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Ophthalmic Statistics Note 10: Data Transformations
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Data transformations

Introduction

Many statistical analyses in ophthalmic and other clinical fields are concerned with describing
relationships between one or more “predictors” (explanatory or independent variables) and usually
one outcome measure (response or dependent variable). Our earlier statistical notes make
reference to the fact that statistical techniques often make assumptions about data (1, 2).
Assumptions may relate to the outcome variable, to the predictor variable or indeed both; common
assumptions are that data follow normal (Gaussian) distributions and that observations are
independent. It is, of course, entirely possible to ignore such assumptions, but doing so is not good
statistical practice and in medicine, poor statistical practice can impact negatively upon patients and
the public (3).

One approach when assumptions are not adhered to is to use alternative tests which place fewer
restrictions on the data — non-parametric or so-called distribution free methods (2). A more
powerful alternative, however, is to transform your data. Whilst your “raw” (untransformed) data
may not satisfy the assumptions needed for a particular test, it is possible that a mathematical
function or transformation of the data will. Analyses may then be conducted on the transformed
data rather than the raw data.

Scenario 1: A study to evaluate the accuracy of intraocular lens power estimation in eyes having
phacovitrectomy for rhegmatogenous retinal detachment (4) measured the axial length (in mm) of
71 eyes. The raw data (Figure 1a) exhibited a fairly strong positive skew (rather than being
symmetric there is an extended tail in the histogram to the right); the same data with a logarithmic
transformation applied (Figure 1b) appears much more Normal (less of a tail to the right), and hence
the power of a test conducted on transformed data should be greater. A further benefit of this
transformation is that it can effectively stabilize variance across all values of the predictor variable,
another requirement for a valid regression analysis. We can be more confident of the reliability of
parametric procedures such as t-tests, regression and analysis of variance conducted on the
transformed data than of the same procedures conducted on the raw, skewed data.

[Figures 1a, 1b to be placed about here]

For data which are very highly skewed, the reciprocal transformation may be useful as an alternative
to the logarithmic transformation in reducing divergence of data from Normality and stabilizing
variance. This transformation may be appropriate in the analysis of data which relate to the duration
of events — for example the time taken to conduct cataract surgery or the number of days between
ocular trauma and attendance at Accident & Emergency. A square root transformation may also be
effective in reducing mild positive skew. Negatively skewed data (i.e. data that is “piled up” to the
right rather than the left) is a less common occurrence, but can also sometimes be dealt with
effectively by transformations; in this case we usually first reflect the data by subtracting all values
from some fixed value before applying the transformation. Significance tests can be performed to
assess formally whether the sample data follow a normal distribution before and after
transformation (5).

Care must be taken when interpreting analysis of transformed data; results from analyses will be for
transformed data, not the raw data. Confidence intervals will therefore relate to confidence around
estimates for the transformed data rather than the raw data (6).



Scenario 2: A colleague has conducted an exploratory randomized controlled clinical trial evaluating
a novel treatment for ocular trauma in 40 patients; 20 of whom received standard care, and 20 of
whom received the novel treatment. The primary outcome is visual acuity in the treated eye 6
months after surgery measured using ETDRS charts at a starting distance of 4 metres. A histogram
of visual acuity is highly asymmetric, so that the data appear to violate the assumption of normality
required for a t-test. Whilst we might apply a non-parametric test such as a Mann-Whitney test (2), |
understand that this may result in a loss of power i.e. it would require a larger sample size to identify
statistically significant differences. A logarithmic transformation makes the data much more
symmetric, and so we apply a t-test to the transformed data. A colleague asks to see an estimate of
the treatment effect. Whilst our analysis does furnish an estimated mean difference and confidence
interval, we realise that since the analysis was on logged data, the results presented relate not to
raw data (i.e. ETDRS vision) but to logged ETDRS vision which is not the same. We can back-
transform the results into the natural units by exponentiation. However, exponentiating the mean of
the transformed values gives us the geometric mean of the natural data, which will generally be
smaller than the arithmetic mean (6). We can also back-transform differences between means on
the log scale which describe the ratio of the geometric means for the two treatments, rather than
their natural values, while the back transformed confidence interval will be for this ratio and non-
symmetric (7). These ratio properties of the difference in geometric means can be particularly
helpful, with a ratio of 2 between treatment groups, for example, indicating that the experimental
treatment doubles visual acuity. These ratio relationships are quite often seen with continuous
variables where patients start with different severities of condition. This method of analysis can be
useful but it is important that the ‘currency’ in which the results are obtained is clearly understood
and reported.

Whilst in scenario 2, we can provide meaningful confidence intervals for differences, other
transformations may not be amenable to interpretation, and for this reason, the logarithmic
transformation is the most useful (7).

Another common reason for applying a non-linear transformation to numerical data is to improve
the linearity of a relationship between variables. A study (8) to identify the incidence and risk factors
for developing outer foveal defects in patients undergoing macular hole surgery measured visual
acuity on the LogMAR scale pre-operatively and post-operatively after vision stabilisation. The
relationship between these variables was seen to be non-linear when plotted on a scatter diagram
(Figure 2a). Applying a square root transformation to the predictor variable was reasonably effective
in achieving a linear relationship (Figure 2b), allowing a subsequent regression analysis to be
conducted based on the relationship:

Post-operative visual acuity = a + b x-(Pre-operative visual acuity)®*
where a and b are constants to be estimated.

[Figures 2a, 2b to be placed about here]

Linearising transformations of numerical data may be applied to either predictor or outcome
variables as appropriate.

Because of the difficulties associated with the interpretation of transformed data, decisions to
transform continuous data should not be taken lightly (9). Transformations may improve
distributional characteristics, but rarely result in “perfect” data. Whilst linearity can be regarded as
an essential pre-requisite for regression-based procedures, many standard analysis methods are



robust to moderate divergences from normality, and hence lack of normality, particularly in large
data sets, may weaken but is unlikely to violate integrity of procedures. If doubt remains,
researchers are encouraged to seek guidance from an experienced biostatistician.

Lessons learned

e All statistical tests make assumptions. If these assumptions are not reasonable, results of
the statistical analysis may be misleading.

e Whilst raw (“untransformed data”) may not adhere to assumptions, a mathematical function
(“transformation”) of raw data may do.

e Transformations will, however, impact upon interpretability of results. If in doubt, consult
an experienced biostatistician.
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Figure 1a: distribution of axial length values
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Figure 1b: distribution of log-transformed axial length values
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Figure 2a: relationship between raw pre- and post-operative visual acuity scores
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Figure 2b: relationship between transformed pre- and post-operative visual acuity scores



