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Abstract It has recently been reported, on the basis of extrapolated experimental data, that the iron
carbide, Fe7C3, has shear wave velocities and a Poisson’s ratio consistent with the seismological values for
the Earth’s inner core and thus that Fe7C3 is a strong candidate for the inner core composition. In this study,
using ab initio molecular dynamics simulations, we report the thermoelastic properties of Fe7C3 at 350GPa
up to its melting temperature. Due to significant elastic softening prior to melting, the calculated elastic
properties, including wave velocities, do indeed agree well with those from seismology. However, the density
was found to be much too low (by ~8%) when compared to geophysical data, and therefore, Fe7C3 must be
ruled out as a major component of the Earth’s inner core.

1. Introduction

The primary constituent of the Earth’s core is generally accepted to be an iron alloy [Birch, 1952; Allègre et al.,
1995; McDonough and Sun, 1995], but the exact composition and structure remain unknown [Badro et al.,
2014; Alfè et al., 2007]. In particular, the compressional (Pwave, VP) and shear (Swave, VS) wave velocities from
seismic observations are low when compared to observations from mineral physics [e.g., Vočadlo, 2007;
Vočadlo et al., 2009; Belonoshko et al., 2007; Martorell et al., 2013a]. This makes even a basic understanding
of the inner core difficult, let alone the interpretation of the far more complex characteristics of the inner core
revealed by recent studies [Alboussière et al., 2010; Olson and Deguen, 2012; Tkalčić, 2015; Wang et al., 2015].

A possible explanation for the observed low shear wave velocities when compared with previous mineral
physics results was suggested by Martorell et al. [2013b] who reported a strong nonlinear shear weakening
of pure iron at 360GPa just before melting (T/Tm> 0.96) in the temperature regime expected in the inner
core. However, although the low seismic wave velocities of the core could be successfully explained in this
way, the density of pure iron was, of course, still too high (by 2–3%) to match the geophysical data. As was
made clear by Martorell et al. [2013b], a light element component was still required in the inner core to
account for this density difference.

The likely candidate light elements for the core, within cosmochemical and petrological constraints, include
oxygen, carbon, hydrogen, silicon, and sulfur [Poirier, 1994; Hillgren et al., 2000]. There is much literature on
the subject, published over many years, some of which is contradictory, probably due to the different meth-
odologies, approximations, and interpretations used in the different studies. For example, using density func-
tional theory (DFT), Alfè et al. [2002] calculated the chemical potentials of the leading candidate light
elements (S, Si, and O) under thermodynamic equilibrium at inner core boundary (ICB) conditions and found
S and Si partitioned similarly between the inner and outer core, while oxygen only partitioned into the outer
core. In contrast, based on shock wave data, Huang et al. [2011] compared the density and sound velocities
from geophysics with those in the Fe-O-S system and concluded that oxygen could be ruled out as a major
outer core alloying element. Badro et al. [2014], however, found that oxygen is always required in the outer
core and likely to be at high concentrations. For carbon,Wood et al. [2013] used four approaches to obtain a
likely upper carbon concentration of ~1wt % as a component in the whole core. Studies of the iron carbide
Fe7C3 (see below) suggest that carbon in the form of Fe7C3 (8.4wt %) can indeed match the seismic data. The
Fe7C3 composition is likely to be the first phase crystallizing from a liquid iron-carbon alloy [Nakajima et al.,
2009; Lord et al., 2009], and from extrapolations of experimental data, it has also been reported that the den-
sity of Fe7C3 matches well with the inner core under the relevant conditions [Chen et al., 2012; Nakajima et al.,
2011; Chen et al., 2014]. Very recently, Prescher et al. [2015] further claimed that Fe7C3 exhibits a lower shear
wave velocity than pure iron and a Poisson’s ratio similar to that of the Earth’s inner core.

These previous results suggest that Fe7C3 is a likely candidate component of the Earth’s inner core. However,
all of these conclusions are based on extrapolations of observations at temperatures and pressures much
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lower than inner core conditions and they should, therefore, be treated with some caution. To investigate
whether the properties of Fe7C3 are truly a match for the inner core, we have performed ab initio molecular
dynamics (AIMD) simulations on Fe7C3 up to its melting temperature. Although the calculated elastic proper-
ties, including wave velocities, agree well with those from seismology, we find that the density of Fe7C3 is far
too low for the inner core to be composed predominantly of this phase.

2. The Structure of Iron Carbides at Core Conditions

Although the Fe-C system is well understood at ambient pressures, studies targeted at determining the Fe-C
phase diagram and crystal structures at higher pressures for geophysical applications are scarce and the ther-
modynamic stability and crystal structure of Fe7C3 at high temperatures and pressures are still under debate.

Observations from experiments are contradictory. Rouquette et al. [2008] saw stability of Fe3C (space group
Pnma) in the Fe-C system at 2200–3400 K and 25–70GPa using a multianvil press (MAP) and laser-heated dia-
mond anvil cell (LHDAC).Nakajima et al. [2011], however, observed the stability of Fe7C3 (space group P63mc) up
to 71.5GPa and 1973K by carrying out in situ X-ray diffraction experiments, again using a MAP and a LHDAC.

Computational studies using both the random sampling [Weerasinghe et al., 2011] and evolutionary structure
prediction algorithms [Bazhanova et al., 2012] based on enthalpy ranking predicted that both Fe3C and Fe7C3
were thermodynamically unstable with respect to Fe2C (space group Pnma) at inner core pressures (T=0).
However, when temperature is included, Fei and Brosh [2014] suggest stability of Fe7C3 at the ICB conditions
by calculating the phase diagrams employing CALPHAD (CALculation of PHAse Diagrams), a thermodynamic
database approach.

The crystal structure of Fe7C3 is also uncertain. The space group of Fe7C3 determined from experiments has
long been assigned to P63mc, and the structure search by Bazhanova et al. [2012] also confirmed that this
hexagonal (h) symmetry is more favorable than a structure with space group Pnma at ambient pressure.
However, Prescher et al. [2015] observed another symmetry, Pbca, in all their multianvil experiments
conducted at pressures from 7 to 15GPa and temperatures from 1473 to 1973 K, and hence, their structure
was denoted as o-Fe7C3 (o for orthorhombic). The three structures are very similar, and they are all
constructed from CFe6 trigonal prisms. Groups of three prisms are connected via shared vertices to form a
triad; the triads are then linked into columns and the different polytypes are produced by variations in the
packing of the columns. The structures can therefore be considered as having evolved from the same
structural motif linked together in subtly different ways [Prescher et al., 2015].

In our present study, we used the P63mc structure. It should, however, be noted that any of the three
proposed structures should give comparable elastic properties due to their close structural similarity
[Mookherjee et al., 2011; Minobe et al., 2015].

3. Methodology
3.1. Electronic Structure Calculations

The total energies and forces were calculated by solving the Schrödinger equation based on DFT, within the
Vienna Ab Initio Simulation Package (VASP) code [Kresse and Joubert, 1999; Blöchl, 1994]. The electrons are
described by single-particle wave functions with the interaction between them represented by an effective
potential. The core-valence electron interaction is described by the projector augmented wave method
[Kresse and Furthmüller, 1996a, 1996b; Kresse and Hafner, 1993]. The valence configurations Ar-3d64s2 and
He-2s22p2 were used. Exchange-correlation effects were treated in the generalized gradient approximation
with the Perdew, Burke, and Ernzerhof (PBE) scheme [Perdew et al., 1996]. As shown in previous studies,
PBE works well for the description of the Fe-C system [Mookherjee et al., 2011; Oganov et al., 2013; Raza
et al., 2015]. Both experiments [Prescher et al., 2015; Chen et al., 2014] and calculations [Mookherjee et al.,
2011; Raza et al., 2015] show the disappearance of magnetic moments at high pressures (53GPa h-Fe7C3
and 70GPa for o-Fe7C3), so we performed nonspin polarized calculations for pressures above 70GPa.

We ran finite temperature Born-Oppenheimer AIMD to verify the structure and calculate properties. The inte-
gration of the classical Newton’s equations of motion uses the Verlet algorithm, and the ground state search
is done within an efficient iterative matrix diagonalization scheme and a Pulay mixer for each step. A time
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step of 1.0 fs was chosen for the integration. Simulations were performed at constant temperatures using an
Andersen thermostat, with a restarting value of no less than 200 cycles.

The simulation box used to determine the elastic constants contained 40 atoms of the hexagonal Fe7C3 struc-
ture h-Fe7C3, which is 1 × 1× 2 supercell of the unit cell used in Mookherjee et al. [2011] and Oganov et al.
[2013]. A k-point grid of eight irreducible k points and a plane-wave energy cutoff of 520 eV were required
to obtain convergence in the energy and forces. A larger supercell (2 × 2 × 2) of 160 atoms was also used
to verify the results from the 40 atom supercell; for these simulations a single Γ point and a cutoff energy
of 400 eV were used.

Simulations were performed at temperatures between 0 and ~7000 K for between 8 and 15 ps. The tempera-
ture of the simulation was determined from a time average excluding the first 2 ps of the simulation. Stresses
were determined as outlined below. To ensure that we were computing the stresses of solid phases, we
retrieved the radial distribution function (RDF) and the root-mean-square displacements (RMSD) for the last
5 ps of each simulation.

3.2. Elastic Properties

In order to obtain the elastic properties at different pressures and temperatures, we first ran VASP-NPT simu-
lations for the isothermal-isobaric ensemble, using the barostat implemented in VASP by Hernández
[Hernández, 2001; Souza and Martins, 1997], to relax the unit cell parameters; these simulations were run
for up to 12 ps. The lattice parameters obtained from these NPT simulations were then used to create unit
cells to which distortions were applied (see below). The stresses on the simulation box were then obtained
from NVT simulations run over 12 ps (8 ps for the 160 atom supercell); for simulations of the 40 atom supercell
at target temperatures over 5000 K, 15 ps were used to ensure convergence.

The elastic moduli cij [Simmons and Wang, 1971] were evaluated using the stress-strain method. Two distor-
tion matrices were applied to the relaxed equilibrium structure:

1þ δ 0 0

0 1 δ=2
0 δ=2 1

0
B@

1
CA and

1 0 0

0 1 0

0 0 1þ δ

0
B@

1
CA:

Using the time-averaged stresses from the AIMD simulations, the elastic moduli were then obtained by
the standard relation σij = cijk · εkl. Four different strains (±0.01 and ±0.02) were applied in each distortion
and the resulting stress-strain values were then fitted to second-order polynomials; by evaluating the
slopes at zero strain, the stress-strain relationship in the limit of equilibrium volume is then determined
[Karki et al., 2001].

The statistical error in the temperature was evaluated using the blocking method for correlated data
[Flyvbjerg and Petersen, 1989]. The standard deviation is defined as

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c′0

n′ � 1
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 n′ � 1ð Þ
p

 !vuut ; (1)

where n′= n/2, c′0 ¼ 1
n′

Xn′

k¼1
xk � xð Þ2 , and x ′i ¼ x2i�1 þ x2ið Þ=2; n is the number of data points and n′ is

created to fragment the data points. The final statistical error in temperature increases from 0.2 to 30 K as
the temperature increases from 300 to 7000 K; this represents in all cases an error of less than 0.5%.

We used the Voigt average [Simmons and Wang, 1971] to evaluate the elastic properties (incompressibility:
K; shear modulus: G):

KT ¼ 2 c11 þ c12ð Þ þ 4c13 þ c33½ �=9 (2)

G ¼ 12c44 þ 7c11 � 5c12 þ 2c33 � 4c13ð Þ=30: (3)

The adiabatic incompressibility, KS is obtained from

KS ¼ KT 1þ αγTð Þ; (4)

where α is the volumetric thermal expansion coefficient (5.8 × 10�6/K, which was obtained from extrapola-
tion of the unit cell volumes in Nakajima et al. [2011]). KT is the isothermal bulk modulus, γ is the
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Grüneisen parameter, and γ0 = 2.57 [Nakajima et al., 2011;Mookherjee et al., 2011]. The volume dependence of
γ is approximated from the experimental data with the relation [Mookherjee et al., 2011]

γ Vð Þ ¼ γ0
V
V0

� �2:2

: (5)

The isotropic wave propagation velocities in the material can then be evaluated from the bulk and shear
moduli and the density, ρ, as follows

VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 4

3G

ρ

s
(6)

and

VS ¼
ffiffiffi
G
ρ

s
: (7)

The Debye sound velocity VD has the relationship with VP and VS:

1

V3
D

¼ 1

V3
P

þ 2

V3
S

: (8)

The Poisson’s ratio is obtained by

ν ¼ 3KS � 2G
6KS þ 2G

: (9)

3.3. Temperature Dependence of the Shear Modulus

We used the Nadal-Le Poac (NP) shear modulus model [Nadal and Le Poac, 2003], based on Lindemann
melting theory, to describe the temperature dependence of G at a fixed pressure. This takes the form

G P; Tð Þ ¼ 1
J Tð Þ G0 þ ∂G

∂P
Pffiffiffi
η3

p
� �

1� T
Tm

� �
þ ρ
Cm

kbT

� �
; (10)

where

C ¼ 6πð Þ 2
3ð Þ

3
f 2; (11)

J Tð Þ ¼ 1þ exp � 1þ 1
ς

1þ ς
1� T

Tm

2
4

3
5; (12)

and

GP ¼ G0 þ ∂G
∂P

Pffiffiffi
η3

p
:

(13)

In equations (10)–(13), G is the shear modulus, G0 is the shear modulus at 0 K and 0GPa, P is pressure, T is
temperature, Tm is the melting temperature, ρ is the density, m is the averaged atomic mass, η is the com-
pression defined as the ratio of the density at current conditions to the density at 0 K and 0GPa, kb is the
Boltzmann constant, f is the Lindemann constant for the material, and ζ is a material parameter. Our results
were fitted to this NP model with four adjustable parameters, namely, Tm, GP, C, and ζ (GP was taken as a
constant as explained in Martorell et al. [2013b]). With this model we can obtain the melting temperature
of the material and its Lindemann constant. This last value is in the range of 0.1–0.3 for most materials
[Nadal and Le Poac, 2003].

4. Results and Discussion
4.1. Comparison Between Experiment and Theory

As shown in Table 1, our static calculations at zero pressure gave KT = 287GPa and G= 95GPa for the non-
magnetic phase (nm) in the Voigt approximation. Our elastic properties are in very good agreement with
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those in Mookherjee et al. [2011], which
gave KT = 285GPa and G=101GPa in
the Voigt approximation. We also ran
AIMD to compute finite temperature
elasticity to compare with available
experiments. At 300 K, our simulations
at 150GPa gave KT = 886GPa and
G=194GPa, which agree well with the
experimental data of Prescher et al.
[2015], which gave KT = 929(27) GPa
and G= 221(11) at 158(5) GPa. A further
calculation was performed at 1760 K
and 85GPa which gave similarly good
agreement with the measurements of
Prescher et al. [2015], KT = 616GPa and
G=118GPa versus KT = 600(14) GPa
and G= 132(8) GPa.

Figure 1 shows our results for the hexa-
gonal phase of Fe7C3 compared with
available experimental data for both
the hexagonal and orthorhombic
phases [Chen et al., 2014; Prescher
et al., 2015]. The experiments show that
KT and VP of both phases are very
similar below about 60GPa, above

Table 1. Elastic Properties and Density of Fe7C3 Under Different Temperatures T and Pressures Pa

State T(K) P(GPa) C11(GPa) C12 C13 C33 C44 KT(GPa) G(GPa) ρ(g/cm)3 VD(km/s)

fm 0 0 412 176 167 362 101 245 109 7.872 4.16
fmb 0 0 397 173 168 247 102 223 102 - -
nm 0 0 448 199 215 427 60 287 95 8.137 3.85
nmb 0 0 458 200 205 425 67 285 101 - -
nm 0 350 2107 1345 1384 1959 239 1599 309 12.523 5.63
nm 300 150 1187 714 759 1137 155 886 194 10.620 4.84
nmc 300 158(5) - - - - - 929(27) 221(11) 10.66(6) 5.151(122)
nmd 0 150 - - - - - 743 203 10.625 -
nm 300 180 1390 842 905 1267 209 1039 231 10.956 5.20
nm 1760 85 859 537 447 651 58 616 118 9.569 3.98
nmc 1800 85(2) - - - - - 600(14) 132(8) 9.67(4) 4.175(114)

KS(GPa)
nm 1868 350 1902 1326 1320 1808 249 1544 267 12.380 5.27
nm 2850 350 1807 1279 1313 1765 267 1491 258 12.309 5.20
nm 4879 350 1769 1263 1291 1714 246 1483 243 12.126 5.08
nm 5395 350 1689 1262 1288 1690 230 1467 217 12.086 4.81
nm 5645 350 1664 1254 1247 1651 222 1436 212 12.075 4.76
nm 5921 350 1583 1223 1215 1599 224 1392 200 12.027 4.63
nm 6446 350 1230 966 1294 1687 131 1300 118 11.993 3.58
nm 6513 350 1169 886 1224 1624 45 1229 88 11.912 3.10
nme 6022 350 1652 1233 1260 1667 193 1439 200 12.055 4.64
nme 6169 350 1473 1158 1165 1631 169 1370 172 12.051 4.30

aResults for the simulations at the two highest temperatures are not shown as Fe7C3 melts after about 7 ps at 6670 K
andmelts immediately at 7055 K (see supporting information). fm and nm indicate ferromagnetism and nonmagnetism,
respectively. Data from other studies are in italic text.

bh-Fe7C3, DFT-PBE calculation [Mookherjee et al., 2011].
co-Fe7C3, Experiment [Prescher et al., 2015] the number in brackets indicates error.
do-Fe7C3, DFT-PBE calculation [Raza et al., 2015].
eThe 160 atom supercell.

Figure 1. Comparison of our results for h-Fe7C3 with the experimental
data of Chen et al. [2014] and Prescher et al. [2015] for G, KT, VP, and VS.
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which the paramagnetic material
becomes nonmagnetic, with a reduc-
tion in sound velocity observed by
Chen et al. [2014] after the transition.
Extrapolation by Chen et al. [2014] of
their reduced velocities to core pres-
sures suggests a match with seismic
observations for the inner core; such a
match is not, however, observed by
Prescher et al. [2015] for the o-Fe7C3
phase, as their velocities are consider-
ably higher. The difference in elastic
properties between these two experi-
mental studies may be due to the
different equations of state used.
While our calculations predict a density
of 12.524 g/cm3 at zero Kelvin and
350GPa, that of Chen et al. [2012] is
~13.2 g/cm3 at 300 K and 350GPa.
However, our results are in much better

agreement with Prescher et al. [2015]. The calculated densities at 300 K, 150GPa and 1760 K, 85 GPa are 10.620
and 9.569 g/cm3, respectively, which match well with the experimental data of Prescher et al. [2015] for
o-Fe7C3 (10.66 ± 0.06 and 9.67 ± 0.04 g/cm3 for 300 K, 158 ± 5GPa and 1800± 200 K, 85 ± 2GPa, respectively).
Our calculated elastic properties at both 300 K and 1760 K for h-Fe7C3 are also in excellent agreement with
the experiments of Prescher et al. [2015] for o-Fe7C3, suggesting similar behavior of the h-Fe7C3 and
o-Fe7C3 phases. It also can be seen from Figure 1 that, as expected, the effect of temperature on G, and thus
on VS, is significant.

4.2. Elasticity of Fe7C3 at Inner Core Conditions

The elastic moduli of h-Fe7C3 at 350GPa as a function of temperature are shown in Figure 2 and in Table 1.
They all show an almost linear variation with T below ~5800 K. C11 and C33 decrease with increasing tempera-
ture (similar in behavior to pure hcp-Fe), while C12 and C13 slightly decrease with increasing temperature
(opposite behavior to pure hcp-Fe). The shear stiffness modulus C44 shows little dependency on temperature
below 6000 K. There is a crossover of C11 and C33 in h-Fe7C3 for temperatures approaching 6000 K.

Above 5800 K, C13 and C33 show a similar trend as before, though the scatter becomes large. However,
C11, C12, and C44 show a significant nonlinear decrease with increasing temperature. In particular, from
6000 K to 6500 K, C11, C12, and C44 drop by 22%, 21%, and 42%, respectively. This behavior is similar to the
premelting phenomenon found in pure hcp-Fe. Despite this premelting weakening, by analyzing the RDFs
and RMSDs of the system, we found that Fe7C3 remained completely solid during the simulation to 6513 K;
at 6670 K it melted after ~7 ps and melted immediately by 7055 K (Figure S1 in the supporting information).

The bulk and shear moduli (Figure 3) decrease almost linearly with increasing temperature up to ~5800 K,
above which there is an abrupt and significant increase in the rate of reduction. We used the NP model
[Nadal and Le Poac, 2003] to fit the temperature dependence of our shear modulus. The NP model is the
only available model that accounts for both the linear region and the region close to the melting tem-
perature, which has successfully described the nonlinear T dependency of G in tin [Nadal and Le Poac,
2003] and hcp-Fe [Martorell et al., 2013b]. We obtained a value of the Lindemann coefficient f= 0.174
and a melting temperature of 6470 K for h-Fe7C3 at 350GPa. This calculated Lindemann coefficient seems
reasonable since it is a material-dependent parameter that is normally in the range between 0.1 and 0.3
[Nelson, 2002].

4.3. Premelting Effects in Fe7C3

Our premelting in Fe7C3 occurs when T/Tm> 0.93, a slightly lower homologous temperature than was found
in pure hcp-Fe [Martorell et al., 2013b] and in tin [Nadal and Le Poac, 2003]. As shown in Figure 3, the Poisson’s

Figure 2. Calculated elastic constants for h-Fe7C3 as a function of simula-
tion temperature at 350 GPa. The dashed line indicates the melting tem-
perature of h-Fe7C3 from the NP model. The shaded region represents the
melting temperatures of hcp-Fe [Morard et al., 2011]. The statistical errors
are 0.68%, 0.77%, 1.42%, 1.12%, 1.12%, 1.49%, 2.06%, and 2.93% for
temperatures of 1868, 2850, 4879, 5395, 5645, 5921, 6446, and 6513 K,
respectively.
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ratio also reveals a strong premelting
effect approaching the melting point.
The shear modulus, bulk modulus, and
Poisson’s ratio all cross the preliminary
reference Earth model (PREM) value at
temperatures between 6000 K and the
melting point.

As well as premelting being evident
in the elastic properties of Fe7C3,
heating reveals a rapid increase in
defects (defined as overcoordinated or
undercoordinated atoms), as previously
reported for pure hcp-Fe [Martorell
et al., 2013b]. However, the increase of
defects in h-Fe7C3 is at a much faster
rate (Figure 4), reaching ~52% before
melting. The defect percentage at
melting is higher than that found in ele-
mental systems [Delogu, 2006a, 2006b;
Manai and Delogu, 2007b; Martorell
et al., 2013b], a difference probably
caused by the lower symmetry of the
h-Fe7C3 structure, which allows signifi-
cant mobility of the light carbon atoms
sitting in the prismatic centers of the
iron substructure.

4.4. Implications for Carbon in the
Earth’s Core

Figure 5 shows the dependence of VP
and VS on temperature at 350GPa.
Both exhibit a similar trend to that of
the shear and bulk moduli, decreasing
almost linearly with temperature up to
~5800 K, followed by a substantial
increase in the rate of reduction in wave
velocities beyond this point. Our results
from a fitted NP-like model show that
the velocities agree with the seismolo-
gical values at T/Tm of 0.984 and 0.966
(6370 K for VP and 6250 K for VS), respec-
tively. The elastic constants of h-Fe7C3
(Figure 2) exhibit anisotropic behavior
at the inner core conditions consistent
with that found for the inner core from
seismology [Deuss, 2014].

However, even at 0 K, the density of
h-Fe7C3 (Figure 5) is much lower than
the seismological values and the
further, almost linear, reduction in its
density with increasing temperature
then gives a density mismatch between
Fe7C3 and the inner core of 7.9% at

Figure 3. Calculated elastic moduli and Poisson’s ratio for h-Fe7C3 as a
function of simulation temperature at 350 GPa. The green line is the NP
(NP-like) model fitted to the calculated shear (bulk) modulus. The dashed
line indicates the melting temperature of h-Fe7C3. The horizontal dashed
line is the value from PREM at 350 GPa [Dziewonski and Anderson, 1981].
The shaded region represents the melting temperatures of hcp-Fe [Morard
et al., 2011].

Figure 4. Atomic defects evolution of h-Fe7C3 only Fe atoms considered
as a function of simulation temperature at 350 GPa in comparison with
hcp-Fe [Martorell et al., 2013b].
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6000 K. For this reason, we can exclude
the possibility that the major phase in
the Earth’s inner core is h-Fe7C3
and probably also that carbon is the
sole light element candidate present,
although, of course the presence of
Fe7C3 as a minor constituent is not pre-
cluded. It is interesting to note that
similar arguments apply in the case of
Fe3C [e.g., Vočadlo et al., 2002], in which
the density was also found to be too
low tomatch the inner core. In this case,
however, the discrepancy was not so
large (~3%), reflecting the lower carbon
content. Of course, the presence of any
amount of an Fe7C3 phase depends on
the position of the high P/T eutectic,
as well as the amount of carbon in
the core; both of these are presently
unknown. For small amounts of carbon
expected in the core, this would require
the eutectic to be very close to the iron-
enriched side of the phase diagram.

The melting temperature from the NP
model is 6470 K at 350GPa for h-Fe7C3.
The true melting temperature will be
~5500 K if we assume 15% overestima-
tion due to overheating [Martorell
et al., 2013b; Delogu, 2006a, 2006b;
Lu and Li, 1998; Manai and Delogu,
2007a]. This value suggests that the
melting temperature of h-Fe7C3 may
not be as high as previously expected

(~6400 K from extrapolation of experimental data to 330GPa) [Fei and Brosh, 2014]. If h-Fe7C3 really does have
such a low melting temperature, it is also difficult to see how it would exist in equilibrium with hcp-Fe under
inner core conditions, unless in the form of an impurity within an hcp-Fe superlattice.

5. Conclusions

We have studied the elastic properties of h-Fe7C3 at 350GPa up to 7000 K. The sound velocities of Fe7C3 are
very similar to those of PREM due to the premelting behavior of Fe7C3 just prior to melting. However, the
density of h-Fe7C3 is 7.9% lower than the PREM value, and the estimated melting temperature is also very
low compared to that of hcp-Fe. We conclude, therefore, that carbon within Fe7C3 alone is not a viable
candidate for the major light element phase in the Earth’s core. Whether carbon may exist as an impurity
in hcp-Fe has yet to be determined.
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