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Abstract	

	

Inexpensive	genotyping	methods	are	essential	for	genetic	studies	requiring	large	

sample	 sizes.	 In	 human	 studies,	 array-based	 microarrays	 and	 high-density	

haplotype	reference	panels	allow	efficient	genotype	imputation	for	this	purpose.	

However,	these	resources	are	typically	unavailable	in	non-human	settings.	Here	

we	describe	a	method	(STITCH)	 for	 imputation	based	only	on	sequencing	read	

data,	 without	 requiring	 additional	 reference	 panels	 or	 array	 data.	 We	

demonstrate	 its	 applicability	 even	 in	 settings	 of	 extremely	 low	 sequencing	

coverage,	by	accurately	imputing	5.7	million	SNPs	at	a	mean	r2	of	0.98	in	2,073	

outbred	laboratory	mice	(0.15X	sequencing	coverage).	In	a	sample	of	11,670	Han	

Chinese	 (1.7X),	 we	 achieve	 accuracy	 similar	 to	 alternative	 approaches	 that	

require	 a	 reference	 panel,	 demonstrating	 that	 this	 approach	 can	 work	 for	

genetically	 diverse	 populations.	 Our	 method	 enables	 straightforward	

progression	 from	 low-coverage	 sequence	 to	 imputed	 genotypes,	 overcoming	

barriers	 that	 at	 present	 restrict	 the	 application	 of	 genome-wide	 association	

study	technology	outside	humans.	

	

	

	

	

	 	



Introduction	

	

Over	 the	 last	 decade,	 genome-wide	 association	 studies	 (GWAS)	 have	 detected	

thousands	 of	 loci	 associated	 with	 complex	 traits	 in	 the	 human	 genome.1	

Generally,	 these	 involve	 genotyping	 0.5-1M	 SNPs	 on	 DNA	 genotyping	

microarrays,	 and	 then	 employing	 externally	 generated	 haplotype	 reference	

panels	such	as	those	provided	by	the	HapMap2	and	the	1000	Genomes	Project3	to	

infer	genotypes	at	 tens	of	millions	of	additional	sites,	employing	algorithms	for	

phasing4	and	imputation5–8.		

	

In	non-human	 species,	 large	haplotype	 reference	panels	 for	 fully	 genome-wide	

imputation	 are	 typically	 not	 available,	 and	 this	 fact	 has	 necessitated	 study	

designs	incorporating	high	sample	relatedness,	and	directed	breeding,	which	can	

be	 leveraged	to	 improve	array-based	genotype	 imputation9–12.	Moreover,	 inter-

population	 differences	 within	 non-human	 species	 can	 further	 complicate	

genotyping	 array	 design	 and	 use.	 Arrays	 may	 work	 poorly	 when	 populations	

other	than	those	used	to	design	the	chip	are	analyzed13,	requiring	the	expensive	

development	 of	 either	 dense	 arrays,	 or	 many	 less	 dense,	 population	 specific	

arrays.	

	

	

Given	these	issues,	an	attractive	low-cost	alternative	to	the	use	of	arrays	is	to	use	

low	coverage	next	generation	sequencing	(LC-NGS)	as	a	basis	 for	 imputation	of	

complete	 genotypes14.	 Genotyping	 by	 LC-NGS	 could	 in	 principle	 be	 powerful:	



even	 at	 modest	 sequencing	 depth	 LC-NGS	 reads	 sample	 the	 majority	 of	

segregating	sites,	including	those	specific	to	the	population	of	interest.	

	

However,	 to	 date,	 there	 exist	 no	 published	 genotype	 imputation	 methods	

specifically	 designed	 to	 use	 LC-NGS	 without	 additionally	 using	 genotyping	

microarrays	 or	 a	 haplotype	 reference	 panel.	 While	 methods	 such	 as	 Beagle	

(version	 4)7	 and	 findhap	 (version	 4)12	 can	 be	 applied	 in	 this	 setting,	 they	 are	

tailored	 to	 work	 best	 with	 reference	 panels,	 and	 array	 data,	 which	 provide	 a	

framework	of	high-confidence	genotypes.		

	

Furthermore,	the	read-based	nature	of	NGS	provides	useful	phasing	information	

on	nearby	variants	 from	a	 single	 (paired)	 read,	which	 is	 likely	 to	be	especially	

powerful	 in	 species	 with	 high	 SNP	 densities.	 While	 some	 approaches	 have	

started	 to	 use	 phase	 informative	 reads	 when	 phasing	 multiple	 heterozygous	

SNPs4,	there	are	additional	benefits	to	a	fully	read	based	imputation	framework.	

First,	 in	 the	 absence	 of	 reference	 haplotypes,	 phasing	 with	 reads	may	 help	 to	

initialize	the	phasing	procedure.	Second,	at	high	SNP	density,	 it	 is	 inaccurate	to	

treat	 genotypes	 from	 the	 same	 read	 as	 being	 independent,	 which	 may	 help	

mitigate	the	influence	of	incorrectly	mapped	reads,	e.g.	near	an	indel,	a	cluster	of	

false	 positive	 SNPs	 will	 contribute	 only	 once	 to	 the	 model,	 and	 not	 multiple	

times.	

	

Here,	 we	 describe	 a	 genotype	 imputation	 algorithm	 STITCH	 (Sequencing	 To	

Imputation	 Through	 Constructing	Haplotypes)	 suitable	 for	 population	 samples	

in	 any	 species	 sequenced	 at	 low	 coverage	 without	 requiring	 a	 haplotype	



reference	panel.	The	only	 requirement	 is	a	high-quality	 reference	assembly	 for	

read-mapping.	 We	 demonstrate	 STITCH's	 utility	 on	 two	 datasets,	 from	 two	

species:	 first	 a	 set	 of	 2,073	 Crl:CFW(SW)-US_PO8	 (CFW)	 mice	 sequenced	 to	

0.15X,	and	second	a	set	of	11,670	Han	Chinese	samples	sequenced	to	1.7X15.	

	

Results	

	

Overview	of	model	

Our	method,	STITCH,	models	each	chromosome	in	the	population	as	a	mosaic	of	

K	 unknown	 founders	 or	 ancestral	 haplotypes.	 For	 fully	 outbred	 settings,	 these	

haplotypes	 can	 be	 thought	 of	 as	 informally	 capturing	 the	 set	 of	 distinct	

haplotypes	 within	 a	 region,	 so	 K	 may	 be	 large.	 We	 employ	 a	 hidden	 Markov	

model	 (HMM),	 whose	 parameters	 are	 sequentially	 updated	 using	 expectation	

maximization	 (EM),	 similar	 in	 spirit	 to	 the	 fastPHASE	 algorithm16.	 At	 each	

iteration	of	the	EM,	in	the	expectation	step	ancestral	haplotype	probabilities	are	

generated	for	each	sample,	while	in	the	maximization	step	ancestral	haplotypes	

and	other	parameters	are	updated	using	sample	haplotype	membership.	Both	of	

these	 steps	 directly	 consider	 the	 underlying	 sequencing	 reads.	 An	 overview	of	

the	model	used	for	imputation	is	presented	in	Figure	1.		

	

Computationally,	the	algorithm	has	a	per-iteration	time	complexity	linear	in	the	

number	of	samples	and	SNPs,	and	when	run	in	its	standard	“diploid”	mode,	has	

quadratic	time	complexity	in	the	number	K	of	ancestral	haplotypes.	Because	the	

ability	to	model	large	K	is	essential	for	STITCH	to	handle	human	and	other	large	



outbred	 populations,	 we	 developed	 an	 alternative	 mode,	 termed	 “pseudo-

haploid”,	with	linear	per-iteration	time	complexity	in	K.	This	is	motivated	by	the	

observation	 that	 imputation	 in	 diploid	 individuals	 could	 be	 carried	 out	 with	

linear	time	complexity	 in	K	 if	 the	sequencing	reads	came	with	 labels	 indicating	

their	parental	chromosomal	origin	(maternal,	or	paternal)	–	in	other	words,	with	

phase	 information.	 In	 this	 setting,	 only	 reads	 mapping	 to	 the	 maternal	

chromosome	would	be	required	 to	 impute	mutations	 this	chromosome	carries,	

so	the	maternal	and	paternal	chromosomes	could	be	imputed	separately.	In	the	

absence	of	 such	chromosome	 labels,	 in	 theory	one	 could	 sample	 labels	 (e.g.	by	

Gibbs	 sampling)	 for	 each	 read	under	our	model.	 The	 relative	 contribution	of	 a	

read	 to	 each	 chromosomes’	 posterior	 likelihood	 would	 then	 depend	 on	 the	

probability	 it	 came	 from	 that	 chromosome.	 This	 sampling	 is	 in	 practice	

prohibitively	 computationally	 expensive.	 Therefore,	 in	 practice	 our	 pseudo-

haploid	 makes	 several	 additional	 simplifying	 approximations	 (see	 the	

Supplementary	 Note	 for	 details,	 and	 discussion	 of	 other	 issues	 e.g.	 label-

switching),	 to	 estimate,	 for	 every	 read,	 the	 probability	 it	 came	 from	 each	

chromosome.	 Given	 these	 probabilities,	 we	 can	 update	 the	 posterior	 ancestral	

haplotype	 probabilities	 for	 each	 chromosome	 separately,	 within	 the	 EM	

algorithm.	 This	 retains	 a	 common	 EM	 framework	 to	 both	 diploid	 and	 pseudo-

haploid	modes,	thereby	allowing	the	algorithm	to	switch	between	modes	at	any	

point. A	 full	 description	 of	 the	 diploid	 and	 pseudo-haploid	 modes	 is	 in	 the	

Methods	 and	Supplementary	 Note,	while	 guidance	 on	 parameter	 choice	 is	 in	

the	Supplementary	Note.		

	

	



CFW	outbred	mice	

	

We	ran	STITCH	on	low	coverage	sequence	data	(0.15X,	paired	end	100	base	pair	

reads)	 from	 2,073	 outbred	 Crl:CFW(SW)-US_PO8	 mice17,18.	 These	 mice	 are	

thought	 to	 have	 descended	 from	 two	 outbred	 founders	 (i.e.	 K=4)	 about	 100	

generations	 ago.	 We	 imputed	 genotypes	 at	 7.1	 million	 single	 nucleotide	

polymorphic	 sites	 (SNPs)	 that	either	were	polymorphic	 in	 the	Mouse	Genomes	

Project19	or	passed	VQSR20	quality	filtration17.	Imputation	accuracy	was	assessed	

in	 two	 ways	 –	 44	 mice	 genotyped	 on	 the	 Illumina	 MegaMUGA	 array	 (21,576	

polymorphic	 SNPs)	 	 and	 four	mice	 sequenced	 to	 10X	 using	 an	 Illumina	HiSeq.	

Correlations	(r2)	between	genotypes	and	imputed	dosages	were	calculated	either	

per-site	 for	 the	array	or	aggregated	across	all	SNPs	 in	a	given	 frequency	range	

for	the	high	coverage	sequencing	data.	

	

We	 compared	 results	 from	STITCH	 (K=4,	 diploid	mode)	 to	Beagle	 and	 findhap	

run	without	a	reference	panel7,12.	Genotypes	across	all	frequencies	from	STITCH	

correlated	highly	with	the	Illumina	MegaMUGA	array	(Fig.	2a,	r2=0.972)	and	10X	

sequencing	 (Fig.	 2b,	 r2=0.948)	 (Supplementary	 Table	 1).	 Filtering	 with	 an	

imputation	info	score	>	0.4	(Methods)	and	Hardy-Weinberg	Equilibrium	(HWE)	

p-value	>	10-6	 improved	accuracy	 further,	 to	r2	of	0.981	and	0.974,	with	5.72M	

SNPs	 (81%)	 retained.	 In	 general,	 imputation	 performance	was	 good	 across	 all	

allele	frequencies,	except	for	a	slight	decrease	at	low	frequency	(<5%)	SNPs	(Fig.	

2)	 that	 are	 expected	 to	 be	 challenging	 for	 low-coverage	 sequencing.	 Beagle	

under	 default	 conditions	 achieved	 r2’s	 of	 0.080	 and	 0.219	 compared	 to	 10X	



sequencing	and	array	without	QC	filtering,	respectively,	while	findhap	achieved	

0.58	and	0.55	(Fig	2,	Supplementary	Table	1).		

	

We	performed	additional	analyses	to	explore	parameter	choices.	We	found	that	

optimal	results	were	achieved	with	K=4	for	STITCH	(Supplementary	Table	2),	

as	 expected	 from	 the	 population’s	 ancestry.	 Results	 for	 Beagle	 did	 not	 differ	

appreciably	when	the	number	of	iterations,	window	size,	and	model	scale	factor	

were	 changed,	 while	 the	 results	 reported	 above	 for	 findhap	 were	 the	 best	

observed	 when	 varying	 parameters	 of	 the	 method	 over	 a	 range	 of	 values	

suggested	by	 the	 findhap	documentation	 (Supplementary	 Table	 2).	 	Of	 the	3	

methods,	 findhap	was	approximately	12	 times	 faster	 than	Beagle	and	38	 times	

faster	 than	STITCH,	 although	 if	 parallelized	by	 chromosome,	 imputation	 for	 all	

samples	 for	any	of	 the	methods	could	be	performed	 in	 less	 than	48	hours	on	a	

modest	 computational	 server.	 Ignoring	 phase	 information	 from	 reads	 in	

applying	 STITCH	 (i.e.	 treating	 each	 variant	 in	 a	 read	 as	 independent)	 reduced	

accuracy	considerably,	from	r2=0.97	to	0.87	with	the	Illumina	MegaMUGA	array	

(Supplementary	Table	2).	

	

CONVERGE	study	

	

To	 explore	 performance	 in	 human	 data,	 we	 ran	 STITCH	 on	 low	 coverage	

sequence	data	 (1.7X,	 paired	 end	83	base	pair	 reads)	 from	11,670	Han	Chinese	

women15.	 Details	 of	 read	 mapping	 and	 variant	 calling	 are	 as	 detailed	

previously15.	We	used	the	first	10	Mbp	of	chromosome	20	to	test	the	imputation	

algorithms	 and	 compared	 our	 predictions	with	 genotypes	 from	 72	 individuals	



genotyped	 on	 the	 Illumina	 HumanOmniZhongHua-8	 array	 and	 9	 individuals	

sequenced	at	10X	coverage15.	

	

Following	 preliminary	 testing	 (Supplementary	 Table	 3),	 we	 applied	 STITCH	

with	 K=40	 “founder”	 haplotypes,	 with	 40	 rounds	 of	 updating	 to	 estimate	

parameters	 and	 perform	 imputation.	 The	 first	 38	 rounds	 were	 in	 the	 faster	

“pseudo-haploid”	mode	and	the	final	2	in	the	slower	but	more	accurate	“diploid”	

mode.	STITCH	achieved	close	correspondence	to	Illumina	array	results	(Fig.	3A,	

r2=0.920,	 Supplementary	 Table	 4)	 and	 10X	 sequencing	 (Fig.	 3B,	 r2=0.949),	

results	that	improved	when	SNPs	were	filtered	(info	>	0.4,	HWE	p-value	>	10-6)	

(array	r2=0.939,	10X	r2=0.960).	Accuracy	declined	for	K	<	40,	and	was	marginally	

improved	 for	K	>	40.	Running	additional	 slower	 “diploid”	mode	 iterations	also	

improved	 accuracy	 only	 marginally,	 and	 fully	 diploid	 imputation	 became	

computationally	 prohibitive	 beyond	 K=30.	 Results	were	 essentially	 unchanged	

when	STITCH	was	run	ignoring	read	information,	reflecting	the	low	SNP	density	

in	humans.	Beagle	without	a	reference	panel	achieved	reduced	r2	values	of	0.886	

and	0.930	for	sequencing	and	array	without	QC	filtering,	respectively,	while	the	

best	parameter	settings	we	identified	for	findhap	achieved	0.414	and	0.550	(Fig	

3,	Supplementary	Table	4).	

	

We	 next	 compared	 STITCH	 to	 applying	Beagle	with	 additional	 reference	 panel	

information.	In	this	setting,	Beagle	is	modestly	more	accurate	than	STITCH,	at	the	

cost	 of	 run	 time	 (Fig.	 3C,	 Fig.	 3D,	 Supplementary	 Table	 5,	 Supplementary	

Table	6).	For	example,	Beagle	achieved	an	r2	of	0.943	versus	0.922	compared	to	

the	array	for	STITCH	before	SNP	QC,	although	it	took	7.3X	as	long.		



	

We	 then	 repeated	 the	 imputation	 strategy	 for	 Beagle	 used	 in	 the	 original	

CONVERGE	 study15	 of	 first	 imputing	 all	 sites	 without	 a	 reference	 panel,	 then	

imputing	the	subset	of	variants	with	a	reference	panel,	and	replacing	SNPs	in	the	

former	with	 the	 latter	when	 they	 existed.	We	 compared	 these	 results	 to	 those	

from	STITCH,	 run	without	 a	 reference	panel	 on	 the	 entire	 set	 of	 SNPs.	Results	

between	 these	 two	 strategies	 were	 essentially	 the	 same	 between	 STITCH	 and	

Beagle,	(Supplementary	Table	7)	with	STITCH	achieving	an	r2	of	0.972	(array)	

and	Beagle	0.968	under	the	most	stringent	QC	scenario,	which	retained	75%	of	

common	sites	(>5%	minor	allele	frequency).	Results	for	STITCH	were	generated	

5.3X	faster	than	Beagle	under	this	strategy.		

	

Effect	of	sample	size	and	coverage	on	imputation	

	

We	 next	 examined	 the	 consequences	 of	 altering	 sample	 size	 and	 sequence	

coverage	 (Fig.	 4).	For	 the	CFW	mice,	 for	 the	 full	0.15X	coverage	using	STITCH,	

sample	size	above	500	has	little	impact	on	performance,	while	at	down-sampled	

lower	coverage,	increasing	sample	size	to	2,073	leads	to	substantially	increased	

performance.	 Surprisingly,	 even	 at	 0.06X	 for	 the	 full	 sample	 of	 2,073	 animals,	

results	are	only	marginally	poorer	than	using	0.15X.	For	the	CONVERGE	samples	

using	STITCH,	sample	size	has	less	of	an	influence	across	the	range	of	sequencing	

coverages	considered,	although	results	did	consistently	improve	with	increasing	

sequencing	 depth.	 STITCH	 outperforms	 Beagle	without	 a	 reference	 panel	 over	

the	range	of	low	coverages	considered	here	(0.3-1.7X).		

	



Effect	of	variant	filtration	on	imputation	performance	

	

Methods	 of	 genotyping	 from	 next	 generation	 sequencing	 typically	 employ	 an	

initial	 step	 of	 variant	 filtration,	 to	 reject	 any	 newly	 discovered	 sites	 whose	

quality	 control	 metrics	 differ	 from	 those	 at	 known	 variant	 sites.	 One	 such	

method	 is	 the	 GATK	 Variant	 Quality	 Score	 Recalibrator20.	 Since	 we	 developed	

STITCH	to	be	applicable	to	populations	in	which	a	catalogue	of	variant	sites	was	

unavailable,	we	 investigated	whether	 prior	 variant	 filtration	was	necessary,	 or	

whether	 STITCH	 itself	 could	 be	 used	 to	 filter	 SNPs	 directly.	 We	 compared	

imputation	at	filtered	variant	sites	in	the	CFW	population,	as	defined	using	VQSR	

and	 known	 variable	 sites,	 to	 a	 two-step	 strategy	 where	 no	 prior	 variant	

catalogue	is	used.	As	a	first	step,	all	discovered	sites	in	the	sample	are	imputed	

without	 filtration.	 In	 the	 second	 step,	 only	 those	 variants	 that	 pass	 quality	

control	(QC)	filters	from	the	first	step	are	re-imputed.	Results	indicate	this	to	be	

a	 viable	 strategy	 (Supplementary	 Table	 8).	 For	 the	 one	 step	 strategy	 with	

variant	filtration	(the	original	study	design),	152K	SNPs	on	chromosome	19	were	

imputed,	 with	 122K	 SNPs	 passing	 QC	 at	 an	 r2	 of	 0.968.	 For	 the	 two-stage	

approach,	 355K	 variants	 were	 imputed	 in	 the	 first	 round	 of	 imputation,	 with	

136K	 passing	 QC.	 In	 the	 second	 round	 of	 imputation,	 these	 136K	 were	 re-

imputed,	with	128K	of	 them	passing	QC	at	an	r2	of	0.952.	Overlap	between	the	

two	approaches	was	116K,	with	marginally	better	r2	in	the	overlap	from	the	two-

step	approach,	with	results	 specific	 to	either	set	having	 lower	r2.	These	results	

indicate	that	prior	knowledge	of	variable	sites	is	not	needed	to	impute	accurately	

using	STITCH.	

	



	

Discussion	

	

Inexpensive	genotyping	microarrays	and	imputation	with	large	reference	panels	

have	 made	 genome-wide	 association	 studies	 tractable	 in	 humans,	 but	 these	

resources	 are	 unavailable	 in	 many	 species,	 and	 are	 not	 ideal	 for	 human	

populations	in	parts	of	the	world	where	appropriate	reference	populations	have	

not	 yet	 been	 deeply	 sequenced.	 Our	 method	 alleviates	 this	 bottleneck,	 by	

imputing	 high	 quality	 genotypes	 directly	 from	 low	 coverage	 sequencing	 data.	

The	method	delivered	highly	accurate	imputation	at	a	depth	of	only	0.15X	in	the	

CFW	mouse	population.	In	a	higher	coverage	situation	of	1.7X	in	humans,	STITCH	

performed	similarly	to	a	method	using	a	reference	panel,	without	requiring	such	

a	 panel.	 This	 simplifies	 the	 imputation	 pipeline,	 and	 allows	 application	 in	

populations	where	no	reference	is	available.	We	also	introduce	an	approximation	

that	 achieves	 linear	 as	 opposed	 to	 quadratic	 time	 scaling	 with	 the	 number	 of	

founder	haplotypes	with	very	little	loss	of	accuracy,	making	the	method	suitable	

for	the	analysis	of	very	large	and	ancestrally	complex	populations.		

	

Importantly,	 imputation	 results	 were	 better	 when	 using	 direct	 phase	

information,	 especially	 in	 the	 CFW	mice,	 while	 the	 two-stage	 CFW	 imputation	

procedure	 showed	 that	 careful	 filtering	 of	 candidate	 SNPs	 based	 on	 prior	

variation	 is	not	essential.	This	can	simplify	the	analysis,	by	alleviating	the	need	

for	running	separate	SNP-filtering	procedures,	e.g.	the	VQSR20.	

	



The	differences	in	imputation	performance	we	observe	in	the	mouse	and	human	

samples	 reflect	 their	 different	 genetic	 histories.	 Our	 method	 involves	 two	

alternating	 processes	 –	 reconstructing	 founder	 haplotypes,	 and	determining	 in	

an	 individual	 sample	which	 pair	 of	 founder	 haplotypes	 it	 is	most	 similar	 to	 at	

each	 locus.	 Because	 the	 CFW	 mouse	 population	 was	 founded	 about	 100	

generations	 ago	 from	 just	 two	 progenitors,	 physical	 distances	 between	

haplotype	 switches	are	 large,	making	 it	 relatively	easy	 to	 identify	which	of	 the	

small	number	of	founder	haplotypes	an	individual	carries,	even	at	low	coverage.	

By	 contrast,	 in	 the	 CONVERGE	 Han	 Chinese	 population	 sample,	 haplotypic	

diversity	is	far	greater,	and	consequently	haplotypic	switches	occur	much	more	

frequently.	This	explains	why	imputation	in	humans	is	less	accurate	for	a	given	

level	 of	 sequence	 coverage	 and	 why	 increasing	 K	 –	 the	 modeled	 number	 of	

founder	haplotypes	–	had	little	influence	on	performance	in	mice,	but	increased	

accuracy	 in	 humans.	 Because	 these	 datasets	 represent	 relatively	 extreme	

scenarios	in	terms	of	haplotypic	diversity,	we	expect	that	STITCH	will	work	well	

in	intermediate	settings,	without	haplotype	reference	panels.	

	

Our	method	delivers	 the	greatest	 accuracy	 improvements	 for	populations	with	

recent	 strong	 bottlenecks,	 such	 as	 those	 studied	 in	 agricultural	 or	 plant	

genomics21,22,23.	While	poorer	quality	reference	assemblies	than	those	available	

for	mice	and	humans	will	impact	the	performance	of	STITCH	in	other	species,	in	

future	 the	 decreasing	 cost	 of	 constructing	 high	 quality	 reference	 assemblies	

using	 single	molecule	 long	 read	 technologies	 and	 optimal	mapping	 techniques	

may	mitigate	this	issue24.	

	



Although	 STITCH	 out-performed	 findhap	 for	 imputation	 using	 low-coverage	

sequencing	 data	 in	 the	 scenarios	 evaluated	 here,	 in	 cases	 where	

additional	genotyping	 array	 data	 is	 also	 available,	 findhap	 may	 perform	 well.	

Specifically,	if	additional	microarray	data	is	available	for	a	set	of	samples	drawn	

from	the	same	population	as	those	sequenced	at	low	coverage,	findhap	obtained	

comparable	accuracy	 to	our	STITCH	runs	 that	used	 the	read	unaware	option12,	

and	offers	a	speed	advantage.	

	

For	human	 samples,	 at	 1-1.5X	 sample	 coverage,	 STITCH	accurately	 imputes	 all	

common	variation,	making	 it	 suitable	 for	any	population	 that	 lacks	a	 reference	

panel,	or	one	with	an	incomplete	variant	catalogue.	We	imagine	that	our	method	

might	be	particularly	appropriate	for	ethnic	groups	so	far	not	subject	to	GWAS,	

population	 isolates,	and	for	ancient	humans,	where	 low	coverage	sequencing	 is	

common.		
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Figure	Legends	

	

	



	

	

Figure	1.	Overview	of	STITCH	

After	 initializing	 various	 parameters	 (left),	 represented	 here	 by	 the	 ancestral	

haplotypes,	40	EM	iterations	are	performed	(middle).	Each	iteration	involves	 i)	

determining	 hidden	 haplotype	 states	 (going	 down,	 left	 side)	 using	 current	

parameters	and	sample	 reads,	 and	 ii)	parameter	updates	 (going	up,	 right	 side)	

using	 sample	 reads	 and	 haplotype	 probabilities	 (hidden	 states).	 Once	 the	

expectation-maximization	 iterations	 are	 completed,	 imputed	 genotypes	 are	

generated	using	 the	haplotype	probabilities	 and	 ancestral	 haplotypes	 from	 the	

final	iteration	(right).	This	example	uses	real	data	from	the	CFW	mice	with	K=4	

founder	 haplotypes	 for	 approximately	 3,000	 base	 pairs	 on	 chromosome	 19	

containing	20	imputed	SNPs.	Each	of	the	SNPs	in	the	4	reconstructed	haplotypes	

are	shown	as	a	vertical	bar	split	proportionally	to	the	probability	of	emitting	the	

reference	(black)	or	alternate	(grey).	Sample	reads	are	similarly	coloured.	

	

	

Figure	 2.	 Performance	 of	 STITCH	 on	 CFW	 mice	 compared	 to	 external	

validation	

Validation	 dataset	 is	 the	 Illumina	 MegaMUGA	 array	 (a)	 and	 10X	 Illumina	

sequencing	 (b).	 Results	 are	 shown	 for	 STITCH	 (K=4,	 diploid	 mode),	 Beagle	

(default)	 and	 findhap	 (maxlen=10000,	 minlen=100,	 steps=3,	 iters=4)	 genome-

wide	 for	 n=2,073	 mice	 featuring	 7.07M	 SNPs	 before	 QC	 and	 5.72M	 after	 QC.	

STITCH	 is	 run	 using	 K=4,	 diploid	method,	 40	 iterations.	 Post-QC	 is	 SNPs	with	

info>0.4	and	HWE	p-value	>	1x10–6.	



	

	

Figure	 3.	 Performance	 of	 STITCH	 on	 CONVERGE	 humans	 compared	 to	

external	validation	

Validation	dataset	 is	 the	 Illumina	HumanOmniZhongHua-8	array	(a,	c)	and	10X	

sequencing	 (b,	 d).	 Results	 are	 shown	 for	 STITCH	 (K=40,	 38	 pseudo-haploid	

iterations,	2	diploid	iterations),	Beagle	(default	(a,b),	3	iterations	with	reference	

panel	(c,d)),	and	findhap	(maxlen=50000,	minlen=500,	steps=3,	iters=4)	for	the	

first	10	Mbp	of	chromosome	20	for	n=11,670	Han	Chinese	samples,	either	for	all	

SNPs	(a,b),	or	 for	SNPs	also	present	 in	 the	1000	Genomes	ASN	reference	panel	

(c,d).	Post-QC	is	SNPs	with	info>0.4	and	HWE	p-value	>	1x10–6.	

	

	

	

Figure	4.	Effects	of	reduced	sequence	coverage		

Results	are	shown	for	CFW	mice	(a)	and	CONVERGE	humans	using	STITCH	(b)	

and	Beagle	run	without	a	reference	panel	(c).	Validation	is	using	array	data,	with	

each	value	representing	the	average	for	common	SNPs	(allele	frequency	5–95%),	

without	correction	for	post-imputation	QC.	Downsampling	of	samples	and	reads,	

as	 shown	 in	 the	 legends,	 was	 performed	 at	 random,	 except	 that	 samples	

necessary	 for	 accuracy	 assessment	 were	 always	 retained.	 STITCH	 settings	 are	

the	 same	 as	 for	 the	 full	 CFW,	 CONVERGE	 datasets.	 Colours	 representing	

downsampling	sequence	depth	are	the	same	for	STITCH	and	Beagle.	

	

	 	



	

Online	methods	
	

Overview	and	simulation	under	the	model	

	

Here	we	 outline	 the	model	 by	 describing	 how	one	would	 simulate	 (read)	 data	

from	it,	given	knowledge	of	the	underlying	parameters.	In	the	following	section,	

we	then	more	rigorously	lay	out	how	we	infer	parameters	and	perform	inference	

of	genotypes.	We	describe	technical	details	of	the	EM	procedure	and	parameter	

updating	in	the	Supplementary	Note.	

	

We	 consider	 a	 population	 of	 individuals	 that	 can	 be	 approximated	 as	 having	

been	founded	G	generations	ago	from	K	unknown	ancestral	founding	haplotypes.	

Consider	 a	 haplotype	 from	 a	 single	 chromosomal	 region	 with	 T	 SNPs	 from	 a	

present	day	 individual	drawn	from	our	model.	A	starting	state	(haplotype)	k	 is	

chosen	with	probability	�k.	 Let	dt	and	pt	 be	 the	physical	 distance	 and	 average	

recombination	rate	between	SNPs	t	and	t+1,	respectively.	Therefore	σt=dtpt	is	the	

recombination	distance	between	SNPs	 t	 and	 t+1	 in	one	generation,	 so	 in	 the	G	

generations	since	founding	the	probability	of	recombination	between	these	SNPs	

is	1–exp{–Gσt}.	

	

Conditional	 on	 recombination	 locations,	we	 sample	 an	 ancestral	 haplotype	 for	

each	non-recombining	 interval.	We	allow	genetic	drift	 to	play	a	sizeable	role	 in	

the	 proportions	 of	 the	 ancestral	 haplotypes	 in	 each	 short	 genomic	 interval.	 As	

such,	 we	model	 the	 probability	 of	 choosing	 ancestral	 haplotype	 k	 to	 the	 right	



(from	SNP	t+1),	given	a	recombination	between	SNP	t	and	SNP	t+1	as	αt,k.	This	

choice	is	made	independently	of	the	state	at	SNP	t.	

	

Finally,	 the	 reads	 are	 sampled	 conditional	 on	 the	 local	 haplotype	 background.	

Gene	conversion,	de	novo	mutation,	read-mapping	errors	and	other	issues	mean	

that	not	all	chromosomes	and	reads	descended	from	ancestral	haplotype	k	will	

be	an	exact	match	 to	 the	ancestral	sequence.	We	therefore	model	 that	 for	each	

read,	for	SNP	t	and	ancestral	haplotype	k,	 that	the	alternate	base	will	be	drawn	

with	probability	θt,k,	 and	 the	 reference	base	with	probability	1–θt,k.	 Inherent	 in	

this	is	the	assumption	that	different	reads	are	emitted	from	different	samplings	

of	θt,k;	in	reality	there	would	be	a	simple	sampling	of	θt,k	for	each	haplotype,	and	

reads	 sampled	 conditional	 on	 these	 real	 underlying	 bases.	 This	 assumption	 is	

necessary	 for	computational	reasons,	and	has	reduced	 impact	 for	 low	coverage	

sequencing	data.	

	

Consider	sampling	the	rth	read,	Rr	 .	To	do	this,	first	choose	read	boundaries	and	

determine	ur,j	the	set	of	indices	of	the	SNPs	in	the	read	for	j=1,…,Jr,	where	Jr	is	the	

number	of	SNPs	in	the	rth	read	Rr.	Paired	end	reads	can	be	easily	accommodated	

in	this	way	by	allowing	discontinuous	ur,j	within	read	r.	We	make	the	assumption	

that	 recombinations	are	 infrequent	enough	 that	 reads	have	constant	haplotype	

state	over	their	 length;	as	such,	each	read	has	a	central	SNP,	call	 it	cr,	and	state	

membership	 over	 the	 read	 is	 drawn	 from	 the	 central	 SNP.	 Therefore,	 the	

underlying	“real”	bases	for	the	sequencing	read	are	sampled	according	to	θt,k	for	

t	in	ur,j	where	k=kt’	for	t’=cr.	To	sample	“observed”	bases,	we	sample	br,j,	the	set	of	



base	qualities	of	the	SNPs	in	the	read	–	in	practice	these	qualities	are		externally	

provided	 -	 and	 then	sample	observed	bases	sr,j	 according	 to	 the	 real	bases	and	

the	base	qualities.	

	

	

Expectation	and	hidden	state	determination	

	

In	the	HMM,	for	the	haploid	model,	let	qt	be	the	hidden	state	at	SNP	t,	i.e.	qt	�	{1,	

,K}.	For	the	diploid	model,	let	qt=(kt,1,	kt,2)	be	the	hidden	states	at	SNP	t.	Let	

λ={π,σ,α,θ}	be	the	parameters	of	the	model.	The	pseud-haploid	model	is	

described	in	the	Supplementary	Note.	

	

Initial	haploid	state	probabilities	 for	 the	k=1,…,K	different	states	are	defined	as	

πk.	 Diploid	 initial	 state	 probabilities	 are	 taken	 by	multiplying	 together	 haploid	

state	probabilities.	

	

For	 state	 transitions,	 with	 probability	 exp{–Gσt},	 no	 recombination	 occurs	

between	 SNPs	 t	 and	 t+1,	 while	 with	 probability	 1–exp{–Gσt},	 a	 recombination	

occurs	and	a	new	state	qt+1	 is	chosen	at	SNP	 t	according	 to	αt,k’	 for	k’=kt+1.	This	

gives	the	haploid	transition	matrix	

!(!!!! = !!!!|!! = !! , !) =
!!!!! + (1− !!!!!)!!,!!!! if !!!! = !!

(1− !!!!!)!!,!!!! if !!!! ≠ !!
	



Assuming	 independence	 between	 the	 two	 chromosomes	 then	 the	 diploid	

transition	probability	from	state	qt=(kt,1,	kt,2)	at	SNP	t	to	qt+1=(kt+1,1,	kt+1,2)	at	SNP	

t+1	is:	

! !!!! = !!!!,!, !!!!,! !! = !!,!, !!,! = ! !!!! = !!!!,! !! = !!,! ×
! !!!! = !!!!,! !! = !!,!

	

For	the	emission	of	reads,	for	read	Rr,	let	cr	be	the	index	of	the	most	central	SNP	

in	that	read,	choosing	at	random	when	a	read	intersects	exactly	two	SNPs.	Reads	

that	don’t	 intersect	any	SNPs	are	removed	as	 they	are	uninformative.	Consider	

the	probability	of	an	observation	of	a	set	of	reads	whose	central	SNP	 is	t,	or	 in	

other	words	Ot={Rr|cr=t}.	For	SNP	j	in	read	Rr,	sr,j	is	the	observed	sequencing	read	

(0	=	reference,	1	=	alternate),	and	br,j	is	the	Phred	scaled	base	quality,	i.e.	the	log	

probability	 that	 the	 base	 is	 called	 erroneously,	 so	 let	 εr,j=10^(–br,j/10).	 Then,	

given	the	underlying	(unobserved)	genotype	of	this	read	at	this	SNP	is	g	

!(!!,!|!) =
1− !!,! if !!,! = !
1
3 !! if !!,! ≠ !	

For	convenience,	set	ϕir,j=P(sr,j|g=i).	We	disregard	sequenced	bases	which	are	not	

the	 reference	or	alternate	base.	Paired	end	reads	are	handled	as	 the	 indices	of	

the	SNPs	in	the	read	ur,j, are allowed to be discontinuous. Given	there	are	Jr	SNPs	in	

read	Rr,	the	probability	of	drawing	read	Rr	from	haplotype	k	is	the	product	of	the	

contribution	of	each	SNP	j=1,…,Jr	 in	that	read.	For	the	jth	SNP,	this	probability	is	

the	probability	 the	read	contained	 the	alternate	base	ϕ1r,j	 times	 the	probability	

θt,k	for	 t=ur,j	 that	ancestral	haplotype	k	emitted	 the	alternate	base,	added	 to	 the	

equivalent	probability	for	the	reference	base.	Taken	together,	this	yields	



 ! !! !! = !, ! = !!!,!,!!!,!! + (1− !!!,!,!)!!,!! )
!!

!!!
.	

Let	Ot	be	the	set	of	reads	with	central	SNP	t.	In	the	haploid	model,	the	probability	

of	the	observations	at	locus	t	is	

!(!!|!! = !! , !) = !
!!∈!!

(!!|!! = !! , !)	

In	the	diploid	model,	each	read	is	equally	likely	to	come	from	either	the	maternal	

or	paternal	chromosome,	giving	

!(!!|!! = (!!,!, !!,!), !) =
1
2!(!!|! = !!,!, !)+

1
2!(!!|! = !!,!, !)	

For	every	SNP	t,	the	probability	of	the	observations	at	that	locus	is	

!(!!|!! = (!!,!, !!,!), !) = !
!!∈!!

(!!|!! = (!!,!, !!,!), !)	

Finally,	note	that	for	SNPs	which	are	not	covered	by	reads,	we	set	P(Ot|qt=kt,λ)=1	

for	all	kt.	

	

CFW	mouse	sequencing	

	

Full	 details	 on	 the	 Crl:CFW(SW)-US_PO8	 (CFW)	 mice,	 including	 sample	

acquisition,	 age,	 sex	 and	 sequencing	 are	 provided	 elsewhere17.	 CFW	mice	 are	

from	 a	 commercial	 outbred	 colony18.	 Sample	 pre-processing	 was	 done	 in	

accordance	with	 best	 practice	 recommendations20.	 Sequencing	 reads	 from	 low	

coverage	 samples	 were	 mapped	 to	 mm10	 using	 bwa25,	 remapped	 using	



Stampy26,	 PCR	 duplicates	 were	 marked	 using	 Picard,	 files	 were	 merged	 using	

Picard,	 indel	 realignment	 was	 performed	 using	 the	 GATK27,	 and	 base	 quality	

score	 recalibration	 was	 performed	 using	 the	 GATK.	 Variant	 calling	 was	 done	

using	 the	 GATK	 UnifiedGenotyper	 and	 filtered	 by	 the	 GATK	 VQSR,	 using	 as	

training	 data	 a	 set	 of	 variants	 from	 the	 Mouse	 Genomes	 Project19	 	 and	 a	

sensitivity	 threshold	 of	 80%.	 Sites	 in	 the	 training	 set	which	 failed	 VQSR	were	

nonetheless	 retained.	 In	 total,	 7.07M	 SNPs	 were	 called	 on	 the	 autosomes	 and	

chromosome	X.	4	mice	were	additionally	sequenced	at	10X.	Genotypes	for	these	

mice	were	generated	using	the	GATK	UnifiedGenotyper	using	the	genotype	given	

alleles	 option.	 For	 comparisons	 with	 low	 coverage	 imputation,	 individual	

genotypes	from	the	high	coverage	samples	were	set	to	missing	if	the	read	depth	

was	less	than	5	or	more	than	25,	or	if	the	genotype	quality	was	less	than	10.	

	

CFW	MegaMUGA	Array	Genotyping	

	

48	of	the	2,073	mice	were	sent	to	Neogen	and	genotyped	using	the	Mega	Mouse	

Universal	 Genotyping	 Array	 (MegaMUGA),	 an	 array	 built	 upon	 the	 Illumina	

Infinium	platform	with	77,808	SNPs	(Neogen,	Lincoln,	Nebraska,	USA).	Genotype	

calling	was	performed	by	Neogen	using	GenCall.	

	

After	 genotyping,	 recorded	 genders	 were	 compared	 to	 X	 and	 Y	 chromosome	

marker	 information,	 revealing	 no	 gender	 mismatches	 on	 the	 arrays.	 Samples	

were	 further	compared	to	 imputation	and	array	QC	metrics	 (call	 rate	and	10%	

GC	 score);	 this	 revealed	4	of	 48	 samples	had	poorly	performing	 array	metrics.	

These	4	samples	were	subsequently	removed	from	further	analysis.		



	

For	the	77,808	SNPs	for	which	we	had	genotypes,	144	were	not	mappable	from	

mm9	to	mm10	using	liftOver,	and	out	of	the	remaining	sites,	29,694	intersected	

between	imputation	and	MegaMUGA.	Out	of	those,	we	removed	sequentially	for	

the	 following	reasons:	17	for	allele	disagreements	between	sequencing	and	the	

array;	3,819	monomorphic	array	sites;	3,160	SNPs	with	an	imputed	SNP	within	

25	 bp	 of	 the	 array	 target	 SNP	 (as	 off-target	 variation	 can	 affect	 microarray	

genotyping)13	 ;	 56	 sites	with	 an	 array	Hardy-Weinberg	 Equilibrium	 p-value	 of	

less	 than	1x10-10.	Subsequent	comparisons	between	CFW	imputed	dosages	and	

array	genotypes	were	made	for	the	remaining	21,576	sites.	

	

CONVERGE	

	

Full	 details	 for	 the	 processing	 of	 the	 CONVERGE	 data,	 including	 low	 coverage,	

high	coverage,	Illumina	array	data,	ethics	committees	and	informed	consent	have	

been	 published	 elsewhere15.	 In	 brief,	 11,670	 low	 coverage	 (1.7X)	Han	 Chinese	

samples	were	called	using	the	GATK	to	yield	a	set	of	20.5M	variants.	9	samples	

were	sequenced	to	10X	and	used	independently	to	call	variants	(5.9M).	For	our	

analysis,	high	coverage	sample	genotypes	with	a	read	depth	of	lower	than	5,	read	

depth	greater	than	25,	or	genotype	quality	of	less	than	10	were	masked	out.	72	

samples	 were	 genotyped	 using	 the	 Illumina	 HumanOmniZhongHua-8	 (v1.0B)	

BeadChip.	Of	the	21057	sites	present	on	chromosome	20	on	the	array	and	used	

for	 imputation,	 we	 removed	 292	 sites	with	 >5%	missingness,	 7642	 sites	with	

probes	within	25bp	of	another	site	 in	 the	 imputed	dataset,	and	0	sites	with	an	



array	Hardy-Weinberg	Equilibrium	p-value	of	less	than 1×10!!".	This	left	13,123	

sites	used	for	assessing	accuracy.	

	

	

Beagle	

	

For	both	the	CFW	and	CONVERGE	samples,	Beagle	version	4.0	(beagle.r1399.jar)	

was	run	using	default	parameters,	unless	otherwise	noted7.	Genotype	likelihoods	

from	VCF	files	were	used	as	inputs.	For	the	CONVERGE	study,	the	1000	Genomes	

Asian	reference	panel	was	used.		

	

findhap	

	

For	 both	 the	 CFW	 and	 CONVERGE	 samples,	 findhap	 version	 4	 was	 run	 with	

default	 parameters,	 unless	 otherwise	 noted12.	 For	 both	 CFW	 and	 CONVERGE,	

allele	 depth	 information	 from	 VCF	 files	 was	 used	 to	 construct	 input	 files	 for	

findhap.	Since	pedigree	information	was	not	available	for	the	CFW	or	CONVERGE	

study,	 input	 pedigree	 files	 were	 made	 with	 missing	 values	 for	 maternal	 and	

paternal	inheritance.	Results	for	CFW	used	maxhap=10000	and	CONVERGE	used	

maxhap=25000.	 Both	 methods	 used	 default	 options	 of	 overlap=10,	

lowdense=0.07,	and	errrate=0.01.	

	

Correlation	between	dosages	and	validation	

	



For	the	arrays,	correlations	(r2)	are	generated	per-SNP	between	array	genotypes	

and	imputed	dosages.	When	reported	by	frequency,	values	are	averaged	over	all	

SNPs	in	that	frequency	bin;	otherwise	averaging	is	over	all	SNPs.	For	sequencing,	

correlations	 are	 between	 genotypes	 and	 imputed	 dosages	 across	 all	 samples.	

When	 reported	 by	 frequency,	 values	 are	 generated	 using	 only	 SNPs	 in	 that	

frequency	bin,	otherwise	averaging	is	over	all	SNPs.	When	aggregating	genotypes	

across	sites,	to	remove	an	upward	bias	in	correlations	due	to	genotype	encoding,	

dosages	 were	 recoded	 from	 the	 default	 of	 0	 as	 the	 reference	 allele	 and	 1	 the	

alternate	 allele	 to	 0	 for	 homozygous	 major	 allele	 and	 1	 homozygous	 for	 the	

minor	allele.	

	

	

Software	

	

STITCH	v1.0.0	was	used	for	all	analyses	 in	this	paper.	STITCH	is	available	 from	

http://www.stats.ox.ac.uk/~myers/		
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1 Supplementary Note

Definitions for commonly used variables

Symbol Definition
K Number of ancestral or founder haplotypes
T Number of SNPs in region
N Number of sample individuals
G Number of generations since population founding
Rr Read with index r which spans Jr SNPs, with SNP indices ur, sequenced bases

sr and base qualities br, or Rr = {ur, sr, br}
Jr Number of SNPs spanned by read Rr

cr Central SNP for read Rr

Ot Set of reads with central SNP t, Ot = {Rr|cr = t}
O Set of observations for each SNP t on the chromosome, O = {Ot|t = 1, ..., T}

ur,j For SNP j in read Rr, its index with respect to the chromosomal listing of
SNPs (e.g. If the physical position of SNP t in the region is Lt for t = 1, ..., T ,
then SNP j in read Rr has physical position Lur,j

)
sr,j Sequencing base for SNP j in read Rr, with sr,j = 1 for the alternate base and

0 for the reference base
br,j Base quality for SNP j in read Rr

Rr,j Subset of read Rr for SNP j, or Rr,j = {ur,j , sr,j , br,j}
�i
r,j Probability of SNP j from read Rr coming from an underlying genotype i, or

P (sr,j |g = i)
It Variable counting the number of recombinations that take place between SNPs

t and t+ 1
Hj

r Variable that takes value 1 if SNP j from read Rr is the alternate base and
value 0 if it is the reference base

Hr Variable that takes value 1 if read Rr comes from the maternal haplotype and
2 if it comes from the paternal haplotype

⇡k Probability of starting in state k at the first SNP
�t Recombination distance between SNPs t and t+ 1

↵t,k Probability of switching into state k between SNPs t and t+ 1
✓t,k Probability that haplotype k emits the alternate base at SNP t
� Parameters of the model � = {⇡,�,↵, ✓}

In the main text, we described the model by showing one would simulate it,
and more formally laid out the details necessary to generate probabilities under
the model. Here, we further specify the model by describing how the expectation
of the complete data likelihood can be used in an EM framework to provide
updated parameters �i+1 which guarantee no decrease in the likelihood of the
observed data. Doing this requires state space augmentation and calculating
expectations over hidden states in the Markov model. Here we show how these
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expectations are calculated for the haploid, diploid and pseudo-haploid cases.
Later, initialization, bounding, and heuristics of the model are given as well.

First, we give a brief review of notation (and see list above). We consider
a genomic region with T SNPs, and sequencing reads from N individuals. For
each individual, we index their reads with r so we speak of read Rr. We define
a central SNP cr for read Rr, so that for each SNP in the region, we observe
a set of reads, Ot = {Rr|cr = t}. Read Rr consists of a triplet of vectors: ur,
the indices; sr the reference (0) or alternate (1) bases; and the base qualities
br. From this we use �i

r,j , the probability SNP j in read Rr has underlying
genotype i.

We model our population as having been founded G generations ago with
K ancestral haplotypes. Sampling a set of observations for an individual can
be thought of as 1) choosing an initial haplotype k according to ⇡k, the prior
probability of starting in state k; 2) choosing where to switch states according to
�t, the genetic distance between SNPs t and t+1; 3) choosing which haplotype k
to sample at recombination breakpoints according to ↵t,k, the local probability
of switching into haplotype k at SNP t+1; and 4) sampling reads by i) choosing
read breakpoints and determining ur,j , the indices of the SNPs in the read;
ii) obtaining br,j , the base qualities of the SNPs in the read; iii) choosing the
real bases of the SNPs in the read according to ✓ur,j ,k, the probability that
haplotype k emits the alternate base at SNP ur,j ; iv) observing sequenced bases
sr,j according to br,j and the real bases.

In the unaugmented hidden state space, the haploid model corresponds to
a set of kt 2 1, ...,K 8t = 1, ..., T . For the diploid model, this consists of a
set of pairs of states (kt,1, kt,2), while for the pseudo-haploid mode, it is two
hidden states kt,1 and kt,2. In the augmented hidden state space, we further
consider knowledge of: how many recombinations occur between SNPs t and
t+1, defined by variable It; whether base j of read Rr is a reference or alternate
base, defined by variable Hj

r ; and whether read Rr comes from the maternal
or paternal haplotype, defined by variable Hr. Utilization of the augmented
hidden state space is necessary for updating parameters, as explained below.

1.1 Pseudo-haploid model

The diploid model presented here and used in fastPHASE and other similar
algorithms su↵ers from a quadratic computational complexity due to the need
to sum over K2 possible diploid states at each site. With sequencing reads,
the observed data fundamentally comes from either the first (e.g. maternal) or
second (e.g. paternal) haplotype. If we had labels for each read as to whether
they came from the maternal or paternal haplotype, we would have separable
likelihoods, and could use the maternal reads to infer the maternal states, and
likewise for the paternal reads and paternal states, which would have computa-
tional cost proportional to 2⇥K as opposed to K2.

In the diploid EM algorithm, we use the current set of parameters to gen-
erate the posterior probability of the pair of hidden states given the observa-
tions, and use these to generate a new set of parameters that maximize the
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likelihood. An alternative approach is to average over sampled hidden states
realized through a hypothetical Gibbs sampler that i) samples labels conditional
on states, observations, and parameters, and ii) samples states conditional on
labels, observations and parameters. Implementing such a Gibbs sampler in re-
ality would be computationally unwise, as it would likely take at least as long as
the original diploid EM. However, with certain assumptions about the posterior
distribution of the labels, we can approximate the posterior distribution of the
hidden states quickly.

Let q1 be the full hidden state for haplotype 1, the maternal haplotype. Let
Hr be the label for read r with Hr = 1 corresponding to the maternal haplotype
and Hr = 2 corresponding to the paternal haplotype. Let O = {Rr} be the set
of all reads, with |O| reads in total, and let H correspond to an assignment of
labels H 2 H = {1, 2}|O|. Let Rh = {Rr|Hr = h} be the set of reads with label
h. Then we have

P (q1|O,�) =
X

H2H
P (q1, H|O,�) (1)

=
X

H2H
P (q1|H,O,�)P (H|O,�) (2)

=
X

H2H
P (q1|H,O,�)

|O|Y

r=1

P (Hr|O,�) (3)

where the last equality requires the approximation that the probability of the
labels are independent of each other. Now, the probability of a state given labels
and reads can be further written as

P (q1|H,O,�) =
P (O|H, q1,�)P (q1|H,�)

P (O|H,�)
(4)

=

⇣Q
r:Hr=1 P (Rr|q1,�)

⌘
P (R2|hap2,�)P (q1|�)

P (R1|hap1,�)P (R2|hap2,�) (5)

where we use P (q1|H,�) = P (q1|�), since labels dont a↵ect state probabili-
ties without observations, and where (R1|hap1,�) is the probability of observ-
ing the set of reads labeled as coming from haplotype 1, conditional on their
having come from haplotype 1. If we further approximate P (R1|hap1,�) =Q

r:Hr=1 P (Rr|hap1,�), and approximate P (Rr|hap1,�) = P (Rr|�), we get that

P (q1H,O,�) = P (q1|�)
Y

r:Hr=1

(P (Rr|q1|�))/(P (Rr|�)) (6)
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This gives us that

P (q1|O,�) =

 
X

H2H
P (q1|�)

⇣ Y

r:Hr=1

P (Rr|q1,�)
P (Rr|�)

⌘!⇣ |O|Y

r=1

P (Hr|O,�)
⌘

(7)

= P (q1|�)
X

H2H

|O|Y

r=1

 
P (Hr|O,�)

⇣
I{Hr = 1}P (Rr|q1,�)

P (Rr|�) + I{Hr = 2}1
⌘!

(8)

= P (q1|�)
|O|Y

r=1

⇣
P (Hr = 1|O,�)

P (Rr|q1,�)
P (Rr|�) + P (Hr = 2|O,�)

⌘
(9)

Therefore, we get that read r contributes P (Hr = 1|O,�)P (Rr|q1,�)+P (Hr =
2|O,�)P (Rr|�) to the likelihood, after multiplying by the constant P (Rr|�), as
opposed to P (Rr|q1,�) as it would under a fully seperable model. When testing
on real data, we found that we achieved marginally but consistently better
performance using P (Hr = 1|O,�)P (Rr|q1,�) + P (Hr = 2|O,�)P (Rr|hap2,�)
instead, so this equation was used when calculating the state probabilities.

To use this, we need an estimate of the probability of a label given the data.
To do this, consider a read Rr, with lead SNP cr, and label Hr. Then we can
calculate the following

P (Hr = 1|O,�) =
X

q1,q2

P (Hr|q1, q2, O,�)P (q1, q2|O,�) (10)

=
X

q1,q2

P (Hr|q1, q2, Rr,�)P (q1, q2|O,�) (11)

=
X

q1,q2

P (Rr|q1,�)
P (Rr|q1,�) + P (Rr|q2,�)P (q1, q2|O,�) (12)

= Eq1,q2

h P (Rr|q1,�)
P (Rr|q1,�) + P (Rr|q2,�) |O,�

i
(13)

⇡ Eq1 [P (Rr|q1,�)|O,�]
P2

h=1 Eqh [P (Rr|qh,�)|O,�]
(14)

This uses a prior probability on labels of P (Hr = 1) = P (Hr = 2) = 1
2 . We also

use the approximation that the expectation of ratios is equivalent to the ratio
of expectations, to avoid a calculation with computational complexity of order
K2. To perform this calculation we use

P (Rr|haph,�) = Eqh [P (Rr|qh,�)|O,�] ⇡
KX

k=1

P (Rr|qh = k,�0)P (qk|O,�0)

(15)
where �0 are the parameters from the previous iteration.

Therefore, in calculating the complete data probability for the pseudo-haploid
model for haplotype H = 1, we use the probability of the observation at SNP t
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given state qt = kt and parameters � as

PH=h(Ot|qt = kt,�) =
JrY

j=1

PH=h(Rr|qt = kt,�)

=
JrY

j=1

P (Hr = h|O,�)P (Rr|q1,�) + P (Hr 6= h|O,�)P (Rr|haph,�)

(16)

where P (Hr = h|O,�) is from Equation 14, P (Rr|q1,�) is as defined in the
main text, P (Hr 6= h|O,�) = 1 � P (Hr = h|O,�), and P (Rr|haph,�) is from
Equation 15.

1.2 Maximization and parameter updating

In the EM algorithm, one defines a “complete dataset” D including the observed
data (O, the reads), as well as the hidden parameters (Q, the hidden states).
Given a set of parameters �, one defines the log-likehood of the complete data as
L(�) = log(l(�|D)) = log(l(�|D = (O,Q))). Given a current set of parameters
�i, we generate a new set of parameters �i+1 to maximize the expectation of
l(�i+1) with respect to the distribution of hidden parameters obtained by �i

U(�i+1,�i) =E[l(�i+1)|O,�i]

=
X

Q

P (Q|O,�i) log(P (O,Q|�i+1)) (17)

Standard theory implies that by choosing �i+1 to maximize U(�i+1,�i), we also
increase the likelihood of the observed data, l(�i+1|O) > l(�i|O) [1].

In applying the EM algorithm, we first initialize with a set of parameters
�0. For each subsequent iteration i = 1, 2, ..., we then iteratively alternate be-
tween the “Expectation” phase, where we calculate U(�i+1,�i), and the “Max-
imization” phase, where we calculate �i+1 to maximize U(�i+1,�i). In the
Expectation phase, the crucial component is calculating the state probabilities
P (Q|O,�i) - these are calculated using the forward and backward algorithms. To
calculate the updates in the Maximization stage, we must further augment the
latent space to model how many recombinations occur between SNPs, whether
emissions were due to occurences of an alternate base or a reference base, and
whether observed reads were from the maternal or paternal haplotype. To cal-
culate the updates in the Maximization stage, we must further augment the
latent space to model whether transitions occur due to recombinations or not,
and whether emissions were due to occurrences of an alternate base or a ref-
erence base. In this new augmented latent space, for some fixed set of hidden
parameters for the N samples, consider some sums that can be calculated. Let
n1
k be the number of sample haplotypes in state k at the first SNP, nt

stay be
the number of sample haplotypes which do not recombine between SNPs t and
t+1, nt

switch,k be the number of sample haplotypes which switch into ancestry k
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between SNPs t and t+1, and nt
k,s be the number of reads that have a reference

s = 0 or alternate s = 1 base for SNP t that are in state k for their central SNP.
Then the complete data log likelihood is

l(�) = log(P (O,Q|�))

=
KX

k=1

n1
k log(⇡k)

+
T�1X

t=1

nt
stay log(e

�G�t) +
T�1X

t=1

KX

k=1

nt
switch,k log((1� e�G�t)↵t,k)

+
TX

t=1

KX

k=1

nt
k,1 log(✓t,k) +

TX

t=1

KX

k=1

nt
k,0 log((1� ✓t,k)) (18)

Calculating updates for a parameter is done by taking the derivative of U(�i+1,�i)
with respect to that parameter, setting it equal to 0 and solving. Employing
the notation E[x|O,�] = E�[x], it is easy to calculate the following updates for
�i+1 = (⇡i+1, ✓i+1,↵i+1,�i+1)

⇡i+1
k =

E�i [n1
k]PK

j=1 E�i [n1
j ]

(19)

✓i+1
t,k =

E�i [nt
k,1]

E�i [nt
k,0] + E�i [nt

k,1]
(20)

↵i+1
t,k =

E�i [nt
switch,k]PK

j=1 E�i [nt
switch,j ]

(21)

�i+1
t =

1

�G
log

 PK
k=1 E�i [nt

switch,k]PK
k=1 E�i [nt

switch,k] + E�i [nt
stay]

!
(22)

1.2.1 Useful Variables

We use a standard forward backward HMM implementation with a set of pa-
rameters �. Recall that qt is the hidden state at SNP t. We use the following
notations for states kt at SNP t and kt+1 at SNP t+ 1

↵t(kt) = P (O1O2...Ot, qt = kt|�)
�t(kt) = P (Ot+1Ot+2...OT |qt = kt,�)

�t(kt) = P (qt = kt|O,�) =
↵t(kt)�t(kt)

P (O|�)
⇠t(kt, kt+1) = P (qt = kt, qt+1 = kt+1|O,�)

=
↵t(kt)P (qt+1 = kt+1|qt = kt,�)�t+1(kt+1)P (Ot+1|qt+1 = kt+1,�)

P (O|�)
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The diploid version of these equations, where we go from state (kt,1, kt,2) at
SNP t to state (kt+1,1, kt+1,2) at SNP t+ 1 is

↵t(kt,1, kt,2) =P (O1O2...Ot, qt = (kt,1, kt,2)|�)
�t(kt,1, kt,2) =P (Ot+1Ot+2...OT |qt = (kt,1, kt,2),�)

�t(kt,1, kt,2) =P (qt = (kt,1, kt,2)|O,�) =
↵t(kt,1, kt,2)�t(kt,1, kt,2)

P (O|�)
⇠t
⇣
(kt,1, kt,2), (kk+1,1, kt+1,2)

⌘
=P (qt = (kt,1, kt,2), qt+1 = (kt+1,1, kt+1,2)|O,�)

=
1

P (O|�)↵t(kt,1, kt,2)P (qt+1 = (kt+1,1, kt+1,2)|qt = (kt,1, kt,2),�)⇥

�t+1(kt+1,1, kt+1,2)P (Ot+1|qt = (kt,1, kt,2),�)

1.2.2 Haploid model

Initial probabilities
To update the prior parameters, we need the expectation of n1

k, which we define
as the number of sample haplotypes in state k at the first SNP. Denote the
probability that the sample is in the first state at SNP t by �t(k). Let �n,t(k)
be �t(k) for sample n. We can therefore calculate the required expectation from
the main text as

E�[n
1
k] =

NX

n=1

�n,1(k) (23)

Transition matrix probabilities
To update the transition parameters, we use an augmented state space where
we have knowledge of how many recombinations occured between two SNPs.
Define a variable It as the count of the number of recombinations between
SNPs t and t+ 1; in the haploid model, this takes value 0 or 1. This will allow
us to calculate the expectation of nt

stay, the number of sample haplotypes that
do not recombine between SNPs t and t + 1, and nt

switch,k, the number that
switch into state k between SNPs t and t+ 1.

We extend our transition probability to include It as follows

P (qt+1 = kt+1, It|qt = kt,�) =

8
><

>:

e�G�t if kt = kt+1 and It = 0

0 if kt 6= kt+1 and It = 0

(1� e�G�t)↵t,kt+1 if It = 1

Recall that ⇠t(kt, kt+1) is

⇠t(kt, kt+1) =
↵t(kt)P (qt+1 = kt+1|qt = kt,�)�t+1(kt+1)P (Ot+1|qt+1 = kt+1,�)

P (O|�)
(24)
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Denote the probability given the observed data O that across SNP t, the sample
has states kt, kt+1 and indicator It by ⇠t(kt, kt+1, It). Then

⇠t(kt, kt+1, It) =
↵t(kt)P (qt+1 = kt+1, It|qt = kt,�)�t+1(kt+1)P (Ot+1|qt+1 = kt+1,�)

P (O|�)
(25)

Let ⇠t(kt, kt+1, It) be ⇠n,t(kt, kt+1, It) for sample n. We can therefore calculate
expectations as

E�[n
t
stay] =

NX

n=1

KX

k=1

⇠n,t(k, k, It = 0) (26)

E�[n
t
switch,k] =

NX

n=1

KX

i=1

⇠n,t(i, k, It = 1) (27)

and since

E�[n
t
stay] = 1�

NX

n=1

KX

i=1

KX

k=1

⇠n,t(i, k, It = 1) = 1�
KX

k=1

E�[n
t
switch,k] (28)

it is therefore su�cient to calculate E�[nt
switch,k] to perform the EM updating

from the main text.
Emission matrix probabilities
To update the emission parameters, we use an augmented state space where
we have knowledge of whether emissions were due to the alternate or reference
base. Recall that �i

r,j is the probability SNP j in read Rr came from a read
with underlying genotype i. Denote by Hj

r a variable which takes value 1 if the
underlying base is the alternate base and 0 if it is the reference base. We will
use this to calculate the expectation of nt

k,s, the number of reads with a base
at SNP t that contain the alternate (s = 1) or reference (s = 0) base where the
sample was in state k at the central SNP of the read.

Recall that the original definition of the probability of read Rr given hidden
state k at SNP t and parameters � is

P (Rr|qt = k,�) =
JrY

j=1

P (Rr,j |qt = k,�) =
JrY

j=1

�
�1
r,j✓ur,j ,k + �0

r,j(1� ✓ur,j ,k)
�

(29)
We extend our emission probability to include Hj

r as follows

P (Rr, H
j
r |qt = kt,�) =

8
<

:

hQ
i 6=j P (Rr,i|qt = kt,�)

i
�1
r,j✓ur,j ,k if Hj

r = 1
hQ

i 6=j P (Rr,i|qt = kt,�)
i
�0
r,j(1� ✓ur,j ,k) if Hj

r = 0

(30)

For read Rr with central SNP cr, the probability of the observation (set of reads)
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at SNP t = cr and Hj
r becomes

P (Ot, H
j
r |qt = kt,�) =

8
><

>:

P (Ot|qt = kt,�)
�1
r,j✓ur,j ,k

�1
r,j✓ur,j ,k

+�0
r,j(1�✓ur,j ,k

)
if Hj

r = 1

P (Ot|qt = kt,�)
�0
r,j(1�✓ur,j ,k

)

�1
r,j✓ur,j ,k

+�0
r,j(1�✓ur,j ,k

)
if Hj

r = 0

(31)

We expand �t(kt) as

�t(kt) =
↵t(kt)�t(kt)

P (O|�)

=
[
PK

l=1 ↵t�1(l)P (qt = kt|qt�1 = l,�)]P (Ot|qt = k,�)�t(kt)

P (O|�) (32)

where we note that for t = 1, we substitute ⇡k for [
PK

l=1 ↵t�1(l)P (qt = kt|qt�1 =
l,�)]. Denote the probability that for SNP j in read Rr with central SNP t = cr,
the sample has a hidden state kt and has indicator Hj

r given observed data O
and parameters � by �t(kt, Hj

r ). Then

�t(kt, H
j
r ) =

[
PK

l=1 ↵t�1(l)P (qt = kt|qt�1 = l,�)]

P (O|�) P (Ot, H
j
r |qt = k,�)

=

8
><

>:

�t(kt)
�1
r,j✓ur,j ,k

�1
r,j✓ur,j ,k

+�0
r,j(1�✓ur,j ,k

)
if Hj

r = 1

�t(kt)
�0
r,j(1�✓ur,j ,k

)

�1
r,j✓ur,j ,k

+�0
r,j(1�✓ur,j ,k

)
if Hj

r = 0
(33)

Let �n,t(kt, Hj
r ) be �t(kt, Hj

r ) for sample n, and let An be the complete set
of SNPs j from reads Rr for sample n such that ur,j = t. We can therefore
calculate the required expectations from the main text as

E�[n
t
k,1] =

NX

n=1

X

(r,j)2An

�n,cr (k,H
j
r = 1) (34)

E�[n
t
k,0] =

NX

n=1

X

(r,j)2An

�n,cr (k,H
j
r = 0) (35)

1.2.3 Pseudo-haploid model

In the pseudo-haploid model, the only changes to the likelihood occur through
the emissions; as such, we need to re-calculate Equations 34 and 35. To update
the emission parameters for the pseudo-haploid model, we use an augmented
state space where we have knowledge of whether emissions were due to the
alternate or reference base, and further have knowledge of whether the read
came from the maternal or paternal haplotype. Recall that �i

r,j is the probability
that observed base j in read Rr came from a read with underlying genotype i.

10



Recall that Hj
r is an indicator variable which takes value 1 if the underlying

base is the alternate base and 0 if it is the reference base. Let Hr take value 1 if
the read came from the maternal haplotype and 2 if it came from the paternal
haplotype. We will use these to calculate the expectation of nt

k,s, the number of
reads that emit the alternate base (s = 1) or reference base (s = 0) given they
are in state k at the central SNP of the read.

Recall that for each individual, we make two forward backward passes of
the algorithm, once for the maternal haplotype (h = 1), and a second time for
the paternal haplotype (h = 2). We also attempt to probabilistically infer for
each read which haplotype it came from. Let H refer to the haplotype we are
currently modelling (maternal or paternal).

First, recall that the original definition of the probability while modelling
haplotype h of read Rr given hidden state k at SNP t and parameters � is

PH=h(Rr|qt = kt,�) = P (Rr|qt = kt,�)P (Hr = h|O,�)

+ P (Rr|Hr 6= h,�)P (Hr 6= h|O,�) (36)

For notational convenience, set Fr,j,h = P (Hr = h|O,�)
hQ

i 6=j P (Rr,i|qt = k,�)
i
.

We therefore expand the emission probability to include Hj
r and Hr as follows

PH=h(Rr, H
j
r , Hr|qt = k,�) =

8
><

>:

Fr,j,h✓ur,j ,k�
1
r,j if Hj

r = 1, Hr = h

Fr,j,h(1� ✓ur,j ,k)�
0
r,j if Hj

r = 0, Hr = h

P (Hr 6= h|O,�)P (Rr|Hr 6= h,�) if Hr 6= h

Denote the probability that haplotype h of the sample is in state kt at SNP t
with Hj

r and Hr given observed data O and parameters � by �t,h(kt, Hj
r , Hr).

Then, we get that

�t,h(kt, H
j
r , Hr) =

8
<

:
�t,h(kt)

Fr,j,h✓ur,j ,k
�1
r,j

PH=h(Rr|qt=kt,�)
if Hj

r = 1, Hr = h

�t,h(kt)
Fr,j,h(1�✓ur,j ,k

)�0
r,j

PH=h(Rr|qt=kt,�)
if Hj

r = 0, Hr = h

Let �n,t,h(kt, Hj
r , Hr) be �t,h(kt, Hj

r , Hr) for sample n, and let An be the com-
plete set of SNPs j from reads Rr for sample n such that ur,j = t. We can
therefore calculate the required expectations from the main text as

E�[n
t
k,1] =

NX

n=1

X

(r,j)2An

2X

h=1

�n,cr,h(k,H
j
r = 1, Hr = h) (37)

E�[n
t
k,0] =

NX

n=1

X

(r,j)2An

2X

h=1

�n,cr,h(k,H
j
r = 0, Hr = h) (38)

1.2.4 Diploid model

Initial probabilities
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To update the prior parameters, we need the expectation of n1
k, which we define

as the number of sample haplotypes in state k at the first SNP. Denote the
probability that sample n is in pairs of states (kt,1, kt,2) at SNP t given observed
data O by �n,t(kt,1, kt,2). We can therefore calculate the required expectation
from the main text as

E�[n
1
k] =

NX

n=1

KX

j=1

(�n,1(k, j) + �n,1(j, k)) (39)

Transition probabilities
To update the transition parameters for the diploid model, we use an augmented
state space where we have knowledge of how many recombinations occured
between two SNPs. Here we define a variable It which counts the number of
recombinations that occur between SNPs t and t+ 1 for the two haplotypes of
the diploid sample, and takes values 0, 1 or 2. This will allow us to calculate the
expectation of nt

stay, the number of sample haplotypes that do not recombine
between SNPs t and t+ 1, and nt

switch,k, the number of sample haplotypes that
switch into state k between SNPs t and t+ 1.

We can therefore extend the diploid transition probability to include It by
multiplying the haploid transition probabilities as follows

P (qt+1 = (kt+1,1, kt+1,2), It|qt = (kt,1, kt,2),�) =

8
>>>>>>>><

>>>>>>>>:

e�2G�t if It = 0 and kt+1,1 = kt,1 and kt+1,2 = kt,2
e�G�t(1� e�G�t)↵t,kt+1,1 if It = 1 and kt+1,1 6= kt,1 and kt+1,2 = kt,2
e�G�t(1� e�G�t)↵t,kt+1,2 if It = 1 and kt+1,1 = kt,1 and kt+1,2 6= kt,2
e�G�t(1� e�G�t)(↵t,kt+1,1 + ↵t,kt+1,2) if It = 1 and kt+1,1 = kt,1 and kt+1,2 = kt,2
(1� e�G�t)2↵t,kt+1,1↵t,kt+1,2 if It = 2

0 otherwise

(40)
Denote the probability under the diploid model that the sample is in states

(kt,1, kt,2) at SNP t and states (kt+1,1, kt+1,2) at SNP t+1 and has indicator vari-
able It given observed dataO and parameters � by ⇠t((kt,1, kt,2), (kt+1,1, kt+1,2), It).
Then

⇠t((kt,1, kt,2), (kt+1,1, kt+1,2), It) =
1

P (O|�)↵t(kt,1, kt,2)�t+1(kt+1,1, kt+1,2)P (Ot+1|qt = (kt,1, kt,2),�)⇥

P (qt+1 = (kt+1,1, kt+1,2), It|qt = (kt,1, kt,2),�)
(41)

Let mt
switch,k be the number of haplotypes of the sample that switch into state k

between SNPs t and t+1. We can calculate E�[nt
switch,k], and from this E�[nt

stay],
by summing across E�[mt

switch,k] for all N samples, and so we can calculate
the required expectations from the main text by performing the calculations
below. Note that we simplify the summation to give a formulation that enables
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quadratic versus linear computational complexity in K. A similar approach is
done for the haploid model to achieve linear versus quadratic computational
complexity (not shown).

E�[m
t
switch,k] =

KX

k1=1

KX

k2=1

KX

k3=1

2X

j=0

j ⇥
⇣
⇠t
⇣
(k1, k2), (k, k3), It = j

⌘
+ ⇠t

⇣
(k1, k2), (k3, k), It = j

⌘⌘

=
KX

k1=1

KX

k2=1

1⇥
⇣
⇠t
⇣
(k1, k2), (k, k2), It = 1

⌘
+ ⇠n,t

⇣
(k1, k2), (k1, k), It = 1

⌘⌘

+
KX

k1=1

KX

k2=1

KX

k3=1

2⇥
✓
1

2
⇠t
⇣
(k1, k2), (k, k3), It = 2

⌘
+

1

2
⇠t
⇣
(k1, k2), (k3, k), It = 2

⌘◆

(42)

=
KX

k1=1

KX

k3=1

2⇥ ⇠t
⇣
(k1, k3), (k, k3), It = 1

⌘

+
KX

k1=1

KX

k2=1

KX

k3=1

2⇥ ⇠t
⇣
(k1, k2), (k, k3), It = 2

⌘
(43)

=2
KX

k1=1

KX

k3=1

↵t(k1, k3)�t+1(k, k3)P (Ot+1|qt = (k, k3),�)↵t,k(1� e�G�t)e�G�t

P (O|�)

+2
KX

k1=1

KX

k2=1

KX

k3=1

↵t(k1, k2)�t+1(k, k3)P (Ot+1|qt = (k, k3),�)↵t,k↵t,k3(1� e�T�t)2

P (O|�)

=
2↵t,k

P (O|�)
KX

k3=1

⇣
(1� e�G�t)e�G�t

"
KX

k1=1

↵t(k1, k3)

#

+↵t
k3
(1� e�G�t)2

"
KX

k1=1

KX

k2=1

↵t(k1, k2)

#⌘
�t+1(k, k3)P (Ot+1|qt = (k, k3),�)

(44)

Emission probabilities
To update the emission parameters for the diploid model, we use an augmented
state space as in for the pseudo-haploid model where we have knowledge of
whether emissions were due to the alternate or reference base, and further have
knowledge of whether the read came from the maternal or paternal haplotype.
Recall that: �i

r,j is the probability that observed base j in read Rr came from
a read with underlying genotype i; Hj

r is an variable which takes value 1 if the
underlying base is the alternate base and 0 if it is the reference base; and Hr is
a variable that takes value 1 if the read came from the maternal haplotype and
2 if from the paternal haplotype. We will use these to calculate the expectation
of nt

k,s, the number of reads that emit the alternate base (s = 1) or reference
base (s = 0) given they are in state k at their central SNP.
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Recall from the main text that the probability of an observation (set of
reads) at SNP t in the diploid model is

P (Ot|qt = (kt,1, kt,2),�) =
1

2
P (Rr|qt = kt,1,�) +

1

2
P (Rr|qt = kt,2,�) (45)

For notational convenience set

Fr,j,Hr =
1
2P (Rr|qt = kHr ,�)

1
2P (Rr|qt = kt,1,�) +

1
2P (Rr|qt = kt,2,�)

 
1

✓t,kt,Hr
�1
r,j + (1� ✓t,kt,Hr

)�0
r,j

!

(46)
We can therefore calculate the probability that SNP j in read Rr with central
SNP cr has indicator variable Hj

r and Hr and observation for SNP t = cr of Ot

given the pair of hidden states (kt,1, kt,2) and parameters � as

P (Ot, H
j
r , Hr|qt = (kt,1, kt,2),�) =

(
P (Ot, |qt = (kt,1, kt,2),�)Fr,j,Hr

✓t,kt,Hr
�1
r,j if Hj

r = 1

P (Ot, |qt = (kt,1, kt,2),�)Fr,j,Hr
(1� ✓t,kt,Hr

)�0
r,j if Hj

r = 0

Denote the probability for SNP j in read Rr that at the central SNP of the
read t = cr is in the pair of states (kt,1, kt,2) given the observed data O and
parameters � by �t(kt,1, kt,2, Hj

r , Hr). Then

�t(kt,1, kt,2, H
j
r , Hr) =

(
�t(kt,1, kt,2)Fr,j,Hr

✓t,kHr
�1
r,j if Hj

r = 1

�t(kt,1, kt,2)Fr,j,Hr (1� ✓t,kHr
)�1

r,j if Hj
r = 0

Let �n,t(kt,1, kt,2, Hj
r , Hr) be �t(kt,1, kt,2, Hj

r , Hr) for sample n, and let An be
the complete set of SNPs j and reads Rr for sample n such that ur,j = t. We
can calculate the required expectations from the main text as

E�[n
t
k,s] =

NX

n=1

X

(r,j)2An

KX

i=1

⇣
�n,cr (k, i,H

j
r = s,Hr = 1)+

�n,cr (i, k,H
j
r = s,Hr = 2)

⌘
(47)

1.3 E�cient calculation of forward backward variables

We take the time here to write out the forward backwards calculations that
we used for the diploid case, as symmetries in the transition matrix allow us
to make the calculation in quadratic, rather than quartic time with respect to
K. Similar calculations (not shown) are used for the haploid model to ensure
linear versus quadratic computational complexity in K. We note that these
calculations are not original and are given in very similar form in the original
fastPHASE paper [2], but we reproduce them here as they represent important
simplifications for computational reasons
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↵t+1(k3, k4) =

"
KX

k1=1

KX

k2=1

↵t(k1, k2)P (qt+1 = (k3, k4)|qt = (k1, k2),�)

#
P (Ot+1|qt+1 = (k3, k4),�)

=

"
↵t(k3, k4)(e

�G�t)2 +
KX

k=1

e�G�t(1� e�G�t)↵t,k3↵t(k, k4)+

KX

k=1

e�G�t(1� e�G�t)↵t,k4↵t(k3, k)+

KX

k1=1

KX

k2=1

(1� e�G�t)2↵t,k3↵t,k4↵t(k1, k2)

#
P (Ot+1|qt+1 = (k3, k4))

=

"
↵t(k3, k4)(e

�G�t)2 + ↵t,k3At,1(k4) + ↵t,k4At,2(k3) + ↵t,k3↵t,k4Bt

#
⇥

P (Ot+1|qt+1 = (k3, k4),�)

where

At,1(k4) = e�G�t(1� e�G�t)
KX

k=1

↵t(k, k4) (48)

At,2(k3) = e�G�t(1� e�G�t)
KX

k=1

↵t(k3, k) (49)

Bt = (1� e�G�t)2
KX

k1=1

KX

k2=1

↵t(k1, k2) (50)

As such, the forward calcution can be done in quadratic time with respect to
the number of ancestral haplotypes K.

Similarly, for the backward calculation we get that

�t(k1, k2) =
KX

k3=1

KX

k4=1

P (qt+1 = (k3, k4)|qt = (k1, k2),�)P (Ot+1|qt+1 = (k3, k4),�)�t+1(k3, k4)

=(e�G�t)2P (Ot+1|qt+1 = (k1, k2),�)�t+1(k1, k2)+

(e�G�t)(1� e�G�t)

 
KX

k=1

↵t,kP (Ot+1|qt+1 = (k, k2),�)�t+1(k, k2)+

KX

k=1

↵t,kP (Ot+1|qt+1 = (k1, k),�)�t+1(k1, k)

!
+

(1� e�G�t)2
KX

k3=1

KX

k4=1

↵t,k3↵t,k4P (Ot+1|qt+1 = (k3, k4),�)�t+1(k3, k4)

=(e�G�t)2P (Ot+1|qt+1 = (k1, k2),�)�t+1(k1, k2) + Et,1(k2) + Et,2(k1) + Ft
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where

Et,1(k2) = (e�G�t)(1� e�G�t)
KX

k=1

↵t,kP (Ot+1|qt+1 = (k, k2),�)�t+1(k, k2)

(51)

Et,2(k1) = (e�G�t)(1� e�G�t)
KX

k=1

↵t,kP (Ot+1|qt+1 = (k1, k),�)�t+1(k1, k)

(52)

Ft = (1� e�G�t)2
KX

k3=1

KX

k4=1

↵t,k3↵t,k4P (Ot+1|qt+1 = (k3, k4),�)�t+1(k3, k4)

(53)

1.4 Initialization

Haploid probabilities ⇡k are initialized with equal weights ⇡k = 1
K , as are diploid

priors ⇡k1,k2 = 1
K⇥K . The state probabilities ↵t,k are also initialized with equal

weights ↵t,k = 1
K . The recombination distance is initialized assuming a constant

recombination rate multiplied by the physical distance between SNPs, for ex-
ample assuming �t = dt ⇥ 0.5cM/Mb where dt is the physical distance between
SNPs t and t+ 1. Finally, given a lower bound � on emission probabilities, for
example � = 0.0001, ✓t,k are sampled from a uniform distribution with minimum
value � and maximum value 1� �. Note that G is left as a user set parameter,
which can be approximated for outbred populations using external estimates of
Ne with G = 4Ne

K .

1.5 Parameter bounding

After parameter updating, newly calculated parameters are bounded with de-
fault but user tunable parameters. Prior probabilities ⇡k, new state parameters
↵t,k, and emission probabilities ✓t,k (and 1� ✓t,k) whose values are less than a
threshold are set equal to that threshold, and then probabilities re-normalized
as appropriate to have sum 1. Under default conditions this bound is 1⇥ 10�4.
For the recombination distance, values of �t that exceed implied upper (default
100 cM/Mb) and lower (default 0.1 cM/Mb) bounds are reset to the bound
value.

1.6 Heuristics

Since emission probabilities ✓ are initialized at random, STITCH can get stuck
in local minima, for which two heuristics are employed at various (default) itera-
tions. First, to help overcome unnecessary switches between ancestral haplotype
backgrounds, at iterations 4, 8, 12 and 16, pairs of haplotype states are calcu-
lated for each sample between pairs of nearby SNPs (starting at SNP 51, then
every further 100th SNP) by multiplying their marginal ancestral haplotype
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probabilities. If, across all samples, for each pair of nearby SNPs, there exists
a re-ordering of ancestral haplotype states that minimizes switching, then that
switch, or switches, is performed, and local SNPs (plus or minus 20 from the
break) are reset with ✓ from a U(0, 1) distribution. Second, to help fill unused
ancestral haplotypes, and to overcome superimposed ancestral haplotypes, at
iterations 6, 10, 14 and 18, ancestral haplotype usage in the most recent iter-
ation is discretized by averaging over 100 SNP intervals, and every continuous
interval of infrequently used ancestral haplotype (< 0.5%) is identified. Values
of ✓ over each interval are then refilled for that ancestral haplotype by copy-
ing from another sampled ancestral haplotype chosen with sampling probability
proportional to ancestral haplotype usage over that interval. ✓ is then reset
using 80% of these filled values and 20% noise from a U(0, 1) distribution.

1.7 Guidance behind parameter options

STITCH contains many parameter options that can be modified by the user,
for example upper and lower bounds on recombination rate. However, most of
these are reasonable for the majority of anticipated applications of STITCH.
For the analyses presented here for the CFW and CONVERGE populations, we
varied: K (option K), the number of ancestral haplotypes; whether the diploid
or pseudo-haploid method was used (option method); the number of pseudo-
haploid iterations (option switchModelIteration): the number of generations
when the population was founded (or can be so approximated) G (option nGen)
(which we set as 100 for the CFW analyses and 4⇥20000

K for the CONVERGE
studies). We also, for model evaluation purposes only, invoked a flag on whether
reads were split into new reads containing one SNP each (option readAware), the
number of computer cores available to the process (option nCores), and whether
the process is running in a server or cluster environment (option environment).

We anticipate that in using STITCH, the majority of users will achieve de-
sired results, both in terms of accuracy and computational speed, through vary-
ing K, G, the method (diploid or pseudo-haploid), and the number of pseudo-
haploid iterations.

In terms of selecting K, the diploid or pseudo-haploid method, and the num-
ber of pseudo-haploid iterations, we recommend imputing a small region of the
genome, such as a chromosome, using the diploid mode with a range of K,
and then evaluate performance. We recommend that to evaluate imputation
performance, users obtain validation data, using either genotyping microarrays
or higher coverage sequencing (like 10X). In the absence of external validation
data, we recommend the info score distribution or its average. If, for the diploid
method and a choice of K, results start to deteriorate, then choose the diploid
mode andK that gave optimal performance. If results do not deteriorate but be-
come computationally impractical, we recommend applying the pseudo-haploid
method for a range of pseudo-haploid and diploid iterations (as was done here for
CONVERGE), and choosing the combination that gives optimal results under
the given computational constraints.

For G (or nGen), we recommend setting this to a reasonable a priori esti-
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mate, like was available for the CFW mice, or to use 4⇥Ne

K , when the population
is wild or has not been through a strong bottleneck. We note that STITCH
should be fairly robust to this parameter choice. Users may also increase the
minimum and maximum allowed recombination rates if they are less certain
about this parameter.

Finally, while we do not give specific guidance on study design strategies
and sequencing depths, we note that in designing low coverage sequencing only
studies, users should try to ensure adequate population sequencing coverage
to ensure the ancestral haplotypes are well reconstructed, particularly in the
case when the founding structure is well known. For example, if a population
was founded with K = 8 haplotypes, then to achieve a given level of per-
ancestral haplotype coverage (e.g. 30X), while sequencing each sample at a
given level (e.g. 0.2X), one should consider sequencing in excess of 30⇥K

0.2 = 1200
samples. Drift in the population (i.e. non-equal ancestral haplotype usage in
the population) would require additional samples or depth for reconstruction of
rare haplotypes in the population.
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2 Supplementary Tables
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Supplementary Table 1A: Genotype concordance for CFW using STITCH (K=4, diploid) at all SNPs Results
give genotype concordance stratified by genotype class and allele frequency. Discrete genotype calls are generated for impu-
tation as the the genotype with the maximum genotype posterior probability. Results are given genome-wide (autosome and
chromosome X). Allele freqs = allele frequencies are the frequency of the minor allele. Type is either High Cov = high coverage
(10X) sequencing (4 samples) or Array = MegaMuga (44 samples). Columns contain either Num = Number of non-missing
genotypes considered (samples times SNPs for sequencing or array), or Per = Percent of imputed best guess genotypes that
match sequencing or array genotypes. Hom major = homozygous for the major allele, Het = heterozygous, Hom Minor =
homozygous for the minor allele. Note that truth (sequencing or array) genotypes contain some missing data

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 1,139,724 99.98 3,958 17.08 14 0
[0.01,0.02) High Cov 1,016,641 99.84 20,516 64.72 124 4.84
[0.02,0.05) High Cov 3,756,581 99.71 213,186 81.62 3,407 52.51
[0.05,0.1) High Cov 4,072,071 99.57 552,747 89.85 22,958 75.8
[0.1,0.2) High Cov 3,781,946 99.23 1,164,122 92.84 117,126 90.83
[0.2,0.3) High Cov 1,973,117 98.69 1,274,072 94.86 204,474 93.69
[0.3,0.4) High Cov 1,201,299 98.08 1,296,792 95.83 328,621 95.31
[0.4,0.5] High Cov 730,043 97.29 1,417,056 96.59 452,854 96.13
[0,0.01) Array 3,101 99.97 106 56.6 3 33.33
[0.01,0.02) Array 19,788 99.93 803 84.43 20 50
[0.02,0.05) Array 135,504 99.9 9,386 93.51 312 73.08
[0.05,0.1) Array 161,620 99.86 24,850 95.99 1,238 81.18
[0.1,0.2) Array 163,416 99.76 55,438 97.59 5,965 94.25
[0.2,0.3) Array 82,595 99.57 54,880 98.27 9,586 97.83
[0.3,0.4) Array 45,709 99.33 49,416 98.36 14,094 98.24
[0.4,0.5] Array 33,823 99.21 53,605 98.79 22,887 98.93
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Supplementary Table 1B: Genotype concordance for CFW using Beagle (default) at all SNPs

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 1,139,728 95 3,958 19.45 10 0
[0.01,0.02) High Cov 1,016,641 91.05 20,516 14.9 124 0
[0.02,0.05) High Cov 3,756,615 90.2 213,186 16.04 3,373 0.18
[0.05,0.1) High Cov 4,072,282 84.46 552,747 23.3 22,747 0.32
[0.1,0.2) High Cov 3,782,741 65.12 1,164,122 45.7 116,331 0.87
[0.2,0.3) High Cov 1,973,436 23.14 1,274,072 84.16 204,155 2.16
[0.3,0.4) High Cov 1,196,914 14.13 1,296,792 90.73 333,006 3.85
[0.4,0.5] High Cov 718,518 13.02 1,417,056 90.02 464,379 6.1
[0,0.01) Array 3,101 91.36 106 17.92 3 0
[0.01,0.02) Array 19,788 93.68 803 15.44 20 0
[0.02,0.05) Array 135,504 90.06 9,386 17.45 312 0
[0.05,0.1) Array 161,581 84.58 24,850 23.57 1,277 0.23
[0.1,0.2) Array 163,393 63.19 55,438 48.4 5,988 0.78
[0.2,0.3) Array 82,553 21.1 54,880 88.32 9,628 1.65
[0.3,0.4) Array 45,562 15.71 49,416 92.11 14,241 1.94
[0.4,0.5] Array 33,002 15.13 53,605 91.53 23,708 3.28
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Supplementary Table 1C: Genotype concordance for CFW using findhap (maxlen=10000, minlen=100,
steps=3, iters=4) at all SNPs

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 1,138,593 96.5 3,958 30.19 1,145 12.4
[0.01,0.02) High Cov 1,012,728 92.28 20,516 52.67 4,037 9.14
[0.02,0.05) High Cov 3,739,212 89.72 213,186 81.45 20,776 13.59
[0.05,0.1) High Cov 4,040,317 89.29 552,747 86.98 54,712 15.61
[0.1,0.2) High Cov 3,730,302 91.25 1,164,122 79.28 168,770 34.79
[0.2,0.3) High Cov 1,966,686 93.17 1,274,072 71.31 210,905 51.8
[0.3,0.4) High Cov 1,198,042 90.45 1,296,792 62.92 331,878 64.81
[0.4,0.5] High Cov 722,465 87.28 1,417,056 57.79 460,432 74.34
[0,0.01) Array 3,101 97.84 106 37.74 3 0
[0.01,0.02) Array 19,745 93.78 803 69.12 63 7.94
[0.02,0.05) Array 135,174 90.06 9,386 86.74 642 19.47
[0.05,0.1) Array 160,288 87.06 24,850 89.34 2,570 18.6
[0.1,0.2) Array 161,093 89.2 55,438 82.78 8,288 33.69
[0.2,0.3) Array 82,595 91.56 54,880 73.4 9,586 52.22
[0.3,0.4) Array 45,673 87.74 49,416 68 14,130 61.78
[0.4,0.5] Array 33,145 83.72 53,605 63.99 23,565 69.89
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Supplementary Table 1D: Genotype concordance for CFW using STITCH (K=4, diploid) at all SNPs (post
QC)

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 1,139,724 99.98 3,958 17.08 14 0
[0.01,0.02) High Cov 1,016,641 99.84 20,516 64.72 124 4.84
[0.02,0.05) High Cov 3,756,581 99.71 213,186 81.62 3,407 52.51
[0.05,0.1) High Cov 4,072,071 99.57 552,747 89.85 22,958 75.8
[0.1,0.2) High Cov 3,781,946 99.23 1,164,122 92.84 117,126 90.83
[0.2,0.3) High Cov 1,973,117 98.69 1,274,072 94.86 204,474 93.69
[0.3,0.4) High Cov 1,201,299 98.08 1,296,792 95.83 328,621 95.31
[0.4,0.5] High Cov 730,043 97.29 1,417,056 96.59 452,854 96.13
[0,0.01) Array 3,101 99.97 106 56.6 3 33.33
[0.01,0.02) Array 19,788 99.93 803 84.43 20 50
[0.02,0.05) Array 135,504 99.9 9,386 93.51 312 73.08
[0.05,0.1) Array 161,620 99.86 24,850 95.99 1,238 81.18
[0.1,0.2) Array 163,416 99.76 55,438 97.59 5,965 94.25
[0.2,0.3) Array 82,595 99.57 54,880 98.27 9,586 97.83
[0.3,0.4) Array 45,709 99.33 49,416 98.36 14,094 98.24
[0.4,0.5] Array 33,823 99.21 53,605 98.79 22,887 98.93
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Supplementary Table 2: Performance of CFW study under di↵erent
programs and options Results are given for chromosomes 18 and 19. All
STITCH results are for the diploid model with 40 iterations. Program options
are as follows. For STITCH, RU refers to read unaware (i.e. split each read
spanning multiple SNPs into sub-reads spanning one read each). For Beagle,
shown are the number of iterations (i.e. burnin-its, phase-its, and impute-its
to this value), window is the window size, and msf is the (singlescale) model
scale factor. For findhap, options correspond directly to parameter options.
Note that times for STITCH do not include the generation of input data from
BAMs, which took about 1-1.5 hours per chromosome for chromosomes 18 and
19, irrespective of other program options. Similarly, times for findhap do not
include conversion time from VCF to the findhap input format. Av r2 is the
average r2 for SNPs on the Illumina MegaMUGA array, with no filtration for
QC for any method. Time is the average time in hours for chromosomes 18 and
19, where all programs were run on 1 core on 2.60 GHz Intel E5-2650 chips

Program Options Time Av r2
STITCH K=2 7.2 0.622
STITCH K=3 11.3 0.957
STITCH K=4 18.6 0.972
STITCH K=5 25.3 0.97
STITCH K=6 37.5 0.966
STITCH K=7 49 0.964
STITCH K=8 59 0.967
STITCH K=4, RU 18.8 0.873
Beagle its=5, window=50000, msf=1 6.1 0.074
Beagle its=5, window=1000000, msf=1 4.7 0.073
Beagle its=10, window=50000, msf=1 17.2 0.085
Beagle its=20, window=50000, msf=1 34.1 0.109
Beagle its=5, window=50000, msf=0.4 72.4 0.088
Beagle its=5, window=50000, msf=0.6 7.7 0.079
Beagle its=5, window=50000, msf=0.8 6.6 0.073
Beagle its=5, window=50000, msf=1.0 5.3 0.072
Beagle its=5, window=50000, msf=1.2 4.9 0.071
Beagle its=5, window=50000, msf=1.4 5.7 0.071
Beagle its=5, window=50000, msf=1.6 5.2 0.071
Beagle its=5, window=50000, msf=1.8 5.2 0.071
Beagle its=5, window=50000, msf=2.0 5.1 0.071
findhap maxlen=100000, minlen=1000, steps=3, iters=4 0.6 0.225
findhap maxlen=100000, minlen=1000, steps=2, iters=6 0.7 0.226
findhap maxlen=100000, minlen=1000, steps=5, iters=10 2.2 0.15
findhap maxlen=10000, minlen=100, steps=3, iters=4 0.5 0.523
findhap maxlen=50000, minlen=500, steps=3, iters=4 0.6 0.281
findhap maxlen=200000, minlen=2000, steps=3, iters=4 0.5 0.169
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Supplementary Table 3: Performance of CONVERGE study under
di↵erent programs and options with no reference panel Results are given
for the first 10 Mbp of chromosome 20, run in 0.5 Mbp regions with 0.1 Mbp
bu↵ers. Program options are as follows. For STITCH, all options were run using
40 EM iterations, split into either diploid (D) or pseudo-haploid (PH) iterations,
while RU refers to read unaware (i.e. split each read spanning multiple SNPs
into sub-reads spanning one read each). For Beagle, shown are the number of
iterations (i.e. burnin-its, phase-its, and impute-its to this value). For findhap,
options correspond directly to parameter options. Note that times for STITCH
do not include the generation of input data from BAMs, which took about 30
minutes per region, irrespective of other program options. Similarly, times for
findhap do not include conversion time from VCF to the findhap input format.
Av r2 is the average r2 for SNPs on the Illumina HumanOmniZhongHua-8
array for common (MAF 5% to 95%) variants, with no filtration for QC for
any method. Time is the average in hours for each 0.5Mbp region, where all
programs were run on 4 cores on 2.60 GHz Intel E5-2650 chips.

Program Options Time Av r2
STITCH K=20, its=40D 24.5 0.922
STITCH K=20, its=40PH 8.0 0.875
STITCH K=20, its=34PH;6D 10.6 0.920
STITCH K=20, its=35PH;5D 9.9 0.919
STITCH K=20, its=36PH;4D 9.6 0.918
STITCH K=20, its=37PH;3D 9.3 0.917
STITCH K=20, its=38PH;2D 8.8 0.911
STITCH K=20, its=39PH;1D 8.4 0.898
STITCH K=20, its=38PH;2D, RU 9.4 0.910
STITCH K=30, its=40D 52.2 0.927
STITCH K=30, its=38PH;2D 12.4 0.917
STITCH K=40, its=38PH;2D 16.5 0.920
STITCH K=60, its=38PH;2D 27.7 0.923
STITCH K=80, its=38PH;2D 42.2 0.925
STITCH K=100, its=38PH;2D 61.1 0.927
Beagle its=5 12.5 0.874
findhap maxlen=100000, minlen=1000, steps=3, iters=4 0.4 0.437
findhap maxlen=100000, minlen=1000, steps=2, iters=6 0.4 0.437
findhap maxlen=100000, minlen=1000, steps=5, iters=10 1.4 0.426
findhap maxlen=10000, minlen=100, steps=3, iters=4 0.3 0.434
findhap maxlen=50000, minlen=500, steps=3, iters=4 0.4 0.448
findhap maxlen=200000, minlen=2000, steps=3, iters=4 0.5 0.414
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Supplementary Table 4A: Genotype concordance for CONVERGE using STITCH (K=40, 38 PH iterations, 2
D iterations) (without a reference panel) at all SNPs Results give genotype concordance stratified by genotype class
and allele frequency. Discrete genotype calls are generated for imputation as the the genotype with the maximum genotype
posterior probability. Results are given for the first 10 Mbp region of chromosome 20, run in 20 0.5 Mbp regions with 0.1
Mbp bu↵ers. Allele freqs = allele frequencies are the frequency of the minor allele. Type is either High Cov = high coverage
(10X) sequencing (9 samples) or Array = HumanOmniZhongHua-8 (72 samples). Columns contain either Num = Number
of non-missing genotypes considered (samples times SNPs for sequencing or array), or Per = Percent of imputed best guess
genotypes that match sequencing or array genotypes. Hom major = homozygous for the major allele, Het = heterozygous,
Hom Minor = homozygous for the minor allele. Note that truth (sequencing or array) genotypes contain some missing data

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 16,234 99.98 879 27.19 14 0
[0.01,0.02) High Cov 3,973 99.72 483 62.11 6 16.67
[0.02,0.05) High Cov 11,325 99.59 1,725 83.65 31 19.35
[0.05,0.1) High Cov 14,634 99.33 2,931 91.23 116 65.52
[0.1,0.2) High Cov 28,004 99.13 10,059 96.01 1,183 84.53
[0.2,0.3) High Cov 18,880 98.59 12,285 96.81 2,134 90.63
[0.3,0.4) High Cov 15,750 97.69 15,356 97.49 4,300 94.12
[0.4,0.5] High Cov 10,469 96.89 16,280 97.61 7,445 96.15
[0,0.01) Array 9,691 99.95 100 70 0 NA
[0.01,0.02) Array 4,519 99.91 156 73.08 0 NA
[0.02,0.05) Array 11,883 99.82 834 88.13 12 83.33
[0.05,0.1) Array 18,317 99.42 3,003 91.44 114 73.68
[0.1,0.2) Array 29,193 98.92 10,165 93.38 866 85.68
[0.2,0.3) Array 20,139 97.89 12,835 94.39 2,201 89.41
[0.3,0.4) Array 14,833 97.2 15,879 95.44 4,171 93.02
[0.4,0.5] Array 10,172 96.29 16,290 95.67 6,766 94.8
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Supplementary Table 4B: Genotype concordance for CONVERGE using Beagle (default) (without a reference
panel) at all SNPs

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 16,234 100 879 56.09 14 0
[0.01,0.02) High Cov 3,973 100 483 64.6 6 0
[0.02,0.05) High Cov 11,325 99.97 1,725 73.74 31 6.45
[0.05,0.1) High Cov 14,634 99.64 2,931 84.61 116 50.86
[0.1,0.2) High Cov 28,004 99.49 10,059 90.55 1,183 82.25
[0.2,0.3) High Cov 18,880 98.98 12,285 93.09 2,134 88.71
[0.3,0.4) High Cov 15,750 97.96 15,356 94.27 4,300 93.37
[0.4,0.5] High Cov 10,469 97.05 16,280 95.12 7,445 96.55
[0,0.01) Array 9,691 100 100 54 0 NA
[0.01,0.02) Array 4,519 100 156 57.69 0 NA
[0.02,0.05) Array 11,883 99.91 834 76.5 12 75
[0.05,0.1) Array 18,317 99.77 3,003 81.22 114 69.3
[0.1,0.2) Array 29,193 99.47 10,165 86.54 866 83.03
[0.2,0.3) Array 20,139 98.46 12,835 89.44 2,201 86.37
[0.3,0.4) Array 14,833 97.5 15,879 91.91 4,171 91.63
[0.4,0.5] Array 10,172 96.23 16,290 92.98 6,766 94.66
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Supplementary Table 4C: Genotype concordance for CONVERGE using findhap (maxlen=50000, minlen=500,
steps=3, iters=4) (without a reference panel) at all SNPs

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 13,485 99.69 562 48.22 10 0
[0.01,0.02) High Cov 3,701 99.08 453 60.71 5 20
[0.02,0.05) High Cov 10,771 97.96 1,623 61.06 27 3.7
[0.05,0.1) High Cov 14,328 94.45 2,875 68.49 115 18.26
[0.1,0.2) High Cov 26,632 93.43 9,443 69 1,083 42.84
[0.2,0.3) High Cov 17,884 87.82 11,566 66.72 1,964 50.61
[0.3,0.4) High Cov 15,229 84.5 14,665 67.23 4,212 60.73
[0.4,0.5] High Cov 9,766 77.63 15,546 67.34 7,050 67.48
[0,0.01) Array 8,690 99.57 94 46.81 0 NA
[0.01,0.02) Array 3,894 98.02 133 46.62 0 NA
[0.02,0.05) Array 11,302 97.34 773 56.4 8 37.5
[0.05,0.1) Array 17,884 93.63 2,934 63.53 113 20.35
[0.1,0.2) Array 27,294 91.11 9,529 62.09 813 31.12
[0.2,0.3) Array 18,845 85.16 12,052 63.57 2,046 40.27
[0.3,0.4) Array 14,260 78.72 15,331 65.34 4,068 49.68
[0.4,0.5] Array 9,903 72.2 15,787 66.08 6,603 58.47
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Supplementary Table 4D: Genotype concordance for CONVERGE using STITCH (K=40, 38 PH iterations,
2 D iterations) (without a reference panel) at all SNPs (that pass QC)

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 6,266 99.97 241 83.82 1 0
[0.01,0.02) High Cov 2,725 99.67 323 85.45 2 50
[0.02,0.05) High Cov 10,001 99.59 1,541 90.53 29 17.24
[0.05,0.1) High Cov 13,916 99.35 2,760 94.28 109 68.81
[0.1,0.2) High Cov 27,327 99.19 9,773 97.24 1,155 85.97
[0.2,0.3) High Cov 18,291 98.9 11,938 97.76 2,064 92.34
[0.3,0.4) High Cov 15,294 98.12 14,869 98.14 4,170 95.4
[0.4,0.5] High Cov 10,174 97.67 15,802 98.15 7,260 96.85
[0,0.01) Array 6,763 99.94 76 90.79 0 NA
[0.01,0.02) Array 3,898 99.9 132 84.09 0 NA
[0.02,0.05) Array 11,068 99.83 787 92.12 11 90.91
[0.05,0.1) Array 17,968 99.49 2,925 92.89 110 76.36
[0.1,0.2) Array 27,902 99.06 9,643 95.49 809 90.36
[0.2,0.3) Array 18,709 98.36 11,832 96.49 2,047 92.82
[0.3,0.4) Array 14,263 97.69 15,252 96.48 4,000 95.15
[0.4,0.5] Array 9,573 97.49 15,336 96.77 6,376 96.86
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Supplementary Table 5: Performance of CONVERGE study under
di↵erent programs and options with a reference panel Results are given
for the first 10 Mbp of chromosome 20, run in 0.5 Mbp regions with 0.1 Mbp
bu↵ers. Program options are as follows. For STITCH, all options were run
using 40 EM iterations, split into either diploid (D) or pseudo-haploid (PH)
iterations. For Beagle, shown are the number of iterations (i.e. burnin-its,
phase-its, and impute-its to this value). Note that times for STITCH do not
include the generation of input data from BAMs, which took about 30 minutes
per region, irrespective of other program options. Av r2 is the average r2 for
SNPs on the Illumina HumanOmniZhongHua-8 array for common (MAF 5% to
95%) variants, with no filtration for QC for any method. Time is the average in
hours for each 0.5Mbp region, where all programs were run on 4 cores on 2.60
GHz Intel E5-2650 chips.

Program Options Time Av r2
STITCH K=20, its=38PH;2D 5.4 0.911
STITCH K=40, its=38PH;2D 10.2 0.922
STITCH K=60, its=38PH;2D 16.6 0.925
Beagle its=5, no ref panel 7.8 0.886
Beagle its=4 114.4 0.946
Beagle its=3 74.5 0.943
Beagle its=2 39.7 0.939
Beagle its=1 12.0 0.930
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Supplementary Table 6A: Genotype concordance for CONVERGE using STITCH (K=40, 38 PH iterations, 2
D iterations) (without a reference panel) at reference panel SNPs (1000G ASN) Results give genotype concordance
stratified by genotype class and allele frequency. Discrete genotype calls are generated for imputation as the the genotype
with the maximum genotype posterior probability. Results are given for the first 10 Mbp region of chromosome 20, run in 20
0.5 Mbp regions with 0.1 Mbp bu↵ers. Allele freqs = allele frequencies are the frequency of the minor allele. Type is either
High Cov = high coverage (10X) sequencing (9 samples) or Array = HumanOmniZhongHua-8 (72 samples). Columns contain
either Num = Number of non-missing genotypes considered (samples times SNPs for sequencing or array), or Per = Percent
of imputed best guess genotypes that match sequencing or array genotypes. Hom major = homozygous for the major allele,
Het = heterozygous, Hom Minor = homozygous for the minor allele. Note that truth (sequencing or array) genotypes contain
some missing data

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 13,968 99.96 596 35.91 10 0
[0.01,0.02) High Cov 3,798 99.74 460 63.04 6 0
[0.02,0.05) High Cov 11,259 99.72 1,714 85.3 31 16.13
[0.05,0.1) High Cov 14,634 99.33 2,931 91.88 116 63.79
[0.1,0.2) High Cov 27,980 99.1 10,054 95.91 1,183 85.88
[0.2,0.3) High Cov 18,875 98.56 12,282 96.88 2,133 90.53
[0.3,0.4) High Cov 15,737 97.59 15,315 97.43 4,298 94.04
[0.4,0.5] High Cov 10,463 96.82 16,261 97.72 7,434 95.96
[0,0.01) Array 8,975 99.96 97 64.95 0 NA
[0.01,0.02) Array 4,519 99.82 156 80.13 0 NA
[0.02,0.05) Array 11,740 99.74 833 88.36 12 83.33
[0.05,0.1) Array 18,317 99.45 3,003 91.81 114 76.32
[0.1,0.2) Array 29,144 98.93 10,142 93.7 866 86.95
[0.2,0.3) Array 20,139 97.85 12,835 94.66 2,201 90.37
[0.3,0.4) Array 14,833 97.01 15,879 95.54 4,171 92.78
[0.4,0.5] Array 10,172 96.06 16,290 95.75 6,766 94.77
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Supplementary Table 6B: Genotype concordance for CONVERGE using Beagle (default) (without a reference
panel) at reference panel SNPs (1000G ASN)

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 13,968 100 596 55.54 10 0
[0.01,0.02) High Cov 3,798 100 460 66.09 6 0
[0.02,0.05) High Cov 11,259 99.95 1,714 75.61 31 12.9
[0.05,0.1) High Cov 14,634 99.64 2,931 85.77 116 53.45
[0.1,0.2) High Cov 27,980 99.41 10,054 91.87 1,183 83.94
[0.2,0.3) High Cov 18,875 98.95 12,282 93.93 2,133 89.45
[0.3,0.4) High Cov 15,737 97.99 15,315 95.09 4,298 93.9
[0.4,0.5] High Cov 10,463 97.24 16,261 95.79 7,434 96.7
[0,0.01) Array 8,975 100 97 56.7 0 NA
[0.01,0.02) Array 4,519 100 156 58.33 0 NA
[0.02,0.05) Array 11,740 99.88 833 78.63 12 75
[0.05,0.1) Array 18,317 99.72 3,003 83.25 114 71.05
[0.1,0.2) Array 29,144 99.32 10,142 88.55 866 84.06
[0.2,0.3) Array 20,139 98.38 12,835 90.7 2,201 87.6
[0.3,0.4) Array 14,833 97.57 15,879 92.88 4,171 92.14
[0.4,0.5] Array 10,172 96.26 16,290 93.49 6,766 95.26
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Supplementary Table 6C: Genotype concordance for CONVERGE using Beagle (its=3) (with a reference
panel) at reference panel SNPs (1000G ASN)

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 13,968 99.96 596 66.95 10 0
[0.01,0.02) High Cov 3,798 99.63 460 81.09 6 33.33
[0.02,0.05) High Cov 11,259 99.86 1,714 91.54 31 19.35
[0.05,0.1) High Cov 14,634 99.55 2,931 95.19 116 67.24
[0.1,0.2) High Cov 27,980 99.32 10,054 97.13 1,183 88.33
[0.2,0.3) High Cov 18,875 98.95 12,282 97.44 2,133 92.45
[0.3,0.4) High Cov 15,737 98.2 15,315 97.54 4,298 95.23
[0.4,0.5] High Cov 10,463 97.69 16,261 97.82 7,434 97.19
[0,0.01) Array 8,975 99.98 97 81.44 0 NA
[0.01,0.02) Array 4,519 99.96 156 83.33 0 NA
[0.02,0.05) Array 11,740 99.8 833 93.28 12 83.33
[0.05,0.1) Array 18,317 99.6 3,003 94.21 114 84.21
[0.1,0.2) Array 29,144 99.22 10,142 95.5 866 91.11
[0.2,0.3) Array 20,139 98.72 12,835 95.96 2,201 94
[0.3,0.4) Array 14,833 97.9 15,879 96.52 4,171 95.35
[0.4,0.5] Array 10,172 97.53 16,290 96.62 6,766 97.04
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Supplementary Table 7: Performance of STITCH on CONVERGE
study original imputation Results are over the first 10 Mbp of chromosome
20. Beagle methodology was the same as done in the original CONVERGE
paper and as explained in the text. STITCH results are for K = 40, 38 pseudo-
haploid iterations, 2 diploid iterations. All sites with removal of SNPs failing
QC also removed SNPs with Hardy-Weinberg p-value less than 10�6. Av r2
is the average r2 for SNPs on the Illumina HumanOmniZhongHua-8 array for
high frequency (MAF 5% to 95%) variants.

Method SNP set % SNPs Av r2
Beagle All 100 0.933
STITCH All 100 0.92
Beagle info>0.4 90 0.939
STITCH info>0.4 90 0.939
Beagle info>0.9 78 0.968
STITCH info>0.9 75 0.972
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Supplementary Table 8: E↵ect of filtering on imputation perfor-
mance Results are given for chromosome 19. QC is defined per-run and reflects
info> 0.4 and HWE p-value > 1⇥ 10�6. r2 values are against the 4 10X mice.

Set Description SNPs Number of SNPs Ti/Tv VQSR r2 No VQSR r2
1 VQSR All 152,486 2.07 0.937
2 VQSR Post-QC 122,878 2.21 0.968
3 No VQSR, Round 1 All 355,123 1.48 0.745
4 No VQSR, Round 1 Post-QC 136,164 2.08 0.945
5 No VQSR, Round 2 All 136,164 2.08 0.938
6 No VQSR, Round 2 Post-QC 128,054 2.14 0.952
7 Intersect Set 2 and Set 6 115,567 2.22 0.967 0.969
8 Present Set 2, absent Set 6 7,311 2.13 0.915
9 Present Set 6, absent Set 2 12,487 1.55 0.930
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