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Abstract—Probabilistic shaping of quadrature amplitude mod-
ulation (QAM) is used to enhance the sensitivity of an optical
communication system. Sensitivity gains of 0.43 dB and 0.8 dB are
demonstrated in back-to-back experiments by shaping of 16QAM
and 64QAM, respectively. Further, numerical simulations are
used to prove the robustness of probabilistic shaping to a
mismatch between the constellation used and the signal-to-noise
ratio (SNR) of the channel. It is found that, accepting a 0.1 dB
SNR penalty, only four shaping distributions are required to
support these gains for 64QAM.

Index Terms—Achievable Information Rates, Digital Coherent
Transceivers, Digital Signal Processing, Mutual Information,
Probabilistic Shaping, Signal Shaping.

I. INTRODUCTION

OPTICAL fiber communication systems have experienced
a dramatic evolution over the past two decades as the

traffic demand has continued to grow [1]. In order to satisfy
this demand for capacity, there has been a focus on increasing
spectral efficiency by, e.g., reducing the guard interval in
wavelength division multiplexing or employing high-order
modulation formats. Square quadrature amplitude modulation
(QAM) formats are the preferred alternative due to their
simplicity in generation and detection as each constellation
point is located on a regular square grid.

A way to further increase spectral efficiency is by means of
signal shaping [2]. In particular, geometrical shaping could be
used, where constellation points are nonuniformly arranged
on the complex plane. Alternatively, symbols can be trans-
mitted using nonuniform probabilities, which is known as
probabilistic shaping. For the additive white Gaussian noise
(AWGN) channel with an average power constraint, both
shaping techniques yield a sensitivity gain of up to 1.53 dB
relative to uniform QAM as the constellation cardinality tends
to infinity [3, Sec. VIII-A]. This enhanced signal-to-noise
ratio (SNR) will result in increased achievable information
rate (AIR) for SNR-limited digital coherent transceivers [4].
Therefore, constellation shaping is a promising candidate to
improve spectral efficiencies in future fiber optic systems.
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Geometrical shaping has been demonstrated in fiber experi-
ments [5], [6], however, this shaping alternative poses stronger
requirements on the effective number of bits (ENOB) of the
digital-to-analog converter (DAC) due to the unequally spaced
constellation points. On the other hand, probabilistic shaping
is a well-studied area of communication theory, see, e.g., [2],
[7], [8], and a detailed review in [9, Sec. II]. Probabilistic
shaping is also known to give larger gains than geometrical
shaping for square QAM, as shown in [10, Fig. 4.8 (bottom)].

For fiber transmission in the presence of nonlinearities,
probabilistic shaping has been shown to allow increased trans-
mission performance. In split-step simulations, different input
probability mass functions (PMFs) have been studied, such as
a dyadic PMF as well as a PMF that is the result of the Blahut-
Arimoto algorithm [11, Sec. II], ring-like constellations [12,
Sec. III], and a Maxwell-Boltzmann PMF [13, Sec. V-B], [14,
Sec. 2.3], [15, Sec. 3.5]. Very recently, reach increases were
experimentally demonstrated in [16] using a finite number
of Maxwell-Boltzmann distributions. These distributions were
chosen to target different net data rates, and shaping gains over
a transmission range of more than 4500 km were reported.

In this Letter, we study the benefits of using probabilistically
shaped QAM over uniform QAM. Both a back-to-back (B2B)
single-carrier optical system and numerical simulations are
considered. The contributions of the paper are twofold. First,
a significant gain in SNR is demonstrated for a state-of-the-art
digital coherent transceiver. To the best of our knowledge, this
is the first experimental study of B2B transceiver sensitivity
improvements due to probabilistic shaping in optical commu-
nications. Second, we investigate how a mismatch between
channel SNR and the SNR for which the input distribution
is optimized affects shaping gains. We find that four input
distributions are sufficient to obtain large shaping gains for
64QAM over a wide SNR range. To the best of our knowledge,
this is the first numerical study of shaping robustness to a
channel mismatch.

II. PROBABILISTIC SHAPING METHOD

Finding a good nonuniform input distribution for QAM con-
stellations is a two-dimensional (2D) optimization problem.
However, because of the symmetry of the 2D constellation, of
the binary reflected Gray labeling which is typically used, and
the AWGN channel for which the optimization is carried out, it
is sufficient to consider a one-dimensional (1D) constellation.
Under these assumptions, M2-QAM constellations can be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79524849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

decomposed into a product of two constituent 1D (pulse am-
plitude modulation) constellations, each with M constellation
points. Without loss of generality, we therefore consider only
one of the quadratures for the shaping optimization, however,
we emphasize that all analysis in Sec. IV is performed for 2D
(M2-QAM) constellations on each polarization.

Let x = [x1, x2, . . . , xM ] denote the real-valued constel-
lation symbols, represented by the random variable X . We
assume that the symbols are distributed according to a PMF
PX = [PX(x1), PX(x2), . . . , PX(xM )] and that they are
sorted in ascending order (i.e., xi<xi+1, i = 1, 2, . . . ,M−1).

For shaping the input, we use a PMF from the family of
Maxwell-Boltzmann distributions, which are well-known for
the AWGN channel, see, e.g., [8, Sec. IV], [3, Sec. VIII-A],
and [9, Sec. III-C]. Following the approach of [9, Sec. III-C],
the shaped input is distributed as

PX(xi) =
1∑M

k=1 e
−νx2

k

e−νx
2
i , (1)

where ν is a scaling factor. To find the optimal PMF among
all distributions given by (1), let the positive scalar ∆ denote
a constellation scaling of X . Fixing ∆ and the SNR for which
the optimization is carried out (denoted shaping SNR in the
following), the scaling ν is chosen such that E[|∆X|2] =
SNR = Es/N0 where Es represents the signal power and
N0 represents the noise power. The mutual information (MI)
between the scaled channel input ∆X and the AWGN channel
output is unimodal in ∆, and thus, we choose the scaling factor
that maximizes the MI. Although this optimization is carried
out for symbol-wise MI, the loss from considering a bit-wise
decoder [10] gives a negligible AIR penalty [9, Table III].

Note that the input PMF in (1) is known to be suboptimal
for the AWGN channel, however, it has been shown to give
near-capacity results [9, Table I]. Further, note that in order
to choose the input PMF, the channel SNR must be known
a priori (see (1)). We will show in Sec. IV-B that imperfect
SNR knowledge causes only a small penalty in comparison to
a perfectly matched channel SNR and input PMF.

III. EXPERIMENTAL SETUP

The setup of the single-channel dual-polarization (DP)
QAM optical transceiver used in this work is shown in
Fig. 1(a) and is for the most part identical to [4]. The in-
phase (I) and quadrature (Q) drive signals required for shaped
and uniform 16QAM and 64QAM were generated offline and
digitally filtered using a root raised cosine (RRC) filter with
a roll-off factor of 0.01. The symbols were loaded onto a
pair of field programmable gate arrays (FPGAs) and output
using two DACs, each operating at 32 GSa/s (4 Sa/sym). The
electrical signals were each amplified using a linear amplifier
and passed through an 8th-order Bessel low-pass filter (LPF)
with a rejection ratio of more than 20 dB/GHz and a 3 dB
bandwidth of 6.2 GHz. After this amplification stage, the
electrical signal and the direct output of an external cavity
laser (ECL) with a 1.1 kHz linewidth were passed into an IQ
modulator. The optical signal was amplified with an Erbium-
doped fiber amplifier (EDFA) and polarization-multiplexed to
create a Nyquist shaped DP-QAM optical carrier at 8 GBd.
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Fig. 1. Single-channel DP-QAM transceiver: Experimental setup (a) and DSP
functions within digital coherent receiver (b).

The DP-QAM signal was passed directly into the digital
coherent receiver, which had a sample rate of 160 GSa/s
and an analog electrical bandwidth of 62.5 GHz. Amplified
spontaneous emission (ASE) noise was added to the signal to
vary the received SNR. A second ECL (1.5 kHz linewidth)
was used as a local oscillator (LO).

The blind DSP implementation is illustrated in Fig. 1(b).
After being sampled at 160 GSa/s in analog-to-digital con-
version stage (ADC), the received signals were corrected for
receiver skew imbalance and normalized to correct for the
varying responsivities of the 70 GHz balanced photodiodes of
the coherent optical receiver. Each polarization was resampled
to 2 Sa/sym before matched RRC filtering. In order to equalize
the signal and to undo polarization rotations, a blind 51-
tap T/2-spaced radially directed equalizer (RDE) that takes
into account the probabilities of the QAM moduli [17] was
used. Tap-weight pre-convergence is obtained by the constant
modulus algorithm (CMA) equalizer. The symbols at the
output of the equalizer were down-sampled to 1 Sa/sym and
the intermediate frequency was estimated and removed using
a 4th-order nonlinearity algorithm [18]. The carrier phase esti-
mation (CPE) was performed per polarization using a decision-
directed phase estimation algorithm including an averaging
over a 64 T-spaced sliding window to improve the estimate
[19]. The Gram-Schmidt orthogonalization procedure (GSOP)
[20] corrected for sub-optimal phase bias in the transmitter
IQ modulators that occurred over time due to temperature
variations. The symbols at the output of the GSOP stage
were used to calculate an AIR estimate. Circularly symmetric
Gaussian statistics are assumed for the calculation, resulting in
an achievable rate for a decoder operating with these statistics,
as discussed in [15, Sec. 2].

IV. RESULTS

A. Back-to-back Experiments

Figure 2 shows for the B2B experiments AIRs vs. the energy
per information bit, Eb/N0, given by Eb/N0 = SNR/AIR,
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Fig. 2. AIRs vs. Eb/N0 in B2B experiments: uniform QAM (solid lines) and
probabilistically shaped QAM (dashed lines). The AWGN reference curves
(red) are also shown. Insets: Received constellation diagrams for shaped (left)
and uniform (right) 64QAM at the maximum shaping gain of 0.8 dB.

which is chosen for clarity. For both 16QAM and 64QAM, the
gap to the Shannon capacity (dotted black line) is closed by
shaping 16QAM (dashed blue line) and 64QAM (dashed green
line). The maximum sensitivity gain for 64QAM is verified
to be 0.8 dB, reducing the required Eb/N0 to achieve an
information rate of 8.8 bits per DP-symbol (bit/sym) from 7.6
dB to 6.8 dB. It is confirmed that 16QAM has a limited gain
of at most 0.43 dB because having only 16 points restricts the
shaping degrees of freedom. The gains we find are larger than
the theoretical gains from geometrical shaping presented in
[5, Fig. 3], illustrating that probabilistic shaping approaches
the ultimate shaping gain faster than geometrical shaping.
AWGN results obtained by numerical integration are included
as references (solid red line) in Fig. 2 and perfectly match the
experimental results. For 64QAM, a significant shaping gain
in excess of 0.5 dB is shown over a wide range of Eb/N0

from 3.1 dB to 10 dB.
In Fig. 3, sensitivity gains vs. SNR are depicted for 16QAM

and 64QAM. A good match between theory and experiments
is observed, in particular at the respective maximum sensi-
tivity gain. The experimental curves slightly deviate from the
AWGN results at low SNR due to instabilities in AIR and
SNR estimation. It is interesting to note that the AWGN curves
cross at approximately 7 dB SNR. The larger sensitivity gain
of probabilistically shaped 16QAM in comparison to 64QAM
does, however, not imply that 16QAM has a larger absolute
AIR in this low-SNR range.

B. Shaping Robustness

In the experiments, the SNR for which the shaping optimiza-
tion was carried out did not always exactly match the channel
SNR that was measured after DSP. Strictly following the
shaping optimization problem outlined in Sec. II, a different
PMF would be required for every SNR. The shaping gains,
however, were found to be robust to a mismatch between
channel SNR (measured digitally after DSP) and the shaping
SNR, i.e., the SNR that was assumed at the transmitter to find
the shaped input PMF.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

SNR [dB]

Se
ns

iti
vi

ty
ga

in
[d

B
]

16QAM shaped
64QAM shaped
AWGN ref.

Fig. 3. Sensitivity gains from shaping 16QAM and 64QAM for the reference
AWGN channel (solid red) and the B2B experiments (dashed).

To investigate this behavior in detail, we numerically calcu-
lated the shaping sensitivity gain for 64QAM over the AWGN
channel. We varied both the channel SNR and the shaping
SNR from 5 dB to 25 dB in steps of 0.1 dB, resulting in
2012 = 40401 combinations. We consider as a figure of merit
the difference in sensitivity gain over uniform input between
perfectly matched shaping, i.e., where the channel SNR equals
the shaping SNR, and mismatched shaping, i.e., where the two
SNRs are different.

In Fig. 4, the colored areas indicate all combinations of
channel SNR and shaping SNR for which the largest accept-
able sensitivity penalty in comparison to perfectly matched
shaping (dashed black line) is below a certain threshold.
The green area shows a reduction in shaping gain by at
most 0.1 dB. The blue and green areas combined indicate
a maximum sensitivity reduction of not more than 0.2 dB.
Adding the red region increases the tolerated loss to at most
0.3 dB. We observe that in order to cover the entire relevant
channel SNR range with a penalty of at most 0.1 dB SNR, only
four different input PMFs are required. If a loss of 0.2 dB or
0.3 dB is acceptable, the number of PMFs is reduced to 3 or 2,
respectively. The SNRs assumed for obtaining the distributions
giving a 0.1 dB penalty and the covered channel SNRs are
marked with black arrows in Fig. 4. The corresponding values
for the channel SNR range, the input PMF PX , and the 1D
constellation points x are given in Table I, providing a ready-
to-use lookup-table for implementing probabilistically shaped
64QAM. Figure 5 illustrates how PX starts as a Gaussian-
like shape and approaches a uniform distribution as the SNR
increases. Further numerical results for shaped 256QAM (not
depicted due to lack of space) show that four input PMFs are
sufficient for a penalty of at most 0.1 dB over a SNR range
from 5 dB to 30 dB.

V. CONCLUSIONS

Probabilistically shaped 16QAM and 64QAM were inves-
tigated in back-to-back experiments. Sensitivity gains of up
to 0.8 dB over uniform input distributions were measured
experimentally, showing an excellent match with AWGN sim-
ulations and effectively closing the gap to capacity. It is yet
to be investigated whether there are distributions other than
the one considered in this work that yield higher spectral
efficiencies in nonlinear fiber transmission. We further showed
numerically that the shaping gain is robust to a mismatch
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TABLE I
SNR RANGE OF THE CHANNEL, INPUT PMFS PX AND CONSTELLATION POINTS x CORRESPONDING TO THE ARROWS (a) TO (d) IN FIG. 4.

Input Channel SNR range PX x
(a) 5 − 16.2 dB [0.042, 0.093, 0.158, 0.207, 0.207, 0.158, 0.093, 0.042] [-2.02, -1.44, -0.87, -0.29, 0.29, 0.87, 1.44, 2.02]
(b) 16.2 − 19.3 dB [0.079, 0.113, 0.145, 0.163, 0.163, 0.145, 0.113, 0.079] [-1.73, -1.24, -0.74, -0.25, 0.25, 0.74, 1.24, 1.73]
(c) 19.3 − 22.2 dB [0.109, 0.122, 0.132, 0.137, 0.137, 0.132, 0.122, 0.109] [-1.59, -1.13, -0.68, -0.23, 0.23, 0.68, 1.13, 1.59]
(d) 22.2 − 25 dB [0.124, 0.125, 0.126, 0.126, 0.126, 0.126, 0.125, 0.124] [-1.53, -1.09, -0.66, -0.22, 0.22, 0.66, 1.09, 1.53]

Green: penalty ≤ 0.1 dB
Green+Blue: penalty ≤ 0.2 dB
Green+Blue+Red: penalty ≤ 0.3 dB
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Fig. 4. Shaping robustness for 64QAM over the AWGN channel. Colors
indicate the penalty in comparison to perfectly matched shaping. The dashed
line indicates perfect shaping, i.e. 0 dB penalty, between channel SNR and
shaping SNR. The arrows (a) to (d) correspond to shaping SNRs of 14.5 dB,
18 dB, 21 dB, and 24 dB, respectively.
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Fig. 5. Input PMFs for 64QAM and the four shaping SNRs (a) to (d), which
are represented as arrows in Fig. 4 and stated in the first column of Table I.

between channel SNR and SNR assumed at the transmitter.
This means that moderate variations of the channel SNR do not
require an adjustment of the input distribution, provided that
a slightly reduced shaping gain is acceptable. This property
makes probabilistic shaping highly suitable for a practical
application in optical communication systems as it offers
tolerance to SNR degradation occurring in the life cycle of
an optical communication system.
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