 
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Table 2. Association between increasing BMI (per 5 units) - predicted by a weighted a 87-locus genetic risk score - and risk of ovarian cancer by 
histologic subtype, stratified by study 
Histologic subtype N studies N controls N cases  Odds Ratios (95% CI) b 
Primary outcomes     
High-grade serous 39 23 003 7933 1.06 (0.88-1.27) 
Non-high grade serous 39 23 003 4434 1.29 (1.03-1.61) 
Borderline 20 16 463 1680 1.28 (0.86-1.90) 
Secondary outcomes     
Serous     

High-grade ovary/tubal 39 23 003 7466 1.06 (0.89-1.27) 
High-grade peritoneal c 37 22 026 447 1.77 (0.91-3.43) 
Invasive low-grade & borderline 39 23 003 1411 1.93 (1.33-2.81) 

Mucinous (invasive & borderline) 39 23 003 1563 1.18 (0.84-1.67) 
Endometrioid 39 23 003 2059 1.17 (0.87-1.59) 
Clear cell 39 23 003 962 1.27 (0.83-1.96) 

BMI, body mass index; CI, confidence interval. 

a. Weights applied were β-coefficients for the relationship between each SNP and BMI as reported in a large meta-analysis of genome-wide association 
studies. 

b. Pooled odds ratios are reported for primary outcomes. 
c. Excludes two studies (AUS and SRO) where <20% of women with primary peritoneal cancers were genotyped. 
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Table S1. Studies included in the analysis 

Acronym Study name Reference 
AUS Australian Ovarian Cancer Study/Australian Cancer Study (Ovarian Cancer) 1 
BAV Bavarian Ovarian Cancer Cases and Controls 2 
BEL Belgian Ovarium Cancer Study 2 
DOV Diseases of the Ovary and their Evaluation 3 
GER German Ovarian Cancer Study 4 
GRR Gilda Radner Familial Ovarian Cancer Registry 5,6 
HAW Hawaii Ovarian Cancer Case-Control Study 7 
HJO Hannover-Jena Ovarian Cancer Study 2 
HMO Hannover-Minsk Ovarian Cancer Study 8 
HOC Helsinki Ovarian Cancer Study 9 
HOP Novel Risk Factors and Potential Early Detection Markers for Ovarian Cancer 10 
HSK Dr Horst Schmidt Kliniken 11,12 
LAX Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute 13 
MAL MALignant OVArian cancer 14-16 
MAY Mayo Clinic Ovarian Cancer Case-Control Study 17,18 
MCC Melbourne Collaborative Cohort Study 19 
MDA MD Anderson Cancer Center 13 
MSK Memorial Sloan-Kettering Cancer Center 13 
NCO North Carolina Ovarian Cancer Study 20,21 
NEC New England Case Control Study 22,23 
NJO New Jersey Ovarian Cancer Study 24,25 
NOR University of Bergen, Haukeland University Hospital, Norway 26,27 
NTH Nijmegen Ovarian Cancer Study 28,29 
ORE Oregon Ovarian Cancer Registry 30,31 
OVA Ovarian Cancer in Alberta and British Columbia 32 
POC Polish Ovarian Cancer Study 13 
POL Polish Ovarian Cancer Case Control Study 33 
PVD Danish Pelvic Mass Study 34,35 
RMH Royal Marsden Hospital Ovarian Cancer Study 36 
SEA Study of Epidemiology and Risk Factors in Cancer Heredity 37 
SOC Southampton Ovarian Cancer Study 38,39 
SRO Scottish Randomised Trial in Ovarian Cancer 40,41 
STA Family Registry for Ovarian Cancer, and Genetic Epidemiology of Ovarian 

Cancer 
42 

TOR Familial Ovarian Tumour Study, and Health Watch 43 
UCI University California Irvine Ovarian Study 44 
UKO United Kingdom Ovarian cancer Population Study 45 
UKR UK Familial Ovarian Cancer Registry 46 
USC Los Angeles County Case-Control Studies of Ovarian Cancer 47-49 
WOC Warsaw Ovarian Cancer Study 50 
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Table S2. Eighty-seven single nucleotide polymorphisms included in the genetic risk score for body mass index 

Chromosome Nearest gene GIANT SNP SNP in GRS a 

BMI-
increasing 

allele 
Other  
allele 

Frequency of 
BMI-increasing 
allele (controls) 

Approximate per allele 
effect (increase (kg/m2) 

in BMI per one BMI-
increasing allele) b 

1 PTBP2 rs11165643 rs11165643 T C 0.59 0.13 
1 ELAVL4 rs11583200 rs11583200 C T 0.38 0.10 
1 FUBP1 rs12401738 rs12401738 A G 0.37 0.12 
1 FPGT-TNNI3K rs12566985 rs12566985 G A 0.44 0.14 
1 GNAT2 rs17024393 rs17024393 C T 0.03 0.39 
1 NAV1 rs2820292 rs2820292 C A 0.55 0.11 
1 NEGR1 rs3101336 rs3101336 C T 0.62 0.20 
1 SEC16B rs543874 rs543874 G A 0.19 0.28 
1 AGBL4 rs657452 rs657452 A G 0.37 0.13 
1 TAL1 rs977747 rs977747 T G 0.40 0.10 
2 LINC01122 rs1016287 rs1016287 T C 0.29 0.13 
2 ADCY3 rs10182181 rs10182181 G A 0.46 0.18 
2 EHBP1 rs11688816 rs11688816 G A 0.53 0.10 
2 TMEM18 rs13021737 rs13021737 G A 0.82 0.35 
2 FIGN rs1460676 rs1460676 C T 0.16 0.12 
2 UBE2E3 rs1528435 rs1528435 T C 0.62 0.10 
2 CREB1 rs17203016 rs17203016 G A 0.20 0.12 
2 LRP1B rs2121279 rs2121279 T C 0.13 0.14 
2 ERBB4 rs7599312 rs7599312 G A 0.72 0.13 
3 CADM2 rs13078960 rs13078960 G T 0.19 0.17 
3 ETV5 rs1516725 rs1516725 C T 0.86 0.26 
3 RASA2 rs16851483 rs16851483 T G 0.06 0.28 
3 FHIT rs2365389 rs2365389 C T 0.59 0.12 
3 GBE1 rs3849570 rs3849570 A C 0.32 0.11 
3 RARB rs6804842 rs6804842 G A 0.59 0.11 
4 GNPDA2 rs10938397 rs10938397 G A 0.44 0.24 
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Chromosome Nearest gene GIANT SNP SNP in GRS a 

BMI-
increasing 

allele 
Other  
allele 

Frequency of 
BMI-increasing 
allele (controls) 

Approximate per allele 
effect (increase (kg/m2) 

in BMI per one BMI-
increasing allele) b 

4 HHIP rs11727676 rs11727676 T C 0.90 0.21 
4 SLC39A8 rs13107325 rs13107325 T C 0.08 0.28 
4 SCARB2 rs17001654 rs17001654 G C 0.16 0.18 
5 POC5 rs2112347 rs2112347 T G 0.64 0.15 
5 GALNT10 rs7715256 rs7715256 G T 0.42 0.10 
6 PARK2 rs13191362 rs13191362 A G 0.88 0.16 
6 TDRG1 rs2033529 rs2033529 G A 0.30 0.11 
6 C6orf106 rs205262 rs205262 G A 0.28 0.13 
6 TFAP2B rs2207139 rs2207139 G A 0.17 0.26 
6 LOC285762 rs9374842 rs9374842 T C 0.76 0.11 
6 FOXO3 rs9400239 rs9400239 C T 0.69 0.11 
7 HIP1 rs1167827 rs1167827 G A 0.57 0.12 
7 ASB4 rs6465468 rs6465468 T G 0.27 0.10 
7 CALCR rs9641123 rs9641123 C G 0.41 0.11 
8 HNF4G rs17405819 rs17405819 T C 0.69 0.13 
8 RALYL rs2033732 rs2033732 C T 0.75 0.11 
9 LMX1B rs10733682 rs10733682 A G 0.48 0.10 
9 LINGO2 rs10968576 rs10968576 G A 0.31 0.15 
9 TLR4 rs1928295 rs1928295 T C 0.56 0.11 
9 C9orf93 rs4740619 rs4740619 T C 0.54 0.11 
9 EPB41L4B rs6477694 rs6477694 C T 0.36 0.10 
10 NT5C2 rs11191560 rs11191560 C T 0.09 0.18 
10 HIF1AN rs17094222 rs17094222 C T 0.22 0.15 
10 GRID1 rs7899106 rs7899106 G A 0.05 0.23 
10 TCF7L2 rs7903146 rs7903146 C T 0.71 0.14 
11 BDNF rs11030104 rs11030104 A G 0.79 0.24 
11 CADM1 rs12286929 rs12286929 G A 0.51 0.13 
11 HSD17B12 rs2176598 rs2176598 T C 0.25 0.12 
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Chromosome Nearest gene GIANT SNP SNP in GRS a 

BMI-
increasing 

allele 
Other  
allele 

Frequency of 
BMI-increasing 
allele (controls) 

Approximate per allele 
effect (increase (kg/m2) 

in BMI per one BMI-
increasing allele) b 

11 MTCH2 rs3817334 rs3817334 T C 0.41 0.15 
11 TRIM66 rs4256980 rs4256980 G C 0.64 0.12 
12 CLIP1 rs11057405 rs11057405 G A 0.90 0.18 
12 BCDIN3D rs7138803 rs7138803 A G 0.39 0.18 
13 MTIF3 rs12016871 rs9581854 T C 0.19 0.17 
13 MIR548X2 rs9540493 rs9540493 A G 0.44 0.10 
14 STXBP6 rs10132280 rs10132280 C A 0.69 0.13 
14 PRKD1 rs12885454 rs12885454 C A 0.65 0.12 
14 NRXN3 rs7141420 rs7141420 T C 0.50 0.14 
15 MAP2K5 rs16951275 rs16951275 T C 0.77 0.18 
15 DMXL2 rs3736485 rs3736485 A G 0.47 0.10 
15 LOC100287559 rs7164727 rs7164727 T C 0.66 0.11 
16 GPRC5B rs12446632 rs12446632 G A 0.86 0.24 
16 FTO rs1558902 rs1558902 A T 0.41 0.48 
16 CBLN1 rs2080454 rs2080454 C A 0.42 0.10 
16 ATP2A1 rs3888190 rs3888190 A C 0.39 0.18 
16 INO80E rs4787491 rs4787491 G A 0.53 0.09 
16 NLRC3 rs758747 rs758747 T C 0.27 0.13 
16 KAT8 rs9925964 rs9925964 A G 0.63 0.11 
17 RABEP1 rs1000940 rs1000940 G A 0.30 0.11 
17 RPTOR rs12940622 rs12940622 G A 0.58 0.11 
17 SMG6 rs9914578 rs9914578 G C 0.20 0.12 
18 C18orf8 rs1808579 rs1808579 C T 0.53 0.10 
18 MC4R rs6567160 rs6567160 C T 0.23 0.33 
18 LOC284260 rs7239883 rs7239883 G A 0.40 0.10 
18 GRP rs7243357 rs7243357 T G 0.83 0.13 
19 PGPEP1 rs17724992 rs17724992 A G 0.74 0.11 
19 TOMM40 rs2075650 rs2075650 A G 0.85 0.15 
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Chromosome Nearest gene GIANT SNP SNP in GRS a 

BMI-
increasing 

allele 
Other  
allele 

Frequency of 
BMI-increasing 
allele (controls) 

Approximate per allele 
effect (increase (kg/m2) 

in BMI per one BMI-
increasing allele) b 

19 QPCTL rs2287019 rs2287019 C T 0.79 0.21 
19 KCTD15 rs29941 rs29941 G A 0.68 0.11 
19 ZC3H4 rs3810291 rs3810291 A G 0.67 0.17 
20 ZFP64 rs6091540 rs6091540 C T 0.71 0.11 
21 ETS2 rs2836754 rs2836754 C T 0.63 0.10 
BMI, body mass index; GIANT, Genetic Investigation of ANthropometric Traits consortium; SNP, single nucleotide polymorphism. 

a. The GIANT SNP was used at all loci except MTIF3, where the SNP reported in the GIANT analysis (rs12016871) has been renamed rs9581854 in 
the National Center for Biotechnology Information Database of SNPs (dbSNP). 

b. Derived by multiplying betas (per standard deviation of BMI) from the GIANT consortium analysis by the standard deviation of measured BMI in 
controls in this analysis (5.867 kg/m2).  
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Table S3. Characteristics of the analysis population (14 047 cases and 23 003 controls) 

 
Controls 

N=23 003 
Cases 

N=14 047 a 

P-value 
Controls vs 

all Cases 
combined 

Characteristic  

High grade 
serous 

N=7933 

Low grade 
invasive & 
borderline 

serous 
N=1411 

Mucinous 
(Invasive & 
borderline) 

N=1563 
Endometrioid 

N=2059 
Clear-cell 

N=962  
Age at diagnosis (mean [SD]) 55.5 (11.9) 59.5 (10.7) 51.8 (12.9) 52.4 (13.3) 55.9 (11.0) 56.3 (10.0) <0.001 
Attained education        

High school or lower 5297 (45.5) 2209 (53.1) 444 (44.1) 537 (53.5) 663 (50.5) 318 (52.6)  
Trade/college/higher education 6351 (54.5) 1952 (46.9) 564 (55.9) 467 (46.5) 649 (49.5) 287 (47.4) <0.001 

Number of full-term pregnancies b        
0  2627 (14.7) 993 (18.7) 344 (28.7) 323 (27.5) 456 (30.6) 264 (37.1)  
1 2492 (13.9) 781 (14.7) 223 (18.6) 193 (16.5) 247 (16.6) 121 (17.0)  
2 7017 (39.2) 1826 (34.3) 348 (29.0) 370 (31.5) 447 (30.0) 205 (28.8)  
≥3 5777 (32.3) 1723 (32.4) 284 (23.7) 287 (24.5) 339 (22.8) 121 (17.0) <0.001 

Oral contraceptive use        
Never 6303 (35.5) 2376 (43.9) 384 (32.2) 390 (33.1) 679 (44.2) 317 (43.0)  
Ever 11430 (64.5) 3036 (56.1) 809 (67.8) 789 (66.9) 859 (55.8) 420 (57.0) <0.001 

<5 years 4866 (28.2) 1653 (31.3) 438 (37.2) 361 (31.3) 428 (28.6) 225 (31.1)  
≥ 5 years  6081 (35.3) 1259 (23.8) 354 (30.1) 404 (35.0) 391 (26.1) 181 (25.0) <0.001 

Menopausal status and HRT use        
Pre/Peri 4586 (30.3) 1440 (28.9) 582 (53.4) 561 (50.1) 638 (45.0) 235 (36.4)  
Post – no HRT use 5587 (36.9) 1822 (36.5) 241 (22.1) 343 (30.6) 440 (31.0) 271 (42.0)  
Post + HRT use 4968 (32.8) 1724 (34.6) 266 (24.4) 216 (19.3) 340 (24.0) 139 (21.6) <0.001 

Smoking         
Never 6270 (53.0) 2198 (52.1) 504 (49.8) 459 (45.1) 743 (56.3) 356 (58.1)  
Ex 3782 (32.0) 1463 (34.7) 335 (33.1) 302 (29.7) 425 (32.2) 179 (29.2)  
Current 1782 (15.1) 558 (13.2) 173 (17.1) 256 (25.2) 151 (11.5) 78 (12.7) 0.2 
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Controls 

N=23 003 
Cases 

N=14 047 a 

P-value 
Controls vs 

all Cases 
combined 

Characteristic  

High grade 
serous 

N=7933 

Low grade 
invasive & 
borderline 

serous 
N=1411 

Mucinous 
(Invasive & 
borderline) 

N=1563 
Endometrioid 

N=2059 
Clear-cell 

N=962  
Body mass index (kg/m2) (recent) c        

<18.5 186 (1.8) 73 (1.9) 16 (1.5) 30 (3.5) 24 (2.2) 6 (1.3)  
18.5-24.9 4809 (47.7) 1807 (46.7) 436 (42.0) 393 (46.1) 451 (40.5) 206 (44.0)  
25-29.9 2997 (29.7) 1151 (29.8) 276 (26.6) 245 (28.7) 335 (30.1) 137 (29.3)  
30-34.9 1277 (12.7) 516 (13.3) 171 (16.5) 108 (12.7) 166 (14.9) 66 (14.1)  
≥35 816 (8.1) 320 (8.3) 140 (13.5) 77 (9.0) 138 (12.4) 53 (11.3) <0.001 

HRT, hormone replacement therapy; SD, standard deviation. 

a. N=119 cases (other histologic subtypes) not presented.  
b. Defined as longer than 6 months. 
c. Self-reported recent body mass index (1-5 years prior to diagnosis), restricted to 16 studies where >50% participants had data available.  
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Figure S1. Association between three genetic risk score (GRS) versions and BMI, by study 
(A) GRS comprising 87 BMI SNPs. (B) GRS comprising 56 SNPs with imputation quality scores ≥0·9. (C) FTO. 
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Table S4. Association of potential confounders with recent BMI and with the BMI genetic risk score, and the association of BMI with the genetic risk 
score, among controls a 

Characteristic 
Recent BMI  

(Median [Q1-Q3]) P-value b 
Unweighted GRS 

Mean (SD) P-value b 

Weighted 
GRS 

Mean (SD) P-value b 
Age at diagnosis       

<40 23.5 (21.2-27.4)  84.3 (5.7)  12.6 (0.9)  
40-49 24.1 (21.6-28.1)  84.2 (5.7)  12.6 (0.9)  
50-59 25.5 (22.6-29.4)  84.5 (5.6)  12.6 (0.9)  
60-69 25.7 (23.0-29.7)  84.4 (5.6)  12.6 (0.9)  
≥70 25.6 (22.5-29.0) <0.001 84.0 (5.7) 0.2 12.6 (0.9) 0.1 

Attained education       
High school or lower 25.6 (22.6-29.7)  84.2 (5.7)  12.6 (0.9)  
Trade/college/higher education 24.9 (22.1-28.9) <0.001 84.3 (5.6) 0.4 12.6 (0.9) 0.2 

Number of full-term pregnancies c       
0  24.3 (21.6-28.8)  84.3 (5.7)  12.6 (0.9)  
≥1 25.1 (22.4-29.1) <0.001 84.3 (5.6) 0.6 12.6 (0.9) 0.6 

Oral contraceptive use       
Never 25.4 (22.6-29.2)  84.3 (5.7)  12.6 (0.9)  
Ever 25.0 (22.2-29.0) <0.001 84.3 (5.6) 1.0 12.6 (0.9) 0.7 

<5 years 25.2 (22.2-29.4)  84.3 (5.7)  12.6 (0.9)  
≥ 5 years  24.7 (22.1-28.4) <0.001 84.4 (5.6) 1.0 12.6 (0.9) 0.9 

Menopausal status and HRT use       
Pre/Peri 24.2 (21.6-28.0)  84.3 (5.6)  12.6 (0.9)  
Post – no HRT use 25.8 (22.7-29.8)  84.4 (5.6)  12.6 (0.9)  
Post + HRT use 25.0 (22.3-28.8) <0.001 84.2 (5.6) 0.1 12.6 (0.9) 0.1 

Body mass index (kg/m2) (recent)       
<18.5 NA  83.3 (5.7)  12.4 (0.9)  
18.5-24.9 NA  83.7 (5.7)  12.5 (0.9)  
25-29.9 NA  84.6 (5.6)  12.7 (0.9)  
30-34.9 NA  85.0 (5.5)  12.7 (0.9)  
≥35 NA NA 85.4 (5.8) <0.001 12.8 (0.9) <0.001 

BMI, body mass index; GRS, genetic risk score; HRT, hormone replacement therapy; NA, not applicable; Q1, quartile 1; Q3, quartile 3; SD, standard deviation. 
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a. Data are summarised for studies where >50% participants had data available. BMI data are for 16 studies; GRS data are for all studies.  
b. P-values are from comparisons adjusting for study.  
c. Defined as longer than 6 months. 
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Table S5. Association between increasing BMI (measured/self-reported) per 5 kg/m2, and risk of ovarian cancer by histologic subtype, stratified by 
study, among women with BMI and confounder data 

Histologic subtype N studies N controls N cases  Odds Ratios (95% CI) a 
Primary outcomes     

High-grade serous 16 9802 3761 1.00 (0.96-1.03) 
Non-high grade serous 16 9802 2150 1.18 (1.13-1.23) 
Borderline 9 7599 1258 1.21 (1.14-1.27) 

Secondary outcomes     
Serous     

High-grade ovary/tubal 16 9802 3475 0.98 (0.95-1.02) 
High-grade peritoneal b 5 4868 286 1.16 (1.05-1.29) 
Invasive low-grade & borderline 14 9314 1010 1.25 (1.18-1.33) 

Mucinous (invasive & borderline) 16 9802 812 1.12 (1.05-1.20) 
Endometrioid 16 9802 1061 1.21 (1.15-1.28) 
Clear cell 16 9802 451 1.09 (1.00-1.19) 

BMI, body mass index; CI, confidence intervals. 

a. Adjusted for oral contraceptive use, parity, and family history of ovarian/breast cancer, and stratified by 5-year age groups and study. 
b. Excludes one study (AUS) where <10% of women with primary peritoneal cancers were genotyped. 
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