
1	

 

Characterisation	of	cultured	

airway	basal	cells	to	understand	their	

role	in	human	lung	disease	

	

Robert	E.	Hynds	

	

Lungs	for	Living	Research	Centre	

UCL	Respiratory	

University	College	London	

	

	

A	thesis	presented	for	the	degree	of	Doctor	of	

Philosophy	

2016	



2	

 

Declaration	

	

I,	Robert	Hynds,	confirm	that	the	work	presented	in	this	thesis	is	my	own.	Where	

information	has	been	derived	from	other	sources,	I	confirm	that	this	has	been	indicated	and	

acknowledged.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



3	

 

Acknowledgements	

	

I	would	like	to	thank	my	supervisory	team	–	Professor	Sam	Janes,	Dr.	Adam	Giangreco,	

Professor	Rachel	Chambers,	Dr.	Brett	Cochrane	and	Dr.	Paul	Fowler	–	for	the	opportunity	to	

pursue	my	PhD	at	UCL	and	their	help,	support	and	ideas	throughout.	

	

Thanks	to	the	‘epithelial	team’	-	Colin,	Jim,	Kate,	Nick	and	Laura	–	for	establishing	coffee	

shop	science	and	to	Adam	P,	Bernie,	Beth,	Chris,	Fraser,	Krish,	Leticia,	Lizzie,	Manu,	Neelu,	

Noura,	Paul,	Qiang,	Ricky,	Sab,	Sofia,	Tammy,	Tanvi	and	Vitor,	for	tolerating	us.	Together	you	

have	made	Lungs	for	Living	a	great	place	to	do	research	for	the	last	four	years.	Thanks	too	to	

our	collaborators	-	Dr.	Cecilia	Prêle	(University	of	Western	Australia),	Dr.	Helen	Booth	

(University	College	London	Hospitals),	Professor	Chris	O’Callaghan	(Institute	of	Child	Health,	

UCL)	and	Professor	Paolo	De	Coppi	(Institute	of	Child	Health,	UCL)	–	and	members	of	their	

laboratories	who	made	this	work	possible.	

	

Finally,	I	am	grateful	to	the	British	Biotechnology	and	Research	Council	(BBSRC)	and	Unilever	

who	funded	this	research	through	a	BBSRC-CASE	PhD	studentship.	

	

	

	



4	

 

Abstract	

	

Many	 studies	 in	murine	models	 have	 demonstrated	 the	 stem/progenitor	 cell	 potential	 of	

basal	 epithelial	 cells	 in	 the	 tracheal	 epithelium.	 However,	 significant	 differences	 exist	

between	the	respiratory	epithelium	in	rodents	and	in	man.	As	such,	novel	methodologies	to	

study	respiratory	epithelial	cells	in	vitro	are	in	demand.	

	

Here,	methods	 to	 expand	 primary	 human	 airway	 epithelial	 cells	 from	 living	 patients	were	

explored.	 The	 field’s	 ‘gold	 standard’	 medium	 for	 the	 expansion	 of	 these	 cells	 was	 poorly	

suited	 to	 initiating	 cultures	 from	 small	 endobronchial	 biopsy	 samples	 as	 proliferation	 of	

these	 cells	 was	 time-limited	 and	 after	 a	 short	 period	 of	 time	 in	 culture	 the	 cells	 became	

senescent	and	were	unable	 to	 regenerate	a	mucociliary	epithelium	 in	organotypic	models.	

As	such,	an	alternative	epithelial	culture	strategy	 involving	the	co-culture	of	human	airway	

epithelial	 cells	 with	 3T3-J2	 fibroblast	 feeder	 cells	 in	 medium	 containing	 a	 small	 molecule	

Rho-associated	protein	kinase	(ROCK)	inhibitor	was	assessed.	This	method	greatly	improved	

both	the	yield	and	the	longevity	of	human	basal	cell	cultures	and	allowed	multipotent	airway	

differentiation	 in	 organotypic	 assays	 after	 longer	 culture	 periods	 than	 conventional	

techniques.	Finally,	 the	epithelial-stromal	 cell	 crosstalk	between	epithelial	 cells	and	 feeder	

cells	 in	 co-culture	 was	 investigated,	 revealing	 a	 novel	 signalling	 pathway	 involving	

phosphorylation	of	the	transcription	factor	signal	transducer	and	activator	of	transcription	6	

(STAT6)	by	hepatocyte	growth	factor	(HGF)	signalling.		
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1.1 The	human	airway	epithelium	

	

Epithelia	constitute	the	surfaces	(epidermis	and	cornea)	and	linings	(respiratory,	digestive	

and	uro-genital)	of	the	body	that	are	exposed	to	the	outside	world.	Formed	of	cells	tightly	

connected	by	cell-cell	and	cell-matrix	adhesions,	epithelia	form	a	protective	barrier	and	

regulate	the	important	processes	of	water	transport,	nutrient	uptake	and	secretion	[1].	

	

Epithelial	cells	can	be	derived	from	any	of	the	three	germ	layers	and	have	diverse	structural	

organisations	[2].	Stratified	epithelia,	which	have	multiple	cell	layers,	can	be	keratinised,	as	

is	the	case	for	epidermis,	or	non-keratinised,	as	in	the	oral	mucosa.	Simple	epithelia	are	only	

a	single	cell	layer	and	are	found	in	the	alveolus	of	the	lungs	and	in	the	kidney	tubules.	In	the	

lungs,	the	proximal	airway	epithelium	is	an	endoderm-derived,	pseudostratified	epithelium	

where	all	cells	in	the	tall	epithelium	make	some	contact	with	the	basement	membrane	[3].	

Despite	these	structural	differences,	all	epithelia	share	common	characteristics,	with	

intercellular	communication	among	cells	within	an	epithelium	mediated	by	tight	junctions,	

adherens	junctions	and	desmosomes,	which	enables	coordination	of	their	function	[4].	

Further,	cells	express	integrins	that	bind	to	basement	membrane	extracellular	matrix	(ECM)	

proteins	in	focal	adhesions	and	hemi-desmosomes	and	that	initiate	outside-in	signalling	

processes	through	connection	with	the	cytoskeleton	[5].		

	

1.1.1 Function	of	the	airway	epithelium	

	

The	respiratory	system	consists	of	a	branched	airway	tree	connecting	a	single	trachea	

proximally	to	millions	of	well-vascularised	gas	exchange	units,	the	alveoli,	in	the	distal	lungs	

(Figure	1.1).	The	conducting	airways	are	far	more	than	a	conduit	to	pass	air	to	the	alveoli	

and	represent	a	specialised	interface	with	the	outside	world		[6].	The	epithelium	that	lines	
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the	conducting	airways	must	form	a	barrier	to	protect	against	bacterial	and	viral	pathogens	

and	inhaled	particulate	matter	and	to	eliminate	these	via	the	mucociliary	escalator.	

Epithelial	cells	secrete	mucus	to	form	a	10	μm	layer	of	airway	surface	liquid	formed	of	two	

layers:	a	low-viscosity	periciliary	sol	permissive	of	ciliary	beat	and	an	overlying	viscous	mucus	

gel	that	inhibits	bacterial	adherence	and	traps	particles	[7].	The	airway	surface	liquid	is	

moved	at	a	rate	of	approximately	3	mm	per	minute	towards	the	mouth,	where	it	is	

swallowed	[7].	In	addition,	the	secretory	functions	of	epithelial	cells	assist	in	the	prevention	

of	microbial	colonisation	through	the	production	of	antimicrobial	peptides	and	proteins,	

such	as	lysozyme	and	lactoferrin	[8].	As	the	first	line	of	defence	against	inhaled	pollutants,	

the	respiratory	epithelium	is	also	responsible	for	the	metabolism	of	these	particles	to	form	

less	toxic	by-products.	Finally,	it	is	increasingly	recognised	that	the	epithelium	is	an	

important	regulator	of	the	innate	and	adaptive	immune	response	during	airway	infection	

and	injury	[9,	10].	
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Figure	1.1:	Proximal-distal	anatomical	variation	in	the	bronchial	tree.	A)	The	airway	epithelium	in	the	proximal	
airways	consists	of	a	pseudostratified	epithelium	composed	of	basal	progenitor	cells	and	ciliated	and	
mucosecretory	cells.	B)	The	distal	bronchiolar	epithelium	is	columnar	and	represents	a	transition	zone	
between	the	conducting	airway	and	alveolar	respiratory	epithelium.	
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1.1.2 Adult	cell	types	

	

The	respiratory	epithelium	is	a	continuous	lining	that	arises	from	the	foregut	endoderm	

during	embryonic	development	[11-13].	The	work	that	follows	will	focus	on	the	

pseudostratified	epithelium	of	the	human	proximal	airways.	In	healthy	individuals,	this	

consists	of	cell	types	that	can	be	broadly	divided	into	basal	cells	and	non-basal,	or	luminal,	

cells.	The	basal	population	lines	the	basement	membrane	and	is	not	significantly	exposed	to	

the	airway	lumen	during	homeostasis,	whereas	the	luminal	cells	perform	differentiated	

airway	functions.	

	

1.1.2.1 Basal	cells	

	

Basal	cells	line	the	upper	airway	basement	membrane	and	have	a	distinctive	cuboidal	

morphology	with	a	high	nuclear-cytoplasmic	volume	ratio	[3].	These	cells	form	a	range	of	

cellular	attachments,	including	intra-epithelial	attachments	mediated	by	desmosomes	and	

attachment	to	the	basement	membrane	via	hemi-desmosomes.	These	cells	express	

abundant	cytokeratins,	notably	cytokeratin	5	(CK5)	and	in	some	circumstances	cytokeratin	

14	(CK14),	p63,	nerve	growth	factor	receptor	(NGFR),	TROP2,	integrin	α6	and	aquaporin	3	

[14],	but	also	show	a	great	deal	of	heterogeneity	in	their	protein	expression	[15,	16].	Studies	

in	both	murine	and	human	airways	suggest	that	basal	cells	are	the	proliferative	population	

of	airway	epithelial	cells	during	homeostasis	and	following	tissue	injury.	

	

While	basal	cells	have	traditionally	been	considered	to	be	relatively	undifferentiated,	there	

is	emerging	evidence	that	they	are	active	contributors	to	the	airway	microenvironment	

independently	of	their	differentiated	progeny	[17].	Recently,	expansion	of	an	interleukin-33	

(IL-33)-producing	subpopulation	of	basal	cells	was	identified	in	the	airways	of	patients	with	
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chronic	obstructive	pulmonary	disease	(COPD)	[18].	This	finding	suggests	that	basal	cells	can	

have	an	innate	immune	function	because	IL-33	acts	on	T-cells,	innate	lymphoid	cells	and	

natural	killer	T	cells	in	the	lung	to	increase	pro-inflammatory	IL-13	production	[18].	Further	

support	for	this	comes	from	an	in	vitro	study	in	which	basal	cells	but	not	differentiated	

airway	cell	types	produced	the	anti-microbial	protein	RNase	7	in	response	to	cigarette	

smoke	[19].	The	large	surface	area	of	basal	cells	in	contact	with	the	airway	basement	

membrane	makes	this	cell	type	well	equipped	to	mediate	epithelial	cell	interaction	with	

stromal	and	immune	cells.	

	

1.1.2.2 Goblet	cells	

	

Goblet	cells	are	responsible	for	the	production	of	many	secreted	proteins	in	the	airways.	

These	cells	contain	abundant	mucosubstances	including	mucins	that	exist	in	either	a	

membrane-tethered	or	a	secreted	form,	as	is	found	in	the	gel-like	layer	of	airway	surface	

liquid.	The	transcription	factor	SPDEF	is	associated	with	goblet	cell	differentiation	and	the	

regulation	of	mucus	production	[20,	21].	The	prominent	mucins	produced	in	human	airway	

goblet	cells	are	mucin	5AC	(MUC5AC)	and	MUC5B,	although	a	broad	range	of	large	

structurally	related	gel-forming	mucin	glycoproteins	are	expressed	[22].	In	addition	to	these	

markers,	cells	can	also	be	detected	by	positive	histochemical	staining	with	periodic	acid-

Schiff	(PAS).	While	goblet	cells	are	considered	to	be	post-mitotic	in	the	human	lungs,	their	

abundance	increases	dramatically	in	certain	airway	diseases,	including	asthma,	COPD	and	

cystic	fibrosis	but	the	mechanisms	leading	to	goblet	cell	metaplasia	are	incompletely	

understood.	
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1.1.2.3 Ciliated	cells	

	

Ciliated	cells	line	the	luminal	surface	of	the	airways	and	produce	motile	force	to	move	

airway	surface	liquid.	Ciliated	cells	are	the	most	abundant	airway	epithelial	cell	type,	

accounting	for	between	30-50%	of	cells	[3].	Early	ciliated	cell	differentiation	is	marked	by	the	

expression	of	the	transcription	factor	forkhead	box	protein	J1	(FOXJ1)	[23],	which	is	

expressed	before	the	appearance	of	cilia	at	the	apical	surface.	These	cilia	are	microtubule-

based	projections	containing	acetylated	α-tubulin.	Mature	ciliated	cells	are	also	

distinguished	by	the	polarised	concentration	of	basal	bodies	in	the	luminal	cytoplasm	and	

mitochondria	in	the	apical	cytoplasm	[24].	

	

Each	ciliated	cell	contains	around	100-200	cilia	(5-7	µm	in	length)	and	each	cilium	consists	of	

nine	peripheral	doublets	and	two	central	microtubules	in	a	‘9+2’	arrangement	[25].	

Peripheral	doublets	are	connected	by	nexin	links,	each	doublet	is	connected	to	the	central	

microtubule	pair	by	a	radial	spoke	and	each	doublet	has	an	inner	and	an	outer	dynein	arm.	

The	outer	arm	controls	the	frequency	of	ciliary	beat	while	the	inner	arm	controls	bending	of	

the	cilium.	Cilia	beat	with	a	simple	backwards-forwards	motion	[26]	through	the	ATPase	

activity	of	the	dynein	arms.	ATP	hydrolysis	causes	sliding	of	adjacent	microtubules	and	

bending	of	the	cilium.	Notably,	it	is	known	that	genetic	mutations	in	an	increasing	number	of	

genes	cause	primary	ciliary	dyskinesia	(PCD),	a	rare	autosomal	recessive	disease	in	which	

motile	cilia	function	is	compromised	[27].	

	

1.1.2.4 Club	cells	

	

Club	cells	were	first	described	by	Max	Clara	in	1937	[28]	and	were	known	as	‘Clara	cells’	until	

the	discovery	that	the	anatomist	was	an	“outspoken	Nazi”	who	studied	tissue	derived	from	
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executed	prisoners	[29].	Club	cells	are	found	in	the	bronchiolar	epithelium	and	are	so	named	

because	of	their	rounded,	club-like	appearance.	Club	cells	are	non-ciliated,	luminal	epithelial	

cells	characterised	by	agranular	endoplasmic	reticulum	and	electron-dense	granules	in	their	

apical	cytoplasm	and	by	granular	endoplasmic	reticulum	basally.	Club	cells	have	an	

important	secretory	function	and	produce	proteins	such	as	inflammatory	secretoglobins,	

including	the	club	cell	secretory	protein	(CCSP;	SCGB1A1),	which	is	commonly	used	as	a	

molecular	marker	of	club	cells,	surfactant	proteins	and	uteroglobin	gene-related	protein	

[30].	Further,	the	cells	act	to	detoxify	airway	pollutants	by	their	expression	of	cytochrome	

P450	monooxygenases;	this	family	of	metabolic	enzymes	acts	to	oxidise	potentially	

damaging	exogenous	compounds	rendering	them	more	water-soluble	[31].		

	

1.1.2.5 Neuroendocrine	cells	

	

Pulmonary	neuroendocrine	cells	(PNECs)	are	rare	epithelial	cells	that	occur	either	as	

individual	cells	or	in	clusters	known	as	neuroepithelial	bodies	(NEBs)	that	are	particularly	

associated	with	airway	branch	points	[32,	33].	Despite	their	integration	with	other	cell	types	

derived	from	foregut	endoderm,	there	has	been	some	controversy	about	the	developmental	

origin	of	neuroendocrine	cells,	which	have	been	proposed	to	be	independently	derived	from	

the	neural	crest	[34].	However,	recent	evidence	using	lineage	tracing	in	mice	revealed	that	

these	cells	shared	a	common	developmental	precursor	with	alveolar	epithelial	cells	[35].	

PNECs	are	small	epithelial	cells	and	are	located	in	the	basal	epithelium.	These	cells	contain	

secretory	dense-core	granules,	which	comprise	signalling	molecules	such	as	serotonin	(5-

hydroxytryptamine)	and	neuropeptides	such	as	calcitonin	and	calcitonin	gene-related	

peptide	(CGRP).	Functionally,	PNECs	are	activated	by	a	range	of	stimuli	and	act	as	biosensors	

for	changes	in	airway	oxygen	levels	and	chemical	stimuli	[36].	Indeed,	recently	it	was	shown	

that	human	PNECs	are	chemosensory	through	their	expression	of	olfactory	receptors,	at	
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least	in	vitro	[37].	While	PNECs	are	not	proliferative	during	homeostasis,	it	is	believed	that	

they	can	act	to	replenish	club	and	ciliated	cells	following	severe	lung	injury.	Their	rare	

appearance	within	the	epithelium	means	that	the	PNEC	contribution	to	airway	regeneration	

is	minor	[38]	but	a	more	significant	contribution	might	come	through	their	role	as	a	niche	for	

other	airway	epithelial	cell	subtypes	that	survive	injury.	

	

1.1.3 Species	differences	

	

It	is	important	to	note	that	anatomical	differences	exist	between	the	lungs	of	mammalian	

species.	The	diameter	of	the	largest	mouse	airway	is	just	1.5	mm	compared	with	a	tracheal	

diameter	of	1.75	cm	in	adult	humans	[39],	meaning	it	is	more	comparable	to	the	much	

smaller	peripheral	human	bronchioles.	In	mice,	extrapulmonary	airways	have	cartilage	rings	

but	human	airways	are	cartilaginous	for	many	generations	within	the	lungs.	Similarly,	

submucosal	glands	are	only	found	in	the	upper	half	of	the	mouse	trachea,	but	extend	for	

many	bronchial	generations	in	humans.	

	

The	cellular	composition	of	the	airways	also	varies	between	species.	Human	airways	exhibit	

a	pseudostratified,	keratinised	epithelium	with	abundant	basal	cells	throughout	the	trachea,	

bronchi	and	bronchioles:	only	the	respiratory	bronchioles	with	<0.5	mm	diameter	contain	a	

simple	cuboidal	epithelium	lacking	basal	cells	[40].		However,	only	the	trachea	and	mainstem	

bronchi	of	murine	airways	contain	basal	cells	under	homeostatic	conditions	[41].	In	contrast	

to	humans,	club	cells	are	the	predominant	airway	cell	type	in	the	rodent	lungs,	making	up	

50%	of	the	proximal	epithelium	and	70%	of	the	distal	epithelium.	However,	in	humans	club	

cells	vary	in	their	abundance	through	the	distal	bronchial	tree	and	are	really	only	abundant	

in	terminal	bronchioles.	In	this	respect,	only	the	tracheal	epithelium	of	mice	is	composed	

similarly	to	the	majority	of	the	human	airway	epithelium.	Additionally,	goblet	cells	are	



18	

 

abundant	in	human	airways	but	in	mice,	presumably	because	of	the	relative	sterility	of	

laboratory	conditions,	these	cells	are	rare.	

	

These	inter-species	distinctions	most	probably	result	from	differences	in	the	respiratory	

demands	placed	upon	human	and	murine	lungs	[42]	and	contribute	significantly	to	the	need	

for	in	vitro	models	representative	of	human	airway	epithelium.	

	

1.1.4 The	conducting	airway	epithelium	in	lung	disease	

1.1.4.1 Cancer	

	

Lung	cancer	affects	34,000	patients	per	year	in	the	UK	and	is	the	most	common	cause	of	

cancer	death	worldwide	[43].	The	three	most	frequent	histopathological	subtypes	of	lung	

cancer	are	adenocarcinomas,	small	cell	and	squamous	cell	carcinomas	(SCCs).	Importantly,	

there	appears	to	be	a	correlation	between	the	location	at	which	these	tumours	occur	within	

the	bronchial	tree	and	the	cell	types	present	in	those	regions	[44].	Adenocarcinomas	arise	in	

the	distal	lung	and	express	markers	of	distal	lung	epithelial	cells	such	as	surfactant	protein	C	

(SPC),	which	is	normally	expressed	by	alveolar	type	II	cells,	and	CCSP,	which	is	normally	

expressed	in	club	cells	[45].	Small	cell	lung	cancers	arise	in	bronchioles	and	express	CGRP,	a	

protein	that	is	normally	expressed	by	neuroendocrine	cells.	SSCs	are	found	in	the	proximal	

airways	and	result	from	step-wise	changes	in	the	epithelium	that	include	basal	cell	

hyperplasia,	metaplasia,	dysplasia,	carcinoma-in-situ	and	ultimately	invasive	cancer	[46].	The	

expansion	of	basal	cells	in	pre-invasive	lesions	and	the	expression	of	basal	cell	proteins,	such	

as	CK5,	led	to	the	hypothesis	that	SSCs	originate	from	basal	epithelial	cells.	While	86%	of	

lung	cancers	are	caused	by	smoking	[47],	little	is	known	about	the	molecular	mechanisms	

that	initiate	the	formation	of	neoplastic	lesions	from	a	healthy	epithelium,	primarily	because	
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lung	cancer	diagnoses	are	made	late	in	tumour	progression	compared	with	diagnoses	in	

other	organs	[48].	

	

1.1.4.2 Inflammatory	lung	diseases	

	

Inflammation	is	a	key	hallmark	in	a	range	of	respiratory	conditions	including	adult	

respiratory	distress	syndrome	[49],	asthma,	COPD	and	idiopathic	pulmonary	fibrosis	(IPF).	

Epithelial	disruption	is	central	to	the	pathogenesis	of	these	airway	mucosecretory	diseases,	

where	goblet	cell	abundance	increases	and	excessive	mucus	is	secreted	into	narrowed,	

inflamed	airways	[50].	While	the	site	and	the	nature	of	inflammation	differs	according	to	the	

pathophysiology	of	specific	diseases,	all	involve	immune	and	inflammatory	cell	types	being	

recruited	to	the	lungs,	being	activated	and	producing	inflammatory	cytokines.	This	

environment	causes	the	remodelling	of	the	airway	epithelium	to	favour	goblet	cell	

metaplasia	and	excessive	secretion	of	mucus	into	the	airways.	The	underlying	molecular	

mechanisms	that	lead	to	the	inflammatory	and	mucosecretory	components	of	these	

diseases	—	and	in	particular	the	communication	between	stromal	cells,	immune	cells	and	

the	overlying	basal	epithelial	cells	—	are	not	well	understood	[51-53].	

	

Airway	epithelial	cells	initiate	the	process	of	airway	inflammation	by	producing	cytokines	

such	as	thymic	stromal	lymphopoietin	(TSLP),	IL-1,	IL-25	and	IL-33	[9].	These	cytokines	

activate	dendritic	cells,	mast	cells	and	other	cells	to	recruit	haematopoietic	cells	and	to	

induce	the	release	of	T	helper	type	2	(TH2)	cytokines	such	as	IL-4,	IL-5	and	IL-13	[54].	IL-4	and	

IL-13	cause	airway	hyperresponsiveness	and	mucus	overproduction	in	asthma.	Through	

binding	to	the	type	II	IL-4	receptor	complex	(IL-13Rα1	and	IL-4Rα),	these	cytokines	activate	

Janus	kinases	[55],	which	associate	with	interleukin	receptor	cytoplasmic	domains	[56,	57].	

Downstream	signalling	pathways	are	then	activated	by	these	kinases.	Specifically,	IL-13	can	
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promote	cell	survival	and	growth	via	phosphoinositide	3-kinase	(PI3K)	signalling	and	can	

promote	transcription	of	a	wide	variety	of	genes	associated	with	airway	inflammation,	

mucus	production	and	hyperreactivity	via	signal	transducer	and	activator	of	transcription	6	

(STAT6)	[58,	59].	STAT6	is	expressed	in	normal	and	asthmatic	human	airway	epithelium	in	

vivo	[60]	and	the	cytokine	secretion	profile	of	human	airway	epithelial	cells	is	altered	in	

response	to	IL-4	and	IL-13	in	a	STAT6-dependent	manner.	Epithelial	cells	upregulate	

cytokines	such	as	granulocyte/macrophage	colony-stimulating	factor	(GM-CSF)	and	eotaxin	

(CCL11),	the	promoter	sequences	of	which	contain	STAT6-binding	sites	[61],	and	IL-8,	which	

act	to	recruit	neutrophils,	eosinophils	and	monocytes	to	sites	of	inflammation	[62].	

Interestingly,	mice	lacking	STAT6	are	protected	from	IL-13-mediated	airway	hyperreactivity,	

mucus	hypersecretion	and	eosinophilic	inflammation	[63],	suggesting	that	it	is	a	key	driver	of	

the	epithelial	response	to	inflammation.	Although	IL-4	and	IL-13	are	primary	activators	of	

STAT6,	studies	have	suggested	that	STAT6	can	be	activated	via	a	number	of	alternative	

pathways	including	angiotensin	II	in	cardiomyocytes	[64],	CD28	engagement	in	naïve	T	cells	

[65]	and	platelet-derived	growth	factor	(PDGF)	signalling	in	NIH3T3	cells	[66].	However,	the	

physiological	role	of	STAT6	that	is	activated	by	these	alternative	pathways	is	not	clear.	

	

1.1.5 Airway	epithelial	tissue	engineering	

	

Patients	with	end-stage	tracheal	disease	have	a	poor	quality	of	life	and	often	prognosis	due	

to	the	limited	reconstruction	options	available.	While	in	some	patients	it	is	possible	to	

remove	the	region	of	affected	airway	and	to	re-join	the	surrounding	healthy	airways	by	end-

to-end	anastomosis,	this	option	is	only	available	for	smaller	airway	defects;	less	than	30%	

and	50%	of	the	tracheal	length	in	children	and	adults,	respectively	[67].	While	organ	

transplantation	has	dramatically	reduced	patient	mortality	and	morbidity,	demand	for	donor	

organs	outstrips	supply	and	life-long	immunosuppression	is	required	[68].	Tissue	engineering	
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aims	to	bioengineer	cell-scaffold	technologies	as	an	alternative	strategy	[69].	The	first	

bioengineered	tracheal	transplant	took	place	in	2008	and	more	have	followed	[70-72],	

making	upper	airway	reconstruction	among	the	first	in	the	field	to	see	clinical	translation	of	

advanced	tissue-engineering	methods	[73].	While	the	clinical	need	for	these	transplants	is	

established,	many	aspects	of	this	nascent	therapy	remain	to	be	investigated	in	detail	[74],	

including	the	use	of	decellularised	versus	synthetic	scaffolds	[75],	the	value	of	graft	pre-

vascularisation	or	enhanced	angiogenesis	[76],	and	the	optimal	combination	of	growth	

factors	and	cultured	cells	to	stimulate	regeneration	[77,	78].	

	

Following	tracheal	transplantation,	compromised	mucociliary	clearance	represents	an	

important	challenge	because	secretions	are	retained	at	the	distal	anastomosis	site,	

promoting	infection	and	airway	obstruction	[79,	80].	Therefore,	inclusion	of	a	functional	

epithelium	in	tracheal	transplants	is	desirable	and	some	of	the	first	tracheal	transplants	have	

included	autologous	epithelial	cells	with	a	view	to	expediting	mucosal	recovery	[70,	71].	

However,	there	is	limited	time	available	to	culture	cells	owing	to	the	urgent	nature	of	some	

interventions	and	the	inability	to	study	cell	fate	in	humans	means	that	little	is	known	about	

the	contribution	of	these	cells	to	the	tracheal	transplant.	Clinical	observations	show	that	

patients	were	slow	to	regenerate	healthy	mucosa	in	the	cases	in	which	tissue-engineered	

tracheal	transplants	were	used	[70,	71,	80,	81].	

	

In	general,	bioengineering	applications	require	high	cell	seeding	densities	and,	given	the	

large	surface	area	of	clinical	tracheal	grafts,	obtaining	sufficient	numbers	of	autologous	

epithelial	cells	and	finding	methods	to	successfully	apply	these	cells	to	scaffolds	are	

challenges	for	the	field.		
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In	previous	clinical	cases,	epithelial	cells	were	obtained	from	endobronchial	biopsies	and	

cultured	in	serum-free	bronchial	epithelial	growth	medium	(BEGM)	for	multiple	passages	

[70].	This	is	a	useful	tool	to	generate	basal	cells	for	in	vitro	investigations	[82]	but	the	

suitability	of	cells	grown	in	this	way	for	transplantation	has	not	been	shown.	Similarly,	

efforts	are	underway	to	obtain	autologous	airway	epithelial	cells	through	the	step-wise	

differentiation	of	induced	pluripotent	stem	cells	[83],	but	it	has	not	been	defined	how	useful	

or	safe	these	cells	will	be	for	use	in	regenerative	medicine	because	of	doubts	about	their	

genetic	stability	during	culture	[84]	and	the	added	time-burden	of	iPS-based	therapy;	

current	techniques	would	require	several	months	between	cell	isolation	and	delivery	[85],	

unless	‘off-the-shelf’	allogeneic	applications	prove	successful.		

	

For	clinical	transplantation,	there	are	three	criteria	that	the	ideal	epithelial	expansion	system	

must	meet:	(i)	the	cells	must	not	cause	an	adverse	immune	response	(for	example,	be	of	

autologous	origin);	(ii)	they	must	be	rapidly	expandable	to	respond	to	challenging	clinical	

scenarios;	and	(iii)	they	must	be	of	high	quality	in	terms	of	their	karyotype,	their	expression	

of	tissue-specific	markers,	their	differentiation	and	their	functional	capacity.	To	date,	no	

airway	epithelial	cell	culture	system	has	been	described	that	convincingly	meets	all	of	these	

criteria.	

	

1.2 Epithelial	stem	cells	

1.2.1 Properties	of	adult	stem	cells	

	

The	nature	of	epithelial	tissues	means	that	there	is	a	continuous	physiological	need	to	

replace	damaged	or	dead	cells	to	maintain	organ	homeostasis	and	to	respond	to	tissue	

injury	[1].	This	process	is	mediated	by	the	presence	of	stem	cells.	By	traditional	definition,	an	



23	

 

adult	stem	cell	must	be	capable	of	self-renewal	through	asymmetric	division	and	

multilineage	differentiation	—	that	is,		a	cell	must	be	able	to	give	rise	to	multiple	cell	types	of	

the	organ	from	which	it	originates	[86].	However,	there	are	some	circumstances	in	which	

epithelial	stem	cells	from	one	organ	display	plasticity	and	are	able	to	repopulate	the	

epithelial	compartment	of	another	organ	[87].	No	universal	markers	exist	to	easily	identify	

stem	cells	from	different	organs	but	in	general	they	lack	tissue-specific	lineage-committed	

markers.		

	

The	best	understood	adult	stem	cell	is	the	haematopoietic	stem	cell	(HSC)	and	much	stem	

cell	theory	has	been	applied	to	epithelial	tissues	from	this	system	[88].	Following	the	first	

use	of	atomic	bombs,	radiation	research	showed	that	mice	whose	spleens	or	femurs	were	

shielded	with	lead	were	protected	from	the	lethal	effects	of	ionising	radiation	on	white	

blood	cell	counts	[89].	Further	experiments	demonstrated	that	the	mice	could	also	be	

protected	by	intravenous	injection	of	bone	marrow	[90]	and	this	lead	to	the	realisation	that	

the	entire	haematopoietic	system	of	the	mouse	could	be	reconstituted	by	transplanted	stem	

cells	residing	in	the	bone	marrow	and	spleen	and	that	it	was	this	population	of	stem	cells	

that	conferred	radiation	protection	[91].	Till	and	McCulloch	described	the	generation	of	

multilineage	myeloerythroid	colonies	in	the	spleen	from	cells	[92]	that	subsequently	

emerged	as	a	progenitor	cell	rather	than	the	HSC	itself.	Nevertheless,	the	development	of	

further	in	vitro	and	colony-forming	assays	for	HSCs	and	their	lineage-restricted	progeny	

followed.		

	

The	HSC	paradigm	of	step-wise	generation	of	increasingly	lineage-restricted	progenitor	cells	

that	together	can	give	rise	to	all	blood	cells	has	been	hugely	influential	in	other	organs;	

organs	contain	true	stem	cells	and	progenitor	cells	(or	transit-amplifying	(TA)	cells)	that	are	

committed	to	terminal	differentiation	but	will	first	undergo	a	limited	number	of	further	cell	
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divisions	[93].	In	this	way,	the	pool	of	progenitor	cells	greatly	amplifies	the	number	of	

differentiated	cells	that	are	produced.	Slow	cycling	of	stem	cells	is	believed	to	reduce	the	

chances	of	genetic	mutation	in	stem	cells	by	increasing	the	time	available	for	DNA	repair	

processes	to	proceed	and	thus	preventing	extensive	progeny	from	sharing	mutations	that	

arise	as	a	result	of	rapid	division	[94].	This	model	can	be	used	to	explain	label	retention	

experiments	in	which	all	cells	in	a	tissue	are	labelled	by	incorporation	of	thymidine	

analogues,	such	as	tritiated	thymidine	or	BrdU,	into	dividing	cells.	Over	time	cells	proliferate	

and	at	each	cell	division	the	label	is	diluted.	As	such,	the	‘label-retaining	cells’	(LRCs)	are	the	

slowest	cycling	population	and	are	considered	candidate	stem	cells.	

	

The	HSC	paradigm	promoted	a	view	in	which	differentiation	of	cells	is	a	unidirectional	

cascade	away	from	the	true	stem	cell.	Of	note,	the	discovery	that,	in	adult	bone	marrow,	

multipotent	and	unipotent	progenitor	cells	dominate,	with	few	oligopotent	intermediates,	

now	threatens	to	overturn	this	influential	dogma	[95].	In	other	organs	too,	it	has	become	

clear	that	differentiation	does	not	occur	in	this	regimented	fashion.	Differences	between	

organs	are	perhaps	unsurprising	given	that	the	adult	human	haematopoietic	system	

produces	billions	of	cells	per	day	whereas	turnover	is	much	slower	in	other	organs	such	as	

the	skin	(4	weeks)	or	the	lungs	(6	months).	Firstly,	the	epidermis	is	maintained	by	an	

abundant	proliferative	population	located	in	the	basal	layer	but	no	slow-cycling	‘epidermal	

stem	cell’	has	ever	been	identified.	In	fact,	it	appears,	based	on	clonal	labelling	of	epidermal	

basal	cells	in	vivo,	that	a	single	stem/progenitor	cell	is	sufficient	to	maintain	the	epidermis	

[96]	and	homeostasis	can	be	maintained	by	a	balance	of	symmetric	(stem	cell-stem	cell	or	

differentiated	cell-differentiated	cell)	and	asymmetric	(stem	cell-differentiated	cell)	divisions	

within	this	widespread	progenitor	cell	population	[97,	98].	Secondly,	the	definition	of	

‘stemness’	is	now	largely	defined	as	a	function	rather	than	a	cell	type	as	progenitor	cells	can	

revert	to	stem	cells	despite	having	begun	the	differentiation	process	[99].	Evidence	in	a	
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variety	of	organs	suggests	that,	under	the	right	conditions,	particularly	following	severe	

injury,	more	differentiated	cell	types	can	de-differentiate	to	perform	stem	cell	functions	

[100,	101],	leading	to	a	much	more	flexible,	bidirectional	definition	of	stem	cell	function.	

However,	the	capability	of	cells	to	de-differentiate	is	likely	to	decline	as	mature	

differentiation	status	is	achieved	[102].	

	

1.2.2 Multilineage	airway	stem	cells	

	

Adult	organs	are	thought	to	be	maintained	by	multiple	populations	of	distinct	

stem/progenitor	cells	with	distinct	anatomical	niches	that	respect	the	boundaries	of	the	

germ	layer	from	which	those	cell	populations	are	derived	[103].	The	existence	of	

multipotent	stem	cells	that	can	contribute	to	regeneration	of	multiple	lung	compartments	

would	therefore	be	of	considerable	interest.	Kajstura	and	co-workers	reported	that	such	a	

population	of	cells	could	be	isolated	from	human	lungs	based	on	their	expression	of	the	

receptor	tyrosine	kinase	c-kit,	that	these	cells	could	be	cultured	and	that	they	retain	their	

capacity	to	contribute	to	bronchiolar,	alveolar,	smooth	muscle	and	endothelial	cell	lineages	

in	a	murine	lung	cryoinjury	model	[104].	However,	the	presence	of	an	endogenous	

multipotent	lung	stem	cell	has	not	been	supported	in	subsequent	studies	as	c-kit+	cells	in	

the	human	airway	epithelium	co-stain	with	the	leukocyte	marker	CD45	[105]	but	not	with	

the	basal	epithelial	cell	marker	CK5	and,	while	c-kit	is	expressed	in	the	majority	of	vascular	

endothelial	cells	in	the	murine	lungs,	careful	in	vivo	lineage-tracing	studies	demonstrate	that	

these	cells	do	not	contribute	to	epithelial	repair	after	cryoinjury	[106].	
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1.2.3 Airway	epithelial	stem	cells	

	

As	a	consequence	of	continuous	pathogen	and	particulate	exposure	within	the	lungs,	all	

conducting	airways	undergo	a	slow	but	continuous	renewal	[107].		This	process	of	constant	

regeneration	results	in	the	complete	turnover	of	the	human	bronchiolar	epithelium	every	

100-300	days.		

	

1.2.3.1 Proximal	airway	epithelial	stem	cells	

	

Pulse-chase	labelling	experiments	in	rodents	demonstrate	that	basal	cells	proliferate	during	

airway	homeostasis	[108]	and	following	injury	[109],	making	these	a	probable	candidate	

stem	cell	population.	In	vitro,	the	basal	cell	fraction	of	the	rat	airway	epithelium	has	a	higher	

colony-forming	capacity	that	the	non-basal	cell	fraction,	although	both	are	able	to	

reconstitute	a	well-differentiated	epithelium	in	tracheal	xenografts	[110],	which	could	be	

explained	by	minor	basal	cell	contamination	of	the	non-basal	cell	population.	Subsequent	

lineage-tracing	studies	from	the	CK5	[15]	and	CK14	promoter	[111,	112]	confirmed	that	

basal	cells	are	also	multipotent	in	vivo,	giving	rise	to	all	of	the	cell	types	of	the	differentiated	

airway	epithelium.			

	

It	is	increasingly	recognised	that	basal	cells	are	not	a	homogeneous	cell	population.	This	was	

initially	suggested	by	variation	in	their	in	vitro	colony-forming	efficiency	[113].	Long-term	

clonal	analysis	of	the	murine	trachea	demonstrated	that	the	basal	cell	population	(as	marked	

by	CK5	expression)	contains	approximately	equal	numbers	of	basal	stem	cells	and	basal	

luminal	progenitor	cells	that	are	marked	by	expression	of	CK5	and	the	luminal	marker	CK8	

[114]	.	Given	that	these	CK5+/CK8+	cells	do	not	divide	at	a	greater	rate	than	basal	stem	cells,	
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they	do	not	meet	the	criteria	of	a	TA	population	and	support	a	model	of	stochastic	

homeostasis	similar	to	that	in	the	interfollicular	epidermis	[96,	115].		

	

Following	SO2	injury,	CCSP+	club	cells	in	the	mouse	trachea	give	rise	to	basal	cells	with	very	

low	efficiency,	suggesting	that	luminal	cells	might	be	able	to	regenerate	basal	stem	cells	

under	some	conditions	[116].	Recently,	a	genetic	method	was	developed	to	ablate	CK5+	

basal	cells	using	inhaled	doxycycline	to	activate	expression	of	the	active	subunit	of	

diphtheria	toxin	in	these	cells	[102].	Following	basal	cell	ablation,	CCSP+	tracheal	club	cells	

proliferate	and	de-differentiate	to	regenerate	the	basal	cell	compartment.	These	basal	cells	

persist	for	at	least	2	months	and	are	able	to	regenerate	a	fully	differentiated	airway	

epithelium	when	the	airway	is	injured	[102].	

	

Studies	of	human	airway	epithelial	cells	are	largely	consistent	with	these	murine	studies.	

Human	airway	basal	cells	are	proliferative	in	culture	and	can	differentiate	into	

mucosecretory	and	ciliated	cells	both	in	vitro	[117]	and	in	tracheal	xenograft	models	[118,	

119],	suggesting	that	they	can	act	as	a	stem/progenitor	cell	population.	Securing	direct	

evidence	of	a	homeostatic	stem/progenitor	cell	role	in	situ	is	experimentally	challenging.	

Nevertheless,	using	naturally	occurring	somatic	mutations	in	mitochondrial	DNA,	it	has	been	

possible	to	trace	clonal	lineages	and	to	demonstrate	that	maintenance	of	human	airways	

relies	on	a	multipotent	epithelial	stem	cell	that	resides	within	the	basal	cell	population	[105].	

Human	basal	cells	display	heterogeneous	expression	of	cell	surface	markers	such	as	

epidermal	growth	factor	receptor	(EGFR)	[16,	120],	so	it	is	likely	that	the	human	basal	cell	

population	is	a	mix	of	cells	with	different	potentials	and	that	subsets	that	represent	true	

basal	stem	cells	and	those	that	represent	more	committed	progenitor	cells	will	be	defined	in	

the	future.	Similarly,	no	direct	evidence	of	de-differentiation	of	luminal	cells	back	to	cells	
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capable	of	basal	stem	cell	functions	has	been	described	in	humans	so	if,	and	in	what	

circumstances,	this	might	occur	in	humans	is	currently	unknown.		

	

1.2.3.2 Distal	airway	epithelial	stem	cells	

	

In	the	1970s,	secretory	club	cells	were	identified	as	the	predominant	mitotic	cell	population	

in	the	distal	bronchiolar	airways	[121].		In	rodents,	oxidant	exposure	caused	club	cell	de-

differentiation	to	morphologically	variant	‘type	A’	cells	that	accounted	for	more	than	70%	of	

cell	proliferation	within	the	damaged	bronchioles	[121].		Pulse-chase	experiments	involving	

tritiated	thymidine	nucleoside	incorporation	subsequently	established	that	‘type	A’	club	cells	

were	capable	of	multipotent	differentiation	into	both	club	and	ciliated	cell	types	[121,	122].	

	

In	recent	years,	genetically	modified	mouse	models	have	demonstrated	that	CCSP-

expressing	club	cells	are	indeed	a	progenitor	cell	population	that	maintains	distal	

bronchiolar	homeostasis	in	murine	lungs.		Specifically,	aggregation	chimera	and	Scgb1a1	

lineage-tracing	models	demonstrated	that	large	numbers	of	clonal	CCSP	cell-derived	cell	

patches	exhibiting	multipotent	differentiation	to	both	club	and	ciliated	cell	lineages	were	

present	in	distal	bronchioles	in	the	absence	of	epithelial	injury	[116,	123].	Overall,	the	results	

of	these	studies	suggest	that	in	the	murine	airways	an	abundant	population	of	club	cells	

functions	as	stem	cells	that	maintain	distal	bronchiolar	homeostasis.	

	

Under	normal	conditions,	less	than	0.5%	of	bronchiolar	epithelial	cells	undergo	proliferation	

in	any	given	day	[124].		Therefore,	most	studies	of	distal	bronchiolar	stem	cells	have	involved	

rodent	models	of	airway	injury	that	increase	lung	cell	proliferation	[125-127].	In	addition	to	

a	contribution	to	airway	homeostasis,	previous	severe	injury	and	repair	studies	also	

identified	subpopulations	of	club	cells	that	contribute	to	lung	regeneration.	The	most	
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frequently	used	severe	bronchiolar	injury	model	involves	intraperitoneal	or	aerosolised	

delivery	of	naphthalene	[128-130],	a	derivative	of	coal	tar	that	causes	significant	club	cell-

specific	toxicity	in	murine	airways	[131]	due	to	their	expression	of	cytochrome	P-450	

isozyme	2F2	(CYP2F2),	which	produces	the	toxic	metabolite	1R,2S-naphthalene	oxide	upon	

naphthalene	exposure	[132].	Following	naphthalene-mediated	club	cell	ablation,	a	small	

number	of	naphthalene-resistant	club	cells	(termed	variant	CCSP-expressing	cells;	vCE	cells)	

survive	by	virtue	of	their	low	expression	of	CYP2F2	[133].	

	

In	addition	to	normal	and	variant	club	cells,	a	multipotent	population	of	cells,	termed	

bronchioalveolar	stem	cells	(BASCs),	are	reported	to	reside	in	murine	bronchiolar	airways	

and	to	be	capable	of	differentiation	towards	both	bronchiolar	club	cell	and	alveolar	cell	

lineages	[134].	Further,	recent	studies	identified	a	population	of	p63-expressing	basal-like	

cells	that	contribute	to	distal	lung	repair	following	influenza	infection	[135].	At	the	peak	of	

influenza	infection	the	number	of	these	p63+	basal	cells	increased	dramatically	and	these	

cells	were	essential	for	restoration	of	a	phenotypically	normal	epithelium	with	abundant	

club	cells	[136].	These	studies,	along	with	recent	complementary	evidence	of	de-

differentiation	of	CCSP+	cells	into	upper	airway	basal	stem	cells,	suggest	previously	

unappreciated	lineage	plasticity	among	cells	that	survive	lung	epithelial	injury	[102].	

	

Importantly,	it	is	unclear	how	applicable	these	findings	in	rodent	models	are	to	human	

airway	homeostasis,	particularly	as	CCSP-expressing	club	cells	are	significantly	less	abundant	

in	human	airways	[137]	than	in	murine	airways	and	a	combination	of	both	club	and	basal	

cells	are	present	in	human	distal	bronchioles	[105].	This	suggests	that	either	club	cells	or	

basal	cells	might	function	as	stem	cells	in	human	bronchioles.	In	vitro	studies	using	human	

cells	support	the	hypothesis	that	CK5-	and/or	CK14-expressing	basal	cells	might	function	as	

bronchiolar	stem	cells	in	human	lungs	[135].		These	results	suggest	that	basal	cells	are	
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abundant	and	widely	distributed	human	airway	stem	cells.	It	is	as	yet	unclear	whether	these	

basal	stem	cells	responsible	for	human	airway	homeostasis	and	regeneration	are	equivalent	

to	the	CK5-	and	CK14-expressing	p63+	cells	associated	with	post-influenza	lung	regeneration	

in	mice	[135,	136].		

	

Recently,	expression	of	Wnt-responsive	genes	such	as	leucine-rich	repeat-containing	G	

protein-coupled	receptor	5	(LGR5)	and	LGR6	have	been	found	in	rare	stem	cells	in	a	broad	

range	of	epithelial	organs	[138],	including	the	lungs	[55].	Following	these	discoveries,	a	

discrete	population	of	E-Cadherin+/LGR6+	cells	was	isolated	from	human	small	bronchioles	

[139].	Reminiscent	of	murine	BASCs,	single	cells	were	capable	of	significant	expansion	in	

vitro	and	generated	differentiated	bronchioalveolar	cell	types	when	injected	under	the	

kidney	capsule	of	immune-deficient	mice	[139].	The	relationship	of	these	cells	to	other	

known	stem	cell	populations	in	either	mouse	or	human	lungs	and	their	relative	importance	

to	in	vivo	homeostasis	and	repair	is	unknown.	

	

1.2.4 Airway	stem	cell	niches	

	

The	term	‘niche’	was	first	used	to	describe	the	idea	that	HSCs	are	dependent	upon	the	

complex	three-dimensional	(3D)	environment	created	by	neighbouring	non-HSCs	[140]	and	

this	concept	has	now	been	adopted	across	a	wide	range	of	stem	cell	types	[141-144].	Studies	

have	determined	that	the	regulation	of	stem	cells	within	their	niche	is	coordinated	through	

both	intrinsic	and	extrinsic	mechanisms	(Figure	1.2).		Specific	components	of	niche-stem	cell	

interactions	include	cell-cell	interactions,	stem	cell-basement	membrane	interactions	

(governed	by	physical	parameters	such	as	extracellular	matrix	stiffness,	composition	and	

shear	forces),	regulation	via	local	and	systemic	secreted	factors,	inflammation	and	

environmental	factors	such	as	hypoxia	and	pathogenic	stimuli	[145].	Under	normal	
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conditions,	the	niche	is	finely	tuned	to	provide	signals	that	balance	stem/progenitor	cell	self-

renewal	and	differentiation	but	this	is	disrupted	in	disease.	It	is	hoped	that	future	therapies	

may	manipulate	the	niche	environment	to	better	preserve,	mobilise	or	enhance	endogenous	

stem	cell	potential	[146].	Given	the	importance	of	airway	epithelial	cells	in	disease	and	the	

role	of	stem	cells	in	maintaining	and	repairing	the	epithelium,	there	is	great	research	

interest	in	understanding	the	airway	stem	cell	niche.	

	

	

	

	

	

	

	

Figure	1.1:	Components	of	an	epithelial	stem	cell	niche.	The	niche,	or	local	microenvironment	where	stem	cells	
reside,	functions	as	a	dynamic	system	that	integrates	local,	systemic	and	cell-intrinsic	signals	to	determine	
cellular	fate	and	phenotype.	Local	signals	include	interactions	among	and	between	cells	and	their	extracellular	
matrix	as	well	as	intra-epithelial	and	bidirectional	epithelial-stromal	signalling	cascades.	In	turn,	these	signals	
both	influence	and	respond	to	biophysical	components	of	the	niche	including	matrix	stiffness,	composition,	local	
tension	and	microenvironment	shape.		In	addition,	signals	from	nearby	inflammatory	and	immune	cells,	nervous	
innervation	and	the	local	circulation	are	known	to	influence	stem	cell	phenotypes.	
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1.2.4.1 Anatomical	location	

	

The	anatomical	location	of	stem	cells	in	an	organ	provides	the	first	indication	of	the	niche	

environment	[147].	In	the	proximal	airways,	basal	cells	are	a	widespread	stem	cell	

population	during	homeostasis.	However,	following	severe	injury	label-retaining	cells	with	

the	capacity	to	regenerate	surface	epithelium	are	found	in	the	submucosal	glands	of	the	

upper	murine	trachea	and	cartilage-intercartilage	junctions	in	the	lower	trachea	[148].	

Submucosal	glands	are	specialised	secretory	structures	that	are	continuous	with	the	surface	

epithelium	via	ciliated	ducts	(Figure	1.1A);	gland	tubules	within	the	submucosal	glands	

produce	mucus	and	the	acini	themselves	are	serous-producing	[149,	150].	It	is	unclear	

whether	submucosal	gland	basal	cells	are	intrinsically	different	to	surface	epithelial	basal	

cells	or	whether	their	protection	stems	from	the	physical	protection	from	assault	afforded	

by	glands.	

	

In	murine	distal	airways,	vCE	cells	located	adjacent	to	NEBs	and	bronchioalveolar	duct	

junctions	(BADJs;	Figure	1.1B)	regenerate	the	airways	following	injury	making	these	

anatomical	locations	putative	airway	stem	cell	niches	[134,	151,	152].	In	support	of	this,	

epithelial	cells	in	close	proximity	to	pulmonary	neuroendocrine	cells	and	NEBs	are	more	

proliferative	[153,	154].	Similarly,	in	adult	mice	exposed	to	naphthalene,	surviving	vCE	cells	

co-localise	with	neuroendocrine	cells	located	at	airway	branch	points	[152,	155].	Separately,	

the	BADJ	represents	a	second	stem	cell	niche	identified	in	distal	bronchiolar	airways	[134,	

151].		Here,	neuroendocrine	cells	are	largely	absent,	suggesting	that	other	cell	populations	

regulate	BASC	activation.		It	is	as	yet	unclear	whether	NEBs	or	terminal	bronchioles	serve	a	

similar	role	in	maintaining	populations	of	injury-resilient	stem	cells	in	human	conducting	

airways.	
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1.2.4.2 The	airway	niche	in	murine	models	

	

The	cellular	basis	of	niche	maintenance	of	airway	stem	cells	is	only	beginning	to	be	

unravelled.	Cells	within	the	epithelium	are	an	essential	component	of	the	stem	cell	niche.	

For	example,	following	injury	luminal	cells	signal	to	surviving	basal	stem	cells	and	reactivate	

proliferation	programmes,	notably	via	EGFR	signalling	[156].	In	intact	airways,	EGF	family	

ligands	produced	apically	are	physically	separated	from	their	receptors,	the	human	

epidermal	growth	factor	receptor	(HER)	family,	which	are	expressed	basolaterally.		When	

the	epithelium	is	compromised,	this	close	cell-cell	contact	is	disturbed	and	ligands	interact	

with	normally	inaccessible	receptors	on	the	basolateral	membrane	of	airway	basal	cells	[120,	

157].	The	subsequent	activation	of	HER	family	receptors	engages	signalling	pathways	that	

ensure	proliferation	occurs	and	barrier	integrity	is	rapidly	restored.	

	

As	well	as	secreted	factors,	direct	cell-cell	contact	with	neighbouring	epithelial	cells	is	an	

important	regulator	of	stem	cell	behaviour.	A	low	level	of	Notch	signalling	is	present	in	the	

intact	epithelium	but	following	injury	this	is	greatly	upregulated	and	the	amount	of	Notch	

ligand	that	cells	are	exposed	to	during	repair	appears	to	influence	basal	cell	fate,	but	not	

proliferation,	with	high	levels	of	Notch	favouring	secretory	differentiation	over	ciliated	

differentiation	[158].	This	is	consistent	with	previous	data	that	Notch	signalling	favours	

goblet	cell	differentiation	during	development	[159,	160]	and	data	showing	that	deletion	of	

the	mouse	Pofut1	gene,	which	encodes	an	enzyme	responsible	for	the	Notch	receptor	

fucosylation	that	is	required	for	optimal	ligand	binding,	leads	to	an	airway	devoid	of	goblet	

cells	and	lined	by	a	completely	ciliated	epithelium	[161].	Notch	appears	to	be	particularly	

important	in	defining	early	progenitor	cells	—	that	is,	cells	that	express	markers	of	both	

basal	and	luminal	cell	types	[158].	Recent	work	shows	that	during	airway	differentiation	

active	Notch	3	signals	are	found	in	CK5+/CK8+	parabasal	cells	and	limit	the	abundance	of	
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basal	cells	[115].	Further,	subsets	of	basal	cells	can	be	identified	that	are	committed	to	

either	mucosecretory	or	ciliated	lineages.	The	populations	are	marked	by	intracellular	Notch	

2	activation	and	c-MYB	expression,	respectively	[162].	The	involvement	of	Notch	signals	in	

goblet	cell	differentiation	may	also	represent	a	therapeutic	target	as	antibodies	against	the	

Notch	ligand	Jagged	have	showed	therapeutic	effect	in	a	murine	asthma	model	[163].	While	

it	is	probable,	based	on	our	understanding	of	the	Notch	pathway	in	binary	fate	choices	by	

lateral	inhibition	[164],	that	the	expression	of	Notch	components	is	determined	by	intra-

epithelial	signals,	it	remains	possible	that	immune	or	stromal	cells	that	are	recruited	

following	injury	could	contribute	to	epithelial	Notch	activity.	Recently,	it	was	discovered	that	

stem	cells	themselves	contribute	to	the	niche	of	these	lineage-restricted	progenitor	cells	in	

the	murine	airway	epithelium.	Undifferentiated	basal	epithelial	cells	signal	to	secretory	

progenitor	cells	through	expression	of	Jagged	2,	thereby	preventing	their	differentiation	to	

the	ciliated	lineage	[165].	Overall,	there	is	strong	evidence	of	epithelial-epithelial	

interactions	acting	to	influence	the	fate	of	basal	stem	cells	and	their	progeny,	particularly	by	

Notch	signalling.	

	

There	is	strong	evidence	that	lung	mesenchymal	cells	are	key	to	the	airway	epithelial	stem	

cell	niche.	Fibroblast	growth	factor	10	(FGF10)-expressing	mesenchymal	cells	act	as	

progenitor	cells	during	lung	development	[166,	167]	and	become	more	abundant	following	

naphthalene-mediated	lung	injury	in	mice	[168],	suggesting	that	this	population	contributes	

to	the	niche	following	acute	epithelial	injury.	Following	a	range	of	epithelial	injury	types,	

surviving	epithelial	cells	secrete	Wnt	7b	into	the	stroma,	stimulating	FGF10	secretion	from	

mesenchymal	cells	[168]	in	a	c-MYC-dependent	manner	[169].	FGF10	signals	then	feed	back	

to	epithelial	cells	to	promote	epithelial	repair.	Mesenchymal	cells	also	provide	essential	

trophic	support	to	isolated	epithelial	cells	in	an	ex	vivo	culture	system	[170]	and	their	

support	capacity	correlates	with	FGF10	expression	[171].	Further	evidence	of	the	
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importance	of	mesenchymal	cells	comes	from	a	recent	study	that	revealed	that	IL-6-induced	

STAT3	signalling	in	basal	cells	encourages	the	regeneration	of	a	ciliated	epithelium	following	

SO2	injury	[172].	Importantly,	the	increase	in	STAT3	activation	correlated	with	augmented	IL-

6	production	in	PDGF	receptor-α	(PDGFRα)-positive	mesenchymal	cells.	The	relationship	

between	this	population	and	those	described	by	others	[168,	170]	remains	to	be	determined	

as	mesenchymal	populations	remain	poorly	characterised	in	the	lungs,	particularly	following	

injury,	as	is	the	case	in	other	organ	systems	[173].	Additionally,	multiple	mesenchymal	

populations	may	be	capable	of	contributing	to	the	niche	through	similar	mechanisms.	

	

Another	contributor	to	the	epithelial	stem	cell	niche	is	the	vasculature.	In	murine	models,	

vascular	endothelial	cells	participate	in	signalling	pathways	that	control	lung	regeneration.	In	

a	unilateral	pneumonectomy	model,	matrix	metalloproteinase	14	(MMP14)	produced	by	

endothelial	cells	releases	EGF	protein	family	ectodomains	to	stimulate	epithelial	

regeneration	[174].	Recently,	a	novel	endothelial	cell-derived	signalling	axis	was	found	to	

influence	the	fate	of	distal	airway	BASCs	[175].	Primary	murine	lung	endothelial	cells	were	

able	to	support	multiple	passages	of	BASCs	with	bronchiolar	and	alveolar	differentiation	

capacity	in	3D	ex	vivo	culture	[175].	Thrombospondin	1	(TSP1)-deficient	endothelial	cells	tip	

the	balance	of	BASC	differentiation	in	favour	of	bronchiolar	cell	types,	suggesting	that	TSP1	

is	an	endothelial-derived	factor	that	promotes	alveolar	differentiation	of	BASCs.	Addition	of	

recombinant	bone	morphogenetic	protein	4	(BMP4)	to	BASC	cultures	produced	the	reverse	

effect	in	a	TSP1-dependent	manner,	favouring	alveolar	differentiation	[175].	Thus	BMP4,	

probably	produced	by	epithelial	cells	[176],	induces	TSP1	expression	in	endothelial	cells	via	

the	calcineurin-nuclear	factor	of	activated	T	cells	(NFAT)	pathway,	which	in	turn	promotes	

alveolar	differentiation	of	murine	distal	lung	stem	cells.		
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In	the	bone	marrow,	neuronal	cells	are	an	essential	component	of	the	HSC	niche	[177]	and,	

given	that	the	airways	are	highly	innervated	by	autonomic	nerves	[178],	nerves	are	also	

likely	to	be	important	modulators	of	airway	stem	cell	behaviour.	Parasympathetic	and	most	

sensory	airway	nerve	fibres	stem	from	the	vagus	nerves	while	some	sensory	fibres	originate	

in	the	dorsal	root	ganglia	and	run	alongside	spinal	sympathetic	nerves	[179].	The	wide	range	

of	physiological	functions	of	acetylcholine	in	the	airways,	including	as	a	bronchoconstrictor,	

stimulator	of	secretion	and	regulator	of	epithelial	proliferation/cytokine	production	and	

fibroblast	differentiation	[83],	imply	that	parasympathetic	nerve	fibres	are	likely	to	

contribute	to	the	niche	environment.	Indirect	evidence	for	neural	niche	function	comes	from	

the	observation	that	the	neuropeptide	CGRP	activates	cystic	fibrosis	transmembrane	

conductance	regulator	(CFTR)	in	the	airway	epithelium	and	is	upregulated	in	the	submucosal	

glands	of	patients	with	cystic	fibrosis,	presumably	due	to	aberrant	negative	feedback.	This	

leads	to	altered	submucosal	gland	niche	function	and	proliferation	of	normally	slow-cycling	

glandular	stem	cells	[180].	

	

1.2.4.3 The	human	airway	stem	cell	niche	

	

Unfortunately,	the	signalling	pathways	and	factors	that	regulate	stem	cell	activity	in	human,	

rather	than	mouse,	airways	remain	only	partially	characterised	as	a	result	of	the	

inaccessibility	of	native	human	airways	and	a	lack	of	human	model	systems.	However,	the	

data	that	we	do	have	indicate	that	many	of	the	same	factors	implicated	in	murine	airway	

niches	act	similarly	in	human	airway	cells.	For	example,	all	four	Notch	receptors	are	

expressed	in	cultured	human	airway	basal	cells	and	Notch	activation	is	required	for	

differentiation	of	human	airway	epithelial	cells	in	vitro	[181].	Furthermore,	consistent	with	a	

Notch	2-active	subset	of	basal	progenitor	cells	destined	to	be	become	mucosecretory	cells	

[162],	Notch	2	is	also	required	for	the	induction	of	goblet	cell	metaplasia	in	human	airway	
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epithelial	cells	in	culture	and	antibody-mediated	inhibition	of	Notch	2	reduces	goblet	cell	

number	in	both	human	in	vitro	and	murine	in	vivo	models	[49].	Interestingly,	lentiviral-

mediated	sustained	expression	of	the	active	Notch	intracellular	domains	revealed	that	Notch	

1	and	Notch	3	induced	human	basal	cells	to	differentiate	towards	mucosecretory	lineages	

whereas	Notch	2	and	Notch	4	had	minimal	effects	[181].	This	suggests	that	Notch	2	

activation	might	be	necessary	but	not	sufficient	to	induce	goblet	cell	metaplasia.	

	

In	vitro	studies	also	implicate	endothelial	signalling	in	the	human	basal	cell	niche	as	secretion	

of	vascular	endothelial	growth	factor	(VEGF)	[182]	and	FGF	ligands	[183]	from	basal	

epithelial	cells	alters	the	expression	of	factors,	including	MMP14,	in	human	umbilical	vein	

endothelial	cells	(HUVECS)	that	increase	basal	cell	proliferation	in	co-culture.		

	

Finally,	studies	of	prospectively	isolated	LGR6+	human	lung	stem	cells	injected	under	the	

murine	kidney	capsule	have	identified	putative	endogenous	cells	and	factors	that	are	

involved	in	lung	stem	cell	growth	and	differentiation	[139].	Expression	of	the	cytokine	

stromal	cell-derived	factor	1	(SDF1;	CXCL12)	in	transplanted	stem	cells	activates	and	recruits	

stromal	fibroblasts	[184].	These	fibroblasts	secrete	tumour	necrosis	factor-α	(TNFα),	which	

provides	an	activating	signal	for	lung	stem	cells	to	produce	more	transforming	growth	

factor-β	(TGFβ)	and	consequently	more	SDF1.	Further,	endothelial	cells	are	recruited	in	a	

process	dependent	on	secretion	of	IL-8	and	VEGF	by	activated	fibroblasts	[184].	Whilst	the	

relevance	of	these	ex	vivo	findings	to	the	native	human	lung	stem	cell	niche	remains	unclear,	

these	data	support	the	human	relevance	of	the	aforementioned	studies,	indicating	the	

importance	of	mesenchymal	and	endothelial-derived	signals	in	the	stem	cell	niche.	
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1.3 Epithelial	cell	culture	

	

Cell	culture	is	a	method	for	the	expansion	of	cells	under	laboratory	conditions.	The	

temperature,	gas	composition,	media	composition	and	substrate	of	cells	are	controlled	to	

allow	replicable	experiments	in	single	or	multiple	cell	types.	The	most	common	form	of	cell	

culture	is	on	plastic	surfaces	to	which	cells	adhere	and	multiply.	Immortalised	and	cancer	cell	

lines	have	allowed	the	detailed	characterisation	of	fundamental	biological	processes	but	lack	

relevance	to	the	tissue	from	which	they	were	derived	as	a	result	of	genetic	changes.	Primary	

cell	culture	has	the	advantage	of	improved	tissue	relevance	but	cultures	are	often	limited	in	

their	scalability	in	vitro	because	of	senescence	[185],	probably	as	a	result	of	suboptimal	

culture	conditions	[186].	

	

1.3.1 Human	epithelial	cell	culture	and	cell	therapy	

	

A	major	breakthrough	in	epidermal	keratinocyte	culture	came	with	the	observation	that	in	

co-culture	with	lethally	irradiated	fibroblasts	isolated	from	disaggregated	mouse	embryos	

[187],	epithelial	cells	from	mouse	teratomas	could	be	serially	sub-cultured	[188].	These	cells	

shared	characteristics	of	epidermal	keratinocytes	so	human	epidermal	cells	were	cultured	in	

the	same	system	[189].	Over	the	years	that	followed	the	cell	culture	conditions	allowed	the	

derivation	of	enough	epithelial	cells	from	a	small	biopsy	to	cover	the	human	body	[190],	

suggesting	that	previous	unsuccessful	attempts	to	culture	epidermal	keratinocytes	long-

term	were	limited	by	the	culture	media	composition	—	that	is,	the	defined	factors	in	Green’s	

medium	along	with	factors	derived	from	3T3	cells	are	permissive	of	long-term	expansion	in	

culture.	
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3T3-J2	co-culture	of	epidermal	cells	has	had	huge	implications	for	cell	therapy,	particularly	in	

burns	patients	for	whom	epidermal	loss	is	a	cause	of	mortality.	Sheets	of	epidermis,	cultured	

epithelial	autografts,	could	be	prepared	by	detaching	confluent	sheets	of	cells	using	the	

enzyme	dispase	and,	when	grafted	onto	wounds	in	immune-compromised	mice,	these	

sheets	regenerated	human	epidermis	[191].	Grafts	prepared	from	the	remaining	healthy	

epidermis	in	severe	burns	patients	engrafted	successfully	[192]	and	proved	life-saving	in	two	

patients	who	had	third-degree	burns	to	80-90%	of	their	body	surface	[193].	Subsequently,	

keratinocyte	co-cultures	have	been	used	in	combined	cell	and	gene	therapy	for	junctional	

epidermolysis	bullosa	[194].	Regenerated,	fully	functional	epidermis	was	maintained	for	

more	than	6	years	after	transplantation	and	was	dependent	on	transduced	epidermal	stem	

cells	present	in	the	engrafted	sheets	[195].	Cultured	epithelial	autografts	(Epicel;	Genzyme	

Biosurgery)	have	been	FDA-approved	in	the	United	States	of	America	under	the	

humanitarian	device	exemption	since	2007	and	are	technically	classified	as	a	

xenotransplantation	product	by	virtue	of	the	use	of	inactivated	murine	feeder	cells.	Similar	

products	have	been	used	clinically	worldwide,	including	in	the	United	Kingdom	[196].	

	

Beyond	the	epidermis,	this	culture	protocol	allows	the	expansion	of	a	variety	of	stratified	

squamous	epithelia,	including	oral	and	oesophageal	epithelia.	Limbal	stem	cells	maintain	the	

corneal	epithelium	[197]	and	limbal	stem	cells	can	also	be	grown	on	3T3-J2	feeder	cells.	

Chemical	burns	of	the	eye	lead	to	vision	loss	but	vision	can	be	restored	by	transfer	of	

material	from	the	limbus	of	the	healthy	eye	to	the	affected	eye.	In	cases	of	bilateral	limbal	

stem	cell	deficiency	in	which	only	a	small	area	containing	limbal	stem	cells	is	preserved,	cells	

have	been	expanded	from	tiny	biopsies	of	the	healthy	limbus	and	transplanted	into	the	

damaged	eye	in	a	procedure	that	has	relieved	symptoms	in	80%	of	patients	in	a	sample	of	

more	than	100	people	[198,	199].	In	2015,	commercial	limbal	stem	cell	therapy	using	this	
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technique	(Holoclar;	Chiesi	Farmaceutici	S.p.A.)	was	approved	for	medical	use	by	the	

European	Commission	[200].	

	

1.3.2 2D	versus	3D	cell	culture	

	

Cellular	interactions	are	difficult	to	study	in	situ	so	2D	monolayer	cultures	were	established	

to	facilitate	their	study	in	many	organ	systems	(Figure	1.3).	However,	in	vivo	cells	exist	in	a	

complex	milieu	of	neighbouring	cells	and	ECM	and	interactions	with	both	provide	

biochemical	and	mechanical	signals	that	maintain	tissue-specific	gene	expression	

programmes	[201].	Traditional	2D	cell	culture	models	often	bear	little	physical,	molecular	or	

physiological	similarity	to	their	tissue	of	origin	so	recent	work	has	aimed	to	establish	3D	cell	

cultures	—	or	‘organoids’	—	that	closely	resemble	the	in	vivo	tissue	from	which	they	were	

derived	[202].	Ideally,	the	physical,	cellular	and	molecular	characteristics	of	organoids	mean	

that	they	share	more	morphological	and	physiological	characteristics	with	in	vivo	

differentiated	epithelium	[203].	
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Figure	1.3:	Three-dimensional	(3D)	tissue	culture	models	attempt	to	recapitulate	in	vivo	tissue	complexity.		A)	
In	vivo,	epithelial	cells	inhabit	complex	organ	microenvironments	that	are	composed	of	epithelial	cells,	stromal	
cells	and	the	surrounding	extracellular	matrix.	B)	2D	culture	models	do	not	resemble	normal	in	vivo	tissues.		C)	
Stem	cell-derived	organoid	models	recapitulate	in	vivo	cellular	interactions,	multipotent	differentiation	and	in	
vivo	tissue	architecture.	
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Work	in	mammary	epithelial	cells	demonstrates	that	cells	lose	their	characteristic	

architecture	and	molecular	signature	when	grown	on	plastic	substrates	[204];	however,	

growth	in	a	3D,	laminin-rich	extracellular	matrix,	such	as	Matrigel,	restores	cellular	

architecture	and	mammary	cells	continue	to	respond	to	lactogenic	stimuli	[205],	suggesting	

that	tissue-specific	function	can	also	be	maintained	in	3D	culture.	Further,	under	the	correct	

culture	conditions,	the	ability	of	adult	tissue-specific	stem	cells	to	maintain	functional	

epithelium	can	also	be	maintained	ex	vivo.	Despite	high	demand	for	pre-clinical	models	of	

the	human	intestines,	cells	were	refractory	to	primary	culture	until	a	methodology	for	the	

expansion	of	mouse	intestinal	organoids	from	either	whole	intestinal	crypts	or	single	LGR5+	

adult	stem	cells	was	reported	[206].	Matrigel-embedded	organoids	derived	from	single	stem	

cells	are	indistinguishable	from	those	derived	from	whole	crypts,	with	all	four	mature	

intestinal	cell	types	present	and	a	growth	rate	comparable	to	that	expected	in	vivo	[206].	

Modification	of	these	protocols	led	to	their	translation	to	the	long-term	culture	of	human	

small	intestine	and	colon	organoids	through	optimisation	of	the	signalling	molecules	

included	in	the	medium	[207].		

	

Overall,	3D	organoid	cultures	offer	an	opportunity	to	study	a	more	physiologically	relevant	

cell	population	as	they	contain	not	only	the	cells	that	proliferate	upon	contact	with	plastic	

substrates	but	a	wider	range	of	differentiated	cells	that	are	maintained	by	contact	with	a	

reconstituted	basement	membrane.	
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1.3.3 Airway	epithelial	cell	culture	systems	

1.3.3.1 Generation	of	human	airway	epithelium	from	pluripotent	cells	

	

The	requirement	for	rapidly	expandable,	high-quality	human	airway	epithelial	cell	cultures	

spans	many	fields	including	basic	lung	science,	toxicity	testing	and	regenerative	medicine.	

Towards	this	goal,	several	groups	have	investigated	the	possibility	of	generating	airway	cells	

from	pluripotent	human	embryonic	(ES)	or	induced	pluripotent	stem	[83]	cells.	Early	

attempts	suggested	that	this	approach	would	be	fruitful,	generating	cells	that	expressed	a	

range	of	mature	lung	epithelial	markers	[208]	and,	by	modified	culture	conditions,	pure	

populations	of	type	II	alveolar	cells	characteristic	of	the	distal	airway	epithelium	[209].	

	

Given	the	ethical	problems	that	surround	the	use	of	ES	cells,	the	derivation	of	lung	

progenitor	cells	from	iPS	cells	was	another	important	breakthrough	[210].	Importantly,	this	

work	suggested	that	the	step-wise	application	of	developmentally	important	signalling	

molecules	to	pluripotent	cells	encouraged	in	vivo-like	differentiation.	These	studies	

demonstrated	the	capacity	to	generate	lung	stem/progenitor	cells	but	recent	advances	show	

that	mature,	differentiated	epithelia	can	also	be	derived	from	human	ES	and	iPS	cells	[211,	

212].	Using	similarly	developmental	approaches,	cells	are	exposed	to	cocktails	of	growth	

factors	that	first	induce	endodermal	differentiation,	then	promote	anterior	foregut	identity	

as	demonstrated	by	increased	SRY-box	2	(SOX2)	and	NK2	homeobox	1	(NKX2.1)	expression,	

before	airway	epithelial	lineages	can	be	specified	using	factors	such	as	FGF7,	FGF10	and	

BMP4.		Finally,	specific	epithelial	cell	populations	can	be	obtained	by	further	modification	of	

the	growth	factor	pool;	for	example,	proximal	airway	differentiation	is	encouraged	by	the	

addition	of	FGF18,	the	overexpression	of	which	during	development	leads	to	airway	

proximalisation	[212,	213].	Culture	of	these	cells	at	an	air-liquid	interface	confirms	their	

potential	to	form	a	polarised,	well-differentiated	epithelium	[214].	Subsequently,	protocols	



44	

 

that	allow	the	generation	of	3D	lung	organoids	containing	both	basal	and	mature	cell	

lineages	have	been	developed	[215].	Consistent	with	an	important	role	for	low	Notch	

signalling	in	ciliated	cell	differentiation,	including	a	Notch	inhibitor,	DAPT,	in	culture	medium	

favours	formation	of	highly	ciliated	organoids	[216].	

	

Presently,	there	are	concerns	over	the	similarities	between	endogenous	airway	epithelium	

and	ES/iPS	cell-derived	tissue	due	to	our	incomplete	understanding	of	the	differences	in	

gene	expression	[84]	and	DNA	methylation	[217].	Further,	researchers	must	contend	with	

ethical	concerns	over	the	use	of	embryonic	tissue,	in	the	case	of	ES-derived	cells,	and	the	

added	time-burden	of	ES	and	iPS	cell	differentiation;	current	techniques	require	several	

months	between	cell	isolation	and	stable	differentiation	[85].	

	

1.3.3.2 Primary	human	airway	basal	epithelial	cell	culture	

	

Primary	airway	cell	cultures	have	been	generated	from	human	tissue	for	more	than	30	years	

[218].	Culture	of	human	airway	epithelium	has	been	reported	from	both	endobronchial	

brushings	[219]	and	endobronchial	biopsies,	either	as	explants	[82,	220]	or	digested	to	

obtain	a	cell	suspension	[221],	and	many	in	vitro	studies	have	relied	on	cadaveric	samples	to	

generate	large	cell	numbers	[222,	223].	Cells	are	traditionally	cultured	in	serum-free	media	

formulated	to	allow	the	expansion	of	only	epithelial	cells	[218].	Cells	with	a	basal	epithelial	

cell	phenotype	are	expanded	on	plastic.	At	early	passages	(≤2),	these	methods	produce	cells	

suitable	for	a	wide	range	of	in	vitro	applications	[117,	224].		

	

Unfortunately,	cell	cultures	expanded	using	these	techniques	degenerate	over	time:	

cultured	basal	cells	become	senescent,	lose	the	capacity	for	airway	differentiation	and	cease	

to	proliferate,	indicating	a	failure	to	maintain	the	stem/progenitor	cell	population	in	culture	
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[49].	These	problems	of	limited	differentiation	capacity	and	growth	arrest	in	culture	are	

worsened	if	samples	are	derived	from	patient	biopsies	because	only	small	tissue	samples	can	

be	obtained,	limiting	the	number	of	cells	that	can	be	isolated	and	the	utility	of	these	

cultures.	This	is	a	severe	limitation	of	existing	basal	cell	expansion	techniques	because	large	

numbers	of	cells	are	required	for	airway	tissue-engineering	applications	and	there	is	an	

increasing	demand	for	personalised	medicine,	both	of	which	require	autologous	epithelial	

cell	cultures	from	living	patients.		

	

1.3.3.3 Differentiation	of	primary	human	airway	epithelial	cells	in	vitro	

	

Models	of	airway	disease	frequently	require	a	model	of	the	differentiated	epithelium	that	

more	closely	mimics	the	in	vivo	epithelium	than	basal	cells	alone.		For	this,	the	field	relies	on	

air-liquid	interface	methods,	in	which	confluent	layers	of	human	basal	cells	are	exposed	to	

an	air-liquid	interface	for	culture	periods	of	several	weeks	on	a	transwell	membrane,	

allowing	their	maturation	into	a	mucosecretory,	ciliated	epithelium	[225,	226].	Retinoic	acid	

in	the	culture	medium	is	essential	to	prevent	a	squamous	epithelial	cell	phenotype	in	these	

cultures	[227,	228].	These	cultures	have	barrier	properties,	mucus	secretion	and	ciliary	beat	

that	are	similar	to	those	of	the	endogenous	airway	epithelium.	Despite	the	suitability	of	air-

liquid	interface	cultures	for	aerosol	exposure	experiments	[229],	they	are	generally	

inconsistent	due	to	variation	between	donor	cultures.	Further,	air-liquid	interface	assays	are	

poorly	suited	to	high-throughput	applications,	for	which	there	is	increasing	demand,	

because	expansion	of	basal	cells	using	existing	technologies	leads	to	decreasing	

differentiation	potential.	

	

As	discussed	in	Section	1.3.2,	there	is	evidence	from	a	wide	range	of	organ	systems	

suggesting	that	3D	culture	more	closely	resembles	in	vivo	physiology	and	that	primary	adult	
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tissue-specific	stem	cells	are	able	to	re-initiate	morphogenesis	if	isolated	and	cultured	in	3D	

assays	in	vitro.	While	such	models	exist	in	other	epithelia,	the	unlimited	expansion	of	human	

airway	epithelial	cells	in	3D	organoid	culture	has	yet	to	be	reported.	However,	human	airway	

basal	cells	proliferate	and	undergo	lumen	formation	to	form	‘tracheospheres’	in	3D	culture,	

a	characteristic	that	distinguishes	them	from	malignant	cells	[230].	In	initial	studies,	these	

structures	displayed	evidence	of	early	ciliated	differentiation	but	no	markers	of	mature	

goblet	cells	could	be	detected	[15],	while	the	formation	of	mucus-secreting	glandular	acini	

from	human	basal	cells	was	also	reported	in	the	absence	of	ciliated	differentiation	[231,	

232].	Well-differentiated	tracheospheres	are	of	interest	to	the	field	because	they	would	

allow	a	platform	more	suited	to	high-throughput	compound	screening	than	traditional	air-

liquid	interface	cultures,	in	which	transwell	inserts	are	used.	
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1.4 Hypothesis	

I	hypothesise	that	co-culture	with	mitotically	inactivated	3T3-J2	feeder	cells	and	Rho-kinase	

inhibition	(3T3+Y)	will	increase	the	rate	of	proliferation	of	human	airway	basal	cells	and	

maintain	the	multipotent	differentiation	capacity	of	these	cells	towards	multiciliated	and	

mucosecretory	cell	lineages	when	compared	to	traditional	culture	in	bronchial	epithelial	

growth	medium	(BEGM).	

	

1.5 Aims	

• To	isolate	and	characterise	primary	human	airway	basal	epithelial	cells	in	vitro.	

• To	compare	conventional	cell	culture	methods	with	a	recently	described	protocol	

involving	the	co-culture	of	basal	cells	with	3T3-J2	fibroblast	feeder	cells	in	the	

presence	of	a	Rho-associated	protein	kinase	(ROCK)	inhibitor	(3T3+Y).	

• To	investigate	methods	to	improve	the	applicability	of	3T3+Y	co-culture	to	clinical	

translation	

• To	investigate	the	signalling	mechanisms	involved	in	basal	cell	expansion	in	3T3+Y.	
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2 .	Materials	and	Methods	
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2.1 Chemicals,	solvents	and	plasticware	

	

All	chemicals	were	of	analytical	grade	or	above	and	were	purchased	from	Sigma	Aldrich,	

unless	otherwise	stated.	Distilled	and	deionised	water	(ddH2O)	from	a	Millipore	Q	Plus	water	

purification	system	was	used	to	prepare	all	buffers.	Laboratory	plasticware	was	purchased	

from	BD	Biosciences.	

	

2.2 Human	airway	epithelial	cell	isolation	

2.2.1 Isolation	from	whole	airways	

	

Primary	human	bronchial	epithelial	cells	(HBECs)	were	obtained	from	regions	of	normal	

airway	from	cadaveric	donors	or	patients	undergoing	lobectomy	procedures	according	to	a	

previously	described	protocol	[222,	223].	Ethical	approval	was	obtained	through	the	

National	Research	Ethics	Committee	(REC	reference	06/Q0505/12).	Airways	were	cut	under	

sterile	conditions	into	approximately	5	mm3	pieces	in	sterile	conditions	and	incubated	in	a	

solution	of	0.15%	(w/v)	pronase	[66]	in	Dulbecco’s	modified	Eagle’s	medium	(DMEM,	Gibco	

41966)	at	4°C	overnight	on	a	roller.	Pronase	solution	was	neutralised	using	20%	fetal	bovine	

serum	(FBS;	v/v;	Life	Technologies).	Cells	were	centrifuged	at	300	x	g	for	5	minutes	and	

resuspended	in	bronchial	epithelial	growth	medium	(BEGM;	Lonza)	at	a	seeding	density	of	1	

x	106	cells/25	cm2.	Cells	were	maintained	in	37°C	incubators	with	5%	CO2.	Medium	changes	

were	performed	three	times	per	week	and	after	initial	expansion	cells	were	frozen	using	

Profreeze	medium	(Lonza)	according	to	manufacturer’s	instructions	for	use	in	future	

experiments.	
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2.2.2 Isolation	from	endobronchial	biopsy	and	brushing	samples	

	

Human	bronchial	epithelial	cell	cultures	were	derived	from	biopsies	taken	during	

tracheobronchoscopy	procedures	with	patient	consent.	Ethical	approval	was	obtained	

through	the	National	Research	Ethics	Committee	(REC	references	06/Q0505/12	and	

11/LO/1522).	Biopsies	were	obtained	from	healthy	regions	of	airways	and	received	on	ice	in	

transport	medium	(αMEM	supplemented	with	penicillin/streptomycin	and	amphotericin	B)	

in	15	ml	falcon	tubes.	Explant	cultures	were	plated	directly	onto	T25	flasks	and	enough	

BEGM	applied	to	cover	the	flask.		

	

Where	indicated,	endobronchial	biopsies	were	digested	using	16	U/ml	dispase	in	RPMI	for	

20	minutes	at	room	temperature.	Epithelium	was	dissected	away,	DMEM	containing	10%	

FBS	was	added	to	the	dispase	solution.	After	washing	with	PBS	once,	both	epithelial	and	

non-epithelial	components	were	then	digested	in	0.1%	trypsin/EDTA	at	37°C	for	30	minutes	

with	agitation	by	pipetting	every	10	minutes.	Digests	were	neutralised	with	DMEM	

containing	10%	FBS	and	combined	with	the	neutralised	dispase	solution.	Cells	were	

centrifuged	and	resuspended	in	culture	medium	for	counting	and	plating.		

	

Endobronchial	brushing	samples	were	collected	in	the	same	transport	medium	in	15	ml	

falcon	tubes.	Cells	were	dissociated	from	the	brush	by	vigorous	pipetting	and	collected	by	

centrifugation	(with	the	brush	in	situ).	
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2.3 Human	airway	epithelial	cell	culture	

	

All	sterile	culture	media,	sterile	tissue	culture	grade	trypsin/EDTA,	tissue	culture	antibiotics	

and	FBS	were	purchased	from	Invitrogen	(now	Thermo	Fisher)	unless	otherwise	stated.	

Sterile	tissue	culture	flasks	and	plates	were	purchased	from	Nunc.	

	

2.3.1 Human	airway	epithelial	cell	culture	in	BEGM	

	

Human	airway	epithelial	cells	were	thawed	from	frozen	stocks	into	pre-warmed	BEGM	and	

medium	was	changed	after	8	hours	to	remove	residual	dimethyl	sulfoxide	(DMSO).	When	

cells	were	80-90%	confluent,	cells	were	trypsinised	using	0.05%	trypsin/EDTA.	This	reaction	

was	quenched	using	10%	serum-containing	medium,	cells	were	pelleted	by	centrifugation	

for	5	minutes	at	300	x	g	and	resuspended	in	BEGM	for	further	passage	or	use	in	

experiments.	For	BEGM	cultures,	a	seeding	density	of	3,500	cells	per	cm2	was	used.	

	

2.3.2 Feeder	cell	culture	

	

3T3-J2	mouse	embryonic	fibroblasts	were	cultured	in	DMEM	(Gibco;	41966)	supplemented	

with	100	U/ml	penicillin,	100	µg/ml	streptomycin	(Gibco;	15070)	and	9%	bovine	serum	

(Gibco;	26170).	Cells	were	cultured	at	37°C	in	5%	CO2	with	three	changes	of	medium	per	

week.	To	generate	feeder	layers,	confluent	flasks	of	3T3-J2	cells	were	mitotically	inactivated	

by	treatment	with	4	µg/ml	mitomycin	C	(Sigma;	M4287)	in	culture	medium	for	2	hours	(this	

can	also	be	achieved	using	40	Gy	irradiation).	Cells	were	trypsinised	and	plated	at	a	density	
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of	20,000	cells/cm2	in	growth	medium	(approximately	1/3	confluent).	Epithelial	cells	were	

added	the	following	day	[233].	

	

2.3.3 Human	airway	epithelial	cell	culture	in	3T3-J2	co-culture	with	ROCK	inhibition	

(3T3+Y)	

	

For	co-cultures,	feeder	cells	were	prepared	as	described	above.	Epithelial	culture	medium	

consisted	of	DMEM	(Gibco;	41966)	and	F12	(Gibco;	21765)	in	a	3:1	ratio	with	

penicillin/streptomycin	(Gibco;	15070)	and	7.5%	FBS	(Gibco;	10270)	supplemented	with	5	

μM	Y-27632	(Cambridge	Bioscience;	Y1000),	25	ng/ml	hydrocortisone	(Sigma;	H0888),	0.125	

ng/ml	epidermal	growth	factor	(EGF;	Sino	Biological;	10605),	5	μg/ml	insulin	(Sigma;	I6634),	

0.1	nM	cholera	toxin	(Sigma;	C8052),	250	ng/ml	amphotericin	B	(Fisher	Scientific;	10746254)	

and	10	μg/ml	gentamycin	(Gibco;	15710).	Epithelial	cells	were	cultured	at	37°C	and	5%	CO2	

with	three	changes	of	medium	per	week.	When	experiments	required	isolation	of	a	pure	

epithelial	cell	population	from	co-cultures,	differential	trypsinisation	was	performed	taking	

advantage	of	the	greater	trypsin	sensitivity	of	feeder	cells	in	comparison	to	strongly	

adherent	epithelial	cells.	Briefly,	co-cultures	were	trypsinised	once	for	1-2	minutes	to	

remove	the	3T3-J2s,	before	being	washed	in	PBS	and	more	trypsin	added	for	a	further	5	

minutes	to	detach	epithelial	cells.	Where	indicated,	feeder	cells	and	epithelial	cells	were	pre-

stained	with	Vybrant	DiI	or	DiO	Cell-Labeling	Solution	(Thermo	Fisher	Scientific)	according	to	

manufacturer’s	instructions.	Trypsinisation	was	performed	using	either	0.05%	Trypsin/EDTA	

or	TrypLE	(Life	Technologies),	a	recombinant	enzyme,	avoiding	the	use	of	porcine	trypsin.	

Population	doublings	(PD)	were	calculated	as	PD	=	3.32	*	(log	(cells	harvested	/	cells	

seeded),	10).	
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For	experiments	comparing	matched	donor	cells	under	different	culture	conditions,	cells	

were	thawed	in	BEGM	for	one	passage	and	then	divided	into	experimental	culture	

conditions.	

	

2.3.4 Lentiviral	vector	production	and	transduction	of	primary	airway	epithelial	cells	in	

3T3+Y	

	

A	lentiviral	vector	that	constitutively	expresses	ZS-Green	green	fluorescent	protein	(GFP)	and	

luciferase	(ZS-Green-Luc)	was	generated	as	previously	described	[234].	The	backbone	

plasmid,	pHIV-Luc-ZS	Green,	was	a	gift	from	Bryan	Welm	(Addgene	plasmid	#39196)	[235].	

The	envelope	plasmid,	pMD2.G,	was	a	gift	from	Didier	Trono	(Addgene	plasmid	#12259).	The	

packaging	plasmids,	pRSV-Rev	and	pMDLg/pRRE,	were	also	a	gift	from	Didier	Trono	

(Addgene	plasmid	#12253,	#12251)	[236].	Briefly,	viral	supernatants	were	created	by	co-

transfecting	293T	HEK	cells	with	the	above	plasmids	using	JetPEI	(Polyplus	Transfection).	

Supernatants	were	concentrated	by	ultracentrifugation.		Viral	titres	were	determined	with	

293T	HEK	cells	plated	at	5	x	104	cells	per	well	in	a	12-well	plate	overnight.	Virus	was	added	to	

each	well	at	serial	dilutions	and	analysed	by	flow	cytometry	after	72	hours	to	determine	

transduction	efficacy.	

	

Primary	human	bronchial	epithelial	cells	were	transduced	using	ZS-Green-Luc	lentivirus	

(generated	from	plasmids	as	described	above).	Following	initial	expansion	from	biopsies,	5	x	

104	primary	epithelial	cells	were	plated	onto	3T3-J2	feeders	in	T25	flasks.	Cells	were	allowed	

to	adhere	overnight	prior	to	transduction.	Lentivirus	was	prepared	in	epithelial	culture	

medium	with	4	µg/ml	polybrene	(Sigma)	and	cells	were	incubated	with	the	lentivirus	for	16	

hours.	Following	transduction,	cells	were	grown	as	per	standard	3T3+Y	conditions	for	a	
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further	8	days	and	FACS	sorted	(FACS	Aria	II)	to	generate	a	100%	positive	population.	Sorted	

cells	were	maintained	in	3T3+Y	conditions	over	multiple	passages	and	retained	their	ability	

to	differentiate	in	air-liquid	interface	cultures.	

	

2.3.5 Colony-forming	assays	

	

To	analyse	colony-forming	capacity,	primary	human	bronchial	epithelial	cells	were	seeded	

onto	6-well	plates	pre-coated	with	collagen	I	(rat	tail	collagen	I;	BD	354236)	at	1000	cells	per	

well.	3T3-J2	feeder	cells	were	seeded	at	2	x	104	cells/cm2	the	day	prior	to	epithelial	cell	

seeding.	Plates	were	fixed	and	stained	after	10	days	using	1%	crystal	violet	solution	(Sigma).	

Plates	were	washed	extensively	in	water	and	allowed	to	dry	at	room	temperature	overnight.	

Colonies	were	counted	manually	using	a	brightfield	microscope.	

	

2.3.6 Air-liquid	interface	cultures	

	

Air-liquid	interface	cultures	for	airway	epithelial	cells	expanded	in	3T3+Y	were	adapted	from	

a	previously	published	protocol	[237].	Basal	cells	were	seeded	on	collagen-coated,	semi-

permeable	membrane	supports	(Transwell-Col,	0.4	µm	pore	size;	Corning)	in	submerged	

culture	in	BEGM	+	5	µM	Y-27632.	For	12-well	transwells,	1	x	106	cells	were	seeded	per	

membrane	in	250	µl	medium,	while	for	24-well	transwells,	5	x	105	cells	were	seeded	in	125	

µl.	After	two	days	(that	is,	at	confluence),	cells	were	fed	only	from	the	basolateral	side	with	

air-liquid	interface	medium	(50%	BEGM	and	50%	hi-glucose	DMEM	containing	100	nM	

retinoic	acid;	Gibco	41966).	Medium	was	exchanged	3	times	per	week	and	mucus	produced	

on	the	apical	surface	was	removed	by	gentle	washing	with	PBS.	
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Transepithelial	electrical	resistance	(TEER),	an	indicator	of	epithelial	integrity,	was	measured	

in	established	air-liquid	interface	cultures	by	Prof.	Chris	O’Callaghan’s	laboratory	(Institute	of	

Child	Health,	UCL)	using	an	EVOM2	resistance	meter	and	Endohm	chamber	(World	Precision	

Instruments)	with	cup	size	appropriate	for	the	size	of	culture	insert	(6	mm	culture	cup	for	

24-well	transwells	and	12	mm	culture	cup	for	12-well	transwells).	Resistance	is	measured	

using	one	probe	in	the	upper	chamber	(culture	insert)	and	one	in	the	lower	chamber.	Each	

probe	can	measure	voltage	and	contains	an	electrode	to	pass	current.	Using	a	control	insert	

without	cultured	cells,	the	resistance	of	the	cell	layer	can	be	measured	as	R(cell	layer)	=	

R(total)	–	R(control).	For	24-well	transwells,	1	ml	(0.5	ml	for	12-well)	BEGM	was	loaded	into	

the	culture	cup	and	200	μl	(100	μl	for	12-well)	onto	the	apical	side	of	cultures.	Transwells	

were	placed	into	the	culture	cup	and	readings	were	taken	after	the	TEER	value	had	stabilised	

(typically	5-10	seconds).	Readings	were	taken	from	three	independent	transwells	to	obtain	

an	average	TEER	value	for	each	culture.	

	

Ciliary	beat	frequency	and	pattern	were	determined	by	Prof.	Chris	O’Callaghan’s	laboratory	

(Institute	of	Child	Health,	UCL).	Airway	epithelial	cells	were	expanded	in	3T3+Y,	

differentiated	as	air-liquid	interface	cultures	and	observed	using	an	inverted	microscope	

system	(Nikon	TU1000).	Beating	cilia	were	recorded	using	a	Troubleshooter	digital	high-

speed	video	camera	(Lake	Image	Systems)	at	a	rate	of	250	frames/second	using	a	40x	

objective.	The	number	of	multiciliated	cells	in	each	area	was	counted	and	half	were	used	to	

determine	the	average	ciliary	beat	frequency	(CBF).	The	CBF	of	individual	ciliated	cells	was	

determined	by	counting	the	number	of	frames	required	for	5	full	sweeps	of	a	clearly	visible	

ciliary	tip.	This	was	converted	to	CBF	where	CBF	=	250	/	(number	frames	for	5	beats)	x	5.	The	

dyskinesia	index	presented	is	the	percentage	of	dyskinetic	ciliated	cells	relative	to	the	total	

number	of	motile	ciliated	cells.	

	



56	

 

For	contact	inhibition	studies,	primary	human	airway	epithelial	cells	grown	in	3T3+Y	were	

seeded	submerged	in	tracheosphere	medium	for	either	two	or	eight	days.	Cells	were	fixed	

with	4%	PFA	before	immunocytochemistry.	

	

2.3.7 3D	tracheosphere	cultures	

	

To	generate	differentiated	3D	airway	tracheosphere,	or	spheroid,	cultures,	basal	epithelial	

cells	were	trypsinised	from	either	BEGM	or	3T3+Y	cultures	and	counted.	Tracheosphere	

medium	consisted	of	50%	BEBM	(Lonza)	and	50%	DMEM	(Gibco;	41966)	supplemented	with	

BEGM	supplements	(minus	triiodothyronine,	gentamycin,	amphotericin	and	retinoic	acid).	

100	nM	retinoic	acid	(Sigma)	was	added	immediately	before	each	use.	Ultra-low	attachment	

96-well	plates	(Corning;	clear,	flat	bottom)	were	coated	with	30	μl	25%	Matrigel	(growth	

factor	reduced;	BD	Biosciences;	in	tracheosphere	medium)	and	allowed	to	gel	at	37oC	for	20	

minutes.	2,500	basal	cells	per	well	were	then	seeded	in	65	μl	5%	Matrigel	(growth	factor	

reduced;	in	tracheosphere	medium).	Cells	were	fed	by	addition	of	70	μl	tracheosphere	

medium	on	day	3,	day	8	and	day	14.	On	day	18,	tracheospheres	were	collected	in	cold	PBS	

and	centrifuged	at	200	x	g	for	3	minutes.	Tracheospheres	were	then	fixed	by	resuspension	in	

4%	PFA	for	30	minutes,	washed	with	PBS	and	resuspended	in	Histogel	specimen-processing	

gel	(Thermo	Fisher)	for	processing	and	paraffin	embedding.	Tracheosphere	size	was	

quantified	by	measuring	the	diameter	of	the	30	largest	tracheospheres	per	well.	Triplicate	

wells	were	analysed	in	three	matched	donor	cultures	per	passage	using	Volocity	software	

(PerkinElmer).	
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2.3.8 3D	airway	epithelial	aggregate	cultures	

	

For	differentiation	as	airway	epithelial	aggregates,	we	modified	a	protocol	previously	

described	by	Jorissen	and	colleagues	[238-241].	Primary	human	basal	cells	were	cultured	in	

3T3+Y	for	two	passages,	trypsinised	and	50,000	were	seeded	per	well	of	a	96-well	ultra-low	

adhesion	plate	(Corning)	in	150	μl	tracheosphere	medium	(see	above)	plus	5	μM	Y-27632.	

The	plate	was	shaken	continuously	at	100	rpm	for	5	days	of	culture	using	a	rotating	shaker	

and	then	remained	static	for	a	further	18	days.	Aggregates	were	fed	by	addition	of	50	μl	

medium	on	day	3,	day	8,	day	14	and	day	18	of	culture.	

	

2.4 Other	cell	culture	

2.4.1 Mycoplasma	testing		

	

All	cultured	cells	were	routinely	tested	for	the	absence	of	mycoplasma	contamination	using	

published	PCR-based	techniques	[242]	or	a	MycoAlert	mycoplasma	testing	kit	(Lonza).	

	

2.4.2 Cell	lines	

	

A431	(epidermoid	carcinoma)	and	A549	(lung	adenocarcinoma)	cancer	cell	lines	were	

authenticated	using	STR	profiling	and	cultured	in	DMEM	(Gibco;	41966)	plus	100	U/ml	

penicillin,	100	µg/ml	streptomycin	(Gibco;	#15070)	and	10%	FBS	at	37°C	with	5%	CO2	with	

three	changes	of	medium	per	week.	
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2.4.3 Human	MSCs	and	lung	fibroblasts	

	

Primary	human	lung	fibroblasts	derived	from	healthy	donor	lungs	were	a	kind	gift	from	

Professor	Robin	McAnulty	(University	College	London,	UK)	and	were	cultured	in	DMEM	with	

100	U/ml	penicillin,	100	µg/ml	streptomycin	(Gibco;	#15070)	and	10%	fetal	bovine	serum	

[243].	Human	mesenchymal	stromal	cells	(MSCs)	were	purchased	from	Texas	A&M	Health	

Science	Center	and	were	cultured	in	α-minimum	essential	medium	(αMEM)	containing	17%	

fetal	bovine	serum	[244].	Cells	were	cultured	at	37°C	with	5%	CO2	with	three	changes	of	

medium	per	week.	The	generation	of	feeder	cells	from	these	was	performed	as	described	

above	for	3T3-J2	cells.	

	

2.4.4 Small	molecule	inhibitors	

	

The	MET	inhibitor	PF-0421903	was	purchased	from	Sigma,	resuspended	in	DMSO	as	a	10	

mM	stock	solution	and	stored	in	aliquots	at	-20°C	until	use.	In	experiments	using	PF-

0421903,	cells	were	pre-treated	with	the	inhibitor	at	the	relevant	concentration	for	20	

minutes	prior	to	stimulation.	The	STAT6	inhibitor	AS-1517499	was	purchased	from	Axon	

Medchem,	resuspended	in	DMSO	as	a	10	mM	stock	solution	and	stored	in	aliquots	at	-80°C	

until	use.	In	experiments	using	AS-1517499,	cells	were	pre-treated	with	the	inhibitor	at	the	

relevant	concentration	for	30	minutes	prior	to	stimulation.	
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2.5 Histology	and	immunofluorescence	staining	

2.5.1 Immunohistochemistry	

	

Haematoxylin	and	eosin	(H&E)	and	periodic	acid-Schiff	(PAS)	staining	were	performed	on	5	

µm	sections	using	an	automated	staining	system	(Tissue-Tek).	For	immunofluorescence,	

slides	were	dewaxed	using	an	automated	protocol	and	antigen	retrieval	was	performed	

using	citrate	buffer.	Slides	were	blocked	using	10%	FBS	for	1	hour	at	room	temperature.	

Primary	antibodies	were	diluted	in	block	buffer	as	indicated	in	Table	2.1	and	applied	

overnight	at	4°C.	Species-appropriate	secondary	antibodies	conjugated	to	AlexaFluor	dyes	

(Molecular	Probes)	were	applied	at	a	1:500	dilution	in	block	buffer	for	2	hours	at	room	

temperature.	Images	were	acquired	using	a	Zeiss	LSM700	confocal	microscope.	

	

2.5.2 Immunocytochemistry	

	

Cells	were	grown	in	4-well	or	8-well	chamber	slide	(Millipore),	washed	once	with	PBS	and	

fixed	at	room	temperature	for	20	minutes	using	4%	PFA	(Sigma).	Samples	were	stored	in	PBS	

at	4°C	until	the	time	of	staining.	Cells	were	blocked	for	1	hour	at	room	temperature	in	block	

solution	consisting	of	10%	FBS	in	PBS.	Where	necessary,	cells	were	permeabilised	in	block	

solution	containing	0.1%	Triton	X-100	(Sigma).	Cells	were	stained	overnight	at	4°C	in	block	

buffer	(without	Triton	X-100)	containing	primary	antibody	at	the	concentration	indicated	in	

Table	2.1.	Cells	were	washed	three	times	with	PBS	and	incubated	with	species-appropriate	

AlexaFluor-conjugated	secondary	antibodies	(Molecular	Probes)	at	a	1:500	dilution	in	block	

buffer	for	2	hours	at	room	temperature.	Images	were	acquired	using	a	Zeiss	LSM700	

confocal	microscope.	
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Antibody	 Species	 Isotype	 Supplier	 Product	Code	 Dilution	Factor	

Pan-cytokeratin	
(Epithelial	cells)	

Rabbit	 IgG	 Abcam	 ab9377	 1/400	

E-cadherin	
(Epithelial	cells)	

Mouse	 IgG1	 Abcam	 ab1416	 1/200	

CD31	
(Endothelial	cells)	

Mouse	 IgG1	 Abcam	 ab9498	 1/200	

CD45	
(Haematopoetic	cells)	

Rabbit	 IgG	 Abcam	 ab10558	 1/200	

Cytokeratin	5	
(Airway	basal	cells)	

Rabbit	 IgG	 Abcam	 ab24647	 1/400	

Cytokeratin	8	
(Airway	luminal	cells)	

Mouse	 IgG1	 Abcam	 ab9023	 1/400	

Cytokeratin	14	
(Airway	basal	cells)	

Mouse	 IgG3	 Novus	 NB600-1190	 1/400	

Cytokeratin	14	
(Airway	basal	cells)	

Rabbit	 IgG	 Covance	 PRB-155P	 1/400	

MUC5AC	
(Airway	mucous	and	
mucosecretory	cells)	

Mouse	 IgG1	 Sigma	 M5293	 1/500	

MUC5B	
(Airway	mucous	and	
mucosecretory	cells)	

Rabbit	 IgG	 Sigma	 HPA008246	 1/500	

CCSP	
(Club	cell	secretory	

protein)	
Rabbit	 IgG	 Abcam	 ab40273	 1/200	

ACT	
(Airway	ciliated	cells)	

Mouse	 IgG2b	 Sigma	 T6793	 1/500	

FOXJ1	
(Airway	ciliated	cells)	

Mouse	 IgG1	 Abcam	 ab40869	 1/200	

p63	
(Airway	basal	cells)	

Rabbit	 IgG	 Abcam	 ab53039	 1/200	

NGFR	
(Airway	basal	cells)	

Goat	 IgG	 Abcam	 ab87472	 1/200	

TROP2	
(Airway	basal	cells)	

Rabbit	 IgG	 Abcam	 ab65005	 1/200	

ITGA6	
(Airway	basal	cells)	

Mouse	 IgG2b	 Abcam	 ab20142	 1/200	

Ki67	
(Proliferating	Cells)	

Mouse	 IgG1	 Dako	 M7240	 1/400	

Table	2.1:	Antibodies	used	for	immunofluorescence	staining.	
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2.6 Flow	cytometry	

2.6.1 EdU	Uptake	

	

For	experiments	comparing	proliferation	in	BEGM	and	3T3+Y,	matched	donor	airway	

epithelial	cells	(P2)	were	seeded	in	these	conditions	for	3	days.	Feeder	cells	were	removed	

by	differential	trypsinisation.	Single	cell	suspensions	were	obtained	by	trypsinisation	of	

epithelial	cell	cultures	treated	with	10	μM	EdU	(Life	Technologies	Click-iT	EdU	Alexa	Fluor	

488;	C10633)	for	2	hours	prior	to	the	experiment.	Cells	were	stained	according	to	

manufacturer’s	instructions	and	co-stained	with	DAPI.	Flow	cytometry	was	performed	using	

an	LSRFortessa	(BD	Biosciences)	and	analysed	using	FlowJo	10.0.6	(Tree	Star).	

	

2.6.2 Basal	cell	marker	expression	

	

Matched	donor	airway	epithelial	cells	(P3)	were	seeded	in	BEGM	or	3T3+Y	for	4	days.	Feeder	

cells	were	removed	by	differential	trypsinisation	and	single	cell	suspensions	were	obtained	

by	subsequent	trypsinisation	of	epithelial	cells.	All	staining	was	performed	in	FACS	buffer	

(PBS	containing	1%	bovine	serum	albumin	(BSA)	and	0.1%	sodium	azide)	at	4°C.	Cells	were	

blocked	in	FACS	buffer	+	10%	FBS	for	20	minutes	and	stained	with	NGFR	PerCP-Cy5.5	

(Biolegend;	1:100),	integrin	α6	PE	(BD	Biosciences;	1:20),TROP2	AF610-PE	(Abcam;	1:50)	or	

CK5	AF647	(Abcam;	1:50)	for	a	further	20	minutes.	For	intracellular	staining,	cells	were	fixed	

in	BD	Cytofix	Fixation	Buffer	(BD	Biosciences)	for	15	minutes	at	4°C.	Cells	were	then	

incubated	with	intracellular	antibodies	in	permeabilisation	buffer	(eBiosience)	for	20	

minutes	at	4°C.	A	Live/Dead	fixable	violet	dead	cell	stain	(Invitrogen)	was	included	to	ensure	

that	only	living	cells	were	analysed.	
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2.7 Chromosome	analyses	

2.7.1 Karyotype	analysis	

	

Cells	for	karyotype	analysis	were	cultured	for	5-7	passages	in	3T3+Y.	After	5	days	in	culture	

(to	ensure	log	phase	cells),	T25	flasks	of	cells	were	incubated	in	5	ml	growth	medium	

containing	10	μg/ml	KaryoMAX	colcemid	solution	(Gibco)	at	37°C	for	3	hours.	Cells	were	

differentially	trypsinised	to	remove	feeder	cells	and	then	epithelial	cells	were	removed	using	

TrypLE	(1x;	Life	Technologies)	until	a	single	cell	suspension	was	obtained.	TrypLE	was	

neutralised	using	the	growth	medium	+	colcemid	solution.	Epithelial	cells	were	centrifuged	

at	1000	rpm	for	8	minutes	in	15	ml	falcon	tubes.	Supernatant	was	discarded	and	4	ml	0.075	

M	KCl	(Ambion)	was	added	drop-by-drop	and	tubes	incubated	at	37°C	for	25	minutes.	10	

drops	of	fixative	(3:1	methanol/acetic	acid;	warmed	to	37°C)	were	added	and	tubes	were	

mixed	by	inversion	and	incubated	at	room	temperature	for	10	minutes.	Tubes	were	

centrifuged	at	1000	rpm	for	8	minutes,	supernatant	removed,	pellets	resuspended	in	4	ml	

fixative,	inverted	to	mix	and	incubated	for	30	minutes	at	room	temperature.	Tubes	were	

centrifuged	in	the	same	way	a	second	time	and	pellets	resuspended	in	2	ml	fixative.	The	cell	

suspension	was	stored	at	4°C	overnight	before	shipping	to	Cell	Guidance	Systems	

(Cambridge,	UK)	for	karyotype	analysis.	20	cells	were	analysed	per	donor	cell	culture.	

	

2.7.2 Multiplex	ligation-dependent	probe	amplification	(MLPA)	

	

Matched	donor	biopsy	tissue	and	cultured	cells	were	transported	to	the	cytogenetics	

laboratory	within	the	North	East	Thames	Regional	Genetics	Service	Laboratories	(London,	

UK)	in	αMEM	supplemented	with	100	U/ml	penicillin,	100	µg/ml	streptomycin	and	0.25	
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µg/ml	amphotericin	B.	DNA	was	extracted	using	the	iGENatal	kit	(Igen	Biotech)	and	MLPA	

analysis	performed	using	the	SALSA	P036	Subtelomeres	Mix	1	Probemix	(MRC-Holland)	to	

investigate	copy	number	changes	at	the	ends	of	each	chromosome.	Data	were	processed	

and	analysed	using	Genemarker	(Softgenetics).	Balanced	rearrangements	would	not	be	

detected	using	this	technique.		

	

2.8 Microarrays	

2.8.1 Microarrays	

	

Human	airway	epithelial	cells	(P1)	from	four	donors	were	grown	in	either	BEGM	or	3T3+Y	for	

one	passage	(7	days).	Cells	grown	in	3T3+Y	were	differentially	trypsinised	to	remove	murine	

feeder	cells.	Cells	in	all	conditions	were	trypsinised	and	resuspended	in	500	μl	TRIzol	reagent	

for	RNA	extraction.	RNA	extraction	was	performed	using	a	Direct-zol	RNA	MiniPrep	Kit	

(Zymogen)	according	to	manufacturer’s	instructions.	Total	RNA	yield	was	determined	using	a	

Nanodrop	spectrophotometer.	RNA	integrity	was	analysed	using	a	Bioanalyzer	2100	

(Agilent)	and	only	RNAs	with	an	RNA	integrity	number	higher	than	8.5	were	used	for	the	

microarrays	experiment.	RNA	was	supplied	to	Source	Biosciences	(UK).	RNA	was	

synthesised,	amplified	and	purified	using	the	Illumina	TotalPrep	RNA	Amplification	Kit	(Life	

Technologies)	following	manufacturer’s	recommendations.	Briefly,	500	ng	of	RNA	was	

reverse	transcribed.	After	second	strand	synthesis,	the	cDNA	was	transcribed	in	vitro	and	

cRNA	labelled	with	biotin-16-UTP.	Labelled	probe	hybridisation	to	Illumina	Human	HT-12	v4	

Expression	BeadChip	(~48,000	probes)	was	carried	out	using	Illumina’s	protocol.	Beadchips	

were	scanned	on	the	Illumina	BeadArray	500GX	Reader	using	Illumina	BeadScan	image	data	

acquisition	software.	RNA	control	samples	were	analysed	with	each	run.	Expression	data	
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underwent	quality	control	analysis	and	normalisation	using	the	BeadStudio	data	analysis	

software	v2009.1	(Illumina).	Briefly,	quality	control	assessed	the	Direct	Hyb	control	plots	

within	the	BeadStudio	software.	All	control	plots	displayed	expected	values	as	per	the	

Illumina	specifications.	Control	measures	included	hybridisation	controls,	negative	and	

background	controls,	biotin-,	low-	and	high-stringency	controls,	housekeeping	gene	

intensities	and	average	gene	intensities.	

	

Data	are	expressed	as	log2	ratios	of	fluorescence	intensities	of	the	experimental	and	the	

common	reference	sample.	The	Illumina	data	were	then	normalised	using	the	‘normalise	

quantiles’	function	in	the	BeadStudio	Software.	Differential	expression	analysis	was	

performed	using	the	significance	analysis	of	microarrays	[71]	v2.23	[245].	The	raw	p-values	

were	adjusted	by	the	Benjamini-Hochberg	procedure	[246],	which	controls	the	false	

discovery	rate	(FDR).	A	gene	was	considered	differentially	expressed	if	the	Benjamini-

Hochberg-corrected	p-value	was	less	than	0.05.	Genes	that	were	expressed	at	significantly	

different	levels	between	two	different	groups	were	analysed	by	supervised	hierarchical	

clustering	(uncentered	correlation,	complete	linkage)	[247]	to	visualise	the	correlation	of	co-

expressed	genes	in	Treeview	(available	at	http://rana.lbl.gov/EisenSoftware.htm).	

	

All	microarray	data	reported	in	this	thesis	are	analysed	in	accordance	with	MIAME	guidelines	

and	have	been	deposited	in	the	National	Center	for	Biotechnology	Information	Gene	

Expression	Omnibus	(GEO,	http://www.ncbi.nlm.nih.gov/geo/)	public	repository	and	they	

are	accessible	through	GEO	accession	number	GSE69005.	
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2.8.2 Validation	of	microarrays	by	qPCR	

	

For	quantitative	real-time	polymerase	chain	reaction	(qPCR)	validation,	we	confirmed	the	

expression	of	two	upregulated	genes	(FOXA1	and	SERPIN	B4)	and	four	downregulated	genes	

(TRIB3,	EGFR,	RNASE7	and	HSD17B2)	in	donor	cell	lines	cultured	in	3T3+Y.	Gene-specific	

primers	(Table	2.2)	were	designed	inside	or	nearby	the	microarray	sequence	targeted	using	

Primer	Express	Software	(Applied	Biosystems).	Total	RNA	was	reverse	transcribed	using	

qScriptTM	cDNA	Super-Mix	(Quanta	Biosciences)	according	to	the	manufacturer’s	protocol.	

qPCR	was	carried	out	using	the	Power	SYBR	Green	RT-PCR	Master	Mix	(Life	Technologies)	in	

an	Eppendorf	real-time	PCR	machine	following	cycling	conditions:	10	min	at	95°C,	40	cycles	

of	95°C	for	15	s	and	60°C	for	60	s,	followed	by	melting	curve	analysis.		

	

Relative	gene	expression	was	quantified	using	the	threshold	cycle	[248]	method	and	

normalised	to	the	amount	of	ACTB,	which	meets	the	criteria	of	minimal	variation	between	

samples	and	compatible	expression	level	with	the	studied	genes.	Absence	of	cross	

contamination	and	primer	dimer	was	checked	on	genomic	DNA	and	water.	Each	sample	was	

tested	in	triplicate	and	a	sample	without	template	was	included	in	each	run	as	a	negative	

control.	From	microarray	and	qPCR	data,	we	calculated	the	BEGM/3T3+Y	ratio	for	each	

gene.	Correlations	between	microarrays	and	qPCR	data	were	measured	using	the	Pearson	

coefficient.	
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Gene	 Direction	 Primer	Sequence	

FOXA1	
Forward	 GGGAGCTGGATTTCAAAACGT	
Reverse	 CCGTCTGGCTATACTAACACCA	

SERPINB4	
Forward	 TTCAATGGGGATGCAGACCT	
Reverse	 ACTCCCTCCTCAGTGACCTC	

TRIB3	
Forward	 GTCCAGGCCTGTCAACCAT	
Reverse	 CCCAGAAGAGTCCCACCTG	

EGFR	
Forward	 CAGGTGCGAATGACAGTAGC	
Reverse	 AGTCAGGTTACAGGGCACAC	

RNASE7	
Forward	 CATTGCACATGTCTCCCCTG	
Reverse	 TTCAGGTCACCTCACTGCC	

HSD17B2	
Forward	 TCAACTCGTTAGCCAGCAAG	
Reverse	 CAGATCCACAAGTAAGCGCC	

ACTB	
Forward	 CATGCCATCCTGCGTCTG	
Reverse	 TGGCCATCTCTTGCTCGAA	

	
Table	2.2:	Primer	sequences	used	for	qPCR	microarray	validation.	

	

2.9 Antibody	arrays	

	

Proteome	profiler	human	phospho-RTK	antibody	arrays	(R&D	Systems;	ARY001B)	were	

performed	according	to	the	manufacturer’s	instructions.	500	μg	fresh	protein	lysates	from	

cells	grown	in	BEGM	and	treated	with	3T3-J2-conditioned	medium	for	30	minutes	were	

incubated	with	pre-blocked	nitrocellulose	membranes	overnight	at	4°C	on	a	rocking	

platform.	Activated	receptors	were	detected	using	Luminata	Crescendo	HRP	substrate	

(Merck	Millipore)	and	imaged	by	X-ray	film	exposure.	

	

Human	cytokine	arrays	(R&D	Systems;	#ARY005)	were	performed	according	to	the	

manufacturer’s	instructions.	3T3-J2	feeder	cells	were	removed	from	human	basal	cell	co-

cultures	using	differential	trypsinisation	and	cells	were	serum-starved	overnight	in	
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DMEM/F12.	Cells	were	stimulated	as	described	for	24	hours	before	cell	culture	medium	was	

collected	for	array	analysis.	700	μl	of	cell	culture	supernatant	was	incubated	with	

membranes	overnight	at	4°C	on	a	rocking	platform.	Cytokines	were	detected	using	Luminata	

Crescendo	HRP	substrate	(Merck	Millipore)	and	imaged	using	an	ImageQuant	LAS	4000	

system	(GE	Healthcare).	

	

2.10 	Western	blotting	and	co-immunoprecipitation	

	

Cell	lysis	was	performed	using	RIPA	buffer	containing	Halt	protease	and	phosphatase	

inhibitor	cocktail	(Thermo	Fisher).	After	scraping,	cell	lysates	were	transferred	to	microfuge	

tubes,	incubated	at	4°C	on	a	rotating	wheel	for	30	minutes,	centrifuged	at	14,	000	x	g	for	10	

minutes	and	supernatant	transferred	to	a	clean	microfuge	tube.	After	quantification	by	BCA	

assay,	proteins	were	denatured	by	heating	at	95°C	for	10	minutes	in	Laemmli	sample	buffer,	

separated	on	4-12%	Bis-Tris	gels	(Invitrogen)	and	transferred	onto	nitrocellulose	membranes	

using	the	iBlot	system	(Invitrogen).	Blots	were	blocked	with	tris-buffered	saline	containing	

0.1%	Tween-20	(TBST;	Sigma)	and	5%	skimmed	milk	powder	(Sigma)	for	1	hour	at	room	

temperature.	Blots	were	incubated	with	primary	antibodies	(Table	2.3)	in	either	TBST	

containing	5%	BSA	or	TBST	containing	5%	skimmed	milk	powder	at	4°C	overnight.	After	3	

washing	steps	with	TBST,	blots	were	incubated	with	species-appropriate	HRP-conjugated	

secondary	antibodies	(Cell	Signaling)	for	1	hour	at	room	temperature.	After	3	washing	steps	

with	TBST,	blots	were	developed	using	Luminata	Crescendo	HRP	substrate	(Merck	Millipore)	

and	imaged	using	an	ImageQuant	LAS	4000	system	(GE	Healthcare).	For	re-probing,	blots	

were	washed	once	with	TBS	and	incubated	with	Restore	PLUS	western	blot	stripping	buffer	

(Thermo	Fisher)	for	15	minutes	at	room	temperature.	
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For	experiments	involving	subcellular	fractionation,	fractions	were	isolated	using	a	

subcellular	protein	fractionation	kit	(Thermo	Fisher)	according	to	manufacturer’s	

instructions.	Resulting	lysates	were	BCA	assayed	to	normalise	protein	concentration	and	

blotted	as	described	above.	

	

For	co-immunoprecipitation	(IP)	experiments,	cells	were	grown	in	two	T75	flasks	per	

condition,	feeder	cells	were	removed	and	epithelial	cells	were	serum	starved	overnight.	Cells	

were	treated	with	either	a	vehicle	control	or	10	ng/ml	recombinant	human	hepatocyte	

growth	factor	(HGF)	for	30	minutes	before	lysis	in	Pierce	IP	Lysis	Buffer	(Thermo	Fisher).	

Protein	concentration	was	normalised	to	2	mg/IP	in	500	μl	volume	and	lysates	were	

incubated	with	20	μl	primary	antibody	overnight	at	4°C	on	a	rotating	wheel.	The	next	day,	

Dynabeads	(Protein	A;	Thermo	Fisher)	were	used	to	isolate	antibody	and	bound	protein	

from	the	lysates	according	to	manufacturer’s	instructions.	After	washing,	beads	were	

resuspended	in	20	μl	Laemmli	sample	buffer	and	heated	to	95°C	for	10	minutes.	Beads	were	

removed	by	centrifugation	and	samples	run	on	4-12%	Bis-Tris	gels	(Invitrogen).	Transfer	and	

western	blotting	was	performed	as	described	above.	
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Antibody	 Species	 Isotype	 Supplier	 Product	Code	 Dilution	Factor	

Y397	FAK	 Rabbit	 IgG	 Cell	Signaling	 8556	 1/1000	

Y576/Y577	FAK	 Rabbit	 IgG	 Cell	Signaling	 3281	 1/1000	

Y925	FAK	 Rabbit	 IgG	 Cell	Signaling	 3284	 1/1000	

Total	FAK	 Rabbit	 IgG	 Cell	Signaling	 13009	 1/1000	

Y307	GAB1	 Rabbit	 IgG	 Cell	Signaling	 3234	 1/1000	

Y1003	MET	 Rabbit	 IgG	 Cell	Signaling	 3135	 1/1000	

Y1234/Y1235	MET	 Rabbit	 IgG	 Cell	Signaling	 3077	 1/1000	

Y1349	MET	 Rabbit	 IgG	 Cell	Signaling	 3133	 1/1000	

Total	MET	 Rabbit	 IgG	 Cell	Signaling	 8198	 1/1000	WB	1/50	IP	

Y452	GAB2	 Rabbit	 IgG	 Cell	Signaling	 3881	 1/1000	

Total	GAB2	 Rabbit	 IgG	 Cell	Signaling	 3239	 1/1000	

Y641	STAT6	 Rabbit	 IgG	 Cell	Signaling	 9361	 1/1000	

Total	STAT6	 Rabbit	 IgG	 Cell	Signaling	 9362	 1/1000	

MEK1/2	 Rabbit	 IgG	 Cell	Signaling	 8727	 1/1000	

Histone	H3	 Rabbit	 IgG	 Cell	Signaling	 4499	 1/1000	

α-tubulin	 Rabbit	 IgG	 Cell	Signaling	 9099	 1/1000	

	

Table	2.3:	Antibodies	used	for	western	blot	and	co-immunoprecipitation	experiments.	
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2.11 	Quantitative	real-time	polymerase	chain	reaction	(qPCR)	

	

Total	RNA	was	isolated	from	cultured	human	epithelial	cells	using	a	SV	RNA	Isolation	Kit	

(Promega).	Co-cultures	containing	3T3-J2	fibroblasts	were	differentially	trypsinised	to	

remove	feeder	cells	before	RNA	isolation.	Taqman	pre-designed,	inventoried	probes	and	2x	

PCR	Master	Mix	(Applied	Biosciences)	were	used	(Table	2.4).	Quantitative	PCR	was	

performed	under	standard	conditions	using	an	Eppendorf	Real-Time	PCR	machine	in	

technical	triplicates.	Relative	RNA	quantitation	was	achieved	based	on	deltaCT	calculations	

and	all	samples	were	compared	using	β2-microglobulin	(β2M)	as	a	control.	

	

Gene	 Product	Code	

β2M	 Hs00187842_m1	

β2M	 Mm00437762_m1	

NGFR	 Hs00609977_m1	

ITGA6	 Hs01041011_m1	

TROP2	 Hs01922976_s1	

IL-8	 Hs00174103_m1	

GM-CSF	 Hs00929873_m1	

HGF	 Mm01135184_m1	
	

	

Table	2.4:	Product	codes	for	Taqman	qPCR	probes	

2.12 	ELISAs		

2.12.1 HGF	

	

Secretion	of	HGF	by	3T3-J2	cells	following	mitotic	inactivation	was	assessed	using	a	mouse	

HGF	DuoSet	ELISA	kit	(R&D	Systems;	DY2207)	performed	according	to	manufacturer’s	

instructions.	3T3-J2	medium	consisting	of	DMEM	(Gibco;	41966)	supplemented	with	100	

U/ml	penicillin,	100	µg/ml	streptomycin	(Gibco;	15070)	and	9%	bovine	serum	(Gibco;	26170)	

was	changed	immediately	following	2	hours	of	inactivation	with	0.4	μg/ml	mitomycin	C	
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(Sigma;	M4287)	and	medium	was	collected	for	analysis	and	refreshed	after	24	hours,	48	

hours	and	72	hours.		

	

2.12.2 GM-CSF	and	IL-8	

	

Secretion	of	granulocyte/macrophage	colony-stimulating	factor	(GM-CSF)	and	interleukin-8	

(IL-8)	by	human	airway	epithelial	cells	following	stimulation	with	HGF	was	assessed	using	a	

human	GM-CSF	DuoSet	ELISA	kit	(R&D	Systems;	DY215)	and	a	human	CXCL8/IL-8	DuoSet	

ELISA	kit	(R&D	Systems;	DY008)	performed	according	to	manufacturer’s	instructions.		

	

Primary	human	airway	epithelial	cells	were	cultured	in	3T3+Y	in	T25	flasks	until	they	reached	

80%	confluence.	Feeder	cells	were	removed	by	differential	trypsinisation	and	cells	were	

serum	starved	in	2	ml	DMEM/F12	overnight.	The	following	day,	cells	were	stimulated	with	2	

ml	DMEM/F12	containing	10	ng/ml	HGF,	10ng/ml	HGF	and	250	nM	PF-0421903,	or	a	vehicle	

control	containing	the	appropriate	amount	of	0.1%	BSA	and	DMSO.	Media	was	collected	for	

analysis	after	24	hours.	

	

2.13 	Luciferase	reporter	assays	

2.13.1 STAT6	consensus	sequence	reporter	assay	

	

A431	cells	were	plated	in	96-well	plates	at	a	density	of	20,000	cells	per	well.	After	two	days,	

cells	were	transfected	with	signal	transducer	and	activator	of	transcription	6	(STAT6)	

luciferase	reporter	(p4xSTAT6-Luc2P	was	a	gift	from	Axel	Nohturfft;	Addgene	plasmid	

#35554)	and	renilla	luciferase	control	(pGL4.74	[hRluc/TK];	Promega)	plasmids	using	jetPEI	
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according	to	manufacturer’s	instructions.	0.25	μg	DNA	was	added	to	each	well	(0.225	μg	

STAT6	reporter	and	0.025	μg	renilla	luciferase	control).	After	24	hours,	cells	were	washed	

once	with	PBS	and	serum	starved	in	serum-free	DMEM	overnight.	The	following	day,	cells	

were	stimulated	with	vehicle	control,	human	recombinant	IL-13	or	human	recombinant	HGF,	

as	described	in	figure	legends.	To	quantify	luciferase	activity,	a	dual	luciferase	reporter	kit	

(Promega)	was	used	according	to	manufacturer’s	instructions.	Assay	reagents	were	injected	

and	bioluminescence	was	recorded	using	a	TROPIX	TR717	microplate	luminometer	(2	second	

delay,	10	second	recording	time).		

	

2.13.2 IL-8	promoter	reporter	assay	

	

IL-8	promoter	luciferase	plasmids	were	a	kind	gift	from	Dr.	Joel	Raingeaud	(Inserm,	France)	

and	Dr.	Marie	Annick	Buendia	(Inserm,	France)	and	have	been	previously	described	[249,	

250].	A	restriction	digest	was	performed	to	verify	the	identity	of	the	plasmids.	20	μl	

reactions	containing	2	μl	NEBuffer	3.1	(New	England	Biolabs),	1	μg	DNA,	1	μl	NotI	restriction	

enzyme	(New	England	Biolabs)	and	1	μl	XhoI	restriction	enzyme	(New	England	Biolabs)	were	

incubated	at	37°C	for	1	hour.	50	ng	DNA	in	DNA	loading	dye	(Thermo	Fisher)	was	loaded	

onto	1%	agarose	gel	containing	gel	red	(Cambridge	Bioscience)	and	visualised	using	an	

ImageQuant	LAS	4000	system	(GE	Healthcare).	Luciferase	reporter	experiments	were	

performed	as	described	for	STAT6	reporter	assays	above.	
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3 .	Characterisation	and	isolation	of	

human	airway	basal	cells	
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3.1 Background	

	

In	human	airways,	basal	epithelial	cells	are	considered	a	stem/progenitor	cell	population:	

cytokeratin	5	(CK5)+	basal	cells	are	proliferative	in	culture	and	able	to	reconstitute	

pseudostratified	epithelial	layers	containing	both	mucosecretory	and	ciliated	cells	in	vitro	

[117]	and	in	an	in	vivo	xenograft	[118].	Furthermore,	mathematical	modelling	suggests	that	

basal	cells	are	equipotent	progenitor	cells	in	homeostatic	human	airways	[105].	As	such,	ex	

vivo	expansion	of	the	airway	stem/progenitor	cell	population	is	desirable	in	order	to	develop	

model	systems	that	allow	investigation	of	their	functions	in	normal	homeostasis	and	repair	

following	airway	damage,	to	investigate	their	potential	in	cell	therapies	and	tissue-

engineered	airway	transplantation	and	to	study	their	role	in	human	respiratory	disease.	

Indeed,	basal	cells	are	increasingly	recognised	as	key	contributors	to	disease	independently	

of	their	role	as	precursor	cells	for	differentiated	cell	types.	For	example,	the	recent	discovery	

of	basal	cell-specific	responses	to	damage	suggests	that	these	cells	can	orchestrate	lung	

innate	immunity	[18,	19].	

	

While	large	tissue	samples	from	either	lobectomy	procedures	or	cadaveric	donor	lungs	

deemed	unsuitable	for	transplantation	are	occasionally	available	to	our	laboratory,	we	have	

regular	access	to	human	airway	mucosal	samples	from	bronchoscopy	procedures	[46].	The	

small	bronchoscopic	biopsies	are	also	the	laboratory’s	preferred	route	of	cell	acquisition	

because	personalised	medicine	approaches	and	airway	tissue	engineering	will	require	cell	

derivation	from	living	patients.	Previous	airway	basal	cell	culture	strategies	have	largely	

focused	on	the	larger	tissue	samples	available	from	lobectomy	or	cadaveric	sources	[222,	

223]	but	successful	culture	of	airway	epithelial	cells	from	biopsy	samples	has	also	been	

demonstrated	[82,	219-221].	
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An	important	end	point	of	experiments	involving	the	derivation	of	cultured	human	basal	

cells	is	that	they	retain	as	far	as	possible	their	resemblance	to	native	basal	cells.	A	key	

criterion	in	this	regard	is	their	retention	of	multipotent	airway	differentiation	capacity;	that	

is,	the	ability	to	form	a	pseudostratified	epithelium	containing	airway	mucosecretory	cells,	

which	produce	the	mucus	lining	of	the	airways,	and	multiciliated	cells,	which	produce	motile	

force	to	move	mucus	and	inhaled	pathogens	and	particulate	matter	trapped	within	it,	out	of	

the	lungs.	To	gain	a	better	understanding	of	the	human	airways,	I	characterised	the	cell	

types	present	in	the	airways	and	the	markers	that	these	cells	express.	In	addition,	I	sought	to	

optimise	a	method	to	isolate	human	airway	epithelial	cells	from	small	endobronchial	biopsy	

samples	and	to	characterise	the	cells	that	grow	in	terms	of	phenotype	and	number.	To	

ensure	that	isolated	cells	retain	their	differentiation	potential,	I	also	developed	methods	to	

induce	epithelial	cell	differentiation	in	vitro.	

	

3.2 Aims	

	

• To	develop	immunofluorescence	methods	to	characterise	the	cell	types	present	in	

the	human	airways.		

• To	optimise	a	method	to	isolate	and	expand	human	basal	cells	from	living	patients.		

• To	develop	cell	culture	methods	to	assess	the	differentiation	of	expanded	human	

airway	basal	cells.	
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3.3 Results	

	

Characterisation	of	human	airway	cell	types	

	

Sections	of	human	trachea	from	surgical	resections	were	fixed	in	4%	paraformaldehyde,	

embedded	in	paraffin	and	sectioned.	Following	antigen	retrieval,	sections	were	first	stained	

with	antibodies	against	proteins	expected	to	be	found	in	all	epithelial	cells	(pan-cytokeratin	

(panCK)	and	E-cadherin;	Figure	3.1)	as	well	as	those	expected	to	be	found	in	endothelial	

(CD31;	Figure	3.1)	and	haematopoietic	cells	(CD45;	Figure	3.1).	As	expected,	panCK+	E-

cadherin+	epithelial	cells	were	found	above	the	basement	membrane	at	the	luminal	surface,	

while	CD31	and	CD45	expression	was	largely	restricted	to	the	tissue	stroma.		

	

To	distinguish	subpopulations	of	epithelial	cells	present	within	the	human	airway	

epithelium,	antibodies	against	proteins	expected	to	be	expressed	in	unique	populations	of	

cells	were	optimised.	CK5	is	a	basal	epithelial	cell	marker	[15]	and	was	only	seen	among	

epithelial	cells	in	close	proximity	to	the	basement	membrane	(Figure	3.2).	On	the	other	

hand,	luminal,	differentiated	epithelial	cells	but	not	basal	stem/progenitor	cells	express	CK8	

(Figure	3.2),	as	has	previously	been	described	[251].	Mucosecretory	epithelial	cells	were	

visualised	using	antibodies	against	mucin	5AC	(MUC5AC;	Figure	3.2).	Club	cell	secretory	

protein	(CCSP),	a	protein	that	is	abundant	in	the	club	cells	of	murine	airways	[252],	was	

rarely	seen	in	the	human	surface	epithelium	but	could	occasionally	be	detected	in	the	

submucosal	glands	(Figure	3.2).	Ciliated	epithelial	cells	were	visualised	using	the	

transcription	factor	forkhead	box	protein	J1	(FOXJ1)	[253]	and	acetylated	α-tubulin	(ACT)	

[214],	a	microtubule	protein	found	in	cilia	themselves	(Figure	3.2).	As	expected,	the	
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differentiated	luminal	fraction	of	the	epithelial	layer	comprises	a	mixture	of	mucosecretory	

and	ciliated	cells.	

	

	

	

	

Figure	3.1:	Characterisation	of	the	cell	types	present	in	human	airway	epithelium.	Paraformaldehyde-fixed	
human	donor	trachea	stained	using	immunofluorescence	demonstrated	the	presence	of	cytokeratin,	a	family	of	
intermediate	filament	proteins	characteristic	of	epithelial	tissues.	These	cells	also	express	E-Cadherin,	a	calcium-
dependent	adhesion	protein	and	member	of	the	cadherin	superfamily	that	is	important	in	cell-cell	adhesion	in	
epithelia.	Below	the	epithelial	basement	membrane	that	separates	the	epithelial	cells	from	the	airway	stroma,	
CD31-expressing	endothelial	cells	and	CD45-expressing	cells	are	present,	here	in	glandular	structures.	DAPI	(blue)	
was	used	as	a	counterstain.	Scale	bars	=	50	μm.	
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Figure	3.2:	Characterisation	of	the	main	epithelial	cell	types	within	the	human	airway	epithelium.	
Paraformaldehyde-fixed	human	donor	trachea	stained	using	immunofluorescence	demonstrated	the	presence	of	
cytokeratin	5,	a	characteristic	marker	of	undifferentiated	basal	epithelial	cells	in	a	number	of	epithelial	tissues,	
including	the	airway.	Cytokeratin	8	is	also	expressed	in	the	airway	epithelium	but	in	non-basal,	or	luminal	cells;	
these	cells	are	considered	the	differentiated	airway	epithelial	cell	types	and	contain	both	ciliated	and	
mucosecretory	cells.	Club	cell	secretory	protein	(CCSP)	is	expressed	abundantly	in	murine	airways	in	club	cells	but	
in	the	human	trachea	its	expression	was	restricted	to	submucosal	glands.	Mucin	5AC	(MUC5AC)	positive	cells	are	
seen	within	the	luminal	population	and	is	a	marker	of	mucosecretory	cells.	Acetylated	α-tubulin	(ACT)	is	
expressed	in	cilia,	the	microtubule-based	projections	that	define	ciliated	cells.	FOXJ1	is	a	transcription	factor	that	
regulates	the	multiciliated	cell	lineage	and	as	such	is	also	uniquely	expressed	in	ciliated	cells.	
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In	human	airways,	basal	cells	are	abundant	stem	cells	during	homeostasis	and	contribute	to	

repair	following	injury	[105,	254].	Given	the	focus	on	in	vitro	characterisation	and	expansion	

of	human	airway	basal	cells,	expression	in	situ	of	proteins	associated	with	basal	cells	was	

assessed.	CK14	was	expressed	in	a	subset	of	human	airway	basal	cells,	as	it	is	in	murine	

airways	[255],	possibly	reflecting	a	distinct	progenitor	cell	phenotype	or	role	in	regeneration	

for	these	cells	[256].	Expression	of	the	transcription	factor	p63	is	also	uniquely	found	in	

airway	basal	cells	[257]	(Figure	3.3).	Finally,	the	restriction	of	proliferation	to	the	basal	

epithelial	cell	compartment	in	vivo	was	confirmed	by	Ki67	staining	[258]	(Figure	3.3).	

	

	

Figure	3.3:	Further	characterisation	of	protein	expression	in	human	airway	basal	cells.	Paraformaldehyde-fixed	
human	donor	trachea	stained	using	immunofluorescence	demonstrated	the	presence	of	cytokeratin	14	in	a	
subset	of	basal	cells.	CK14	expression	has	been	associated	with	regeneration	and	repair	of	the	tracheal	
epithelium	in	mice.	P63	is	a	transcription	factor	expressed	uniquely	in	human	airway	basal	cells.	Proliferation	of	a	
subset	of	basal	cells	in	vivo	was	demonstrated	by	the	presence	of	Ki67	protein,	which	is	cell	cycle	regulated	and	
only	expressed	during	interphase.	DAPI	(blue)	was	used	as	a	counterstain.	Scale	bars	=	50	μm.	

	

	



80	

 

Isolation	of	human	airway	basal	cells	

	

Having	examined	the	human	airway	epithelium	in	situ,	I	sought	to	isolate	airway	basal	cells	

and	expand	them	in	vitro	so	that	more	detailed	characterisation	and	functional	studies	could	

be	performed.	Protocols	established	in	the	laboratory	were	used	to	isolate	epithelial	cells	

from	cadaveric	airway	samples	(Figure	3.4A).	Briefly,	the	trachea	and	bronchi	were	cut	into	

small	pieces	and	digested	overnight	in	0.15%	pronase	at	4°C.	The	resulting	suspension	was	

then	vigorously	agitated	and	plated.	As	expected,	epithelial	cells	that	proliferated	in	cell	

culture	(Figure	3.4B)	were	universally	cytokeratin	5-	and	cytokeratin	14-positive	(Figure	

3.4C),	indicating	their	probable	basal	cell	origin.	After	one	passage	to	expand	cells,	cells	were	

cryopreserved	in	liquid	nitrogen	to	form	a	bank	of	cells	suitable	for	use	in	future	

experiments.	

	

Figure	3.4:	Pronase	digestion	of	cadaveric	human	tracheae	to	initiate	basal	cell	culture.	A)	Enzymatic	digestion	
using	pronase	creates	a	cell	suspension	that	can	be	plated	in	tissue	culture	plastic	in	bronchial	epithelial	growth	
medium	(BEGM)	to	initiate	basal	cell	cultures.	Adapted	from	methods	described	by	Fulcher	and	Randell	[217].	B)	
Brightfield	microscopy	demonstrates	the	outgrowth	of	epithelial	cells	in	these	conditions.	Scale	bar	=	50	μm.	C)	
Immunofluorescence	staining	shows	epithelial	cells	are	cytokeratin	5	(CK5)+	(green)	and	CK14+	(red)	basal	cells.	
Scale	bars	=	20	μm.	
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Access	to	cadaveric	airway	tissue	is	infrequent	so	alternative	methods	to	derive	airway	basal	

cells	for	in	vitro	characterisation	were	investigated.	More	regular	access	to	endobronchial	

biopsy	samples	(Figure	3.5A)	is	available	and	these	have	previously	been	used	to	expand	

cells	in	culture	for	in	vitro	characterisation	[219-221]	and	for	use	in	airway	tissue	engineering	

[70].	Epithelial	cells	were	isolated	from	endobronchial	biopsy	samples	by	plating	them	as	

explants	in	bronchial	epithelial	growth	medium	(BEGM).	Over	the	course	of	two	weeks	in	

culture,	epithelial	cell	expansion	was	apparent,	with	cells	visibly	growing	out	of	the	biopsy	

(Figure	3.5B).	The	basal	cell	status	of	these	cells	was	confirmed	by	immunofluorescence	

staining	for	CK5,	CK14	and	p63	(Figure	3.5C).	Rare	p63-negative	cells	were	also	observed	in	

explant	cultures	(although	not	in	subsequent	cultures),	suggesting	that	migration	as	well	as	

proliferation	might	contribute	to	the	outgrowth	of	epithelial	cells	as	has	previously	been	

described	in	explant	epidermal	keratinocyte	cultures	[259]	(Figure	3.5C).	The	explant	cells	

also	express	CK5,	integrin	α6,	TROP2	and	nerve	growth	factor	receptor	(NGFR)	when	

analysed	by	flow	cytometry,	confirming	that	they	are	basal	cells	(Figure	3.5D).		
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Figure	3.5:	Isolation	of	airway	epithelial	cells	from	small	endobronchial	biopsy	samples.	A)	Endobronchial	
biopsy	samples	are	approximately	1	mm3.	Ruler	shown	for	scale.	B)	Epithelial	cell	outgrowths	were	evident	3-5	
days	after	plating	as	explants	in	bronchial	epithelial	growth	medium	(BEGM).	Scale	bar	=	20	μm.	C)	Epithelial	cells	
are	cytokeratin	5	(CK5)+	(left)	and	CK14+	(centre),	suggesting	they	are	basal	epithelial	cells.	The	majority	of	cells	
are	p63+	(right)	but	some	p63-	cells	are	seen,	suggesting	that	some	non-basal	epithelial	cells	might	also	migrate	
from	biopsy	samples.	Cells	were	counterstained	with	DAPI	(blue).	Scale	bars	=	100	μm.	D)	Flow	cytometry	
confirms	that	outgrowths	consist	of	CK5+,	integrin	α6+,	TROP2+	basal	cells.	The	majority	of	cells	also	express	
NGFR.	
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Approximately	1.5	x	105	of	cells	were	obtained	following	two	weeks	of	explant	growth	from	

biopsies	so	we	passaged	these	cells	to	investigate	whether	larger	numbers	of	cells	could	be	

obtained	for	downstream	experiments	(Figure	3.6A).	Cells	continued	to	proliferate	after	

passage	and	around	2	x	106	cells	could	be	obtained	from	a	single	biopsy	by	passage	two	

(Figure	3.6B).	However,	the	proliferation	of	basal	cells	grown	in	this	way	declined	over	

passage	when	analysed	by	incorporation	of	EdU	(Figure	3.6C).		

	

	

	

	

Figure	3.6:	Expansion	of	human	epithelial	cells	from	endobronchial	biopsy	samples	in	BEGM.	A)	Schematic	
representation	of	isolation	and	expansion	timeline	for	epithelial	cells	from	endobronchial	biopsies.	B)	
Quantification	of	total	epithelial	cell	number	following	one	passage	(14	days)	of	explant	culture	in	bronchial	
epithelial	growth	medium	(BEGM;	n	=	19	donors;	mean	+/-	SEM).	This	experiment	was	performed	by	Dr.	Colin	
Butler.	C)	Quantification	of	basal	cell	proliferation	in	cells	grown	in	BEGM	(n	=	3	donors;	mean	+/-	SEM).	
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Differentiation	of	cultured	human	airway	basal	cells	

	

Next,	methods	to	differentiate	human	airway	basal	cells	were	established.	In	the	literature,	

this	generally	relies	upon	differentiation	at	air-liquid	interface	using	a	transwell	membrane	

[222].	Basal	cells	are	seeded	at	high	density	in	transwell	membranes	and	cultured	in	

submerged	conditions	until	confluency	is	achieved.	After	this,	cells	are	fed	basally	through	

the	transwell	and	apical	medium	is	removed,	exposing	cells	to	air	(Figure	3.7A).	Over	the	

course	of	several	weeks	of	culture,	basal	cells	differentiate	to	form	a	mucosecretory,	ciliated	

epithelium	[260,	261].	In	these	conditions	we	found	that	early	passage	basal	cells	(that	is,	P0	

and	P1	cells)	differentiate	to	form	both	mucosecretory	and	ciliated	cells	(Figure	3.7B).	

However,	beyond	this	passage	we	found	that	cultured	basal	cells	declined	in	their	capacity	

to	form	differentiated	epithelium,	with	very	few	ciliated	cells	visible	in	P4-derived	air-liquid	

interface	cultures.	Furthermore,	by	passage	4,	cultured	basal	cells	were	unable	to	maintain	

confluency	for	the	full	length	of	culture	(Figure	3.7C).	

	

In	addition	to	air-liquid	interface	cultures,	there	is	also	evidence	that	human	airway	basal	

cells	are	capable	of	differentiating	in	submerged	culture	conditions	[238-241].	Air-liquid	

interface	models	are	labour	intensive	and	poorly	suited	to	high-throughput	applications	so	a	

three-dimensional	(3D)	tracheosphere	model	was	developed	(Figure	3.8).	Here,	cells	are	

cultured	in	the	basement	membrane	extract	Matrigel	in	submerged	culture.	A	suspension	of	

single	basal	cells	is	seeded	and	over	the	course	of	2-3	weeks	of	culture	3D	spheroid	

structures	form	with	a	hollow	lumen	(Figure	3.8).		
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Figure	3.7:	Establishment	of	an	air-liquid	interface	differentiation	protocol	for	human	airway	basal	cells.	A)	In	
air-liquid	interface	cultures	a	high	density	of	human	basal	cells	are	seeded	in	submerged	culture	until	confluency	
is	reached	(2-3	days).	At	this	stage,	medium	is	removed	from	the	apical	surface	and	cells	are	fed	only	through	the	
basal	transwell	membrane,	exposing	cells	to	air.	Over	the	course	of	2-3	weeks,	a	multiciliated,	mucosecretory	
epithelium	emerges.	B)	Immunofluorescence	staining	shows	ciliated	cells	(acetylated	α-tubulin	(ACT)-positive;	
green)	derived	from	early	(passage	1)	and	late	(passage	4)	passage	basal	cells	after	culture	at	air-liquid	interface.	
DAPI	(blue)	is	used	as	a	counterstain.	Scale	bars	=	50	μm.	C)	Late	passage	basal	cells	did	not	form	successful	air-
liquid	interface	cultures.	Holes	appeared	in	the	epithelium	and	air-liquid	interface	was	not	maintained.	Scale	bar	
=	200	μm.	
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Figure	3.8:	Three-dimensional	(3D)	tracheosphere	differentiation	of	human	airway	basal	cells.	3D	culture	of	
human	basal	cells	was	performed	to	generate	tracheospheres,	which	may	also	be	referred	to	as	spheroids	or	
organoids.	A	suspension	of	single	basal	epithelial	cells	are	seeded	in	5%	Matrigel	and	proliferate	to	form	
spheroids.	Over	2-3	weeks	in	culture	these	spheroids	develop	a	central	lumen	and	basal	cells	differentiate	to	
form	an	epithelium	containing	both	mucosecretory	and	ciliated	epithelial	cells.	Scale	bars	=	100	μm.	
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Basal	cells	seeded	in	Matrigel	proliferate	to	form	spheroids;	after	7	days,	tracheospheres	

showed	abundant	BrdU	uptake	but	the	number	of	BrdU-positive	cells	decreased	by	day	14	of	

culture	(Figure	3.9A).	Separately,	time-lapse	microscopy	data	from	our	laboratory	had	

indicated	that	at	the	seeding	density	used	here	(2,500	basal	cell	per	well	of	a	96-well	plate),	

tracheospheres	were	not	clonal	(that	is,	they	were	not	derived	from	a	single	cell)	but	in	fact	

basal	cells	were	motile	and	able	to	form	aggregates.	This	finding	was	also	subsequently	

published	by	other	another	group	[49].	Tracheosphere	formation	varied	depending	on	the	

passage	of	basal	cells	seeded,	with	cells	at	early	passage	giving	rise	to	larger	spheroids	than	

matched	donor	cells	at	late	passage	(Figure	3.9B).	Consistent	with	a	decrease	in	

tracheosphere	quality	over	basal	cell	culture	time,	differentiation	was	also	affected	by	basal	

cell	passage	number.	At	very	early	passages,	basal	cells	formed	tracheospheres	that	

contained	a	pseudostratified,	differentiated	epithelium	(Figure	3.9C)	containing	both	

mucosecretory	and	ciliated	cells	oriented	towards	the	sphere	lumen	(Figure	3.9D).	At	later	

passages,	larger	tracheospheres	frequently	contained	few	ciliated	cells	(Figure	3.9E)	and	

more	often	did	not	undergo	lumen	formation	at	all	(Figure	3.9F).	
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Figure	3.9:	Establishment	of	a	three-dimensional	(3D)	tracheosphere	differentiation	protocol	for	expanded	
human	airway	basal	cells.	A)	Proliferation	of	tracheospheres	was	assessed	by	BrdU	labelling	and	antibody	
staining	(red).	Tracheospheres	contained	more	proliferating	cells	at	day	7	than	at	day	14.	Scale	bar	=	100	μm.	B)	
Brightfield	images	of	tracheosphere	morphology	after	18	days	of	culture.	Tracheospheres	were	generated	from	
donor	matched	passage	1	(left)	or	passage	4	(right)	airway	basal	cells.	Scale	bar	=	500	μm.	C)	Haemotoxylin	and	
eosin	staining	reveal	a	pseudostratified	epithelium	in	tracheospheres	derived	from	passage	1	airway	basal	cells.	
Scale	bar	=	50	μm.	D)	Passage	1	basal	cell-derived	tracheospheres	show	distinct	cytokeratin	5	(CK5)+	(green)	
basal	cell	and	CK8+	(magenta)	luminal	cell	populations	as	well	as	ciliated	cells	(acetylated	α-tubulin	(ACT;	yellow;	
left)).	Tracheospheres	secreted	the	mucin	5AC	(MUC5AC;	red)	into	the	lumen	(right).	Scale	bars	=	50	μm.	E)	
Passage	3	basal	cell-derived	tracheospheres	contained	few	ciliated	cells	(ACT;	green)	but	were	positive	for	CK14	
(orange).	Scale	bar	=	50	μm.	F)	Passage	4	basal	cell-derived	tracheospheres	often	did	not	undergo	lumen	
formation	and	were	often	not	positive	for	MUC5AC.	Scale	bars	=	50	μm.	DAPI	(blue)	was	used	as	a	counterstain	
for	immunofluorescence	staining.	These	experiments	were	performed	with	Dr.	Colin	Butler.	
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As	such,	the	methods	developed	here	allowed	us	to	expand	our	pool	of	cryopreserved	basal	

cells	to	include	those	from	living	donors	by	using	cells	derived	from	endobronchial	biopsies.	

However,	we	found	that	basal	cells	cultured	in	BEGM	lost	both	their	proliferative	potential	

and	their	capacity	to	differentiate	over	time	in	culture,	suggesting	that	this	culture	method	is	

suboptimal	and	fails	to	maintain	the	characteristics	of	airway	basal	stem	cells.	Early	passage	

basal	cells	performed	well	in	airway	differentiation	assays	but	the	scarcity	of	cadaveric	tissue	

and	the	small	number	of	cells	that	can	be	obtained	from	endobronchial	biopsies	limits	their	

utility	in	biological	or	pre-clinical	tissue-engineering	studies.	Overall,	these	results	suggest	a	

need	to	improve	the	basal	cell	culture	protocol	to	better	maintain	the	potential	of	these	

cells.	

	

3.4 Summary	

	

• The	cell	types	of	the	human	airways	were	characterised	in	situ	using	an	optimised		

immunofluorescence	protocol.	

• Protocols	were	optimised	to	isolate	and	expand	human	airway	epithelial	cells	from	

cadaveric	samples	and	endobronchial	biopsies.	

• Human	airway	epithelial	cells	expanded	in	BEGM	from	cadaveric	samples	and	

endobronchial	biopsies	express	basal	stem	cell	markers.	

• Cultured	basal	cells	at	early	passages	differentiate	to	form	pseudostratified	epithelia	

containing	both	ciliated	cells	and	mucosecretory	cells.	

• After	passage	2,	the	differentiation	capacity	of	cultured	basal	cells	declines	and	

fewer	ciliated	cells	are	seen	in	both	air-liquid	interface	and	tracheosphere	cultures,	

limiting	the	utility	of	this	expansion	protocol.	
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4 .	Rapid	and	sustained	expansion	

of	human	airway	basal	cells	using	

3T3-J2	co-culture	and	ROCK	

inhibition	
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4.1 Background	

Previously,	primary	human	airway	epithelial	cells	were	obtained	from	either	endobronchial	

biopsies,	lobectomy	tissue	or	from	cadaveric	tissue	and	cultured	in	serum-free	bronchial	

epithelial	growth	medium	(BEGM)	for	multiple	passages.	While	this	has	historically	been	a	

useful	tool	to	generate	basal	cells	for	in	vitro	investigations	[222],	it	is	likely	to	be	inefficient	

for	applications	that	require	large	numbers	of	cells	such	as	airway	bioengineering	or	high-

throughput	epithelial	cell	assays,	particularly	when	the	amount	of	starting	tissue	is	limited.	

Indeed,	as	I	have	shown	in	Chapter	3,	many	cultures	fail	and	those	that	grow	are	often	

unable	to	produce	enough	cells	with	complete	differentiation	capacity	for	downstream	

assays.		

	

Consequently,	alternative	means	to	expand	primary	human	airway	epithelial	cells	were	

investigated.	We	sought	to	establish	a	method	that	would	generate	greater	numbers	of	

epithelial	cells	than	is	possible	using	BEGM	and,	importantly,	that	would	maintain	the	

differentiation	capacity	and	normal	karyotype	of	the	isolated	cells.	Avoidance	of	senescence	

in	cultured	basal	cells,	which	we	hypothesised	occurs	during	culture	in	BEGM,	is	important	

as	these	cells	do	not	maintain	their	in	vivo	characteristics,	particularly	in	terms	of	

differentiation	potential.	Indeed,	assays	using	cells	in	which	their	in	vivo	characteristics	are	

not	maintained	are	likely	to	be	confounded	by	the	effects	of	senescence	and	cell	stress.	To	

enable	me	to	study	cell	behaviour	and	potential,	it	was	important	to	overcome	these	cell	

culture	obstacles.	In	addition,	a	main	focus	of	the	laboratory	is	to	generate	epithelial	cell	

cultures	that	have	the	potential	to	be	used	in	the	future	in	human	tracheal	transplantation	

procedures:	for	this	application,	it	is	crucial	that	expanded	epithelial	cells	maintain	their	

differentiation	potential	to	generate	a	functional	epithelial	barrier	and	are	safe	for	

transplantation	[77].	
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Successful	ex	vivo	long-term	expansion	of	human	epidermal	stem	cells	is	achieved	by	co-

culture	with	mitotically	inactive	mouse	embryonic	fibroblast	feeder	cells	[189].	Inhibition	of	

Rho-associated	protein	kinases	(ROCK)	in	these	cultures	increases	proliferation	and	

‘conditionally	immortalises’	cells,	allowing	indefinite	propagation	of	stem	cells	with	tissue-

appropriate	differentiation	capacity	[262,	263].	Airway	epithelial	cells	grown	in	these	

conditions	have	been	shown	to	maintain	their	differentiation	potential	at	late	passages	but	

have	not	been	characterised	in	detail	[264].	Therefore,	I	investigated	the	growth	of	

endobronchial	biopsy-derived	primary	human	airway	epithelial	cells	on	3T3-J2	feeder	cells	in	

the	presence	of	the	ROCK	inhibitor	Y-27632	(3T3+Y)	and	their	potential	utility	in	

differentiated	airway	epithelial	cell	models.	

	

4.2 Aims	

	

• To	investigate	an	alternative	epithelial	cell	culture	protocol	using	3T3-J2	fibroblast	

co-culture	and	ROCK	inhibition	(3T3+Y).	

• To	compare	epithelial	cells	expanded	in	3T3+Y	and	BEGM	in	terms	of	their	

expression	of	basal	stem	cells	markers.	

• To	compare	epithelial	cells	expanded	in	3T3+Y	and	BEGM	in	terms	of	their	

differentiation	potential.	
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4.3 Results	

	

Expansion	of	airway	epithelial	cells	in	3T3+Y	

	

Following	initial	cell	outgrowth	in	BEGM,	the	growth	of	matched	donor	epithelial	cells	was	

compared	in	BEGM	and	3T3+Y,	where	a	mitotically	inactivated	feeder	layer	of	3T3-J2	mouse	

embryonic	fibroblasts	was	combined	with	growth	medium	containing	5	μM	Y-27632,	which	

is	a	small	molecule	inhibitor	of	the	ROCK	pathway.	When	cells	were	passaged	sequentially	in	

BEGM	they	displayed	a	cuboidal	morphology	with	little	cell-cell	contact	at	early	passages	

(Figure	4.1A).	Over	time,	cells	became	larger	and	flatter,	consistent	with	senescence-

associated	changes	reported	in	the	literature	[49,	117,	265-267].	By	contrast,	serum-

containing	epithelial	growth	medium	in	combination	with	3T3-J2	feeder	cells	and	Y-27632	

led	to	the	formation	of	colonies	of	smaller	epithelial	cells	that	retained	cell-cell	contact,	the	

morphology	of	which	did	not	change	with	passage	(Figure	4.1A).	Consistent	with	studies	in	

other	epithelia	[262,	264],	we	saw	that	a	greater	number	of	cells	were	stained	by	antibodies	

against	the	proliferation	marker	Ki67	after	4	days	of	culture	in	3T3+Y	than	in	BEGM	(Figure	

4.1B),	suggesting	that	there	was	greater	epithelial	cell	proliferation	in	3T3+Y	than	in	BEGM.	

This	apparent	growth	advantage	was	sustained	over	passage	(Figure	4.1C),	whereas	cells	

cultured	in	BEGM	underwent	a	well-characterised	deterioration	in	proliferation	rate	over	

time	[49,	117,	265,	267].	Flow	cytometric	analysis	of	EdU	uptake	and	DNA	content	using	

DAPI	showed	that	3T3+Y	increased	the	number	of	cells	in	S-phase	compared	with	BEGM,	

validating	the	increased	proliferation	rate	seen	by	Ki67	staining	(Figure	4.1D).	Taken	

together,	these	results	show	that	3T3+Y	conditions	induce	greater	epithelial	cell	

proliferation	than	BEGM	and	that	this	is	maintained	over	passage.	
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Figure	4.1:	Expansion	and	increased	proliferation	of	human	airway	basal	cells	with	3T3-J2	co-culture	and	ROCK	
inhibition.	A)	Brightfield	images	show	the	morphology	of	cells	in	bronchial	epithelial	growth	medium	(BEGM)	and	
in	3T3-J2	co-culture	and	ROCK	inhibition	(3T3+Y)	at	both	early	(P1)	and	late	(P4)	passage.	White	dotted	lines	
indicate	epithelial	colonies	in	3T3+Y	cultures.	Scale	bar	=	20	µm.	B)	Airway	epithelial	cells	stained	by	
immunofluorescence	with	a	marker	of	actively	dividing	cells	(Ki67;	green),	cytokeratin	14	(CK14;	red)	and	DAPI	
(blue)	after	4	days	of	culture	in	BEGM	or	in	3T3+Y	(scale	bar	=	50	µm).	C)	Population	doublings	for	human	airway	
epithelial	cells	grown	in	BEGM	and	3T3+Y	plotted	over	time.	D)	Representative	plots	showing	EdU	uptake	in	P2	
cells	grown	in	BEGM	(top	left)	or	in	3T3+Y	(top	centre)	for	3	days.	Summary	data	are	shown	for	six	donors	(top	
right;	mean	±	SEM;	experiment	performed	in	technical	triplicate	for	each	donor	and	averaged).	Cells	were	co-
stained	with	DAPI	to	analyse	cell	cycle	progression.	Representative	plots	for	cells	grown	in	BEGM	(bottom	left)	or	
in	3T3+Y	(bottom	centre)	are	shown.	Summary	data	are	shown	for	six	donors	(bottom	right;	mean	±	SEM;	
experiment	performed	in	technical	triplicate	for	each	donor	and	averaged).	Differences	between	conditions	were	
assessed	using	a	Wilcoxon	matched	pairs	signed	ranked	test	(*	indicates	p<0.05).	

	

	



95	

 

To	further	investigate	the	characteristics	and	behaviour	of	airway	epithelial	cells	expanded	

in	3T3+Y	it	was	crucial	to	be	able	to	easily	separate	the	epithelial	cells	from	the	3T3-J2s.	

Importantly,	I	was	able	to	take	advantage	of	differences	in	the	trypsin	sensitivity	of	the	

mitotically	inactive	feeder	cells,	which	are	weakly	adherent,	and	the	proliferating	epithelial	

cells,	which	are	strongly	adherent,	to	effectively	separate	epithelial	cells	from	3T3-J2s	at	

each	passage.	To	demonstrate	this,	epithelial	cells	were	stained	with	the	lipophilic	

membrane	stain	DiO	(green;	Figure	4.2A)	and	3T3-J2	feeder	cells	with	DiI	(red;	Figure	4.2A)	

and	were	seeded	in	co-culture.	Once	epithelial	colonies	had	formed,	feeder	cells	were	

removed	by	‘differential	trypsinisation’	and	cultures	were	imaged	by	fluorescence	

microscopy.	In	co-culture,	colonies	of	epithelial	cells	(green)	can	clearly	be	seen	surrounded	

by	3T3-J2	feeder	cells	(red;	Figure	4.2A;	top	panel).	After	an	initial	round	of	trypsinisation,	

effective	removal	of	feeder	cells	was	apparent	(Figure	4.2A;	bottom	panel).	To	validate	these	

findings,	primary	airway	epithelial	cells	grown	in	3T3+Y	were	stably	transduced	with	a	

lentivirus	containing	green	fluorescent	protein	(GFP).	In	co-cultures	that	were	fully	

trypsinised	(that	is,	in	which	differential	trypsinisation	was	not	performed),	both	GFP+	

epithelial	cells	and	GFP-	feeder	cells	were	observed	by	flow	cytometry.	However,	when	

differential	trypsinisation	was	performed	to	eliminate	3T3-J2	feeder	cells,	more	than	98%	of	

the	remaining	cells	were	epithelial	(Figure	4.2B),	showing	that	epithelial	cells	can	be	

effectively	separated	from	feeder	cells	for	further	analysis.	
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Figure	4.2:	Trypsin	sensitivity	of	mitotically	inactivated	3T3-J2	feeder	cells	allows	differential	trypsinisation	of	
epithelial	cells.	A)	Immunofluorescence	images	showing	co-cultures	consisting	of	DiI-labelled	3T3-J2	feeder	cells	
(red)	and	DiO-labelled	primary	human	airway	epithelial	cells	(green)	before	(top	row)	and	after	(bottom	row)	the	
first	trysinisation	step,	which	removes	feeder	cells.	Scale	bars	=	200	μm.	B)	Flow	cytometric	analysis	of	
differential	trypsinisation.	Primary	human	epithelial	cells	were	transduced	with	a	lentivirus	containing	green	
fluorescent	protein	(GFP).	These	were	co-cultured	with	unlabelled	3T3-J2	cells	for	5	days	before	analysis.	Cultures	
in	which	a	differential	trypsinisation	step	was	not	performed	contained	both	GFP+	epithelial	cells	and	unlabelled	
3T3-J2	feeder	cells	(top	right;	co-culture)	whereas	when	a	differential	trypsinisation	step	was	introduced	~99%	of	
cells	were	GFP+	epithelial	cells.	
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Epithelial	cells	expanded	in	3T3+Y	are	basal	stem	cells	

	

Based	on	previous	observations	that	CK5+/p63+	basal	cells	are	expanded	during	culture	in	

BEGM,	the	expression	of	the	basal	cell	markers	(CK5,	CK14	and	p63)	was	investigated	in	

3T3+Y	using	immunofluorescence	staining	to	establish	whether	basal	cells	are	also	expanded	

in	these	conditions.	Additionally,	the	markers	integrin	α6	(ITGA6)	[268],	TROP2	[269]	and	

nerve	growth	factor	receptor	(NGFR)	[15]	were	included	as	previous	literature	indicates	that	

basal	cells	with	higher	expression	of	these	proteins	behave	as	stem	cells	in	vitro.	The	staining	

confirmed	that	airway	epithelial	cells	expressing	all	of	these	markers	are	expanded	in	3T3+Y	

culture,	indicating	that	the	cells	are	basal	cells	(Figure	4.3).	Furthermore,	higher	levels	of	

expression	of	all	of	these	markers	was	observed	in	basal	cells	grown	in	3T3+Y	than	in	those	

grown	in	BEGM,	further	suggesting	that	basal	cells	grown	in	3T3+Y	may	have	greater	stem	

cell	potential.	
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Figure	4.3:	Immunofluorescence	staining	for	basal	cell	markers	in	cells	grown	in	either	BEGM	or	3T3+Y	for	one	
passage.	Staining	for	each	protein	of	interest	is	shown	in	red	and	DAPI	(blue)	is	used	as	a	counterstain.	Scale	bars	
=	50	μm.	

	

To	further	these	studies,	qPCR	and	flow	cytometry	were	used	to	assess	changes	in	

expression	of	specific	airway	basal	cell	genes	and	proteins,	again	using	matched	donor	cells	

grown	in	BEGM	and	3T3+Y.	Higher	levels	of	the	putative	stem	cell	markers	integrin	α6,	NGFR	

and	TROP2	were	present	on	the	surface	of	cells	expanded	in	3T3+Y	compared	with	those	

expanded	in	BEGM	(Figure	4.4A),	confirming	immunofluorescence	staining	in	Figure	4.3.	

Expression	of	the	associated	genes	varied	between	donors	but	consistent	patterns	of	change	

did	occur	between	culture	conditions.	Gene	expression	of	TROP2	was	significantly	

upregulated	and	there	was	a	trend	towards	NGFR	upregulation	in	basal	cells	expanded	in	

3T3+Y	compared	with	BEGM	(Figure	4.4B),	supporting	immunofluorescence	staining	in	

Figure	4.3	and	flow	cytometric	staining	in	Figure	4.4A.	However,	integrin	α6	was	significantly	

downregulated	at	the	level	of	gene	expression	(Figure	4.4B),	suggesting	that	post-

transcriptional	regulation	may	underlie	the	increased	surface	expression	observed	in	cells	



99	

 

cultured	in	3T3+Y	(Figure	4.3,	Figure	4.4A).	Expression	of	the	ΔN-p63	isoforms	expressed	by	

basal	epithelial	stem	cells	[251,	257]	was	not	significantly	altered	by	culture	conditions	

(Figure	4.4B).	

	

	

	

	

Figure	4.4:	3T3-J2	co-culture	and	ROCK	inhibition	expand	basal	epithelial	stem	cells.	A)	Flow	cytometric	analysis	
of	airway	basal	stem	cell	marker	expression	on	the	surface	of	cells	grown	in	bronchial	epithelial	growth	medium	
(BEGM;	red)	or	in	3T3-J2	co-culture	with	ROCK	inhibition	(3T3+Y;	blue)	for	4	days.	Fluorescence	minus	one	(FMO;	
grey)	controls	are	shown	for	comparison.	This	experiment	was	repeated	three	times	with	different	donor	cell	
lines	and	representative	plots	for	one	donor	cell	line	are	shown.	B)	qPCR	analysis	of	airway	basal	stem	cell	marker	
gene	expression	in	airway	epithelial	cells	grown	in	BEGM	or	in	3T3+Y	for	7	days.	Differences	between	groups	
were	assessed	using	the	Wilcoxon	matched	pairs	signed	ranked	test	(n≥6	donors;	mean	+/-	SEM;	*	indicates	
p<0.05).	
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3T3+Y-expanded	basal	cells	are	karyotypically	normal	

	

To	achieve	representative	airway	in	vitro	models	and	to	generate	transplantable	epithelium	

for	tissue-engineering	applications,	it	will	be	important	to	avoid	the	generation	of	genetic	

abnormalities	during	culture.	Importantly,	airway	epithelial	cells	grown	in	3T3+Y	displayed	a	

normal	46,XX	or	46,XY	karyotype	after	more	than	6	weeks	in	culture	(Figure	4.5A).	However,	

deletions	below	≈5	megabases	are	not	reliably	detected	by	conventional	karyotyping	so	we	

obtained	two	biopsies	from	a	single	donor	to	compare	the	tissue	of	origin	with	matched	cells	

grown	in	3T3+Y	in	more	detail.	We	investigated	copy	number	change	in	these	cells	using	

multiplex	ligation-dependent	probe	amplification	(MLPA)	[270]	as	gene-rich	subtelomeric	

regions	share	significant	homology	between	chromosomes	making	them	vulnerable	to	

inappropriate	recombination	during	meiosis	[271].	Our	analysis	revealed	that	both	samples	

were	normal	with	no	evidence	of	subtelomeric	copy	number	alterations	after	6	weeks	in	

culture	(Figure	4.5B;	Table	4.1).	

	

Epithelial	cells	in	culture	cease	to	proliferate	upon	reaching	confluency.	One	consequence	of	

any	genetic	abnormalities	acquired	during	culture	could	be	the	loss	of	this	contact	inhibition,	

which	could	indicate	transformation	of	the	cells.	Consistent	with	the	lack	of	karyotypic	

change	in	3T3+Y-cultured	basal	cells,	investigation	of	contact	inhibition	revealed	that	basal	

cells	grown	in	3T3+Y	retained	this	contact	inhibition	capacity.	When	cells	were	seeded	onto	

transwell	membranes	in	differentiation	medium	(that	is,	when	3T3-J2	support	and	Y-27632	

were	withdrawn),	a	majority	of	cells	were	Ki67	after	2	days,	showing	high	levels	of	cell	

proliferation.	However,	once	cells	were	visibly	confluent	after	8	days	of	culture,	no	Ki67+	

nuclei	were	detected	by	immunofluorescence	(Figure	4.5C),	showing	that	cells	were	contact	

inhibited	and	ceased	to	proliferate	once	confluence	was	reached.		
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Figure	4.5:	Airway	epithelial	cells	are	karyotypically	normal	after	clinically	relevant	periods	in	culture.	A)	
Representative	karyotyping	image	for	airway	epithelial	cells	grown	in	3T3+Y	for	>6	weeks.	Normal	karyotype	was	
found	in	all	3	donor	cell	cultures	tested.	B)	Multiplex	ligation-dependent	probe	amplification	(MLPA)	analysis	was	
performed	in	GeneMarker	v2.4.0	to	compare	the	normalised	peak	height	ratio	of	a	reference	biopsy	sample	and	
donor-matched	cells	grown	in	3T3+Y	for	6	weeks.	Clear	correlation	is	demonstrated;	no	subtelomeric	copy	
number	changes	were	detected.	C)	Ki67	staining	of	cells	grown	in	3T3+Y	for	one	month	and	then	seeded	onto	
transwell	membranes.	After	2	days	(subconfluent)	Ki67+	proliferating	cells	are	seen	but	after	8	days	(confluent	
for	>48	hours)	no	Ki67	cells	were	detected.	DAPI	is	used	as	a	counterstain.	Scale	bars	=	50	μm.	
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Probe Bin 
Size 

Cell Line-
Biopsy 
Ratio 

01p 126.8 1.021 
01q 305.2 1.054 
02p 134.2 1.117 
02q 313.4 0.973 
03p 141.8 1.137 
03q 321.8 0.985 
04p 150.5 1.044 
04q 330.1 0.931 
05p 158.8 0.952 
05q 338.3 0.932 
06p 166.0 1.114 
06q 345.1 0.976 
07p 173.0 0.957 
07q 354.3 1.045 
08p 179.9 1.069 
08q 360.6 0.994 
09p 186.6 0.984 
09q 370.1 0.980 
10p 194.3 1.040 
10q 378.0 1.000 
11p 201.8 1.067 
11q 384.9 0.966 
12p 209.6 1.011 
12q 393.1 1.043 
13p 219.2 0.966 
13q 401.2 0.900 
14p 228.6 1.000 
14q 409.6 0.963 
15p 236.4 0.995 
15q 424.1 1.047 
16p 243.7 1.152 
16q 424.1 0.947 
17p 252.6 0.991 
17q 433.2 1.057 
18p 259.0 0.996 
18q 441.1 1.014 
19p 266.6 0.905 
19q 448.3 1.268 
20p 275.3 0.998 
20q 457.2 1.057 
21p 282.9 0.962 
21q 464.0 1.205 
22p 288.4 1.000 
22q 472.5 1.234 

SHOX 296.9 0.933 
SYBL1 481.5 1.092 

X 100.9 1.020 
Y1 105.2 -1 
Y2 114.8 -1 

	
Table	4.1:	Table	of	individual	probe	ratios	from	multiplex	ligation-dependent	probe	amplification	(MLPA)	

comparison	of	matched	donor	cell	line	and	reference	patient	biopsy.	
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Differentiation	capacity	of	expanded	basal	cells	is	better	maintained	in	3T3+Y	than	in	BEGM	

	

Since	basal	cells	expanded	in	3T3+Y	retain	the	capacity	to	form	a	stable,	confluent	epithelial	

layer,	the	capacity	of	these	cells	for	in	vitro	airway	differentiation	was	investigated.	Firstly,	

cells	were	cultured	at	an	air-liquid	interface	to	establish	their	differentiation	capabilities	at	

either	early	(P1)	or	late	(P4)	passages.	For	comparison	with	earlier	results	using	BEGM,	

matched	cells	grown	in	BEGM	or	3T3+Y	were	compared.	During	expansion	in	either	culture	

system,	all	basal	cells	were	p63+	but,	after	≥4	weeks	in	air-liquid	interface,	only	a	subset	of	

cells	retained	p63	expression,	indicating	that	differentiation	occurred	in	all	conditions	

(Figure	4.6A).	Acetylated	α-tubulin	(ACT)	staining	of	these	cultures	revealed	extensive	

ciliation	in	cultures	derived	from	early	passage	(P1)	basal	cells	in	either	BEGM	or	3T3+Y	

(Figure	4.6B).	However,	at	late	passage	(P4)	only	the	3T3+Y-derived	cultures	persisted	for	

the	full	6	weeks	of	the	experiment	due	to	problems	with	epithelial	integrity	in	BEGM-derived	

cultures.	Importantly,	very	few	ciliated	cells	were	seen	in	late	passage	BEGM-derived	

cultures,	indicating	that	basal	cells	expanded	in	BEGM	lose	their	capacity	for	ciliated	

differentiation	by	passage	4	(Figure	4.6B).	Interestingly,	extensive	ciliation	comparable	to	P1	

cultures	was	seen	in	late	passage	3T3+Y-derived	cultures,	indicating	that	basal	cells	

expanded	in	3T3+Y	maintain	their	differentiation	capacity	over	passage.		
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Figure	4.6:	Air-liquid	interface	cultures	reveal	a	decline	in	basal	cell	differentiation	capacity	over	time	in	cells	
cultured	in	BEGM	but	not	in	3T3+Y.	A)	Top-down	immunofluorescence	staining	shows	that	a	subset	of	cells	
expanded	in	all	conditions	express	p63	after	6	weeks	of	air-liquid	interface	(ALI)	culture.	DAPI	is	used	as	a	
counterstain.	Scale	bars	=	50	μm.	B)	Staining	for	acetylated	α-tubulin	(ACT)	shows	ciliated	epithelial	cells	in	air-
liquid	interface	cultures	derived	from	early	passage	bronchial	epithelial	growth	medium	(BEGM)	and	both	early	
and	late	passage	3T3-J2	co-culture	with	ROCK	inhibition	(3T3+Y)	cultures.	DAPI	is	used	as	a	counterstain.	Scale	
bars	=	50	μm.	

	

	

	

Through	collaboration	with	Professor	Chris	O’Callaghan’s	laboratory	(Institute	of	Child	

Health,	University	College	London),	the	functional	capacity	of	the	ciliated	epithelium	

generated	using	air-liquid	interface	cultures	from	basal	cells	expanded	in	3T3+Y	was	

investigated.	After	6	weeks,	the	cultures	had	very	high	transepithelial	electrical	resistance	

(TEER)	values	(Figure	4.7A),	indicative	of	high	epithelial	integrity	[272].	Further,	high-speed	

video	microscopy	and	scanning	electron	microscopy	investigations	revealed	that	the	ciliary	

beat	and	frequency	were	within	the	normal	range	[273]	(Figure	4.7A)	and	that	ciliary	

ultrastructure	[274]	was	normal	(Figure	4.7B).	
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Figure	4.7:	Ciliary	function	and	ultrastructure	are	normal	in	3T3+Y-derived	air-liquid	interface	cultures.	A)	In	air-
liquid	interface	cultures,	the	transepithelial	electrical	resistance	(TEER),	ciliary	beat	frequency	and	ciliary	beat	
pattern	were	characterised	in	collaboration	with	Professor	Chris	O’Callaghan’s	laboratory	(Institute	of	Child	
Health,	University	College	London).	Results	are	shown	as	mean	±	SEM.	B)	Transmission	electron	microscopy	
(TEM)	shows	a	healthy	well-ciliated	strip	of	respiratory	epithelium	from	air-liquid	interface	cultures.	Normal	
columnar	cells	and	microvilli	are	seen	(scale	bar	=	10	µm).	The	electron	micrograph	on	the	right	shows	cilia	in	
cross	section.	A	normal	ciliary	ultrastructure	is	seen	with	the	typical	9	+	2	arrangement	of	microtubules	and	inner	
and	outer	dynein	arms	(scale	bar	=	1	µm).	
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In	addition	to	air-liquid	interface	assays,	differentiation	of	cells	grown	in	BEGM	was	

compared	with	matched	donor	cells	grown	in	3T3+Y	in	a	three-dimensional	(3D)	

tracheosphere	assay.	Here,	single	cultured	airway	basal	cells	are	grown	in	a	3D	Matrigel	

matrix	and	form	spheroids	over	the	culture	period.	These	undergo	lumen	formation	and	

contain	differentiated	airway	cell	types	at	the	luminal	surface	[15].	As	in	Figure	4.6,	early	

(P1)	and	late	(P4)	passage	cultures	were	compared	to	examine	whether	differentiation	

potential	is	maintained	over	passage.	The	size	of	tracheospheres	derived	from	3T3+Y	basal	

cells	was	not	affected	by	passage	whereas	tracheospheres	derived	from	passage	4	BEGM	

cells	were	smaller	than	those	derived	from	passage	1	BEGM	cells	(Figure	4.8A	and	Figure	

4.8B).	When	differentiation	status	of	tracheospheres	was	assessed,	p63	was	expressed	in	all	

of	the	cells	on	the	basal	surface	of	spheroids	(Figure	4.8C),	consistent	with	its	expression	in	

basal	epithelial	cells	that	contact	the	basement	membrane	in	vivo.	At	early	passage	(P1),	

both	BEGM	and	3T3+Y	cultures	gave	rise	to	tracheospheres	with	evidence	of	mucin	5B	

(MUC5B)+	goblet	cells	and	ACT+	ciliated	cells	(Figure	4.8D).	However,	at	late	passage	(P4),	

only	cells	cultured	in	3T3+Y	showed	this	multipotent	differentiation	capacity	(Figure	4.8D).	

At	late	passage,	the	tracheospheres	that	did	form	(see	Figure	4.8B)	displayed	abnormal	

lumen	formation	and	did	not	show	evidence	of	ciliated	differentiation	(Figure	4.8D).	
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Figure	4.8:	Airway	basal	cells	expanded	in	3T3+Y	form	well	differentiated	tracheospheres	at	later	passage	than	
those	expanded	in	BEGM.	A)	Quantification	of	tracheosphere	size	at	early	(P1)	and	late	(P4)	passage	in	bronchial	
epithelial	growth	medium	(BEGM)	and	3T3-J2	co-culture	with	ROCK	inhibition	(3T3+Y).	Mean	+/-	SEM	is	shown.	
B)	Brightfield	images	show	morphology	of	tracheospheres	derived	from	basal	cells	cultured	in	BEGM	or	3T3+Y	for	
one	passage	(top	row)	or	four	passages	(bottom	row).	Scale	bar	=	500	µm.	C)	Immunofluorescence	staining	
shows	tracheosphere	p63	expression.	Scale	bar	=	100	µm.	D)	Immunofluorescence	staining	of	tracheospheres	
generated	from	cells	grown	in	either	BEGM	(P1	and	P4)	or	3T3+Y	(P1	and	P4)	for	acetylated	α-tubulin	(ACT;	
green),	mucin	5B	(MUC5B;	red)	and	DAPI	(blue).	Scale	bars	=	50	µm.	

	

The	multipotent	differentiation	capacity	of	airway	basal	cells	grown	in	3T3+Y	was	further	

investigated	by	adaptation	of	a	second	submerged	airway	differentiation	protocol	[239].	

Here,	cell	suspensions	were	incubated	in	a	non-adherent	96-well	plate	on	a	plate	shaker	and	

single	aggregates	of	cells	were	formed	(Figure	4.9A).	This	technique	confers	the	benefit	of	

having	ciliated	epithelial	cells	on	the	surface	of	airway	spheroids,	as	opposed	to	in	3D	

tracheospheres	where	cilia	are	contained	within	the	3D	structure,	a	factor	that	might	limit	

their	relevance	in	drug	or	toxicology	exposure	studies.	After	three	weeks	of	culture,	

histology	revealed	a	continuous	epithelial	structure	containing	acini	(Figure	4.9B).	
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Immunofluorescence	staining	showed	that	aggregates	contained	MUC5B+	mucosecretory	

cells	and	were	lined	by	ACT+	ciliated	cells	(Figure	4.9C),	further	indicating	that	basal	cells	

expanded	in	3T3+Y	maintain	their	multipotent	differentiation	capacity.	

	

	

	

Figure	4.9:	Differentiation	of	airway	basal	cells	expanded	in	3T3+Y	using	an	aggregate	culture	method.	A)	
Brightfield	image	showing	cell	aggregate	in	a	96-well	plate	well.	Scale	bar	=	500	µm.	B)	Haemotoxylin	and	eosin	
staining	of	a	cell	aggregate	after	23	days	of	culture.	Scale	bar	=	50	µm.	C)	Immunofluorescence	staining	of	a	cell	
aggregate	showing	mucin	5B	(MUC5B)+	mucus	(green),	acetylated	α-tubulin	(ACT)+	ciliated	cells	(red)	and	cell	
nuclei	(DAPI;	blue).	Scale	bar	=	50	µm.	
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Microarray	analysis	

	

Given	the	remarkable	effects	of	3T3+Y	culture	on	basal	cell	expansion	in	vitro	and	the	

maintenance	of	differentiation	over	longer	periods	in	these	cultures,	genome-wide	

transcriptional	profiling	was	performed	using	microarrays	to	explore	the	major	pathways	

altered	by	3T3+Y	culture.	After	initial	expansion	in	BEGM,	four	matched	donor	cell	lines	

grown	in	either	BEGM	or	3T3+Y	for	7	days	were	compared.	Data	were	analysed	using	the	

significance	analysis	of	microarrays	method	with	a	false	discovery	rate	of	5%:	507	

significantly	differentially	expressed	transcripts	were	found,	297	of	which	were	

downregulated	in	3T3+Y	and	210	of	which	were	upregulated.	Significant	differences	were	

visualised	in	a	cluster	diagram	(Figure	4.10A)	that	clearly	shows	clustering	of	expression	

according	to	culture	condition	rather	than	donor.	Even	when	selected	airway-relevant	genes	

were	analysed,	independently	of	whether	differences	were	significant,	cells	remained	

clustered	according	to	culture	condition	rather	than	donor	(Figure	4.10B).	
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Figure	4.10:	Microarray	analysis	reveals	differentially	expressed	genes	in	matched	donor	cells	expanded	in	
3T3+Y	or	BEGM.	A)	Cluster	diagram	plotting	significantly	differentially	expressed	genes	between	cells	grown	for	
one	passage	in	either	bronchial	epithelial	growth	medium	(BEGM)	or	in	3T3-J2	co-culture	with	ROCK	inhibition	
(3T3+Y).	B)	Cluster	diagram	showing	selected	airway	epithelial	genes	of	interest,	including	markers	of	basal	cells,	
goblet	cells	and	ciliated	cells.	Selected	airway-relevant	genes	are	shown	regardless	of	whether	differences	are	
significant.	RNA	isolation	for	microarray	analysis	was	performed	by	Dr.	Colin	Butler.	
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To	highlight	pathways	in	which	the	genes	whose	expression	changed	significantly	between	

culture	conditions	might	be	involved,	we	used	Ingenuity	Pathway	Analysis	and	observed	

alterations	in	several	pathways,	including	cell	cycle	regulation	(Figure	4.11A),	which	

correlated	with	the	increased	proliferation	of	basal	cells	in	3T3+Y	shown	in	Figure	4.1.	

Functional	analysis	using	the	same	software	revealed	significant	upregulation	of	genes	

associated	with	cell	movement	and	proliferation	and	decreased	expression	of	genes	

associated	with	cell	death	in	3T3+Y	(Figure	4.11B).	

	

	

	

Figure	4.11:	Pathway	analysis	of	microarray	comparisons.	A)	Ingenuity	Pathway	Analysis	(IPA)	was	applied	to	
investigate	cell	signalling	pathways	containing	significantly	differentially	expressed	genes.	The	IPA	analysis	–log(p-
value)	is	plotted	on	the	y-axis	versus	biological	processes	on	the	x	axis.	B)	Functional	analysis	of	differentially	
expressed	genes	was	performed	using	IPA.	The	major	functions	altered	by	culture	in	3T3-J2	co-culture	with	ROCK	
inhibition	(3T3+Y)	are	shown,	along	with	the	relevant	–log(p-value)	and	the	top	10	relevant	genes	(5	upregulated	
and	5	downregulated).	Genes	already	displayed	in	a	function	were	subsequently	ignored	to	avoid	overlap.		
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In	order	to	validate	the	results	of	the	microarray,	the	expression	of	six	differentially	

expressed	genes	was	analysed	in	all	samples	by	qPCR;	these	results	showed	a	high	

correlation	with	the	microarray	(r	=	0.96;	Figure	4.12A).	Further,	the	expression	of	

secretoglobin	family	3A	member	1	(SCGB3A1),	the	most	significantly	different	gene,	was	

evaluated	by	western	blotting.	Antibody	validation	was	performed	by	staining	normal	

human	tracheal	epithelial	sections	and	confirming	its	expected	location	in	differentiated	

goblet	cells	(Figure	4.12B).	Consistent	with	its	upregulation	in	the	microarray	data,	SCGB3A1	

was	strongly	expressed	in	3T3+Y	but	not	in	matched	donor	cells	grown	in	BEGM	(Figure	

4.12C).	The	biological	significance	of	this	upregulation	is	unknown	as	the	protein	is	not	

expressed	in	human	basal	cells	in	vivo	(Figure	4.12B),	although	in	mice	SCGB3A1	expression	

may	be	increased	during	regeneration	[275].	

	

Overall,	these	results	indicate	that	3T3+Y	allows	the	prolonged	expansion	of	human	airway	

basal	epithelial	cells	with	multipotent	airway	differentiation	potential	in	vitro.	Our	

microarray	data	provide	a	resource	for	future	research	to	investigate	the	molecular	basis	of	

this	improvement	in	cell	culture	conditions.	
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Figure	4.12:	Validation	of	microarray	data	using	qPCR	and	western	blotting.	A)		Correlation	between	microarray	
fold	change	(3T3+Y/BEGM)	and	qPCR	fold	change	(3T3+Y/BEGM).	Pearson’s	r	is	shown.	B)	Immunofluorescence	
staining	of	normal	human	airway	epithelium	showing	pan-cytokeratin	(PANCK;	green),	secretoglobin	family	3A	
member	1	(SCGB3A1;	red)	and	cell	nuclei	(DAPI;	blue).	Scale	bar	=	20	µm.	C)	Western	blot	confirmation	of	
upregulated	SCGB3A1	expression	in	donor-matched	cells	grown	in	3T3-J2	co-culture	with	ROCK	inhibition	(3T3+Y)	
compared	with	bronchial	epithelial	growth	medium	(BEGM).	
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4.4 Summary	

	
• Human	airway	epithelial	cells	are	rapidly	expanded	by	co-culture	with	mitotically	

inactivated	3T3-J2	cells	in	the	presence	of	a	ROCK	inhibitor	(3T3+Y).		

• 3T3+Y-expanded	epithelial	cells	express	markers	of	airway	basal	cells	and	show	

evidence	of	increased	expression	of	genes	associated	with	airway	basal	stem	cells.		

• Expanded	basal	cells	are	karyotypically	normal	and	contact	inhibited.		

• After	four	passages,	basal	cells	grown	in	BEGM	proliferate	more	slowly	and	have	

demonstrably	lost	the	capacity	for	multipotent	airway	epithelial	differentiation.	

However,	cells	grown	in	3T3+Y	are	still	capable	of	forming	epithelia	containing	both	

goblet	and	ciliated	cells.		

• Pathway	analysis	of	microarray	data	comparing	cells	expanded	in	BEGM	and	3T3+Y	

highlighted	pathways	that	may	be	relevant	to	future	investigations	to	unravel	the	

mechanisms	underpinning	the	success	of	3T3+Y	culture	
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5 .	Improvements	to	the	human	

airway	basal	epithelial	cell	co-

culture	system	to	improve	

suitability	for	tissue	engineering		
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5.1 Background	

	

Having	established	a	protocol	to	expand	human	airway	basal	stem/progenitor	cells	in	co-

culture	with	3T3-J2	fibroblasts	and	Rho-associated	protein	kinase	(ROCK)	inhibition	(3T3+Y)	

and	demonstrated	the	advantages	of	this	system	for	extending	the	usefulness	of	these	cells	

in	differentiated	primary	airway	cultures,	improvements	to	the	system	were	investigated.	

Firstly,	if	tissue-engineered	airway	transplantation	is	to	enter	clinical	trials	and	eventually	to	

produce	novel	therapeutic	options,	then	GMP-compliance	will	be	necessary.	For	this,	co-

culture	of	human	epithelial	cells	with	3T3-J2	fibroblasts	is	not	ideal	due	to	the	murine	origin	

of	the	cells,	although	such	methods	have	been	approved	in	other	epithelial	organs	[190,	

194-196,	276].	The	co-culture	of	airway	epithelial	cells	with	alternative	stromal	cells	was	

investigated	to	establish	whether	stromal	cells	derived	from	patients	could	be	used	to	create	

autologous,	human	feeder	layers.	Secondly,	previous	data	were	gathered	using	epithelial	

cells	that	were	isolated	in	bronchial	epithelial	growth	medium	(BEGM)	for	one	passage	prior	

to	investigation,	so	assessments	of	whether	using	3T3+Y	for	the	isolation	of	airway	epithelial	

cells	were	made	with	the	expectation	that	this	would	increase	the	culture	success	rate	and	

reduce	the	amount	of	time	required	to	establish	cultures.	In	addition,	we	examined	whether	

outgrowth	from	biopsy	samples	was	the	optimal	way	to	isolate	airway	epithelial	cells:	we	

compared	outgrowth	from	biopsy	samples	and	from	single	cell	suspensions	generated	by	

digestion	of	biopsy	samples	and	endobronchial	brushings.	Finally,	the	potential	use	of	3T3-

J2-conditioned	medium	instead	of	co-culture	with	feeder	cells	was	investigated,	as	this	

would	eliminate	the	need	for	direct	contact	with	mouse	cells	and	would	therefore	be	more	

suitable	to	grow	epithelial	cells	for	tissue-engineering	applications.	
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5.2 Aims	

	

• To	investigate	whether	human-derived	stromal	cells	can	replace	3T3-J2	cells	in	co-

culture	protocols.	

• To	investigate	and	to	optimise	the	outgrowth	of	airway	epithelial	cells	from	

endobronchial	biopsy	samples	directly	in	3T3+Y.	

• To	investigate	whether	3T3-J2-conditioned	medium	can	replace	co-culture	with	3T3-

J2	feeder	cells.	
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5.3 Results	

Replacement	of	3T3-J2	feeder	cells	with	alternative	stromal	feeder	cells		

	

The	ability	to	derive	feeder	cells	on	a	patient-specific	basis	rather	than	to	rely	on	a	murine	

embryonic	cell	line	is	appealing	for	translational	purposes,	so	plausible	human	feeder	cell	

candidates	were	investigated	as	a	3T3-J2	replacement.	Human	lung	fibroblasts	were	

assessed	given	the	ease	of	fibroblast	isolation	from	small	patient	tissue	samples	[277]	as	well	

as	human	bone	marrow-derived	mesenchymal	stromal	cells	(MSCs)	because	these	have	

been	used	in	an	autologous	fashion	in	previous	tissue-engineered	airway	grafts	[70,	71].	

Feeder	layers	were	prepared	in	the	same	way	as	for	3T3-J2	cells:	that	is,	stromal	cells	were	

mitotically	inactivated	by	2-hour	treatment	with	mitomycin	C	prior	to	epithelial	cell	seeding	

the	following	day,	and	epithelial	growth	medium	containing	5	μM	Y-27632	was	used	for	co-

cultures.	Promisingly,	colonies	of	epithelial	cells	with	a	similar	morphology	to	those	seen	in	

co-culture	with	3T3-J2	feeder	layers	emerged	during	the	first	passage	in	co-cultures	with	

both	MSCs	and	lung	fibroblasts	(Figure	5.1A),	although	epithelial	cells	appeared	to	

proliferate	more	slowly	on	both	of	the	human	feeder	layers.	Unfortunately,	after	

trypsinisation,	substantial	differences	in	both	cell	morphology	and	cell	number	appeared	

between	the	epithelial	cells	grown	in	co-culture	with	3T3-J2	feeder	layers	and	those	grown	

in	co-culture	with	either	of	the	human	alternatives	(Figure	5.1A).	Flow	cytometry	after	

passage	one	confirmed	that	integrin	α6+/nerve	growth	factor	receptor	(NGFR)+/TROP2+	

airway	basal	cells	were	expanded	in	all	conditions	(Figure	5.1C).	Co-culture	with	alternative	

feeder	cells	induced	higher	levels	of	expression	of	these	basal	stem	cell	markers	compared	

with	BEGM,	although	not	to	the	same	level	as	co-culture	in	3T3+Y	in	the	case	of	NGFR	and	

TROP2	expression.	Although	one	further	passage	of	these	cells	was	possible	(Figure	5.1B),	

these	cells	were	not	tested	in	terms	of	their	differentiation	capacity	because	the	alternative	
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feeder	layers	did	not	improve	cell	expansion	compared	with	BEGM	(Figure	5.1B).	

Additionally,	it	was	noted	that	neither	human	lung	fibroblasts	nor	MSCs	share	the	high	

trypsin	sensitivity	of	3T3-J2	cells	so	reliable	separation	of	feeder	cells	and	epithelial	cells	is	

another	issue	that	would	need	to	be	addressed	in	attempts	to	replace	3T3-J2	feeder	cells.	
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Figure	5.1:	Mitotically	inactivated	allogeneic	human	bone	marrow-derived	MSCs	or	human	lung	fibroblast	
feeder	layers	cannot	replace	3T3-J2	fibroblasts	in	human	airway	basal	cell	culture	protocols.	A)	Representative	
brightfield	images	are	shown	for	airway	epithelial	cells	expanded	in	bronchial	epithelial	growth	media	(BEGM)	or	
in	co-culture	with	3T3+Y,	mitotically	inactivated	human	lung	fibroblasts	+	Y	or	mitotically	inactivated	human	bone	
marrow-derived	mesenchymal	stromal	cells	(MSCs)	+	Y.	Images	were	taken	after	one	passage	in	these	conditions	
(left)	and	after	two	passages	(right).	Scale	bar	=	50	µm.	B)	Cumulative	cell	population	doublings	for	airway	
epithelial	cells	grown	in	these	culture	conditions	are	plotted	over	time	(mean	+/-	SEM).	C)	Flow	cytometry	
confirmed	the	similarity	of	expression	of	the	basal	cell	proteins	integrin	α6,	nerve	growth	factor	receptor	(NGFR)	
and	TROP2	in	cells	cultured	in	these	conditions.	Epithelial	cells	were	gated	by	selection	of	DAPI-,	ITGA6+,	CD90-	
cells	(n	=	3,	representative	plots	shown).	
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Direct	plating	of	biopsy	samples	in	3T3+Y	

	

In	the	absence	of	an	appropriate	alternative	to	3T3-J2	feeder	cells,	methods	were	sought	to	

enhance	the	existing	protocol.	In	all	previous	experiments,	initial	cell	isolation	occurred	in	

BEGM	and	cells	were	subsequently	divided	into	matched	BEGM	and	3T3+Y	co-cultures	for	

comparison	of	these	methods.	Given	the	advantages	of	3T3+Y	compared	with	BEGM	in	

terms	of	proliferation	and	retention	of	basal	progenitor	cell	properties,	cell	isolation	directly	

in	3T3+Y	was	investigated.	Results	confirmed	that,	similarly	to	in	BEGM,	epithelial	cells	can	

be	expanded	from	endobronchial	biopsies	plated	in	3T3+Y	as	explants	(Figure	5.2A).	Also	

similarly	to	in	BEGM,	the	cells	that	expand	from	biopsies	are	CK5+/p63+	basal	epithelial	cells	

(Figure	5.2B-5.2D).	

	

	

	

	

	

	

Figure	5.2:	Direct	expansion	of	human	airway	basal	cells	from	endobronchial	biopsy	samples	in	3T3+Y.	A)	
Brightfield	image	showing	epithelial	cell	outgrowth	from	endobronchial	biopsy	explant	cultured	in	3T3-J2	co-
culture	with	ROCK	inhibition	(3T3+Y).	Scale	bar	=	100	µm.	B)	Immunofluorescence	staining	for	the	basal	cell	
marker	cytokeratin	5	(CK5).	Scale	bar	=	50	µm.	C)	Immunofluorescence	staining	for	the	basal	cell	marker	p63.	
Scale	bar	=	50	µm.	D)	Immunofluorescence	staining	for	the	proliferation	marker	Ki67.	Scale	bar	=	50	µm.	DAPI	is	
used	as	a	counterstain.	
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Although	airway	basal	cells	could	be	expanded	from	explant	biopsies	directly	in	3T3+Y,	the	

culture	time	for	satisfactory	epithelial	cell	outgrowth	from	biopsies	remained	at	10-14	days,	

which	is	similar	to	the	time	taken	for	cell	outgrowth	from	a	biopsy	in	BEGM.	Reducing	this	

lag	time	is	significant	for	translational	applications	as	some	tissue-engineering	indications	

are	urgent	[71,	81].	In	single,	large	explant	biopsy	cultures,	epithelial	cells	effectively	migrate	

from	the	biopsy	as	a	continuous	sheet	across	the	culture	plastic	(Figure	5.3A).	Seeding	single	

cells	was	therefore	investigated	as	an	alternative	with	the	aim	that	multiple	epithelial	cell	

colonies	would	form	and	proliferate,	yielding	a	greater	number	of	cells	more	quickly.	This	

was	achieved	either	through	the	enzymatic	digestion	of	endobronchial	biopsy	samples	to	

achieve	a	cell	suspension	that	could	then	be	plated	in	co-culture	or	through	using	a	cell	

suspension	derived	directly	from	an	endobronchial	brushing	sample.	As	expected,	these	new	

methods	allow	single	basal	cells	to	form	independent	colonies	from	the	very	beginning	of	

culture	and	mean	that	the	rapid	expansion	of	cells	begins	earlier	than	from	an	explant	

biopsy.	Indeed,	cultures	derived	from	either	a	biopsy	following	digestion	or	from	a	brushing	

yield	significantly	higher	numbers	of	cells	in	3T3+Y	than	those	derived	from	an	explant	

biopsy	(Figure	5.3C).	In	all	conditions,	the	expansion	of	integrin	α6+/CK5+	airway	basal	

epithelial	cells	was	demonstrated	using	flow	cytometry	(Figure	5.3D).	

	

Next,	the	success	rate	of	cultures	in	these	conditions	was	compared	as,	from	experience	of	

expanding	cells	in	BEGM,	we	knew	that	not	all	biopsies	that	are	plated	in	culture	yield	

successful	epithelial	cell	cultures.	In	our	laboratory,	the	success	rate	of	epithelial	cell	

expansion	from	explant	biopsies	is	around	50%	in	BEGM.	Here,	I	show	that	3T3+Y	culture	

enables	a	greater	culture	success	rate	for	biopsy	explant	than	BEGM,	with	successful	

epithelial	cultures	established	from	88%	of	biopsies	grown	in	these	conditions.	The	success	

rate	for	establishing	cultures	was	particularly	high	in	3T3+Y	when	single	cells	were	seeded	
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rather	than	explant	biopsies,	with	88%	and	94%	of	digested	biopsies	and	brushings,	

respectively,	giving	rise	to	epithelial	cultures	(Figure	5.3B).		

	

Investigation	of	3T3-J2-conditioned	medium	as	a	co-culture	alternative	

	

In	these	experiments	the	effect	of	using	3T3-J2-conditioned	medium	(CM+Y)	in	place	of	3T3-

J2	co-culture	was	investigated	as	this	could	be	preferable	in	a	translational	setting:	epithelial	

cells	could	be	expanded	without	contamination	with	murine	feeder	cells	even	in	the	absence	

of	a	detailed	understanding	of	the	active	components.	To	generate	conditioned	medium,	

3T3-J2	feeder	layers	were	prepared	using	mitomycin	C,	seeded	at	feeder	density	overnight	

and	epithelial	culture	medium	(without	Y-27632)	was	added	the	following	day.	Medium	was	

collected	and	replaced	after	24	hours	and	collected	again	after	48	hours,	based	on	a	

published	protocol	[278].	5	μM	Y-27632	was	added	to	the	conditioned	medium	and	it	was	

filtered	and	frozen	at	-80°C	for	future	use.	Basal	airway	epithelial	cells	expressing	integrin	α6	

and	CK5	could	be	isolated	in	3T3-J2-conditioned	medium	containing	5	μM	Y-27632	(Figure	

5.3A	and	5.3D)	with	the	same	(in	the	case	of	endobronchial	brushings)	or	slightly	lower	(in	

the	case	of	biopsy	or	digested	biopsy	samples)	culture	success	rates	than	direct	3T3+Y	co-

culture	(Figure	5.3B).	Similar	numbers	of	epithelial	cells	grew	from	biopsy	explants	or	

brushings	in	CM+Y	compared	with	3T3+Y.	Interestingly,	significantly	fewer	cells	grow	from	

digested	biopsies	when	they	were	plated	in	CM+Y	than	when	in	3T3+Y,	suggesting	that	the	

full	effect	of	co-culture	is	not	replicated	by	the	conditioned	medium	approach	(Figure	5.3C).	
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Figure	5.3:	Comparison	of	epithelial	cell	outgrowth	from	endobronchial	biopsy	samples	and	brushings	in	3T3+Y	
and	using	3T3-J2	feeder	cell-conditioned	medium.	A)	Brightfield	images	show	successful	epithelial	cell	
outgrowth	from	explant	endobronchial	biopsy,	enzymatically	digested	biopsy	and	endobronchial	brushing	
samples.	Scale	bar	=	50	µm.	B)	Comparison	of	culture	success	rate	in	either	3T3+Y	co-culture	with	ROCK	inhibition	
(3T3+Y)	or	using	3T3-J2-conditioned	medium	(CM+Y).	C)	Comparison	of	epithelial	cell	numbers	generated	after	
12	days	of	culture	in	either	3T3+Y	direct	co-culture	or	3T3-J2-conditioned	medium.	Statistical	analysis	was	
performed	using	a	two-way	ANOVA	with	Bonferroni	post-test;	mean	+/-	SEM;	*	indicated	p	<	0.05,	****	
p<0.0001;	n	=	8-14.	D)	Flow	cytometric	analysis	shows	that	integrin	α6-	and	CK5-expressing	basal	epithelial	cells	
are	expanded	in	all	of	these	conditions.	

	

Having	isolated	airway	basal	cells	from	biopsies,	digested	biopsies	and	brushings	in	3T3+Y	or	

in	3T3-J2-conditioned	medium,	these	cells	were	passaged	to	confirm	that	further	expansion	

was	possible	in	line	with	previous	findings	using	BEGM-isolated	basal	cells.	Cells	in	all	

conditions	could	be	expanded	at	passage	one	and	colonies	appeared	morphologically	

similar,	although	some	epithelial	cells	began	to	appear	larger	and	flatter	in	3T3-J2-

conditioned	medium,	suggesting	that	the	culture	may	not	be	as	‘healthy’	as	that	in	3T3+Y	co-

culture	(Figure	5.4A).	Passage	one	cells	maintained	their	expression	of	the	basal	cell	markers	

integrin	α6	and	CK5	(Figure	5.4B)	and	cells	isolated	and	cultured	in	3T3+Y	co-culture	

maintained	a	proliferative	advantage	over	those	isolated	and	cultured	in	3T3-J2-conditioned	

medium	(Figure	5.4C).	
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Figure	5.4:	Comparison	of	epithelial	cell	expansion	after	passage	in	3T3+Y	and	using	3T3-J2	feeder	cell-
conditioned	medium.	A)	Brightfield	images	show	the	similar	morphology	of	epithelial	cells	grown	in	3T3-J2	co-
culture	(3T3+Y)	and	in	3T3-J2-conditioned	medium	(CM+Y)	after	one	passage.	Scale	bar	=	50	µm.	B)	Flow	
cytometric	analysis	confirms	the	maintenance	of	integrin	α6	and	cytokeratin	5	(CK5)	expression	in	all	conditions	
after	one	passage.	C)	Summary	data	show	the	increased	number	of	cells	generated	from	direct	3T3-J2	co-culture	
compared	with	culture	in	3T3-J2-conditioned	medium.	Statistical	analysis	was	performed	using	a	two-way	
ANOVA	with	Bonferroni	post-test;	mean	+/-	SEM;	*	indicates	p	<	0.05;	**	p	=	0.01,	****	p<0.0001;	n	=	6-13.	

	

	

These	conditioned	medium	experiments	suggested	that	cell-cell	contact	between	3T3-J2	

feeder	cells	and	airway	epithelial	cells	is	necessary	for	the	maximal	proliferative	effect	of	co-

culture.	This	was	in	contrast	to	experiments	performed	in	epidermal	keratinocytes	that	

suggest	that	secreted	factors	mediate	the	full	effect	of	3T3-J2	feeder	cells	and	that	cell-cell	

contact	is	not	necessary	[278].	To	clarify	this,	the	colony-forming	efficiency	of	matched	

epithelial	cells	was	compared	when	3T3-J2s	were	in	direct	co-culture,	3T3-J2	cells	were	

physically	separated	from	epithelial	cells	by	a	transwell	membrane	or	3T3-J2-conditioned	

medium	was	used	[279].	Results	demonstrated	that,	while	conditioned	medium	did	allow	

the	formation	of	epithelial	colonies,	it	was	less	efficient	than	either	condition	in	which	3T3-
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J2	feeder	cells	were	present	(Figure	5.5).	The	similarity	in	the	number	of	colonies	formed	in	

the	conditions	in	which	epithelial	cells	were	in	direct	contact	with	the	epithelial	cells	and	in	

which	they	were	separated	by	a	transwell	membrane	supports	the	conclusion	that	diffusible	

factors	co-operate	with	ROCK	inhibition	to	improve	epithelial	cell	expansion	[278].	However,	

the	difference	between	the	number	of	epithelial	cell	colonies	generated	in	3T3-J2-

conditioned	medium	and	in	cultures	in	which	transwell	separation	was	used	implies	that	

epithelial	cells	require	a	continuous	supply	of	feeder	cell	factor(s),	which	was	not	recreated	

by	the	3T3-J2-conditioned	medium	culture,	in	which	cells	were	re-fed	every	two	days.	An	

interesting	future	experiment	could	demonstrate	this	conclusively	by	design	of	a	bioreactor	

system	in	which	epithelial	growth	medium	flows	across	3T3-J2	feeder	cells	in	one	chamber	

and	then	feeds	epithelial	cells	in	a	physically	separate	adjacent	chamber.	

	

Overall,	alternative	adult	human	feeder	cells	that	could	be	used	in	an	autologous	manner	in	

patients	were	unable	to	recapitulate	the	effect	of	3T3-J2	mouse	embryonic	feeder	cells	on	

the	growth	of	airway	basal	cells.	However,	expanding	epithelial	cells	from	endobronchial	

biopsies	and	brushing	samples	directly	in	3T3+Y,	rather	than	initially	in	BEGM	as	previously	

has	been	done,	allowed	a	further	reduction	in	epithelial	cell	culture	time.	Additionally,	a	

continuous	supply	of	3T3-J2	feeder	cell-secreted	factors	appeared	to	be	critical	for	the	

improvement	in	epithelial	cell	expansion.		
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Figure	5.5:	Colony-forming	experiments	reveal	that	a	secreted	factor	mediates	the	effects	of	3T3-J2	feeder	cells	
on	human	epithelial	cells.	A)	Representative	images	of	colony-forming	experiments	comparing	the	effect	of	3T3-
J2-conditioned	medium	(CM+Y),	co-culture	with	3T3-J2	feeder	cells	physically	separated	from	human	epithelial	
cells	by	a	transwell	system	and	direct	co-culture	of	3T3-J2	feeder	cells	and	human	epithelial	cells.	B)	Summary	
data	of	colony-forming	experiments	(3	donors	repeated	in	triplicate;	mean	+/-	SD).	Statistical	analysis	was	
performed	using	a	one-way	ANOVA	with	Bonferroni	post-test;	mean	+/-	SEM;	*	indicates	p	<	0.05;	***	p	=	0.001,	
****	p<0.0001;	n	=	6-13.	
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5.4 Summary	

	

• Feeder	layers	consisting	of	allogeneic	human	bone	marrow	MSCs	or	human	lung	

fibroblasts	do	not	successfully	recreate	the	co-culture	conditions	provided	by	3T3+Y.	

• Human	airway	basal	cells	can	be	expanded	by	plating	endobronchial	biopsy	samples	

directly	in	3T3+Y.	

• Plating	single	cell	suspensions	from	either	digested	endobronchial	biopsy	samples	or	

from	endobronchial	brushings	in	3T3+Y	expands	the	greatest	number	of	epithelial	

cells	in	the	shortest	time.	

• Although	the	remarkable	effects	of	3T3+Y	are	mediated	by	factors	secreted	by	3T3-

J2	fibroblasts,	3T3-J2-conditioned	medium	could	not	fully	recreate	the	effect	of	co-

culture.	
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6 .	Stromal-epithelial	crosstalk	

between	co-cultured	3T3-J2	

fibroblasts	and	primary	human	

basal	cells	
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6.1 Background	

	

Having	established	a	methodology	to	expand	large	numbers	of	primary	human	airway	

epithelial	cells	using	3T3-J2	co-culture,	I	sought	to	characterise	stromal-epithelial	cell	

interactions	during	co-culture	with	a	view	to	understanding	their	molecular	basis.	Data	from	

Chapter	5	show	that	3T3-J2	feeder	cells	mediate	their	effects	through	a	secreted	factor;	

however,	the	identity	of	this	factor(s)	remains	unclear.	Understanding	the	mechanisms	

underlying	the	effects	of	3T3-J2	co-culture	is	important	for	several	reasons.	First,	knowledge	

of	the	factor(s)	that	mediate	the	effects	of	3T3-J2	fibroblasts	would	offer	the	potential	to	

manufacture	a	medium	containing	the	relevant	factor(s)	and	to	use	this	instead	of	3T3-J2	co-

culture	to	expand	airway	epithelial	cells.	This	would	be	useful	for	epithelial	cell	research	in	

general	as	it	would	remove	the	need	to	maintain	3T3-J2s	and	to	differentially	trypsinise	

them	to	avoid	the	risk	of	them	contaminating	downstream	assays.	In	addition,	it	would	be	

really	useful	for	expanding	epithelial	cells	for	tissue-engineering	applications	as	replacing	the	

3T3-J2	feeder	layer	with	a	defined	medium	would	be	much	more	compliant	with	good	

manufacturing	practices.	Second,	understanding	how	3T3-J2	feeder	cells	confer	increased	

stem	cell	capacity	and	growth	potential	to	epithelial	cells	may	give	clues	as	to	the	

mechanisms	behind	stromal	and	epithelial	cell	crosstalk	in	vivo.	

	

Despite	many	decades	of	research	using	3T3-J2	co-culture	to	expand	human	epidermal	

keratinocytes	in	vitro	[190],	the	factor(s)	responsible	for	their	remarkable	effects	on	stem	

cell	maintenance	are	still	not	completely	understood	and	feeder-free	alternative	culture	

systems	are	still	not	able	to	replace	feeder	cells	using	defined	factors	[280].	I	sought	to	

characterise	the	nature	of	3T3-J2	support	for	primary	human	airway	basal	cells	and	to	

identify	factors	from	fibroblast	feeder	cells	that	affect	epithelial	cells.	While	not	prohibitive,	
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co-culture	with	xenogeneic	cells	is	not	ideal	for	clinical	translation	of	this	culture	system	and	

understanding	the	signalling	pathways	involved	might	allow	us	to	replace	co-culture	with	an	

equally	effective	defined	medium.	

	

	

6.2 Aims	

	

• To	investigate	the	receptors	that	are	activated	on	airway	epithelial	cells	in	response	

to	the	factors	secreted	by	3T3-J2	cells.	

• To	investigate	the	nature	of	feeder	cell	secretions	that	signal	to	airway	epithelial	

cells	in	co-culture.	

• To	identify	the	downstream	signalling	pathways	that	are	responsible	for	the	3T3-J2-

secreted	factor(s)’s	mode	of	action.	

• To	investigate	whether	the	growth	advantages	conferred	on	airway	epithelial	cells	

by	co-culture	with	3T3-J2	feeder	cells	can	be	reversed	by	inhibition	of	these	

signalling	pathways.	
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6.3 Results	

The	HGF	receptor,	MET,	is	activated	by	3T3-J2-conditioned	medium	

	

As	the	effects	of	3T3-J2	cells	appear	to	be	mediated	by	secreted	factors,	a	receptor	tyrosine	

kinase	activation	array	[281]	was	performed	on	primary	human	basal	epithelial	cells	

stimulated	with	medium	conditioned	by	3T3-J2	fibroblasts.	Strong	activation	of	the	

epidermal	growth	factor	receptor	(EGFR)	and	the	insulin-like	growth	factor	1	receptor	

(IGF1R)	was	observed	in	cells	stimulated	with	both	base	medium	and	conditioned	medium,	

consistent	with	the	inclusion	of	EGF	and	insulin	in	the	base	medium	(Figure	6.1A).	However,	

we	found	that	the	hepatocyte	growth	factor	receptor	(HGFR/MET)	was	strongly	activated	by	

conditioned	medium	but	not	by	base	medium	alone	(Figure	6.1A).	MET	activation	by	3T3-J2-

conditioned	medium	was	validated	by	western	blot,	analysing	three	phosphorylation	sites:	

tyrosine	1003	(Y1003),	which	leads	to	receptor	ubiquitination	and	recycling	via	endosomal	

pathways	[282],	and	Y1234/Y1235,	which	lies	within	the	activation	loop	of	MET’s	tyrosine	

kinase	domain,	were	strongly	phosphorylated,	while	Y1349,	an	autophosphorylation	site	

(Figure	6.1B)	that	generates	a	multisubstrate-docking	site	[283],	showed	less	marked	

phosphorylation	(Figure	6.1C).		

	

	

	

	

	

	

	

	



133	

 

	

	

	

	

Figure	6.1:	Activation	of	the	HGF	receptor,	MET,	by	3T3-J2-conditioned	medium.	A)	Receptor	tyrosine	kinase	
array	analysis	of	primary	human	airway	epithelial	cells	stimulated	for	30	minutes	with	3T3-J2	feeder	cell-
conditioned	medium.	Specific	activation	of	the	hepatocyte	growth	factor	(HGF)	receptor,	MET,	on	Y1234/Y1235	
was	observed	in	cells	stimulated	with	3T3-J2-conditioned	medium	both	in	the	presence	or	in	the	absence	of	Rho-
associated	protein	kinase	(ROCK)	inhibition	using	Y-27632.	B)	Schematic	representation	of	MET	receptor	
structure	showing	relevant	phosphorylation	sites.	C)	Western	blot	confirmation	in	independent	lysates	of	MET	
phosphorylation	following	stimulation	of	primary	human	airway	epithelial	cells	with	3T3-J2	feeder	cell-
conditioned	medium	for	30	minutes.	
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Having	established	that	MET	is	phosphorylated	in	response	to	3T3-J2-conditioned	medium,	I	

hypothesised	that	HGF,	the	ligand	for	MET,	may	be	the	3T3-J2-secreted	factor	that	confers	

increased	growth	potential	in	airway	epithelial	cells.	Consistent	with	HGF-mediated	crosstalk	

between	fibroblasts	and	epithelial	cells,	the	amount	of	HGF	secreted	into	culture	medium	by	

feeder	cells	increased	over	time	following	mitotic	inactivation	(Figure	6.2A)	and	the	amount	

of	HGF	mRNA	in	3T3-J2	cells	also	increased	during	the	first	24	hours	following	mitotic	

inactivation	(Figure	6.2B).	

	

	

	

Figure	6.2:	HGF	is	produced	by	3T3-J2	feeder	cells	following	mitotic	inactivation	but	does	not	affect	human	
airway	basal	cell	proliferation.	A)	ELISA	quantification	of	hepatocyte	growth	factor	(HGF)	secreted	into	culture	
medium	by	3T3-J2	feeder	cells	following	mitotic	inactivation	with	mitomycin	C	(MMC).	Medium	was	collected	
and	replaced	with	fresh	medium	after	24	and	48	hours	(n	=	4;	mean	+/-	SEM;	*	indicates	p	<	0.05,	**	indicates	p	<	
0.01).	B)	Quantification	of	HGF	mRNA	levels	in	3T3-J2	feeder	cells	following	mitotic	inactivation	with	mitomycin	
C.	(n	=	3;	mean	+/-	SEM).	C)	Flow	cytometric	analysis	of	EdU	uptake	in	primary	human	airway	epithelial	cells	
treated	with	either	epithelial	culture	medium	alone,	3T3-J2-conditioned	epithelial	growth	medium	or	the	same	
medium	containing	100	nM	PF-0421903,	a	small	molecule	MET	inhibitor	(n	=	3;	mean	+/-	SEM).	
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Murine	HGF	activates	intracellular	signalling	but	does	not	affect	basal	cell	proliferation	

	

Previous	work	suggests	that	murine	HGF	does	not	exert	biological	effects	in	human	cells	as	a	

result	of	a	failure	to	initiate	autophosphorylation	of	the	multisubstrate-docking	site	[284].	To	

investigate	whether	this	was	true	in	our	co-culture	system,	I	investigated	proliferation	of	

airway	epithelial	cells	by	analysing	EdU	incorporation.	3T3-J2-conditioned	medium	induced	

an	increase	in	the	proliferation	of	epithelial	cells	compared	with	medium	alone,	which	is	

consistent	with	data	in	Chapter	4	showing	that	3T3-J2	co-culture	increases	the	proliferation	

of	epithelial	cells.	Consistent	with	the	idea	that	murine	HGF	does	not	have	an	effect	in	

human	cells,	I	discovered	that	inhibition	of	MET,	using	the	small	molecule	MET	inhibitor	PF-

04217903	[248],	did	not	reduce	the	increased	epithelial	cell	proliferation	induced	by	3T3+Y-

conditioned	medium	(Figure	6.2C).		

	

However,	upon	investigation	of	the	phosphorylation	status	of	MET	downstream	effector	

proteins	such	as	focal	adhesion	kinase	(FAK;	Figure	6.3A)	and	GRB2-associated-binding	

protein	1	(GAB1;	Figure	6.3B),	I	identified	phosphorylation	sites	that	were	activated	by	3T3-

J2-conditioned	medium,	hinting	that	a	subset	of	intracellular	MET	signalling	events	might	

continue	as	a	result	of	stimulation	of	the	human	MET	receptor	with	murine	HGF.	Focal	

adhesion	kinase	was	not	investigated	further	as	the	phosphorylation	site	that	appeared	to	

be	activated	was	a	higher	molecular	weight	than	the	total	FAK	protein	(middle	band	in	

phospho-Y925	blot;	Figure	6.3A	and	6.3C).	I	was,	however,	able	to	identify	the	

phosphorylated	protein	apparent	in	GAB1	blots	as	the	related	adapter	protein	GAB2	(Figure	

6.3C);	a	finding	that	resulted	from	antibody	cross-reactivity.	As	GAB2	is	known	to	

phosphorylate	and	activate	the	transcription	factor	signal	transducer	and	activator	of	

transcription	6	(STAT6)	in	differentiated	airway	goblet	cells	[285],	the	phosphorylation	status	

of	STAT6	in	response	to	stimulation	with	3T3-J2-conditioned	medium	was	determined.	
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STAT6	was	robustly	phosphorylated	in	epithelial	cells	treated	with	conditioned	medium	with	

and	without	the	ROCK	inhibitor,	while	no	STAT6	phosphorylation	was	observed	in	cells	

treated	with	medium	only	(Figure	6.3C).	Importantly,	the	phosphorylation	events	of	FAK,	

GAB2	and	STAT6	were	reversible	by	inhibition	of	MET	using	PF-04217903	(Figure	6.3C),	

suggesting	that	HGF	is	the	factor	responsible	for	activation	of	these	proteins	and	that,	

although	it	is	not	responsible	for	the	increased	epithelial	cell	proliferation	induced	by	3T3-J2	

co-culture,	it	might	induce	some	functional	response	in	epithelial	cells.	

	

	

	

Figure	6.3:	Activation	of	signalling	pathways	downstream	of	MET	in	human	airway	epithelial	cells	following	
stimulation	with	3T3-J2-conditioned	medium.	A)	Western	blot	analysis	of	focal	adhesion	kinase	(FAK)	
phosphorylation	following	stimulation	of	human	airway	epithelial	cells	with	3T3-J2-conditioned	medium	for	30	
minutes.	B)	Western	blot	analysis	of	GRB2-associated-binding	protein	1	(GAB1)	phosphorylation	status	following	
stimulation	of	human	airway	epithelial	cells	with	3T3-J2-conditioned	medium	for	30	minutes.	C)	Western	blot	
analyisis	of	MET,	FAK,	GAB2	and	signal	transducer	and	activator	of	transcription	6	(STAT6)	phosphorylation	status	
following	stimulation	of	human	airway	epithelial	cells	with	3T3-J2-conditioned	medium	for	30	minutes	in	the	
presence	of	100	nM	PF-04217903,	a	small	molecule	MET	inhibitor.	
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Human	HGF	phosphorylates	STAT6	in	human	airway	basal	cells	

	

The	phosphorylation	events	described	above	could	be	explained	by	the	presence	of	co-

factors	in	conditioned	medium	or	by	the	non-physiological	action	of	murine	HGF	on	the	

human	MET	receptor.	To	address	this	point,	the	same	phosphorylation	sites	of	MET,	GAB2	

and	STAT6	were	investigated	in	cells	stimulated	with	recombinant	human	HGF.	All	sites	were	

phosphorylated,	including	the	autophosporylated	multisubstrate-docking	domain	that	was	

inefficiently	activated	by	murine	HGF	in	3T3-J2-conditioned	medium	(Figure	6.4A).	GAB2	and	

STAT6	activation	in	response	to	human	HGF	was	dependent	on	MET	as	PF-0421903	again	

prevented	their	activation	(Figure	6.4B).	Experiments	were	initially	performed	using	a	high	

concentration	of	50	ng/ml	HGF	but	a	titration	of	recombinant	HGF	concentration	revealed	

that	STAT6	was	phosphorylated	by	concentrations	of	HGF	above	5	ng/ml	(Figure	6.4C).	

Phosphorylation	of	MET,	GAB2	and	STAT6	was	maximal	around	30	minutes	following	

stimulation	with	HGF	and	was	sustained	for	approximately	8	hours	but	had	disappeared	by	

24	hours	(Figure	6.5).	Given	the	similarity	of	the	timecourses	for	MET,	GAB2	and	STAT6,	it	is	

likely	that	availability	of	recombinant	protein	in	the	medium	is	the	limiting	factor	causing	the	

cessation	of	signalling	(Figure	6.5).		
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Figure	6.4:	Phosphorylation	of	MET,	GAB2	and	STAT6	in	response	to	recombinant	human	HGF.	A)	Western	blot	
analysis	of	MET,	GRB2-associated-binding	protein	2	(GAB2)	and	signal	transducer	and	activator	of	transcription	6	
(STAT6)	phosphorylation	status	in	human	airway	epithelial	cells	stimulated	with	50	ng/ml	recombinant	human	
hepatocyte	growth	factor	(HGF)	for	30	minutes.	B)	Western	blot	analyisis	of	MET,	GAB2	and	STAT6	
phosphorylation	status	following	stimulation	of	human	airway	epithelial	cells	with	50	ng/ml	recombinant	human	
HGF	for	30	minutes	in	the	presence	of	100	nM	PF-04217903,	a	small	molecule	MET	inhibitor.	C)	Western	blot	
analysis	of	STAT6	phosphorylation	status	in	response	to	various	doses	of	recombinant	human	HGF	for	30	
minutes.	
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Figure	6.5:	Timecourse	of	MET,	GAB2	and	STAT6	phosphorylation	in	human	airway	epithelial	cells	in	response	
to	recombinant	human	HGF.	A)	Western	blot	analysis	of	the	phosphorylation	status	of	MET	over	time	following	
stimulation	with	50	ng/ml	recombinant	human	hepatocyte	growth	factor	(HGF).	B)	Western	blot	analysis	of	the	
phosphorylation	status	of	GRB2-associated-binding	protein	2	(GAB2)	over	time	following	stimulation	with	50	
ng/ml	recombinant	human	HGF.	C)	Western	blot	analysis	of	the	phosphorylation	status	of	signal	tranducer	and	
activator	of	transcription	6	(STAT6)	over	time	following	stimulation	with	50	ng/ml	recombinant	human	HGF.	
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HGF-induced	STAT6	phosphorylation	is	not	dependent	on	GAB2	

	

Although	cooperation	between	interleukin-4	(IL-4)/IL-13-driven	STAT6	activation	and	MET	

signalling	has	previously	been	shown	[286],	the	direct	activation	of	STAT6	in	response	to	

HGF	is	novel	so	I	next	examined	the	mechanism	of	STAT6	activation.	A	previous	report	that	

GAB2	phosphorylates	STAT6	downstream	of	IL-13	in	airway	epithelia	[285]	prompted	the	

investigation	of	a	MET-GAB2-STAT6	pathway,	in	which	MET	phosphorylates	GAB2,	which	

results	in	the	phosphorylation	of	STAT6.	I	used	siRNA	to	knock	down	GAB2	in	airway	

epithelial	cells.	3	nM	siRNA	caused	some	knowndown	of	GAB2	compared	with	non-silencing	

siRNA,	but	expression	was	almost	entirely	knocked	down	with	5	nM	siRNA	(Figure	6.6A)	so	

this	concentration	with	used	for	subsequent	studies.	Interestingly,	knockdown	of	GAB2	using	

siRNA	did	not	affect	MET-induced	STAT6	activation	(Figure	6.6B),	suggesting	that	

phosphorylation	of	STAT6	is	not	dependent	on	GAB2.		

	

As	STAT3	binds	directly	to	the	MET	receptor	via	its	SH2	domain	[287,	288]	and	STAT6	also	

contains	an	SH2	domain	[289],	co-immunoprecipitation	experiments	were	performed	to	

determine	whether	STAT6	binds	to	MET	following	the	phosphorylation	induced	by	

stimulation	with	HGF.	Successful	pull-down	of	MET	was	achieved,	as	MET	can	clearly	be	seen	

in	the	immunoprecipitation	fraction	but	not	in	the	supernatant.	However,	neither	STAT6	nor	

phosphorylated	STAT6	could	be	detected	in	MET	pull-downs	(Figure	6.6C),	suggesting	that	

no	complex	of	MET	and	STAT6	exists	following	stimulation	with	HGF.	
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Figure	6.6:	Investigation	of	the	mechanism	of	HGF-induced	STAT6	phosphorylation	in	human	airway	epithelial	
cells.	A)	Western	blot	analysis	showing	knockdown	of	GRB2-associated-binding	protein	2	(GAB2)	using	5	nM	anti-
GAB2	siRNA	compared	with	non-silencing	RNA.	α-tubulin	was	used	as	a	loading	control.	B)	Western	blot	analysis	
of	signal	transducer	and	activator	of	transcription	6	(STAT6)	phosphorylation	status	in	cells	treated	with	either	5	
nM	non-silencing	siRNA	or	5	nM	anti-GAB2	siRNA.	Unstimulated	primary	human	airway	epithelial	cells	were	
compared	to	matched	cells	stimulated	with	50	ng/ml	recombinant	human	hepatocyte	growth	factor	(HGF).	C)	
Western	blot	analysis	of	co-immunoprecipitation	experiment.	Unstimulated	primary	human	airway	epithelial	
cells	were	compared	to	matched	cells	stimulated	with	10	ng/ml	recombinant	human	HGF.	MET	was	
immunoprecipitated	using	Dynabeads	and	the	supernatant	retained.	STAT6	was	not	co-immunoprecipitated	with	
MET	but	was	instead	found	in	the	unbound	protein	fraction.	
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HGF	promotes	GM-CSF	and	IL-8	secretion	from	human	airway	basal	cells		

	

As	STAT6	controls	the	transcriptional	response	of	epithelial	cells	following	stimulation	with	

IL-4	or	IL-13	[290],	the	effect	of	HGF-induced	STAT6	signalling	on	airway	basal	cell	cytokine	

secretion	was	analysed	using	an	array	panel.	Increased	secretion	of	the	neutrophil	

chemoattractants	granulocyte/macrophage	colony-stimulating	factor	(GM-CSF)	and	IL-8	

[291,	292]	was	found	following	stimulation	with	HGF	(Figure	6.7A).	Interestingly,	baseline	

secretion	was	restored	in	the	presence	of	the	MET	inhibitor	PF-0421903	or	the	STAT6	small	

molecule	inhibitor	AS-1517499	(Figure	6.7A)	[293,	294].	These	results	were	confirmed	by	

ELISA	in	additional	human	donor	cell	cultures	and	the	same	pattern	of	secretion	was	

observed	(Figure	6.7B).	At	the	level	of	gene	expression,	HGF	treatment	of	serum-starved	

human	airway	basal	cells	causes	upregulation	of	transcription	of	both	GM-CSF	(Figure	6.7C)	

and	IL-8	(Figure	6.7D)	and	STAT6	inhibition	appeared	to	cause	a	dose-dependent	decrease	in	

the	expression	of	both	of	these	genes	(Figure	6.7C	and	6.7D).	Taken	together,	these	results	

suggest	that	phosphorylation	of	MET	and	STAT6	following	stimulation	with	HGF	induces	an	

increase	in	the	expression	and	secretion	of	IL-8	and	GM-CSF.	
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Figure	6.7:	HGF	causes	an	increase	in	the	transcription	and	the	secretion	of	GM-CSF	and	IL-8	in	cultured	human	
airway	epithelial	cells.	A)	Cytokine	array	analysis	of	primary	human	airway	epithelial	cells	stimulated	with	either	
vehicle	control,	10	ng/ml	recombinant	human	hepatocyte	growth	factor	(HGF),	10	ng/ml	recombinant	human	
HGF	and	250	nM	PF-04217903	(a	MET	inhibitor)	or	10	ng/ml	recombinant	human	HGF	and	10	μM	AS-1517499	(a	
STAT6	inhibitor).	B)	ELISA	quantification	of	granulocyte/macrophage	colony-stimulating	factor	(GM-CSF;	upper)	
and	interleukin-8	(IL-8;	lower)	secretion	into	culture	medium	in	independent	primary	human	airway	epithelial	cell	
cultures	stimulated	with	either	vehicle	control,	10	ng/ml	recombinant	human	HGF,	10	ng/ml	recombinant	human	
HGF	and	250	nM	PF-04217903	or	10	ng/ml	recombinant	human	HGF	and	10	μM	AS-1517499	(n	=	4-9	donors;	
mean	+/-	SEM).	Statistical	analysis	was	performed	using	a	one-way	ANOVA	(with	Bonferroni’s	post-test)	
comparing	each	group	with	HGF-treated	cells;	**	indicates	p	<	0.01,	***	indicates	p	<	0.001.	C)	qPCR	
quantification	of	GM-CSF	gene	expression	in	primary	human	airway	epithelial	cells	following	stimulation	with	10	
ng/ml	recombinant	human	HGF	and	various	doses	of	AS-1517499	(n	=	1	donor	performed	in	technical	triplicate;	
mean	+/-	SEM).	D)	qPCR	quantification	of	IL-8	gene	expression	in	primary	human	airway	epithelial	cells	following	
stimulation	with	10	ng/ml	recombinant	human	HGF	and	various	doses	of	AS-1517499	(n	=	1	donor	performed	in	
technical	triplicate;	mean	+/-	SEM).	

	



144	

 

HGF-induced	IL-8	expression	is	STAT6	independent	

	

To	confirm	that	induction	of	STAT6-dependent	transcription	is	indeed	induced	by	HGF	

stimulation,	I	established	a	luciferase	reporter	assay.	As	reporter	assays	are	well	established	

in	cancer	cell	lines	in	our	laboratory,	the	utility	of	using	cancer	cell	lines	as	a	system	to	study	

HGF-dependent	STAT6-dependent	transcription	was	investigated.	HGF	caused	STAT6	

phosphorylation	in	both	A549	(lung	adenocarcinoma)	and	A431	(epidermoid	carcinoma)	

cancer	cell	lines	but	did	not	phosphorylate	STAT6	in	human	lung	fibroblasts	(Figure	6.8A);	

these	were	included	as	a	control	due	to	their	lack	of	expression	of	the	HGF	receptor	MET	

[295].	These	results	show	that	HGF-dependent	STAT6	phosphorylation	is	not	restricted	to	

primary	airway	epithelial	cells	but	is	also	true	for	at	least	A549	and	A431	cancer	cell	lines.	

These	results	also	suggested	that	a	cancer	cell	line	could	be	used	to	further	investigate	

STAT6-dependent	transcription	instead	of	primary	airway	epithelial	cells.	To	do	so,	a	STAT6	

consensus	sequence	luciferase	reporter	vector	–	p4xSTAT6-Luc2P	–	was	used.	This	construct	

contains	four	tandem	repeats	of	STAT6/cEBP-binding	sites	(TTCN4GAA)	from	the	human	

germline	ε	promoter	sequence	upstream	of	the	luciferase	gene.	A431	cells	transfected	with	

this	STAT6	luciferase	reporter	plasmid	were	incubated	with	either	a	vehicle	control,	50	

ng/ml	recombinant	human	HGF	or	50	ng/ml	recombinant	human	IL-13,	which	was	used	as	a	

positive	control	given	that	IL-13	is	known	to	have	a	role	in	activating	STAT6-dependent	

transcription	in	epithelial	cells	[59,	296].	After	3	hours,	the	activity	of	the	luciferase	reporter	

was	assayed	using	a	luminometer.	Results	showed	that	stimulation	of	cells	with	IL-13	

induced	strong	expression	of	luciferase,	while	recombinant	human	HGF	had	no	effect	on	the	

expression	of	luciferase	(Figure	6.8B),	indicating	that	HGF	does	not	activate	STAT6-

dependent	transcription	at	this	time	point.	To	ensure	that	HGF-induced	STAT6	transcription	

does	not	occur	at	an	earlier	time	point,	this	experiment	was	repeated	at	four	earlier	time	

points.	IL-13	induced	luciferase	expression	after	15	minutes	but	no	induction	of	luciferase	
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expression	was	seen	in	response	to	HGF	stimulation	in	any	of	the	time	points	investigated	

(Figure	6.8C).	

	

	

Figure	6.8:	Establishment	of	a	firefly	luciferase	STAT6	reporter	assay	in	A431	cancer	cells.	A)	Western	blot	
analysis	of	STAT6	phosphorylation	in	the	A549	cancer	cell	line,	the	A431	cancer	cell	line	and	primary	human	lung	
fibroblasts	following	stimulation	with	50	ng/ml	recombinant	human	hepatocyte	growth	factor	(HGF).	B)	
Quantification	of	firefly	luciferase	STAT6	reporter	activity	using	luminescence	in	A431	cancer	cells	treated	for	3	
hours	with	either	a	vehicle	control,	50	ng/ml	recombinant	human	HGF	or	50	ng/ml	recombinant	human	
interleukin-13	(IL-13).	Values	were	normalised	according	to	expression	of	a	constitutively	active	renilla	luciferase	
in	order	to	account	for	variation	in	transfection	efficiency.	Statistical	analysis	comparing	vehicle	and	HGF-	or	IL-
13-treated	groups	was	performed	using	a	one-way	ANOVA	with	Bonferroni	post-test;	n	=	6	(mean	+/-	SEM);	****	
indicates	P<0.0001.	C)	Quantification	of	firefly	luciferase	reporter	STAT6	activity	using	luminescence	in	A431	
cancer	cells	treated	for	15	minutes,	30	minutes,	45	minutes	or	2	hours	with	either	a	vehicle	control,	50	ng/ml	
recombinant	human	HGF	or	50	ng/ml	recombinant	human	IL-13.	Values	were	normalised	according	to	expression	
of	a	constitutively	active	renilla	luciferase	in	order	to	account	for	variation	in	transfection	efficiency.	Statistical	
analysis	comparing	vehicle	and	HGF-	or	IL-13-treated	groups	was	performed	using	a	two-way	ANOVA	with	
Bonferroni	post-test;	n	=	3	(mean	+/-	SEM);	unlabelled	bars	were	not	statistically	significant,	****	indicates	
P<0.0001.	
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These	experiments	contradicted	earlier	findings	because	STAT6	is	robustly	phosphorylated	

at	Y641,	the	site	associated	with	its	dimerisation	and	translocation	into	the	nucleus	(that	is,	

the	activating	phosphorylation	site)	[297],	in	response	to	HGF	but	does	not	activate	STAT6-

dependent	transcription.	In	order	to	better	understand	what	was	happening,	subcellular	

fractionation	was	established	to	cleanly	resolve	cytoplasmic	and	nuclear	proteins	(Figure	

6.9A).	This	technique	was	then	used	to	determine	the	location	of	STAT6	within	cells	

following	stimulation	with	either	HGF	or	IL-13.	This	experiment	revealed	that	either	30	

minutes	(Figure	6.9B)	or	2	hours	(Figure	6.9C)	following	stimulation,	STAT6	was	found	in	the	

nucleus	of	cells	stimulated	with	IL-13	but	remained	in	the	cytoplasm	of	cells	stimulated	with	

HGF.	Despite	the	presence	of	protease	and	phosphatase	inhibitors,	phosphorylated	STAT6	

was	not	detected	well	in	these	assays,	presumably	due	to	the	different	buffers	used	to	

process	protein	samples	for	subcellular	fractionation	but	results	for	total	STAT6	protein	were	

conclusive.	Interestingly,	some	STAT6	protein	was	seen	in	the	nucleus	of	unstimulated	cells,	

which	is	consistent	with	the	fact	that	STAT6	is	continually	imported	and	exported	out	of	the	

nucleus,	independently	of	its	phosphorylation	status	[298].	However,	these	results	mean	

that	it	is	unlikely	that	the	inhibition	of	GM-CSF	and	IL-8	transcription	seen	previously	with	

AS-1517499	is	caused	by	on-target	effects	on	STAT6	and	suggest	that	induction	of	GM-CSF	

and	IL-8	transcription	in	response	to	HGF	is	not	STAT6	dependent.	Indeed,	these	results	

suggest	that	alternative	pathways	are	induced	by	HGF	to	cause	GM-CSF	and	IL-8	

transcription.	
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Figure	6.9:	HGF	causes	the	phosphorylation	but	not	the	nuclear	translocation	of	STAT6.	A)	Western	blot	analysis	
of	MEK1/2	(cytoplasmic)	and	histone	H3	(nuclear	and	chromatin	bound)	in	lysates	processed	using	a	subcellular	
fractionation	kit	to	confirm	that	cytoplasmic,	nuclear	and	chromatin-bound	protein	fractions	were	obtained.	B)	
Western	blot	analysis	of	signal	transducer	and	activator	of	transcription	6	(STAT6)	phosphorylation	status	in	
primary	human	airway	epithelial	cells	treated	with	either	hepatocyte	growth	factor	(HGF)	or	interleukin-13	(IL-
13)	for	30	minutes.	Whole	cell	lysates	were	obtained	using	RIPA	buffer	and	compared	with	independent	lysates	
prepared	using	a	subcellular	fractionation	kit.	C)	Western	blot	analysis	of	STAT6	phosphorylation	status	in	
primary	human	airway	epithelial	cells	treated	with	either	HGF	or	IL-13	for	2	hours.	
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Although	results	in	Figure	6.9	suggest	that	induction	of	GM-CSF	and	IL-8	expression	in	

response	to	HGF	stimulation	is	not	mediated	by	STAT6,	previous	experiments	showed	a	

downregulation	of	both	GM-CSF	and	IL-8	protein	(Figure	6.7A	and	6.7B)	and	gene	expression	

(Figure	6.7C	and	6.7D)	by	the	STAT6	small	molecule	inhibitor	AS-1517499	following	HGF	

stimulation.	To	reconcile	these	results,	western	blots	were	performed	to	investigate	the	

phosphorylation	status	of	MET	and	STAT6	in	response	to	the	5	μM	dose	of	AS-1517499	used	

in	those	experiments.	These	results	show	that	MET	phosphorylation	itself	is	reduced	by	AS-

1517499,	suggesting	that	an	off-target	effect	of	this	drug	might	be	responsible	for	its	

apparent	effect	on	GM-CSF	and	IL-8	expression,	again	indicating	that	the	HGF-mediated	

induction	of	GM-CSF	and	IL-8	expression	and	secretion	in	epithelial	cells	is	not	dependent	on	

STAT6.	

	

	

Figure	6.10:	Non-specific	inhibition	of	MET	by	the	STAT6	inhibitor	AS-1517499.	Western	blot	analysis	of	MET	
and	signal	transducer	and	activator	of	transcription	6	(STAT6)	phosphorylation	status	in	primary	human	airway	
epithelial	cells	treated	with	a	vehicle	control,	50	ng/ml	recombinant	human	hepatocyte	growth	factor	(HGF)	or	50	
ng/ml	recombinant	human	HGF	and	5	μM	AS-1517499	(a	STAT6	inhibitor).	
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In	order	to	investigate	the	requirements	for	IL-8	transcription	in	response	to	HGF,	luciferase	

reporter	constructs	containing	the	IL-8	promoter	were	obtained.	These	plasmids	include	

different	lengths	of	the	IL-8	promoter	sequence	such	that	the	transcription	factor-binding	

sites	mediating	transcriptional	activation	can	be	inferred	[249,	250].	The	-2000	construct	

includes	IL-8	transcriptional	regulatory	elements	including	a	STAT6	consensus	sequence	

found	1850	bp	upstream	of	the	transcription	start	site	[250].	Two	truncated	versions	of	this	

upstream	region	were	analysed	to	tease	out	the	transcriptional	sites	that	mediate	HGF-

induced	IL-8	transcription	(Figure	6.11A).	The	-1400	plasmid	lacks	the	STAT6-binding	site	but	

contains	T-cell	factor/lymphoid	enhancer	factor	(TCF/LEF)-,	interferon-regulatory	factor	1	

(IRF1)-,	hepatocyte	nuclear	factor	1	(HNF1)-	and	glucocorticoid	receptor	(GR)-binding	sites	

that	are	absent	from	the	short	-173	sequence,	which	contains	activator	protein	1	(AP-1)-	and	

nuclear	factor-κB	(NF-κB)-binding	domains	(Figure	6.11B).	Upon	receipt	of	the	plasmids	from	

collaborators	the	inserts	were	checked	by	restriction	enzyme	digests,	which	demonstrated	

excised	fragments	of	the	predicted	molecular	weights	(Figure	6.11C).	A	luciferase	reporter	

assay	using	these	plasmids	showed	that	only	stimulation	of	A431	cells	transfected	with	the	-

173	IL-8	promoter	sequence	caused	upregulation	of	luciferase	activity	following	stimulation	

with	HGF	(Figure	6.11D).	This	result	suggests	that	proximal	transcription	factors	such	as	NF-

κB	and/or	AP-1,	which	are	known	to	respond	to	MET	activation	[299,	300],	rather	than	

STAT6,	are	candidate	transcription	factors	responsible	for	the	upregulation	of	IL-8	in	primary	

human	airway	epithelial	cells.	Interestingly,	they	also	suggest	a	possible	repressive	role	for	

more	distal	transcriptional	regulation	in	this	process	because	although	the	-2000	and	-1400	

constructs	contain	the	proximal	sites,	they	did	not	respond	significantly	to	HGF	stimulation	

(Figure	6.11D).	
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Figure	6.11:	HGF-induced	IL-8	transcription	is	mediated	by	NF-κB	rather	than	by	STAT6.	A)	Schematic	
representation	of	interleukin-8	(IL-8)	promoter	sequence	firefly	luciferase	reporter	constructs.	B)	Detailed	
schematic	representation	of	the	proximal	promoter	elements	of	IL-8.	C)	Validation	of	IL-8	promoter	sequence	
plasmids	by	NotI	and	XhoI	restriction	enzyme	digest.	D)	Quantification	of	firefly	luciferase	IL-8	promoter	reporter	
activity	using	luminescence	in	A431	cancer	cells	treated	for	30	minutes	with	either	a	vehicle	control	or	50	ng/ml	
recombinant	human	hepatocyte	growth	factor	(HGF).	Values	were	normalised	according	to	expression	of	a	
constitutively	active	renilla	luciferase	in	order	to	account	for	variation	in	transfection	efficiency.	Statistical	
analysis	comparing	vehicle	and	HGF-treated	groups	was	performed	using	a	two-way	ANOVA	with	Bonferroni	
post-test;	n	=	3	(mean	+/-	SEM);	****	indicates	P<0.0001.	
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To	conclude,	murine	HGF	partially	activates	the	human	MET	receptor	but	does	not	induce	

the	increased	proliferation	that	might	be	expected	in	human	cells.	However,	

phosphorylation	of	some	substrates	downstream	of	MET,	including	GAB2	and	the	novel	MET	

target	STAT6,	occurs	in	response	to	both	murine	and	human	HGF.	Human	HGF	also	leads	to	

phosphorylation	of	STAT6	downstream	of	the	MET	receptor	but	the	functional	relevance	of	

this	phosphorylation	was	not	established	as	MET	activation	does	not	lead	to	transcriptional	

activation	of	STAT6-target	genes.	Furthermore,	HGF-mediated	upregulation	of	IL-8	was	not	

dependent	on	STAT6.		

	

6.4 Summary	

	

• Our	3T3-J2	co-culture	system	was	used	to	investigate	stromal-epithelial	cell	

interactions.		

• HGF	secreted	from	fibroblasts	activates	MET	on	human	airway	basal	cells.		

• MET	activation	leads	to	STAT6	phosphorylation	but	not	to	transcriptional	activation	

of	STAT6-target	genes.	

• MET	signalling	leads	to	the	secretion	of	the	potent	neutrophil	chemoattractants	IL-8	

and	GM-CSF.	HGF-induced	IL-8	transcription	occurs	independently	of	STAT6.	
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7 .	Conclusions	and	future	

directions	
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Limitations	of	traditional	airway	epithelial	cell	culture	systems	

	

The	initial	aim	of	this	thesis	was	to	investigate	the	suitability	of	protocols	for	human	airway	

epithelial	cell	expansion	for	high-throughput	in	vitro	assays	relevant	to	drug	screening,	

toxicology	studies	and	personalised	medicine	[203]	and	for	airway	tissue-engineering	

applications	[77].	Consistent	with	previous	studies,	epithelial	cells	expanded	from	bronchial	

biopsy	samples	using	the	established	protocol	for	airway	epithelial	cell	expansion,	bronchial	

epithelial	growth	medium	(BEGM),	expressed	basal	stem	cell	markers	[301]	and	were	

capable	of	differentiation	at	very	early	passages	[222,	223].	However,	a	key	early	finding	was	

that	this	protocol	was	largely	unsuitable	for	our	target	studies.		

	

BEGM	protocols	were	initially	developed	using	large	cadaveric	airway	tissue	samples	[222]	

and	in	this	work	I	showed	that,	even	when	cultures	are	initiated	from	the	large	numbers	of	

airway	epithelial	cells	that	would	be	supplied	by	these	samples,	they	are	limited	by	

diminishing	proliferation	over	passage	and	by	eventual	senescence	or	terminal	

differentiation	in	these	conditions	[49,	117,	265,	267].	Previous	studies	demonstrate	that	the	

capacity	of	cultured	basal	cells	to	regenerate	ciliated	epithelium	declines	as	a	function	of	

population	doubling	number	[265].	Here,	as	cells	were	cultured	from	living	patients	through	

isolation	of	cells	from	endobronchial	biopsy	samples,	the	starting	material	necessarily	

contained	a	tiny	fraction	of	the	basal	epithelial	stem/progenitor	cells	obtained	from	whole	

airway	samples.	In	these	studies,	the	capacity	of	human	basal	cells	to	form	either	air-liquid	

interface	differentiated	epithelium	or	differentiated	three-dimensional	(3D)	tracheospheres	

was	compromised	after	four	passages	of	BEGM	culture,	suggesting	that	the	issue	of	limited	

proliferation,	in	vitro	senescence	and	loss	of	differentiation	capacity	in	passaged	cells	might	

be	exacerbated	by	the	limited	starting	material	in	biopsy-derived	cultures.	Indeed,	previous	
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descriptions	of	such	cultures	have	mainly	focused	on	the	initiation	of	basal	cell	culture	and	

the	earliest	passages	[219-221].	

	

Improved	airway	epithelial	cell	culture	using	3T3+Y	

	

The	work	presented	here	furthers	previous	research	in	which	epithelial	cells	have	been	

cultured	on	3T3-J2	feeder	cells	[189]	and	more	recently	using	this	culture	system	in	the	

presence	of	Rho-associated	protein	kinase	(ROCK)	inhibitors	[264].	While	the	ability	to	

expand	and	differentiate	airway	basal	cells	in	this	system	was	previously	shown	[264],	this	is	

first	detailed	characterisation	of	the	nature	of	basal	cells	expanded	using	the	combination	of	

mitotically	inactivated	murine	embryonic	fibroblast	feeder	layers	and	ROCK	inhibition	using	

Y-27632	(3T3+Y).	Further,	this	thesis	demonstrates	the	feasibility	of	expanding	basal	cells	

directly	from	primary	human	tissue	in	these	conditions	and	shows	that	replacement	of	3T3-

J2	cells	with	cells	that	can	be	derived	in	an	autologous	manner,	such	as	lung	fibroblasts	or	

bone	marrow-derived	mesenchymal	stem	cells	(MSCs),	is	not	successful.	

	

The	use	of	3T3+Y	culture	conditions	overcame	the	problems	associated	with	culture	in	

BEGM	and	allowed	the	expansion	of	meaningful	cell	numbers	from	small	biopsies	with	a	

high	success	rate.	This	is	important	for	a	number	of	reasons.	Firstly,	this	culture	technique	

will	provide	an	important	alternative	for	studying	airway	epithelial	cells	cultured	from	

different	patients.	Currently,	these	studies	are	limited	by	the	cost	of	commercial	primary	

cells	and	their	limited	lifespan	in	culture.	Additionally,	the	high	degree	of	inter-individual	

variability	seen	in	studies	using	human	airway	epithelial	cells	means	that	experiments	ideally	

require	investigation	of	a	range	of	donor	cell	cultures.	3T3+Y	expansion	and	

cryopreservation	of	primary	cells	that	retain	their	characteristics	for	longer	culture	periods	

might	enable	serial	investigation	of	the	same	donor	cell	cultures	and	might	improve	the	
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reliability	of	such	investigations.	Secondly,	endobronchial	biopsies	are	the	route	of	tissue	

acquisition	in	patients	receiving	epithelial	cell	therapy	as	part	of	tracheal	transplantation	

procedures	[70]	and,	given	the	high	number	of	epithelial	cells	required	for	successful	

scaffold	seeding	[302],	BEGM-based	strategies	would	require	a	number	of	biopsies	that	is	

clinically	unachievable,	particularly	as	patients	requiring	tissue-engineered	airway	

replacement	are	likely	to	have	severely	damaged	airway	epithelium.	3T3+Y	culture	

conditions	overcome	this	problem,	generating	clinically	useful	numbers	of	cells	that	retain	

their	differentiation	capacity	from	a	single	biopsy	sample.	Finally,	the	culture	of	cells	from	

living	patients	using	a	minimally	invasive	technique	suggests	the	application	of	these	

protocols	in	the	expanding	area	of	personalised	medicine	[303].	In	future,	airway	biopsies	

from	patients	with	respiratory	disease	could	be	expanded	in	3T3+Y	culture	and	therapies	

could	be	tested	for	their	in	vitro	efficacy	in	a	patient-specific	manner	and	used	to	inform	

clinical	decision-making.	It	will	be	interesting	to	establish	whether	disease-specific	basal	cells	

retain	their	characteristics	in	diseases	such	as	asthma	and	chronic	obstructive	pulmonary	

disease	(COPD).	Additionally,	the	expansion	of	primary	lung	tumour	cells	in	3T3+Y	and	the	

characterisation	of	the	extent	to	which	these	mimic	the	heterogeneity	[304]	and	the	

response	to	therapy	of	patient	tumours	will	be	of	interest	[305].	In	this	setting,	the	high	

success	rate	of	epithelial	cultures	in	3T3+Y	will	be	of	particular	importance	as	samples	may	

only	be	available	to	researchers	on	one	occasion.	

	

Effects	of	combined	3T3+Y	co-culture	on	cultured	human	airway	epithelial	cells	

	

In	an	attempt	to	understand	the	mechanism	of	action	of	3T3+Y,	using	microarray	and	

pathway	analysis,	key	pathways	were	identified	that	are	changed	in	airway	epithelial	cells	

grown	in	3T3+Y.	These	include	cell	cycle	regulators,	consistent	with	the	increased	

proliferation	of	cells	in	3T3+Y,	oxidative	stress	pathway	genes,	which	may	be	of	significance	
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given	that	reactive	oxygen	species	modulate	human	basal	cell	behaviour	through	NRF2	[306]	

and	neuregulin	signalling,	consistent	with	a	previous	report	that	feeder	cells	cause	

epidermal	growth	factor	receptor	(EGFR)	and	human	epidermal	growth	factor	receptor	2	

(HER2)	phosphorylation	in	epidermal	keratinocytes	[307].	Additionally,	telomerase	signalling	

genes	were	significantly	affected	by	co-culture.	Although	human	telomerase	reverse	

transcriptase	(TERT)	is	not	typically	expressed	in	somatic	cells,	low	expression	levels	are	

thought	to	slow	telomere	shortening	in	adult	stem	cells	[308]	and	exogenous	addition	of	

TERT	mRNA	extends	telomeres	and	the	lifespan	of	epidermal	keratinocytes	in	vitro	[309].	

Indeed,	work	from	another	member	of	the	laboratory	suggests	that,	while	telomere	lengths	

decrease	over	passage	in	BEGM,	telomeres	are	maintained	in	3T3+Y	[310],	suggesting	that	

this	might	be	one	reason	for	the	maintenance	of	stem	cell	capacity	in	these	culture	

conditions.	Although	consistent	with	the	behaviour	of	cells	cultured	in	3T3+Y,	the	array	data	

give	little	mechanistic	insight	into	the	molecular	basis	of	the	effects	of	3T3+Y.	Future	

mechanistic	studies	are	required	to	investigate	the	molecular	basis	of	airway	epithelial	cell	

expansion	in	3T3+Y	and	also	to	develop	protocols	for	clinical	airway	epithelial	cell	expansion	

that	are	not	dependent	on	murine	cells.	

	

Potential	roles	of	3T3-J2	feeder	cells	in	3T3+Y	

	

3T3-J2	co-culture	as	a	method	to	expand	human	epithelial	cells	was	first	described	by	Prof.	

Howard	Green	and	colleagues	in	1975	[188,	189],	and	expansion	of	epithelial	cells	from	a	

range	of	non-epidermal	organs,	including	the	oesophagus	[311],	intestines	[312]	and	lungs	

[313],	has	since	been	described.	However,	the	specific	contribution	of	3T3-J2	feeder	cells	has	

never	been	determined	and,	as	such,	clinical	products	involving	epidermal	and	limbal	

epithelial	stem	cell	expansion	remain	dependent	on	these	murine	feeder	cells	as	effective	

defined	media	alternatives	are	not	available.	
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Data	presented	here	suggest	that	a	continual	supply	of	soluble	feeder	cell	products	is	

required	by	epithelial	cells	for	optimal	expansion	because	co-culture	levels	of	epithelial	

support	were	recreated	in	colony	formation	assays	when	feeder	cells	were	separated	from	

epithelial	cells	by	a	transwell	membrane	but	not	when	feeder	cell-conditioned	medium	was	

delivered	three	times	per	week.	This	is	in	agreement	with	previous	observations	that	

epidermal	keratinocytes	are	not	supported	by	3T3-J2-conditioned	medium	[189,	314]	but	

contradicts	data	showing	that	separation	with	a	nitrocellulose	membrane	prevents	the	

keratinocyte-stimulating	effect	of	inactivated	3T3-J2	cells	[314].	The	association	of	the	

keratinocyte-stimulating	effect	of	3T3-J2	cells	with	the	membrane	of	3T3-J2	cells	[314]	

suggests	that	different	mechanisms	of	action	may	exist	in	different	epithelial	cell	types	as	

physical	separation	did	not	decrease	colony	formation	in	airway	epithelial	cell	co-cultures.			

	

I	have	shown	that	the	supportive	effects	of	3T3-J2	fibroblasts	cannot	be	recapitulated	by	

mitotically	inactivated	human	lung	fibroblast	or	human	mesenchymal	stromal	cell	feeder	

layers	[310],	which	could	be	used	in	an	autologous	manner	in	tissue-engineering	

applications.	These	investigations,	however,	cannot	rule	out	that	human	embryonic	

fibroblast	cell	lines,	such	as	MRC-5,	might	be	able	to	recapitulate	the	effects	of	3T3-J2	feeder	

cells	or	that	non-inactivated	stromal	cells	from	human	lungs	might	recapitulate	the	lung	

microenvironment	ex	vivo.		

	

Despite	the	existence	of	cell	therapies	that	use	3T3-J2-co-cultured	human	cells	[190,	194-

196,	198,	199],	future	work	will	establish	the	appropriate	feeder-free	culture	conditions	for	

human	airway	basal	cells.	This	is	likely	to	involve	better	characterisation	of	the	complex	

protein	(and	non-protein)	secretions	of	feeder	cells	as	they	undergo	apoptosis	[278],	the	

mode	of	their	delivery	(for	example,	secreted	protein,	extracellular	vesicles	or	another	

mechanism)	and	the	optimisation	of	culture	systems	to	deliver	these	in	vitro.	
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Potential	roles	of	the	ROCK	inhibitor	Y-27632	in	3T3+Y	

	

The	results	presented	here	show	that	addition	of	Y-27632	dramatically	improves	airway	

epithelial	cell	cultures	in	the	presence	of	3T3-J2	feeder	cells,	consistent	with	previous	

findings	that	Y-27362	increases	the	proliferation	and	the	lentiviral	transduction	efficacy	of	

mouse	and	human	airway	basal	cells	in	culture	[315].	While	the	effect	of	culture	using	

alternative	ROCK	inhibitors	has	not	been	investigated	here,	it	is	likely	that,	at	concentrations	

of	less	than	10	μM,	the	effects	observed	using	Y-27632	are	as	a	result	of	specific	inhibition	of	

ROCK1	and/or	ROCK2	in	airway	epithelial	cells	rather	than	as	a	result	of	an	off-target	effect	

on	proteins	such	as	PRK2	and	MSK1	[316]	Indeed,	in	epidermal	keratinocytes,	Y-27632	can	

be	replaced	by	fasudil	hydrochloride	(HA-1077;	inhibits	ROCK1,	ROCK2	and	cAMP-dependent	

protein	kinase),	HA-1000	hydrochloride	(a	metabolite	of	fasudil	hydrochloride;	a	selective	

ROCK1	and	ROCK2	inhibitor)	or	GSK-429286	(a	selective	ROCK1	and	ROCK2	inhibitor)	with	no	

loss	of	efficacy	[317].	

	

The	mechanism	of	Y-27632	has	not	been	addressed	in	these	studies;	however,	under	

conventional	culture	conditions,	cumulative	passage	may	reduce	the	number	of	

stem/progenitor	cells	by	inducing	anoikis	or	terminal	differentiation.	In	fact,	inhibition	of	

ROCK	signalling	might	be	an	effective	strategy	against	both	of	these	possibilities.	Firstly,	

ROCK	activation	is	implicated	in	apoptotic	pathways.	The	inhibitor	used	here,	Y-27632,	was	

identified	in	a	screen	of	molecules	to	inhibit	dissociation-induced	apoptosis	in	cultured	

human	embryonic	stem	cells	[318].	Although	ROCK	activation	occurs	as	a	late	event	in	the	

apoptotic	signalling	cascade	[319],	sudden	high	intensity	ROCK	activation	as	a	result	of	acute	

stress,	such	as	cell	dissociation,	may	accelerate	apoptosis	[320].	ROCK	inhibition	also	inhibits	

apoptosis	induced	by	the	loss	of	cadherin-dependent	cell	contacts	in	multiple	cell	types	[318,	

321,	322].	Secondly,	RhoA/ROCK	signals	mediate	terminal	differentiation	in	epithelial	cells	
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and	inhibition	of	ROCK	prevents	differentiation	[323].	In	differentiation	pathways,	upstream	

activation	of	ROCK	is	caused	by	Notch	1,	expression	of	which	is	low	in	ΔN-p63-expressing	

basal	epithelial	cells	[324]	and	high	in	suprabasal	keratinocytes	expressing	p53	and/or	TA-

p63	isoforms	[325].	Gene	expression	analyses	in	epidermal	keratinocytes	show	that	inclusion	

of	Y-27632	in	cultures	using	3T3-J2	feeder	cells	leads	to	downregulated	expression	of	

loricrin,	filaggrin	[317]	and	keratins	that	are	expressed	by	differentiated	keratinocytes	and	to	

upregulation	of	the	Notch	pathway	inhibitory	protein	CHAC1	[307].	Indeed,	calcium	

chelation	by	EDTA,	routinely	used	in	cell	culture,	leads	to	release	of	the	Notch	1	intracellular	

fragment	and	to	immediate	ROCK	activation	[326].	As	Notch	signalling	also	mediates	

differentiation	of	airway	basal	cells	[158],	this	might	provide	a	plausible	mechanism	for	the	

expansion	of	airway	basal	cells	in	3T3+Y.	Accordingly,	small	molecule	inhibition	of	ROCK	

might	act	both	to	prevent	dissociation-induced	anoikis	and	to	retain	the	proliferative	

fraction	of	undifferentiated	epithelial	stem/progenitor	cells	but	further	mechanistic	studies	

are	required	to	define	its	contribution	and	the	requirements	for	additional	activation	and/or	

repression	of	other	signalling	pathways.	

	

HGF	signalling	in	cultured	primary	human	airway	epithelial	cells	

	

The	data	presented	here	suggest	that	secreted	factors	mediate	the	effect	of	3T3-J2	co-

culture	but	that	they	are	required	in	constant	supply	for	their	effect.	These	data	support	the	

view	that	mechanisms	of	action	involving	direct	cell-cell	contact	[278]	or	extracellular	matrix	

deposition	[327]	can	be	ruled	out.	Searching	for	soluble	mediators	revealed	that	surprisingly	

few	growth	factor	receptor-associated	pathways	are	activated	in	human	airway	epithelial	

cells	co-cultured	with	3T3-J2	feeder	cells,	although	one	limitation	of	these	experiments	is	

that	conditioned	medium	from	mitotically	inactivated	fibroblasts	was	used	rather	than	from	

co-cultures	of	epithelial	cells	and	fibroblasts.	This	strategy	allowed	us	to	distinguish	potential	
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contributions	of	feeder	cells	but	could	not	identify	feeder	cell	factors	that	are	induced	by	

epithelial-derived	signals	[328].	Nevertheless,	hepatocyte	growth	factor	(HGF)-MET	

signalling	emerged	as	a	promising	candidate	mediating	feeder	cell-epithelial	cell	crosstalk	as	

it	was	secreted	by	feeder	cells	in	increasing	amounts	following	mitotic	inactivation	and	

activated	MET	on	human	epithelial	cells.	This	is	consistent	with	the	physiological	role	of	HGF-

MET	signalling,	where	mesenchyme-derived	HGF	signals	to	epithelial	MET	to	mediate	

diverse	responses	such	as	proliferation,	migration,	survival	and	differentiation	[283].	The	

identification	of	MET	activation	in	human	epithelial	cells	stimulated	with	3T3-J2-conditioned	

medium	was	particularly	interesting	as	murine	HGF	is	not	thought	to	bind	efficiently	to	the	

human	MET	receptor	[284].	Indeed,	autophosphorylation	of	the	MET	receptor	

multisubstrate-docking	site	was	reduced	in	response	to	murine	HGF	in	3T3-J2-conditioned	

medium	compared	with	recombinant	human	HGF.	Interestingly,	inhibition	of	MET	did	not	

decrease	proliferation	caused	by	conditioned	medium,	suggesting	that	HGF	signalling	is	

unlikely	to	be	responsible	for	this	aspect	of	the	improved	epithelial	cell	culture	conditions	

conferred	by	3T3+Y.	

	

Despite	this,	characterisation	of	signalling	downstream	of	MET	in	response	to	3T3-J2-

conditioned	medium	identified	the	transcription	factor	signal	transducer	and	activator	of	

transcription	6	(STAT6)	as	a	novel	target	of	MET	signalling,	a	finding	validated	using	

recombinant	human	HGF.	STAT6	is	a	target	of	interleukin-4	(IL-4)/IL-13	[329]	and	this	

cytokine	signalling	pathway	is	directly	involved	in	the	pathogenesis	of	airway	disease	[290,	

330].	In	separate	studies,	HGF	induced	cultured	proximal	airway	basal	cell	secretion	of	the	

neutrophil	chemoattractants	IL-8	and	granulocyte/macrophage	colony-stimulating	factor	

(GM-CSF),	consistent	with	recent	findings	that	these	cytokines	are	secreted	in	a	MET-

dependent	manner	in	alveolar	epithelial	cells	following	influenza	infection	[331].	The	

hypothesis	that	HGF	induction	of	IL-8	is	dependent	on	STAT6	was	tested	but	HGF	could	not	
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induce	expression	of	luciferase	from	a	STAT6	consensus	sequence	in	a	cancer	cell	line.	In	

addition,	phosphorylated	STAT6	remained	in	the	cytoplasm	of	human	airway	basal	cells	in	

response	to	HGF	stimulation,	in	contrast	to	following	activation	by	IL-13,	which	stimulates	

STAT6	nuclear	translocation	[61].	Further,	HGF	induced	IL-8	promoter	activation	in	luciferase	

assays	in	the	absence	of	the	upstream	STAT6-binding	sequence,	suggesting	that	other	

transcription	factors	such	as	nuclear	factor-κB	(NF-κB)	or	activator	protein	1	(AP-1),	rather	

than	STAT6,	mediate	the	HGF-induced	increase	in	IL-8	expression	and	secretion.	Previous	

data	show	that	cytoplasmic	phosphorylated	STAT6	cannot	bind	to	DNA	in	vitro	but	that	DNA-

binding	ability	could	be	conferred	by	detergent	treatment,	suggesting	the	existence	of	a	

cytoplasmic	inhibitor	of	phosphorylated	STAT6	[332].	Although	the	identity	of	this	inhibitor	

and	the	mechanism	of	inhibition	are	unknown,	one	possibility	is	that	a	bound	factor	both	

prevents	the	nuclear	import	of	STAT6	and	masks	the	DNA-binding	site.	Importin-α5	binds	

competitively	to	the	STAT1	DNA-binding	site	[333],	giving	biological	precedent	to	this	

hypothesis	but	experiments	comparing	proteins	bound	to	phosphorylated	STAT6	in	response	

to	HGF	and	IL-13	stimulation	using	co-immunoprecipitation	and	mass	spectrometry	are	

required	to	test	this	hypothesis.	Overall,	these	results	suggest	that	murine	HGF	cannot	be	

considered	to	be	completely	inactive	on	human	cells	and	that	it	may	still	have	an	unknown	

role	in	some	of	the	effects	of	3T3+Y	on	human	airway	epithelial	cells	but	that	other	secreted	

factors	most	likely	co-operate	with	ROCK	inhibition	to	improve	human	airway	basal	cell	

phenotype	in	3T3+Y.	Although	the	classic	proliferative	and	migratory	effects	of	HGF	are	

lacking	following	stimulation	with	murine	HGF,	some	intracellular	signalling	proceeds,	

including	the	phosphorylation	of	STAT6,	although	the	functional	role	of	these	signalling	

events	remains	to	be	explored.	
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Conclusion	

	

The	work	presented	here	identifies	problems	in	the	use	of	existing	cell	culture	protocols	for	

in	vitro	investigations	requiring	large	numbers	of	primary	human	airway	epithelial	cells	and	

for	potential	tissue-engineering	applications	that	require	patient	autologous	epithelial	cells	

because	of	the	limited	ability	to	expand	basal	cells	that	retain	key	stem/progenitor	cell	

functions.	I	have	characterised	an	alternative	cell	culture	protocol	involving	co-culture	of	

primary	epithelial	cells	with	3T3-J2	mouse	embryonic	fibroblast	feeder	cells	in	medium	

containing	a	Rho-associated	protein	kinase	(ROCK)	inhibitor,	Y-27632,	and	found	that	this	

system	is	better	at	retaining	basal	cell	function	in	in	vitro	assays.	As	similar	culture	protocols	

have	been	applied	clinically	in	the	treatment	of	limbal	stem	cell	deficiency	and	severe	burns	

injury,	I	am	hopeful	that	this	protocol	could	be	used	to	improve	the	prognosis	of	patients	in	

future	airway	transplantation	procedures	and	that	these	findings	might	be	a	platform	to	

discover	a	feeder-free	method	to	culture	human	airway	epithelial	cells	with	the	efficiency	

required	for	functional	transplantation.	Finally,	I	have	characterised	the	role	of	hepatocyte	

growth	factor	(HGF)	signalling	in	feeder	cell-epithelial	cell	crosstalk,	finding	that	murine	HGF	

activates	the	human	MET	receptor	and	downstream	signalling	processes	involving	

phosphorylation	of	GRB2-associated-binding	protein	2	(GAB2)	and	signal	transducer	and	

activator	of	transcription	6	(STAT6).	However,	the	functional	role	of	these	signalling	events	is	

unclear.	
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